gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49 public:
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
56 current_offset_(0),
57 vma_sections_(),
58 lma_sections_(),
59 last_section_(NULL)
60 { }
61
62 // Return the name of this region.
63 const std::string&
64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
90 get_current_address() const
91 {
92 return
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
95 }
96
97 void
98 set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99 {
100 uint64_t start = this->start_->eval(symtab, layout, false);
101 uint64_t len = this->length_->eval(symtab, layout, false);
102 if (addr < start || addr >= start + len)
103 gold_error(_("address 0x%llx is not within region %s"),
104 static_cast<unsigned long long>(addr),
105 this->name_.c_str());
106 else if (addr < start + this->current_offset_)
107 gold_error(_("address 0x%llx moves dot backwards in region %s"),
108 static_cast<unsigned long long>(addr),
109 this->name_.c_str());
110 this->current_offset_ = addr - start;
111 }
112
113 void
114 increment_offset(std::string section_name, uint64_t amount,
115 const Symbol_table* symtab, const Layout* layout)
116 {
117 this->current_offset_ += amount;
118
119 if (this->current_offset_
120 > this->length_->eval(symtab, layout, false))
121 gold_error(_("section %s overflows end of region %s"),
122 section_name.c_str(), this->name_.c_str());
123 }
124
125 // Returns true iff there is room left in this region
126 // for AMOUNT more bytes of data.
127 bool
128 has_room_for(const Symbol_table* symtab, const Layout* layout,
129 uint64_t amount) const
130 {
131 return (this->current_offset_ + amount
132 < this->length_->eval(symtab, layout, false));
133 }
134
135 // Return true if the provided section flags
136 // are compatible with this region's attributes.
137 bool
138 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
139
140 void
141 add_section(Output_section_definition* sec, bool vma)
142 {
143 if (vma)
144 this->vma_sections_.push_back(sec);
145 else
146 this->lma_sections_.push_back(sec);
147 }
148
149 typedef std::vector<Output_section_definition*> Section_list;
150
151 // Return the start of the list of sections
152 // whose VMAs are taken from this region.
153 Section_list::const_iterator
154 get_vma_section_list_start() const
155 { return this->vma_sections_.begin(); }
156
157 // Return the start of the list of sections
158 // whose LMAs are taken from this region.
159 Section_list::const_iterator
160 get_lma_section_list_start() const
161 { return this->lma_sections_.begin(); }
162
163 // Return the end of the list of sections
164 // whose VMAs are taken from this region.
165 Section_list::const_iterator
166 get_vma_section_list_end() const
167 { return this->vma_sections_.end(); }
168
169 // Return the end of the list of sections
170 // whose LMAs are taken from this region.
171 Section_list::const_iterator
172 get_lma_section_list_end() const
173 { return this->lma_sections_.end(); }
174
175 Output_section_definition*
176 get_last_section() const
177 { return this->last_section_; }
178
179 void
180 set_last_section(Output_section_definition* sec)
181 { this->last_section_ = sec; }
182
183 private:
184
185 std::string name_;
186 unsigned int attributes_;
187 Expression* start_;
188 Expression* length_;
189 // The offset to the next free byte in the region.
190 // Note - for compatibility with GNU LD we only maintain one offset
191 // regardless of whether the region is being used for VMA values,
192 // LMA values, or both.
193 uint64_t current_offset_;
194 // A list of sections whose VMAs are set inside this region.
195 Section_list vma_sections_;
196 // A list of sections whose LMAs are set inside this region.
197 Section_list lma_sections_;
198 // The latest section to make use of this region.
199 Output_section_definition* last_section_;
200 };
201
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
204
205 bool
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207 elfcpp::Elf_Xword type) const
208 {
209 unsigned int attrs = this->attributes_;
210
211 // No attributes means that this region is not compatible with anything.
212 if (attrs == 0)
213 return false;
214
215 bool match = true;
216 do
217 {
218 switch (attrs & - attrs)
219 {
220 case MEM_EXECUTABLE:
221 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222 match = false;
223 break;
224
225 case MEM_WRITEABLE:
226 if ((flags & elfcpp::SHF_WRITE) == 0)
227 match = false;
228 break;
229
230 case MEM_READABLE:
231 // All sections are presumed readable.
232 break;
233
234 case MEM_ALLOCATABLE:
235 if ((flags & elfcpp::SHF_ALLOC) == 0)
236 match = false;
237 break;
238
239 case MEM_INITIALIZED:
240 if ((type & elfcpp::SHT_NOBITS) != 0)
241 match = false;
242 break;
243 }
244 attrs &= ~ (attrs & - attrs);
245 }
246 while (attrs != 0);
247
248 return match;
249 }
250
251 // Print a memory region.
252
253 void
254 Memory_region::print(FILE* f) const
255 {
256 fprintf(f, " %s", this->name_.c_str());
257
258 unsigned int attrs = this->attributes_;
259 if (attrs != 0)
260 {
261 fprintf(f, " (");
262 do
263 {
264 switch (attrs & - attrs)
265 {
266 case MEM_EXECUTABLE: fputc('x', f); break;
267 case MEM_WRITEABLE: fputc('w', f); break;
268 case MEM_READABLE: fputc('r', f); break;
269 case MEM_ALLOCATABLE: fputc('a', f); break;
270 case MEM_INITIALIZED: fputc('i', f); break;
271 default:
272 gold_unreachable();
273 }
274 attrs &= ~ (attrs & - attrs);
275 }
276 while (attrs != 0);
277 fputc(')', f);
278 }
279
280 fprintf(f, " : origin = ");
281 this->start_->print(f);
282 fprintf(f, ", length = ");
283 this->length_->print(f);
284 fprintf(f, "\n");
285 }
286
287 // Manage orphan sections. This is intended to be largely compatible
288 // with the GNU linker. The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement. We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
292
293 class Orphan_section_placement
294 {
295 private:
296 typedef Script_sections::Elements_iterator Elements_iterator;
297
298 public:
299 Orphan_section_placement();
300
301 // Handle an output section during initialization of this mapping.
302 void
303 output_section_init(const std::string& name, Output_section*,
304 Elements_iterator location);
305
306 // Initialize the last location.
307 void
308 last_init(Elements_iterator location);
309
310 // Set *PWHERE to the address of an iterator pointing to the
311 // location to use for an orphan section. Return true if the
312 // iterator has a value, false otherwise.
313 bool
314 find_place(Output_section*, Elements_iterator** pwhere);
315
316 // Update PLACE_LAST_ALLOC.
317 void
318 update_last_alloc(Elements_iterator where);
319
320 // Return the iterator being used for sections at the very end of
321 // the linker script.
322 Elements_iterator
323 last_place() const;
324
325 private:
326 // The places that we specifically recognize. This list is copied
327 // from the GNU linker.
328 enum Place_index
329 {
330 PLACE_TEXT,
331 PLACE_RODATA,
332 PLACE_DATA,
333 PLACE_TLS,
334 PLACE_TLS_BSS,
335 PLACE_BSS,
336 PLACE_LAST_ALLOC,
337 PLACE_REL,
338 PLACE_INTERP,
339 PLACE_NONALLOC,
340 PLACE_LAST,
341 PLACE_MAX
342 };
343
344 // The information we keep for a specific place.
345 struct Place
346 {
347 // The name of sections for this place.
348 const char* name;
349 // Whether we have a location for this place.
350 bool have_location;
351 // The iterator for this place.
352 Elements_iterator location;
353 };
354
355 // Initialize one place element.
356 void
357 initialize_place(Place_index, const char*);
358
359 // The places.
360 Place places_[PLACE_MAX];
361 // True if this is the first call to output_section_init.
362 bool first_init_;
363 };
364
365 // Initialize Orphan_section_placement.
366
367 Orphan_section_placement::Orphan_section_placement()
368 : first_init_(true)
369 {
370 this->initialize_place(PLACE_TEXT, ".text");
371 this->initialize_place(PLACE_RODATA, ".rodata");
372 this->initialize_place(PLACE_DATA, ".data");
373 this->initialize_place(PLACE_TLS, NULL);
374 this->initialize_place(PLACE_TLS_BSS, NULL);
375 this->initialize_place(PLACE_BSS, ".bss");
376 this->initialize_place(PLACE_LAST_ALLOC, NULL);
377 this->initialize_place(PLACE_REL, NULL);
378 this->initialize_place(PLACE_INTERP, ".interp");
379 this->initialize_place(PLACE_NONALLOC, NULL);
380 this->initialize_place(PLACE_LAST, NULL);
381 }
382
383 // Initialize one place element.
384
385 void
386 Orphan_section_placement::initialize_place(Place_index index, const char* name)
387 {
388 this->places_[index].name = name;
389 this->places_[index].have_location = false;
390 }
391
392 // While initializing the Orphan_section_placement information, this
393 // is called once for each output section named in the linker script.
394 // If we found an output section during the link, it will be passed in
395 // OS.
396
397 void
398 Orphan_section_placement::output_section_init(const std::string& name,
399 Output_section* os,
400 Elements_iterator location)
401 {
402 bool first_init = this->first_init_;
403 this->first_init_ = false;
404
405 // Remember the last allocated section. Any orphan bss sections
406 // will be placed after it.
407 if (os != NULL
408 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
409 {
410 this->places_[PLACE_LAST_ALLOC].location = location;
411 this->places_[PLACE_LAST_ALLOC].have_location = true;
412 }
413
414 for (int i = 0; i < PLACE_MAX; ++i)
415 {
416 if (this->places_[i].name != NULL && this->places_[i].name == name)
417 {
418 if (this->places_[i].have_location)
419 {
420 // We have already seen a section with this name.
421 return;
422 }
423
424 this->places_[i].location = location;
425 this->places_[i].have_location = true;
426
427 // If we just found the .bss section, restart the search for
428 // an unallocated section. This follows the GNU linker's
429 // behaviour.
430 if (i == PLACE_BSS)
431 this->places_[PLACE_NONALLOC].have_location = false;
432
433 return;
434 }
435 }
436
437 // Relocation sections.
438 if (!this->places_[PLACE_REL].have_location
439 && os != NULL
440 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
441 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
442 {
443 this->places_[PLACE_REL].location = location;
444 this->places_[PLACE_REL].have_location = true;
445 }
446
447 // We find the location for unallocated sections by finding the
448 // first debugging or comment section after the BSS section (if
449 // there is one).
450 if (!this->places_[PLACE_NONALLOC].have_location
451 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
452 {
453 // We add orphan sections after the location in PLACES_. We
454 // want to store unallocated sections before LOCATION. If this
455 // is the very first section, we can't use it.
456 if (!first_init)
457 {
458 --location;
459 this->places_[PLACE_NONALLOC].location = location;
460 this->places_[PLACE_NONALLOC].have_location = true;
461 }
462 }
463 }
464
465 // Initialize the last location.
466
467 void
468 Orphan_section_placement::last_init(Elements_iterator location)
469 {
470 this->places_[PLACE_LAST].location = location;
471 this->places_[PLACE_LAST].have_location = true;
472 }
473
474 // Set *PWHERE to the address of an iterator pointing to the location
475 // to use for an orphan section. Return true if the iterator has a
476 // value, false otherwise.
477
478 bool
479 Orphan_section_placement::find_place(Output_section* os,
480 Elements_iterator** pwhere)
481 {
482 // Figure out where OS should go. This is based on the GNU linker
483 // code. FIXME: The GNU linker handles small data sections
484 // specially, but we don't.
485 elfcpp::Elf_Word type = os->type();
486 elfcpp::Elf_Xword flags = os->flags();
487 Place_index index;
488 if ((flags & elfcpp::SHF_ALLOC) == 0
489 && !Layout::is_debug_info_section(os->name()))
490 index = PLACE_NONALLOC;
491 else if ((flags & elfcpp::SHF_ALLOC) == 0)
492 index = PLACE_LAST;
493 else if (type == elfcpp::SHT_NOTE)
494 index = PLACE_INTERP;
495 else if ((flags & elfcpp::SHF_TLS) != 0)
496 {
497 if (type == elfcpp::SHT_NOBITS)
498 index = PLACE_TLS_BSS;
499 else
500 index = PLACE_TLS;
501 }
502 else if (type == elfcpp::SHT_NOBITS)
503 index = PLACE_BSS;
504 else if ((flags & elfcpp::SHF_WRITE) != 0)
505 index = PLACE_DATA;
506 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
507 index = PLACE_REL;
508 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
509 index = PLACE_RODATA;
510 else
511 index = PLACE_TEXT;
512
513 // If we don't have a location yet, try to find one based on a
514 // plausible ordering of sections.
515 if (!this->places_[index].have_location)
516 {
517 Place_index follow;
518 switch (index)
519 {
520 default:
521 follow = PLACE_MAX;
522 break;
523 case PLACE_RODATA:
524 follow = PLACE_TEXT;
525 break;
526 case PLACE_DATA:
527 follow = PLACE_RODATA;
528 if (!this->places_[PLACE_RODATA].have_location)
529 follow = PLACE_TEXT;
530 break;
531 case PLACE_BSS:
532 follow = PLACE_LAST_ALLOC;
533 break;
534 case PLACE_REL:
535 follow = PLACE_TEXT;
536 break;
537 case PLACE_INTERP:
538 follow = PLACE_TEXT;
539 break;
540 case PLACE_TLS:
541 follow = PLACE_DATA;
542 break;
543 case PLACE_TLS_BSS:
544 follow = PLACE_TLS;
545 if (!this->places_[PLACE_TLS].have_location)
546 follow = PLACE_DATA;
547 break;
548 }
549 if (follow != PLACE_MAX && this->places_[follow].have_location)
550 {
551 // Set the location of INDEX to the location of FOLLOW. The
552 // location of INDEX will then be incremented by the caller,
553 // so anything in INDEX will continue to be after anything
554 // in FOLLOW.
555 this->places_[index].location = this->places_[follow].location;
556 this->places_[index].have_location = true;
557 }
558 }
559
560 *pwhere = &this->places_[index].location;
561 bool ret = this->places_[index].have_location;
562
563 // The caller will set the location.
564 this->places_[index].have_location = true;
565
566 return ret;
567 }
568
569 // Update PLACE_LAST_ALLOC.
570 void
571 Orphan_section_placement::update_last_alloc(Elements_iterator elem)
572 {
573 Elements_iterator prev = elem;
574 --prev;
575 if (this->places_[PLACE_LAST_ALLOC].have_location
576 && this->places_[PLACE_LAST_ALLOC].location == prev)
577 {
578 this->places_[PLACE_LAST_ALLOC].have_location = true;
579 this->places_[PLACE_LAST_ALLOC].location = elem;
580 }
581 }
582
583 // Return the iterator being used for sections at the very end of the
584 // linker script.
585
586 Orphan_section_placement::Elements_iterator
587 Orphan_section_placement::last_place() const
588 {
589 gold_assert(this->places_[PLACE_LAST].have_location);
590 return this->places_[PLACE_LAST].location;
591 }
592
593 // An element in a SECTIONS clause.
594
595 class Sections_element
596 {
597 public:
598 Sections_element()
599 { }
600
601 virtual ~Sections_element()
602 { }
603
604 // Return whether an output section is relro.
605 virtual bool
606 is_relro() const
607 { return false; }
608
609 // Record that an output section is relro.
610 virtual void
611 set_is_relro()
612 { }
613
614 // Create any required output sections. The only real
615 // implementation is in Output_section_definition.
616 virtual void
617 create_sections(Layout*)
618 { }
619
620 // Add any symbol being defined to the symbol table.
621 virtual void
622 add_symbols_to_table(Symbol_table*)
623 { }
624
625 // Finalize symbols and check assertions.
626 virtual void
627 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
628 { }
629
630 // Return the output section name to use for an input file name and
631 // section name. This only real implementation is in
632 // Output_section_definition.
633 virtual const char*
634 output_section_name(const char*, const char*, Output_section***,
635 Script_sections::Section_type*, bool*, bool)
636 { return NULL; }
637
638 // Initialize OSP with an output section.
639 virtual void
640 orphan_section_init(Orphan_section_placement*,
641 Script_sections::Elements_iterator)
642 { }
643
644 // Set section addresses. This includes applying assignments if the
645 // expression is an absolute value.
646 virtual void
647 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
648 uint64_t*)
649 { }
650
651 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
652 // this section is constrained, and the input sections do not match,
653 // return the constraint, and set *POSD.
654 virtual Section_constraint
655 check_constraint(Output_section_definition**)
656 { return CONSTRAINT_NONE; }
657
658 // See if this is the alternate output section for a constrained
659 // output section. If it is, transfer the Output_section and return
660 // true. Otherwise return false.
661 virtual bool
662 alternate_constraint(Output_section_definition*, Section_constraint)
663 { return false; }
664
665 // Get the list of segments to use for an allocated section when
666 // using a PHDRS clause. If this is an allocated section, return
667 // the Output_section, and set *PHDRS_LIST (the first parameter) to
668 // the list of PHDRS to which it should be attached. If the PHDRS
669 // were not specified, don't change *PHDRS_LIST. When not returning
670 // NULL, set *ORPHAN (the second parameter) according to whether
671 // this is an orphan section--one that is not mentioned in the
672 // linker script.
673 virtual Output_section*
674 allocate_to_segment(String_list**, bool*)
675 { return NULL; }
676
677 // Look for an output section by name and return the address, the
678 // load address, the alignment, and the size. This is used when an
679 // expression refers to an output section which was not actually
680 // created. This returns true if the section was found, false
681 // otherwise. The only real definition is for
682 // Output_section_definition.
683 virtual bool
684 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
685 uint64_t*) const
686 { return false; }
687
688 // Return the associated Output_section if there is one.
689 virtual Output_section*
690 get_output_section() const
691 { return NULL; }
692
693 // Set the section's memory regions.
694 virtual void
695 set_memory_region(Memory_region*, bool)
696 { gold_error(_("Attempt to set a memory region for a non-output section")); }
697
698 // Print the element for debugging purposes.
699 virtual void
700 print(FILE* f) const = 0;
701 };
702
703 // An assignment in a SECTIONS clause outside of an output section.
704
705 class Sections_element_assignment : public Sections_element
706 {
707 public:
708 Sections_element_assignment(const char* name, size_t namelen,
709 Expression* val, bool provide, bool hidden)
710 : assignment_(name, namelen, false, val, provide, hidden)
711 { }
712
713 // Add the symbol to the symbol table.
714 void
715 add_symbols_to_table(Symbol_table* symtab)
716 { this->assignment_.add_to_table(symtab); }
717
718 // Finalize the symbol.
719 void
720 finalize_symbols(Symbol_table* symtab, const Layout* layout,
721 uint64_t* dot_value)
722 {
723 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
724 }
725
726 // Set the section address. There is no section here, but if the
727 // value is absolute, we set the symbol. This permits us to use
728 // absolute symbols when setting dot.
729 void
730 set_section_addresses(Symbol_table* symtab, Layout* layout,
731 uint64_t* dot_value, uint64_t*, uint64_t*)
732 {
733 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
734 }
735
736 // Print for debugging.
737 void
738 print(FILE* f) const
739 {
740 fprintf(f, " ");
741 this->assignment_.print(f);
742 }
743
744 private:
745 Symbol_assignment assignment_;
746 };
747
748 // An assignment to the dot symbol in a SECTIONS clause outside of an
749 // output section.
750
751 class Sections_element_dot_assignment : public Sections_element
752 {
753 public:
754 Sections_element_dot_assignment(Expression* val)
755 : val_(val)
756 { }
757
758 // Finalize the symbol.
759 void
760 finalize_symbols(Symbol_table* symtab, const Layout* layout,
761 uint64_t* dot_value)
762 {
763 // We ignore the section of the result because outside of an
764 // output section definition the dot symbol is always considered
765 // to be absolute.
766 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
767 NULL, NULL, NULL, false);
768 }
769
770 // Update the dot symbol while setting section addresses.
771 void
772 set_section_addresses(Symbol_table* symtab, Layout* layout,
773 uint64_t* dot_value, uint64_t* dot_alignment,
774 uint64_t* load_address)
775 {
776 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
777 NULL, NULL, dot_alignment, false);
778 *load_address = *dot_value;
779 }
780
781 // Print for debugging.
782 void
783 print(FILE* f) const
784 {
785 fprintf(f, " . = ");
786 this->val_->print(f);
787 fprintf(f, "\n");
788 }
789
790 private:
791 Expression* val_;
792 };
793
794 // An assertion in a SECTIONS clause outside of an output section.
795
796 class Sections_element_assertion : public Sections_element
797 {
798 public:
799 Sections_element_assertion(Expression* check, const char* message,
800 size_t messagelen)
801 : assertion_(check, message, messagelen)
802 { }
803
804 // Check the assertion.
805 void
806 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
807 { this->assertion_.check(symtab, layout); }
808
809 // Print for debugging.
810 void
811 print(FILE* f) const
812 {
813 fprintf(f, " ");
814 this->assertion_.print(f);
815 }
816
817 private:
818 Script_assertion assertion_;
819 };
820
821 // An element in an output section in a SECTIONS clause.
822
823 class Output_section_element
824 {
825 public:
826 // A list of input sections.
827 typedef std::list<Output_section::Input_section> Input_section_list;
828
829 Output_section_element()
830 { }
831
832 virtual ~Output_section_element()
833 { }
834
835 // Return whether this element requires an output section to exist.
836 virtual bool
837 needs_output_section() const
838 { return false; }
839
840 // Add any symbol being defined to the symbol table.
841 virtual void
842 add_symbols_to_table(Symbol_table*)
843 { }
844
845 // Finalize symbols and check assertions.
846 virtual void
847 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
848 { }
849
850 // Return whether this element matches FILE_NAME and SECTION_NAME.
851 // The only real implementation is in Output_section_element_input.
852 virtual bool
853 match_name(const char*, const char*, bool *) const
854 { return false; }
855
856 // Set section addresses. This includes applying assignments if the
857 // expression is an absolute value.
858 virtual void
859 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
860 uint64_t*, uint64_t*, Output_section**, std::string*,
861 Input_section_list*)
862 { }
863
864 // Print the element for debugging purposes.
865 virtual void
866 print(FILE* f) const = 0;
867
868 protected:
869 // Return a fill string that is LENGTH bytes long, filling it with
870 // FILL.
871 std::string
872 get_fill_string(const std::string* fill, section_size_type length) const;
873 };
874
875 std::string
876 Output_section_element::get_fill_string(const std::string* fill,
877 section_size_type length) const
878 {
879 std::string this_fill;
880 this_fill.reserve(length);
881 while (this_fill.length() + fill->length() <= length)
882 this_fill += *fill;
883 if (this_fill.length() < length)
884 this_fill.append(*fill, 0, length - this_fill.length());
885 return this_fill;
886 }
887
888 // A symbol assignment in an output section.
889
890 class Output_section_element_assignment : public Output_section_element
891 {
892 public:
893 Output_section_element_assignment(const char* name, size_t namelen,
894 Expression* val, bool provide,
895 bool hidden)
896 : assignment_(name, namelen, false, val, provide, hidden)
897 { }
898
899 // Add the symbol to the symbol table.
900 void
901 add_symbols_to_table(Symbol_table* symtab)
902 { this->assignment_.add_to_table(symtab); }
903
904 // Finalize the symbol.
905 void
906 finalize_symbols(Symbol_table* symtab, const Layout* layout,
907 uint64_t* dot_value, Output_section** dot_section)
908 {
909 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
910 *dot_section);
911 }
912
913 // Set the section address. There is no section here, but if the
914 // value is absolute, we set the symbol. This permits us to use
915 // absolute symbols when setting dot.
916 void
917 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
918 uint64_t, uint64_t* dot_value, uint64_t*,
919 Output_section** dot_section, std::string*,
920 Input_section_list*)
921 {
922 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
923 *dot_section);
924 }
925
926 // Print for debugging.
927 void
928 print(FILE* f) const
929 {
930 fprintf(f, " ");
931 this->assignment_.print(f);
932 }
933
934 private:
935 Symbol_assignment assignment_;
936 };
937
938 // An assignment to the dot symbol in an output section.
939
940 class Output_section_element_dot_assignment : public Output_section_element
941 {
942 public:
943 Output_section_element_dot_assignment(Expression* val)
944 : val_(val)
945 { }
946
947 // An assignment to dot within an output section is enough to force
948 // the output section to exist.
949 bool
950 needs_output_section() const
951 { return true; }
952
953 // Finalize the symbol.
954 void
955 finalize_symbols(Symbol_table* symtab, const Layout* layout,
956 uint64_t* dot_value, Output_section** dot_section)
957 {
958 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
959 *dot_section, dot_section, NULL,
960 true);
961 }
962
963 // Update the dot symbol while setting section addresses.
964 void
965 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
966 uint64_t, uint64_t* dot_value, uint64_t*,
967 Output_section** dot_section, std::string*,
968 Input_section_list*);
969
970 // Print for debugging.
971 void
972 print(FILE* f) const
973 {
974 fprintf(f, " . = ");
975 this->val_->print(f);
976 fprintf(f, "\n");
977 }
978
979 private:
980 Expression* val_;
981 };
982
983 // Update the dot symbol while setting section addresses.
984
985 void
986 Output_section_element_dot_assignment::set_section_addresses(
987 Symbol_table* symtab,
988 Layout* layout,
989 Output_section* output_section,
990 uint64_t,
991 uint64_t* dot_value,
992 uint64_t* dot_alignment,
993 Output_section** dot_section,
994 std::string* fill,
995 Input_section_list*)
996 {
997 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
998 *dot_value, *dot_section,
999 dot_section, dot_alignment,
1000 true);
1001 if (next_dot < *dot_value)
1002 gold_error(_("dot may not move backward"));
1003 if (next_dot > *dot_value && output_section != NULL)
1004 {
1005 section_size_type length = convert_to_section_size_type(next_dot
1006 - *dot_value);
1007 Output_section_data* posd;
1008 if (fill->empty())
1009 posd = new Output_data_zero_fill(length, 0);
1010 else
1011 {
1012 std::string this_fill = this->get_fill_string(fill, length);
1013 posd = new Output_data_const(this_fill, 0);
1014 }
1015 output_section->add_output_section_data(posd);
1016 layout->new_output_section_data_from_script(posd);
1017 }
1018 *dot_value = next_dot;
1019 }
1020
1021 // An assertion in an output section.
1022
1023 class Output_section_element_assertion : public Output_section_element
1024 {
1025 public:
1026 Output_section_element_assertion(Expression* check, const char* message,
1027 size_t messagelen)
1028 : assertion_(check, message, messagelen)
1029 { }
1030
1031 void
1032 print(FILE* f) const
1033 {
1034 fprintf(f, " ");
1035 this->assertion_.print(f);
1036 }
1037
1038 private:
1039 Script_assertion assertion_;
1040 };
1041
1042 // We use a special instance of Output_section_data to handle BYTE,
1043 // SHORT, etc. This permits forward references to symbols in the
1044 // expressions.
1045
1046 class Output_data_expression : public Output_section_data
1047 {
1048 public:
1049 Output_data_expression(int size, bool is_signed, Expression* val,
1050 const Symbol_table* symtab, const Layout* layout,
1051 uint64_t dot_value, Output_section* dot_section)
1052 : Output_section_data(size, 0, true),
1053 is_signed_(is_signed), val_(val), symtab_(symtab),
1054 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1055 { }
1056
1057 protected:
1058 // Write the data to the output file.
1059 void
1060 do_write(Output_file*);
1061
1062 // Write the data to a buffer.
1063 void
1064 do_write_to_buffer(unsigned char*);
1065
1066 // Write to a map file.
1067 void
1068 do_print_to_mapfile(Mapfile* mapfile) const
1069 { mapfile->print_output_data(this, _("** expression")); }
1070
1071 private:
1072 template<bool big_endian>
1073 void
1074 endian_write_to_buffer(uint64_t, unsigned char*);
1075
1076 bool is_signed_;
1077 Expression* val_;
1078 const Symbol_table* symtab_;
1079 const Layout* layout_;
1080 uint64_t dot_value_;
1081 Output_section* dot_section_;
1082 };
1083
1084 // Write the data element to the output file.
1085
1086 void
1087 Output_data_expression::do_write(Output_file* of)
1088 {
1089 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1090 this->write_to_buffer(view);
1091 of->write_output_view(this->offset(), this->data_size(), view);
1092 }
1093
1094 // Write the data element to a buffer.
1095
1096 void
1097 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1098 {
1099 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1100 true, this->dot_value_,
1101 this->dot_section_, NULL, NULL,
1102 false);
1103
1104 if (parameters->target().is_big_endian())
1105 this->endian_write_to_buffer<true>(val, buf);
1106 else
1107 this->endian_write_to_buffer<false>(val, buf);
1108 }
1109
1110 template<bool big_endian>
1111 void
1112 Output_data_expression::endian_write_to_buffer(uint64_t val,
1113 unsigned char* buf)
1114 {
1115 switch (this->data_size())
1116 {
1117 case 1:
1118 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1119 break;
1120 case 2:
1121 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1122 break;
1123 case 4:
1124 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1125 break;
1126 case 8:
1127 if (parameters->target().get_size() == 32)
1128 {
1129 val &= 0xffffffff;
1130 if (this->is_signed_ && (val & 0x80000000) != 0)
1131 val |= 0xffffffff00000000LL;
1132 }
1133 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1134 break;
1135 default:
1136 gold_unreachable();
1137 }
1138 }
1139
1140 // A data item in an output section.
1141
1142 class Output_section_element_data : public Output_section_element
1143 {
1144 public:
1145 Output_section_element_data(int size, bool is_signed, Expression* val)
1146 : size_(size), is_signed_(is_signed), val_(val)
1147 { }
1148
1149 // If there is a data item, then we must create an output section.
1150 bool
1151 needs_output_section() const
1152 { return true; }
1153
1154 // Finalize symbols--we just need to update dot.
1155 void
1156 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1157 Output_section**)
1158 { *dot_value += this->size_; }
1159
1160 // Store the value in the section.
1161 void
1162 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1163 uint64_t* dot_value, uint64_t*, Output_section**,
1164 std::string*, Input_section_list*);
1165
1166 // Print for debugging.
1167 void
1168 print(FILE*) const;
1169
1170 private:
1171 // The size in bytes.
1172 int size_;
1173 // Whether the value is signed.
1174 bool is_signed_;
1175 // The value.
1176 Expression* val_;
1177 };
1178
1179 // Store the value in the section.
1180
1181 void
1182 Output_section_element_data::set_section_addresses(
1183 Symbol_table* symtab,
1184 Layout* layout,
1185 Output_section* os,
1186 uint64_t,
1187 uint64_t* dot_value,
1188 uint64_t*,
1189 Output_section** dot_section,
1190 std::string*,
1191 Input_section_list*)
1192 {
1193 gold_assert(os != NULL);
1194 Output_data_expression* expression =
1195 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1196 symtab, layout, *dot_value, *dot_section);
1197 os->add_output_section_data(expression);
1198 layout->new_output_section_data_from_script(expression);
1199 *dot_value += this->size_;
1200 }
1201
1202 // Print for debugging.
1203
1204 void
1205 Output_section_element_data::print(FILE* f) const
1206 {
1207 const char* s;
1208 switch (this->size_)
1209 {
1210 case 1:
1211 s = "BYTE";
1212 break;
1213 case 2:
1214 s = "SHORT";
1215 break;
1216 case 4:
1217 s = "LONG";
1218 break;
1219 case 8:
1220 if (this->is_signed_)
1221 s = "SQUAD";
1222 else
1223 s = "QUAD";
1224 break;
1225 default:
1226 gold_unreachable();
1227 }
1228 fprintf(f, " %s(", s);
1229 this->val_->print(f);
1230 fprintf(f, ")\n");
1231 }
1232
1233 // A fill value setting in an output section.
1234
1235 class Output_section_element_fill : public Output_section_element
1236 {
1237 public:
1238 Output_section_element_fill(Expression* val)
1239 : val_(val)
1240 { }
1241
1242 // Update the fill value while setting section addresses.
1243 void
1244 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1245 uint64_t, uint64_t* dot_value, uint64_t*,
1246 Output_section** dot_section,
1247 std::string* fill, Input_section_list*)
1248 {
1249 Output_section* fill_section;
1250 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1251 *dot_value, *dot_section,
1252 &fill_section, NULL, false);
1253 if (fill_section != NULL)
1254 gold_warning(_("fill value is not absolute"));
1255 // FIXME: The GNU linker supports fill values of arbitrary length.
1256 unsigned char fill_buff[4];
1257 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1258 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1259 }
1260
1261 // Print for debugging.
1262 void
1263 print(FILE* f) const
1264 {
1265 fprintf(f, " FILL(");
1266 this->val_->print(f);
1267 fprintf(f, ")\n");
1268 }
1269
1270 private:
1271 // The new fill value.
1272 Expression* val_;
1273 };
1274
1275 // An input section specification in an output section
1276
1277 class Output_section_element_input : public Output_section_element
1278 {
1279 public:
1280 Output_section_element_input(const Input_section_spec* spec, bool keep);
1281
1282 // Finalize symbols--just update the value of the dot symbol.
1283 void
1284 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1285 Output_section** dot_section)
1286 {
1287 *dot_value = this->final_dot_value_;
1288 *dot_section = this->final_dot_section_;
1289 }
1290
1291 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1292 // If we do then also indicate whether the section should be KEPT.
1293 bool
1294 match_name(const char* file_name, const char* section_name, bool* keep) const;
1295
1296 // Set the section address.
1297 void
1298 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1299 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1300 Output_section**, std::string* fill,
1301 Input_section_list*);
1302
1303 // Print for debugging.
1304 void
1305 print(FILE* f) const;
1306
1307 private:
1308 // An input section pattern.
1309 struct Input_section_pattern
1310 {
1311 std::string pattern;
1312 bool pattern_is_wildcard;
1313 Sort_wildcard sort;
1314
1315 Input_section_pattern(const char* patterna, size_t patternlena,
1316 Sort_wildcard sorta)
1317 : pattern(patterna, patternlena),
1318 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1319 sort(sorta)
1320 { }
1321 };
1322
1323 typedef std::vector<Input_section_pattern> Input_section_patterns;
1324
1325 // Filename_exclusions is a pair of filename pattern and a bool
1326 // indicating whether the filename is a wildcard.
1327 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1328
1329 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1330 // indicates whether this is a wildcard pattern.
1331 static inline bool
1332 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1333 {
1334 return (is_wildcard_pattern
1335 ? fnmatch(pattern, string, 0) == 0
1336 : strcmp(string, pattern) == 0);
1337 }
1338
1339 // See if we match a file name.
1340 bool
1341 match_file_name(const char* file_name) const;
1342
1343 // The file name pattern. If this is the empty string, we match all
1344 // files.
1345 std::string filename_pattern_;
1346 // Whether the file name pattern is a wildcard.
1347 bool filename_is_wildcard_;
1348 // How the file names should be sorted. This may only be
1349 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1350 Sort_wildcard filename_sort_;
1351 // The list of file names to exclude.
1352 Filename_exclusions filename_exclusions_;
1353 // The list of input section patterns.
1354 Input_section_patterns input_section_patterns_;
1355 // Whether to keep this section when garbage collecting.
1356 bool keep_;
1357 // The value of dot after including all matching sections.
1358 uint64_t final_dot_value_;
1359 // The section where dot is defined after including all matching
1360 // sections.
1361 Output_section* final_dot_section_;
1362 };
1363
1364 // Construct Output_section_element_input. The parser records strings
1365 // as pointers into a copy of the script file, which will go away when
1366 // parsing is complete. We make sure they are in std::string objects.
1367
1368 Output_section_element_input::Output_section_element_input(
1369 const Input_section_spec* spec,
1370 bool keep)
1371 : filename_pattern_(),
1372 filename_is_wildcard_(false),
1373 filename_sort_(spec->file.sort),
1374 filename_exclusions_(),
1375 input_section_patterns_(),
1376 keep_(keep),
1377 final_dot_value_(0),
1378 final_dot_section_(NULL)
1379 {
1380 // The filename pattern "*" is common, and matches all files. Turn
1381 // it into the empty string.
1382 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1383 this->filename_pattern_.assign(spec->file.name.value,
1384 spec->file.name.length);
1385 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1386
1387 if (spec->input_sections.exclude != NULL)
1388 {
1389 for (String_list::const_iterator p =
1390 spec->input_sections.exclude->begin();
1391 p != spec->input_sections.exclude->end();
1392 ++p)
1393 {
1394 bool is_wildcard = is_wildcard_string((*p).c_str());
1395 this->filename_exclusions_.push_back(std::make_pair(*p,
1396 is_wildcard));
1397 }
1398 }
1399
1400 if (spec->input_sections.sections != NULL)
1401 {
1402 Input_section_patterns& isp(this->input_section_patterns_);
1403 for (String_sort_list::const_iterator p =
1404 spec->input_sections.sections->begin();
1405 p != spec->input_sections.sections->end();
1406 ++p)
1407 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1408 p->sort));
1409 }
1410 }
1411
1412 // See whether we match FILE_NAME.
1413
1414 bool
1415 Output_section_element_input::match_file_name(const char* file_name) const
1416 {
1417 if (!this->filename_pattern_.empty())
1418 {
1419 // If we were called with no filename, we refuse to match a
1420 // pattern which requires a file name.
1421 if (file_name == NULL)
1422 return false;
1423
1424 if (!match(file_name, this->filename_pattern_.c_str(),
1425 this->filename_is_wildcard_))
1426 return false;
1427 }
1428
1429 if (file_name != NULL)
1430 {
1431 // Now we have to see whether FILE_NAME matches one of the
1432 // exclusion patterns, if any.
1433 for (Filename_exclusions::const_iterator p =
1434 this->filename_exclusions_.begin();
1435 p != this->filename_exclusions_.end();
1436 ++p)
1437 {
1438 if (match(file_name, p->first.c_str(), p->second))
1439 return false;
1440 }
1441 }
1442
1443 return true;
1444 }
1445
1446 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1447 // KEEP indicates whether the section should survive garbage collection.
1448
1449 bool
1450 Output_section_element_input::match_name(const char* file_name,
1451 const char* section_name,
1452 bool *keep) const
1453 {
1454 if (!this->match_file_name(file_name))
1455 return false;
1456
1457 *keep = this->keep_;
1458
1459 // If there are no section name patterns, then we match.
1460 if (this->input_section_patterns_.empty())
1461 return true;
1462
1463 // See whether we match the section name patterns.
1464 for (Input_section_patterns::const_iterator p =
1465 this->input_section_patterns_.begin();
1466 p != this->input_section_patterns_.end();
1467 ++p)
1468 {
1469 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1470 return true;
1471 }
1472
1473 // We didn't match any section names, so we didn't match.
1474 return false;
1475 }
1476
1477 // Information we use to sort the input sections.
1478
1479 class Input_section_info
1480 {
1481 public:
1482 Input_section_info(const Output_section::Input_section& input_section)
1483 : input_section_(input_section), section_name_(),
1484 size_(0), addralign_(1)
1485 { }
1486
1487 // Return the simple input section.
1488 const Output_section::Input_section&
1489 input_section() const
1490 { return this->input_section_; }
1491
1492 // Return the object.
1493 Relobj*
1494 relobj() const
1495 { return this->input_section_.relobj(); }
1496
1497 // Return the section index.
1498 unsigned int
1499 shndx()
1500 { return this->input_section_.shndx(); }
1501
1502 // Return the section name.
1503 const std::string&
1504 section_name() const
1505 { return this->section_name_; }
1506
1507 // Set the section name.
1508 void
1509 set_section_name(const std::string name)
1510 {
1511 if (is_compressed_debug_section(name.c_str()))
1512 this->section_name_ = corresponding_uncompressed_section_name(name);
1513 else
1514 this->section_name_ = name;
1515 }
1516
1517 // Return the section size.
1518 uint64_t
1519 size() const
1520 { return this->size_; }
1521
1522 // Set the section size.
1523 void
1524 set_size(uint64_t size)
1525 { this->size_ = size; }
1526
1527 // Return the address alignment.
1528 uint64_t
1529 addralign() const
1530 { return this->addralign_; }
1531
1532 // Set the address alignment.
1533 void
1534 set_addralign(uint64_t addralign)
1535 { this->addralign_ = addralign; }
1536
1537 private:
1538 // Input section, can be a relaxed section.
1539 Output_section::Input_section input_section_;
1540 // Name of the section.
1541 std::string section_name_;
1542 // Section size.
1543 uint64_t size_;
1544 // Address alignment.
1545 uint64_t addralign_;
1546 };
1547
1548 // A class to sort the input sections.
1549
1550 class Input_section_sorter
1551 {
1552 public:
1553 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1554 : filename_sort_(filename_sort), section_sort_(section_sort)
1555 { }
1556
1557 bool
1558 operator()(const Input_section_info&, const Input_section_info&) const;
1559
1560 private:
1561 static unsigned long
1562 get_init_priority(const char*);
1563
1564 Sort_wildcard filename_sort_;
1565 Sort_wildcard section_sort_;
1566 };
1567
1568 // Return a relative priority of the section with the specified NAME
1569 // (a lower value meand a higher priority), or 0 if it should be compared
1570 // with others as strings.
1571 // The implementation of this function is copied from ld/ldlang.c.
1572
1573 unsigned long
1574 Input_section_sorter::get_init_priority(const char* name)
1575 {
1576 char* end;
1577 unsigned long init_priority;
1578
1579 // GCC uses the following section names for the init_priority
1580 // attribute with numerical values 101 and 65535 inclusive. A
1581 // lower value means a higher priority.
1582 //
1583 // 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
1584 // decimal numerical value of the init_priority attribute.
1585 // The order of execution in .init_array is forward and
1586 // .fini_array is backward.
1587 // 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
1588 // decimal numerical value of the init_priority attribute.
1589 // The order of execution in .ctors is backward and .dtors
1590 // is forward.
1591
1592 if (strncmp(name, ".init_array.", 12) == 0
1593 || strncmp(name, ".fini_array.", 12) == 0)
1594 {
1595 init_priority = strtoul(name + 12, &end, 10);
1596 return *end ? 0 : init_priority;
1597 }
1598 else if (strncmp(name, ".ctors.", 7) == 0
1599 || strncmp(name, ".dtors.", 7) == 0)
1600 {
1601 init_priority = strtoul(name + 7, &end, 10);
1602 return *end ? 0 : 65535 - init_priority;
1603 }
1604
1605 return 0;
1606 }
1607
1608 bool
1609 Input_section_sorter::operator()(const Input_section_info& isi1,
1610 const Input_section_info& isi2) const
1611 {
1612 if (this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1613 {
1614 unsigned long ip1 = get_init_priority(isi1.section_name().c_str());
1615 unsigned long ip2 = get_init_priority(isi2.section_name().c_str());
1616 if (ip1 != 0 && ip2 != 0 && ip1 != ip2)
1617 return ip1 < ip2;
1618 }
1619 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1620 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1621 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1622 && isi1.addralign() == isi2.addralign())
1623 || this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1624 {
1625 if (isi1.section_name() != isi2.section_name())
1626 return isi1.section_name() < isi2.section_name();
1627 }
1628 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1629 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1630 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1631 {
1632 if (isi1.addralign() != isi2.addralign())
1633 return isi1.addralign() < isi2.addralign();
1634 }
1635 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1636 {
1637 if (isi1.relobj()->name() != isi2.relobj()->name())
1638 return (isi1.relobj()->name() < isi2.relobj()->name());
1639 }
1640
1641 // Otherwise we leave them in the same order.
1642 return false;
1643 }
1644
1645 // Set the section address. Look in INPUT_SECTIONS for sections which
1646 // match this spec, sort them as specified, and add them to the output
1647 // section.
1648
1649 void
1650 Output_section_element_input::set_section_addresses(
1651 Symbol_table*,
1652 Layout* layout,
1653 Output_section* output_section,
1654 uint64_t subalign,
1655 uint64_t* dot_value,
1656 uint64_t*,
1657 Output_section** dot_section,
1658 std::string* fill,
1659 Input_section_list* input_sections)
1660 {
1661 // We build a list of sections which match each
1662 // Input_section_pattern.
1663
1664 // If none of the patterns specify a sort option, we throw all
1665 // matching input sections into a single bin, in the order we
1666 // find them. Otherwise, we put matching input sections into
1667 // a separate bin for each pattern, and sort each one as
1668 // specified. Thus, an input section spec like this:
1669 // *(.foo .bar)
1670 // will group all .foo and .bar sections in the order seen,
1671 // whereas this:
1672 // *(.foo) *(.bar)
1673 // will group all .foo sections followed by all .bar sections.
1674 // This matches Gnu ld behavior.
1675
1676 // Things get really weird, though, when you add a sort spec
1677 // on some, but not all, of the patterns, like this:
1678 // *(SORT_BY_NAME(.foo) .bar)
1679 // We do not attempt to match Gnu ld behavior in this case.
1680
1681 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1682 size_t input_pattern_count = this->input_section_patterns_.size();
1683 size_t bin_count = 1;
1684 bool any_patterns_with_sort = false;
1685 for (size_t i = 0; i < input_pattern_count; ++i)
1686 {
1687 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1688 if (isp.sort != SORT_WILDCARD_NONE)
1689 any_patterns_with_sort = true;
1690 }
1691 if (any_patterns_with_sort)
1692 bin_count = input_pattern_count;
1693 Matching_sections matching_sections(bin_count);
1694
1695 // Look through the list of sections for this output section. Add
1696 // each one which matches to one of the elements of
1697 // MATCHING_SECTIONS.
1698
1699 Input_section_list::iterator p = input_sections->begin();
1700 while (p != input_sections->end())
1701 {
1702 Relobj* relobj = p->relobj();
1703 unsigned int shndx = p->shndx();
1704 Input_section_info isi(*p);
1705
1706 // Calling section_name and section_addralign is not very
1707 // efficient.
1708
1709 // Lock the object so that we can get information about the
1710 // section. This is OK since we know we are single-threaded
1711 // here.
1712 {
1713 const Task* task = reinterpret_cast<const Task*>(-1);
1714 Task_lock_obj<Object> tl(task, relobj);
1715
1716 isi.set_section_name(relobj->section_name(shndx));
1717 if (p->is_relaxed_input_section())
1718 {
1719 // We use current data size because relaxed section sizes may not
1720 // have finalized yet.
1721 isi.set_size(p->relaxed_input_section()->current_data_size());
1722 isi.set_addralign(p->relaxed_input_section()->addralign());
1723 }
1724 else
1725 {
1726 isi.set_size(relobj->section_size(shndx));
1727 isi.set_addralign(relobj->section_addralign(shndx));
1728 }
1729 }
1730
1731 if (!this->match_file_name(relobj->name().c_str()))
1732 ++p;
1733 else if (this->input_section_patterns_.empty())
1734 {
1735 matching_sections[0].push_back(isi);
1736 p = input_sections->erase(p);
1737 }
1738 else
1739 {
1740 size_t i;
1741 for (i = 0; i < input_pattern_count; ++i)
1742 {
1743 const Input_section_pattern&
1744 isp(this->input_section_patterns_[i]);
1745 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1746 isp.pattern_is_wildcard))
1747 break;
1748 }
1749
1750 if (i >= input_pattern_count)
1751 ++p;
1752 else
1753 {
1754 if (i >= bin_count)
1755 i = 0;
1756 matching_sections[i].push_back(isi);
1757 p = input_sections->erase(p);
1758 }
1759 }
1760 }
1761
1762 // Look through MATCHING_SECTIONS. Sort each one as specified,
1763 // using a stable sort so that we get the default order when
1764 // sections are otherwise equal. Add each input section to the
1765 // output section.
1766
1767 uint64_t dot = *dot_value;
1768 for (size_t i = 0; i < bin_count; ++i)
1769 {
1770 if (matching_sections[i].empty())
1771 continue;
1772
1773 gold_assert(output_section != NULL);
1774
1775 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1776 if (isp.sort != SORT_WILDCARD_NONE
1777 || this->filename_sort_ != SORT_WILDCARD_NONE)
1778 std::stable_sort(matching_sections[i].begin(),
1779 matching_sections[i].end(),
1780 Input_section_sorter(this->filename_sort_,
1781 isp.sort));
1782
1783 for (std::vector<Input_section_info>::const_iterator p =
1784 matching_sections[i].begin();
1785 p != matching_sections[i].end();
1786 ++p)
1787 {
1788 // Override the original address alignment if SUBALIGN is specified.
1789 // We need to make a copy of the input section to modify the
1790 // alignment.
1791 Output_section::Input_section sis(p->input_section());
1792
1793 uint64_t this_subalign = sis.addralign();
1794 if (!sis.is_input_section())
1795 sis.output_section_data()->finalize_data_size();
1796 uint64_t data_size = sis.data_size();
1797 if (subalign > 0)
1798 {
1799 this_subalign = subalign;
1800 sis.set_addralign(subalign);
1801 }
1802
1803 uint64_t address = align_address(dot, this_subalign);
1804
1805 if (address > dot && !fill->empty())
1806 {
1807 section_size_type length =
1808 convert_to_section_size_type(address - dot);
1809 std::string this_fill = this->get_fill_string(fill, length);
1810 Output_section_data* posd = new Output_data_const(this_fill, 0);
1811 output_section->add_output_section_data(posd);
1812 layout->new_output_section_data_from_script(posd);
1813 }
1814
1815 output_section->add_script_input_section(sis);
1816 dot = address + data_size;
1817 }
1818 }
1819
1820 // An SHF_TLS/SHT_NOBITS section does not take up any
1821 // address space.
1822 if (output_section == NULL
1823 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1824 || output_section->type() != elfcpp::SHT_NOBITS)
1825 *dot_value = dot;
1826
1827 this->final_dot_value_ = *dot_value;
1828 this->final_dot_section_ = *dot_section;
1829 }
1830
1831 // Print for debugging.
1832
1833 void
1834 Output_section_element_input::print(FILE* f) const
1835 {
1836 fprintf(f, " ");
1837
1838 if (this->keep_)
1839 fprintf(f, "KEEP(");
1840
1841 if (!this->filename_pattern_.empty())
1842 {
1843 bool need_close_paren = false;
1844 switch (this->filename_sort_)
1845 {
1846 case SORT_WILDCARD_NONE:
1847 break;
1848 case SORT_WILDCARD_BY_NAME:
1849 fprintf(f, "SORT_BY_NAME(");
1850 need_close_paren = true;
1851 break;
1852 default:
1853 gold_unreachable();
1854 }
1855
1856 fprintf(f, "%s", this->filename_pattern_.c_str());
1857
1858 if (need_close_paren)
1859 fprintf(f, ")");
1860 }
1861
1862 if (!this->input_section_patterns_.empty()
1863 || !this->filename_exclusions_.empty())
1864 {
1865 fprintf(f, "(");
1866
1867 bool need_space = false;
1868 if (!this->filename_exclusions_.empty())
1869 {
1870 fprintf(f, "EXCLUDE_FILE(");
1871 bool need_comma = false;
1872 for (Filename_exclusions::const_iterator p =
1873 this->filename_exclusions_.begin();
1874 p != this->filename_exclusions_.end();
1875 ++p)
1876 {
1877 if (need_comma)
1878 fprintf(f, ", ");
1879 fprintf(f, "%s", p->first.c_str());
1880 need_comma = true;
1881 }
1882 fprintf(f, ")");
1883 need_space = true;
1884 }
1885
1886 for (Input_section_patterns::const_iterator p =
1887 this->input_section_patterns_.begin();
1888 p != this->input_section_patterns_.end();
1889 ++p)
1890 {
1891 if (need_space)
1892 fprintf(f, " ");
1893
1894 int close_parens = 0;
1895 switch (p->sort)
1896 {
1897 case SORT_WILDCARD_NONE:
1898 break;
1899 case SORT_WILDCARD_BY_NAME:
1900 fprintf(f, "SORT_BY_NAME(");
1901 close_parens = 1;
1902 break;
1903 case SORT_WILDCARD_BY_ALIGNMENT:
1904 fprintf(f, "SORT_BY_ALIGNMENT(");
1905 close_parens = 1;
1906 break;
1907 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1908 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1909 close_parens = 2;
1910 break;
1911 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1912 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1913 close_parens = 2;
1914 break;
1915 case SORT_WILDCARD_BY_INIT_PRIORITY:
1916 fprintf(f, "SORT_BY_INIT_PRIORITY(");
1917 close_parens = 1;
1918 break;
1919 default:
1920 gold_unreachable();
1921 }
1922
1923 fprintf(f, "%s", p->pattern.c_str());
1924
1925 for (int i = 0; i < close_parens; ++i)
1926 fprintf(f, ")");
1927
1928 need_space = true;
1929 }
1930
1931 fprintf(f, ")");
1932 }
1933
1934 if (this->keep_)
1935 fprintf(f, ")");
1936
1937 fprintf(f, "\n");
1938 }
1939
1940 // An output section.
1941
1942 class Output_section_definition : public Sections_element
1943 {
1944 public:
1945 typedef Output_section_element::Input_section_list Input_section_list;
1946
1947 Output_section_definition(const char* name, size_t namelen,
1948 const Parser_output_section_header* header);
1949
1950 // Finish the output section with the information in the trailer.
1951 void
1952 finish(const Parser_output_section_trailer* trailer);
1953
1954 // Add a symbol to be defined.
1955 void
1956 add_symbol_assignment(const char* name, size_t length, Expression* value,
1957 bool provide, bool hidden);
1958
1959 // Add an assignment to the special dot symbol.
1960 void
1961 add_dot_assignment(Expression* value);
1962
1963 // Add an assertion.
1964 void
1965 add_assertion(Expression* check, const char* message, size_t messagelen);
1966
1967 // Add a data item to the current output section.
1968 void
1969 add_data(int size, bool is_signed, Expression* val);
1970
1971 // Add a setting for the fill value.
1972 void
1973 add_fill(Expression* val);
1974
1975 // Add an input section specification.
1976 void
1977 add_input_section(const Input_section_spec* spec, bool keep);
1978
1979 // Return whether the output section is relro.
1980 bool
1981 is_relro() const
1982 { return this->is_relro_; }
1983
1984 // Record that the output section is relro.
1985 void
1986 set_is_relro()
1987 { this->is_relro_ = true; }
1988
1989 // Create any required output sections.
1990 void
1991 create_sections(Layout*);
1992
1993 // Add any symbols being defined to the symbol table.
1994 void
1995 add_symbols_to_table(Symbol_table* symtab);
1996
1997 // Finalize symbols and check assertions.
1998 void
1999 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
2000
2001 // Return the output section name to use for an input file name and
2002 // section name.
2003 const char*
2004 output_section_name(const char* file_name, const char* section_name,
2005 Output_section***, Script_sections::Section_type*,
2006 bool*, bool);
2007
2008 // Initialize OSP with an output section.
2009 void
2010 orphan_section_init(Orphan_section_placement* osp,
2011 Script_sections::Elements_iterator p)
2012 { osp->output_section_init(this->name_, this->output_section_, p); }
2013
2014 // Set the section address.
2015 void
2016 set_section_addresses(Symbol_table* symtab, Layout* layout,
2017 uint64_t* dot_value, uint64_t*,
2018 uint64_t* load_address);
2019
2020 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2021 // this section is constrained, and the input sections do not match,
2022 // return the constraint, and set *POSD.
2023 Section_constraint
2024 check_constraint(Output_section_definition** posd);
2025
2026 // See if this is the alternate output section for a constrained
2027 // output section. If it is, transfer the Output_section and return
2028 // true. Otherwise return false.
2029 bool
2030 alternate_constraint(Output_section_definition*, Section_constraint);
2031
2032 // Get the list of segments to use for an allocated section when
2033 // using a PHDRS clause.
2034 Output_section*
2035 allocate_to_segment(String_list** phdrs_list, bool* orphan);
2036
2037 // Look for an output section by name and return the address, the
2038 // load address, the alignment, and the size. This is used when an
2039 // expression refers to an output section which was not actually
2040 // created. This returns true if the section was found, false
2041 // otherwise.
2042 bool
2043 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
2044 uint64_t*) const;
2045
2046 // Return the associated Output_section if there is one.
2047 Output_section*
2048 get_output_section() const
2049 { return this->output_section_; }
2050
2051 // Print the contents to the FILE. This is for debugging.
2052 void
2053 print(FILE*) const;
2054
2055 // Return the output section type if specified or Script_sections::ST_NONE.
2056 Script_sections::Section_type
2057 section_type() const;
2058
2059 // Store the memory region to use.
2060 void
2061 set_memory_region(Memory_region*, bool set_vma);
2062
2063 void
2064 set_section_vma(Expression* address)
2065 { this->address_ = address; }
2066
2067 void
2068 set_section_lma(Expression* address)
2069 { this->load_address_ = address; }
2070
2071 const std::string&
2072 get_section_name() const
2073 { return this->name_; }
2074
2075 private:
2076 static const char*
2077 script_section_type_name(Script_section_type);
2078
2079 typedef std::vector<Output_section_element*> Output_section_elements;
2080
2081 // The output section name.
2082 std::string name_;
2083 // The address. This may be NULL.
2084 Expression* address_;
2085 // The load address. This may be NULL.
2086 Expression* load_address_;
2087 // The alignment. This may be NULL.
2088 Expression* align_;
2089 // The input section alignment. This may be NULL.
2090 Expression* subalign_;
2091 // The constraint, if any.
2092 Section_constraint constraint_;
2093 // The fill value. This may be NULL.
2094 Expression* fill_;
2095 // The list of segments this section should go into. This may be
2096 // NULL.
2097 String_list* phdrs_;
2098 // The list of elements defining the section.
2099 Output_section_elements elements_;
2100 // The Output_section created for this definition. This will be
2101 // NULL if none was created.
2102 Output_section* output_section_;
2103 // The address after it has been evaluated.
2104 uint64_t evaluated_address_;
2105 // The load address after it has been evaluated.
2106 uint64_t evaluated_load_address_;
2107 // The alignment after it has been evaluated.
2108 uint64_t evaluated_addralign_;
2109 // The output section is relro.
2110 bool is_relro_;
2111 // The output section type if specified.
2112 enum Script_section_type script_section_type_;
2113 };
2114
2115 // Constructor.
2116
2117 Output_section_definition::Output_section_definition(
2118 const char* name,
2119 size_t namelen,
2120 const Parser_output_section_header* header)
2121 : name_(name, namelen),
2122 address_(header->address),
2123 load_address_(header->load_address),
2124 align_(header->align),
2125 subalign_(header->subalign),
2126 constraint_(header->constraint),
2127 fill_(NULL),
2128 phdrs_(NULL),
2129 elements_(),
2130 output_section_(NULL),
2131 evaluated_address_(0),
2132 evaluated_load_address_(0),
2133 evaluated_addralign_(0),
2134 is_relro_(false),
2135 script_section_type_(header->section_type)
2136 {
2137 }
2138
2139 // Finish an output section.
2140
2141 void
2142 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2143 {
2144 this->fill_ = trailer->fill;
2145 this->phdrs_ = trailer->phdrs;
2146 }
2147
2148 // Add a symbol to be defined.
2149
2150 void
2151 Output_section_definition::add_symbol_assignment(const char* name,
2152 size_t length,
2153 Expression* value,
2154 bool provide,
2155 bool hidden)
2156 {
2157 Output_section_element* p = new Output_section_element_assignment(name,
2158 length,
2159 value,
2160 provide,
2161 hidden);
2162 this->elements_.push_back(p);
2163 }
2164
2165 // Add an assignment to the special dot symbol.
2166
2167 void
2168 Output_section_definition::add_dot_assignment(Expression* value)
2169 {
2170 Output_section_element* p = new Output_section_element_dot_assignment(value);
2171 this->elements_.push_back(p);
2172 }
2173
2174 // Add an assertion.
2175
2176 void
2177 Output_section_definition::add_assertion(Expression* check,
2178 const char* message,
2179 size_t messagelen)
2180 {
2181 Output_section_element* p = new Output_section_element_assertion(check,
2182 message,
2183 messagelen);
2184 this->elements_.push_back(p);
2185 }
2186
2187 // Add a data item to the current output section.
2188
2189 void
2190 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2191 {
2192 Output_section_element* p = new Output_section_element_data(size, is_signed,
2193 val);
2194 this->elements_.push_back(p);
2195 }
2196
2197 // Add a setting for the fill value.
2198
2199 void
2200 Output_section_definition::add_fill(Expression* val)
2201 {
2202 Output_section_element* p = new Output_section_element_fill(val);
2203 this->elements_.push_back(p);
2204 }
2205
2206 // Add an input section specification.
2207
2208 void
2209 Output_section_definition::add_input_section(const Input_section_spec* spec,
2210 bool keep)
2211 {
2212 Output_section_element* p = new Output_section_element_input(spec, keep);
2213 this->elements_.push_back(p);
2214 }
2215
2216 // Create any required output sections. We need an output section if
2217 // there is a data statement here.
2218
2219 void
2220 Output_section_definition::create_sections(Layout* layout)
2221 {
2222 if (this->output_section_ != NULL)
2223 return;
2224 for (Output_section_elements::const_iterator p = this->elements_.begin();
2225 p != this->elements_.end();
2226 ++p)
2227 {
2228 if ((*p)->needs_output_section())
2229 {
2230 const char* name = this->name_.c_str();
2231 this->output_section_ =
2232 layout->make_output_section_for_script(name, this->section_type());
2233 return;
2234 }
2235 }
2236 }
2237
2238 // Add any symbols being defined to the symbol table.
2239
2240 void
2241 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2242 {
2243 for (Output_section_elements::iterator p = this->elements_.begin();
2244 p != this->elements_.end();
2245 ++p)
2246 (*p)->add_symbols_to_table(symtab);
2247 }
2248
2249 // Finalize symbols and check assertions.
2250
2251 void
2252 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2253 const Layout* layout,
2254 uint64_t* dot_value)
2255 {
2256 if (this->output_section_ != NULL)
2257 *dot_value = this->output_section_->address();
2258 else
2259 {
2260 uint64_t address = *dot_value;
2261 if (this->address_ != NULL)
2262 {
2263 address = this->address_->eval_with_dot(symtab, layout, true,
2264 *dot_value, NULL,
2265 NULL, NULL, false);
2266 }
2267 if (this->align_ != NULL)
2268 {
2269 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2270 *dot_value, NULL,
2271 NULL, NULL, false);
2272 address = align_address(address, align);
2273 }
2274 *dot_value = address;
2275 }
2276
2277 Output_section* dot_section = this->output_section_;
2278 for (Output_section_elements::iterator p = this->elements_.begin();
2279 p != this->elements_.end();
2280 ++p)
2281 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2282 }
2283
2284 // Return the output section name to use for an input section name.
2285
2286 const char*
2287 Output_section_definition::output_section_name(
2288 const char* file_name,
2289 const char* section_name,
2290 Output_section*** slot,
2291 Script_sections::Section_type* psection_type,
2292 bool* keep,
2293 bool match_input_spec)
2294 {
2295 // If the section is a linker-created output section, just look for a match
2296 // on the output section name.
2297 if (!match_input_spec && this->name_ != "/DISCARD/")
2298 {
2299 if (this->name_ != section_name)
2300 return NULL;
2301 *slot = &this->output_section_;
2302 *psection_type = this->section_type();
2303 return this->name_.c_str();
2304 }
2305
2306 // Ask each element whether it matches NAME.
2307 for (Output_section_elements::const_iterator p = this->elements_.begin();
2308 p != this->elements_.end();
2309 ++p)
2310 {
2311 if ((*p)->match_name(file_name, section_name, keep))
2312 {
2313 // We found a match for NAME, which means that it should go
2314 // into this output section.
2315 *slot = &this->output_section_;
2316 *psection_type = this->section_type();
2317 return this->name_.c_str();
2318 }
2319 }
2320
2321 // We don't know about this section name.
2322 return NULL;
2323 }
2324
2325 // Return true if memory from START to START + LENGTH is contained
2326 // within a memory region.
2327
2328 bool
2329 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2330 uint64_t start, uint64_t length) const
2331 {
2332 if (this->memory_regions_ == NULL)
2333 return false;
2334
2335 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2336 mr != this->memory_regions_->end();
2337 ++mr)
2338 {
2339 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2340 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2341
2342 if (s <= start
2343 && (s + l) >= (start + length))
2344 return true;
2345 }
2346
2347 return false;
2348 }
2349
2350 // Find a memory region that should be used by a given output SECTION.
2351 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2352 // that used the return memory region.
2353
2354 Memory_region*
2355 Script_sections::find_memory_region(
2356 Output_section_definition* section,
2357 bool find_vma_region,
2358 bool explicit_only,
2359 Output_section_definition** previous_section_return)
2360 {
2361 if (previous_section_return != NULL)
2362 * previous_section_return = NULL;
2363
2364 // Walk the memory regions specified in this script, if any.
2365 if (this->memory_regions_ == NULL)
2366 return NULL;
2367
2368 // The /DISCARD/ section never gets assigned to any region.
2369 if (section->get_section_name() == "/DISCARD/")
2370 return NULL;
2371
2372 Memory_region* first_match = NULL;
2373
2374 // First check to see if a region has been assigned to this section.
2375 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2376 mr != this->memory_regions_->end();
2377 ++mr)
2378 {
2379 if (find_vma_region)
2380 {
2381 for (Memory_region::Section_list::const_iterator s =
2382 (*mr)->get_vma_section_list_start();
2383 s != (*mr)->get_vma_section_list_end();
2384 ++s)
2385 if ((*s) == section)
2386 {
2387 (*mr)->set_last_section(section);
2388 return *mr;
2389 }
2390 }
2391 else
2392 {
2393 for (Memory_region::Section_list::const_iterator s =
2394 (*mr)->get_lma_section_list_start();
2395 s != (*mr)->get_lma_section_list_end();
2396 ++s)
2397 if ((*s) == section)
2398 {
2399 (*mr)->set_last_section(section);
2400 return *mr;
2401 }
2402 }
2403
2404 if (!explicit_only)
2405 {
2406 // Make a note of the first memory region whose attributes
2407 // are compatible with the section. If we do not find an
2408 // explicit region assignment, then we will return this region.
2409 Output_section* out_sec = section->get_output_section();
2410 if (first_match == NULL
2411 && out_sec != NULL
2412 && (*mr)->attributes_compatible(out_sec->flags(),
2413 out_sec->type()))
2414 first_match = *mr;
2415 }
2416 }
2417
2418 // With LMA computations, if an explicit region has not been specified then
2419 // we will want to set the difference between the VMA and the LMA of the
2420 // section were searching for to be the same as the difference between the
2421 // VMA and LMA of the last section to be added to first matched region.
2422 // Hence, if it was asked for, we return a pointer to the last section
2423 // known to be used by the first matched region.
2424 if (first_match != NULL
2425 && previous_section_return != NULL)
2426 *previous_section_return = first_match->get_last_section();
2427
2428 return first_match;
2429 }
2430
2431 // Set the section address. Note that the OUTPUT_SECTION_ field will
2432 // be NULL if no input sections were mapped to this output section.
2433 // We still have to adjust dot and process symbol assignments.
2434
2435 void
2436 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2437 Layout* layout,
2438 uint64_t* dot_value,
2439 uint64_t* dot_alignment,
2440 uint64_t* load_address)
2441 {
2442 Memory_region* vma_region = NULL;
2443 Memory_region* lma_region = NULL;
2444 Script_sections* script_sections =
2445 layout->script_options()->script_sections();
2446 uint64_t address;
2447 uint64_t old_dot_value = *dot_value;
2448 uint64_t old_load_address = *load_address;
2449
2450 // If input section sorting is requested via --section-ordering-file or
2451 // linker plugins, then do it here. This is important because we want
2452 // any sorting specified in the linker scripts, which will be done after
2453 // this, to take precedence. The final order of input sections is then
2454 // guaranteed to be according to the linker script specification.
2455 if (this->output_section_ != NULL
2456 && this->output_section_->input_section_order_specified())
2457 this->output_section_->sort_attached_input_sections();
2458
2459 // Decide the start address for the section. The algorithm is:
2460 // 1) If an address has been specified in a linker script, use that.
2461 // 2) Otherwise if a memory region has been specified for the section,
2462 // use the next free address in the region.
2463 // 3) Otherwise if memory regions have been specified find the first
2464 // region whose attributes are compatible with this section and
2465 // install it into that region.
2466 // 4) Otherwise use the current location counter.
2467
2468 if (this->output_section_ != NULL
2469 // Check for --section-start.
2470 && parameters->options().section_start(this->output_section_->name(),
2471 &address))
2472 ;
2473 else if (this->address_ == NULL)
2474 {
2475 vma_region = script_sections->find_memory_region(this, true, false, NULL);
2476 if (vma_region != NULL)
2477 address = vma_region->get_current_address()->eval(symtab, layout,
2478 false);
2479 else
2480 address = *dot_value;
2481 }
2482 else
2483 {
2484 vma_region = script_sections->find_memory_region(this, true, true, NULL);
2485 address = this->address_->eval_with_dot(symtab, layout, true,
2486 *dot_value, NULL, NULL,
2487 dot_alignment, false);
2488 if (vma_region != NULL)
2489 vma_region->set_address(address, symtab, layout);
2490 }
2491
2492 uint64_t align;
2493 if (this->align_ == NULL)
2494 {
2495 if (this->output_section_ == NULL)
2496 align = 0;
2497 else
2498 align = this->output_section_->addralign();
2499 }
2500 else
2501 {
2502 Output_section* align_section;
2503 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2504 NULL, &align_section, NULL, false);
2505 if (align_section != NULL)
2506 gold_warning(_("alignment of section %s is not absolute"),
2507 this->name_.c_str());
2508 if (this->output_section_ != NULL)
2509 this->output_section_->set_addralign(align);
2510 }
2511
2512 uint64_t subalign;
2513 if (this->subalign_ == NULL)
2514 subalign = 0;
2515 else
2516 {
2517 Output_section* subalign_section;
2518 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2519 *dot_value, NULL,
2520 &subalign_section, NULL,
2521 false);
2522 if (subalign_section != NULL)
2523 gold_warning(_("subalign of section %s is not absolute"),
2524 this->name_.c_str());
2525
2526 // Reserve a value of 0 to mean there is no SUBALIGN property.
2527 if (subalign == 0)
2528 subalign = 1;
2529
2530 // The external alignment of the output section must be at least
2531 // as large as that of the input sections. If there is no
2532 // explicit ALIGN property, we set the output section alignment
2533 // to match the input section alignment.
2534 if (align < subalign || this->align_ == NULL)
2535 {
2536 align = subalign;
2537 this->output_section_->set_addralign(align);
2538 }
2539 }
2540
2541 address = align_address(address, align);
2542
2543 uint64_t start_address = address;
2544
2545 *dot_value = address;
2546
2547 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2548 // forced to zero, regardless of what the linker script wants.
2549 if (this->output_section_ != NULL
2550 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2551 || this->output_section_->is_noload()))
2552 this->output_section_->set_address(address);
2553
2554 this->evaluated_address_ = address;
2555 this->evaluated_addralign_ = align;
2556
2557 uint64_t laddr;
2558
2559 if (this->load_address_ == NULL)
2560 {
2561 Output_section_definition* previous_section;
2562
2563 // Determine if an LMA region has been set for this section.
2564 lma_region = script_sections->find_memory_region(this, false, false,
2565 &previous_section);
2566
2567 if (lma_region != NULL)
2568 {
2569 if (previous_section == NULL)
2570 // The LMA address was explicitly set to the given region.
2571 laddr = lma_region->get_current_address()->eval(symtab, layout,
2572 false);
2573 else
2574 {
2575 // We are not going to use the discovered lma_region, so
2576 // make sure that we do not update it in the code below.
2577 lma_region = NULL;
2578
2579 if (this->address_ != NULL || previous_section == this)
2580 {
2581 // Either an explicit VMA address has been set, or an
2582 // explicit VMA region has been set, so set the LMA equal to
2583 // the VMA.
2584 laddr = address;
2585 }
2586 else
2587 {
2588 // The LMA address was not explicitly or implicitly set.
2589 //
2590 // We have been given the first memory region that is
2591 // compatible with the current section and a pointer to the
2592 // last section to use this region. Set the LMA of this
2593 // section so that the difference between its' VMA and LMA
2594 // is the same as the difference between the VMA and LMA of
2595 // the last section in the given region.
2596 laddr = address + (previous_section->evaluated_load_address_
2597 - previous_section->evaluated_address_);
2598 }
2599 }
2600
2601 if (this->output_section_ != NULL)
2602 this->output_section_->set_load_address(laddr);
2603 }
2604 else
2605 {
2606 // Do not set the load address of the output section, if one exists.
2607 // This allows future sections to determine what the load address
2608 // should be. If none is ever set, it will default to being the
2609 // same as the vma address.
2610 laddr = address;
2611 }
2612 }
2613 else
2614 {
2615 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2616 *dot_value,
2617 this->output_section_,
2618 NULL, NULL, false);
2619 if (this->output_section_ != NULL)
2620 this->output_section_->set_load_address(laddr);
2621 }
2622
2623 this->evaluated_load_address_ = laddr;
2624
2625 std::string fill;
2626 if (this->fill_ != NULL)
2627 {
2628 // FIXME: The GNU linker supports fill values of arbitrary
2629 // length.
2630 Output_section* fill_section;
2631 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2632 *dot_value,
2633 NULL, &fill_section,
2634 NULL, false);
2635 if (fill_section != NULL)
2636 gold_warning(_("fill of section %s is not absolute"),
2637 this->name_.c_str());
2638 unsigned char fill_buff[4];
2639 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2640 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2641 }
2642
2643 Input_section_list input_sections;
2644 if (this->output_section_ != NULL)
2645 {
2646 // Get the list of input sections attached to this output
2647 // section. This will leave the output section with only
2648 // Output_section_data entries.
2649 address += this->output_section_->get_input_sections(address,
2650 fill,
2651 &input_sections);
2652 *dot_value = address;
2653 }
2654
2655 Output_section* dot_section = this->output_section_;
2656 for (Output_section_elements::iterator p = this->elements_.begin();
2657 p != this->elements_.end();
2658 ++p)
2659 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2660 subalign, dot_value, dot_alignment,
2661 &dot_section, &fill, &input_sections);
2662
2663 gold_assert(input_sections.empty());
2664
2665 if (vma_region != NULL)
2666 {
2667 // Update the VMA region being used by the section now that we know how
2668 // big it is. Use the current address in the region, rather than
2669 // start_address because that might have been aligned upwards and we
2670 // need to allow for the padding.
2671 Expression* addr = vma_region->get_current_address();
2672 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2673
2674 vma_region->increment_offset(this->get_section_name(), size,
2675 symtab, layout);
2676 }
2677
2678 // If the LMA region is different from the VMA region, then increment the
2679 // offset there as well. Note that we use the same "dot_value -
2680 // start_address" formula that is used in the load_address assignment below.
2681 if (lma_region != NULL && lma_region != vma_region)
2682 lma_region->increment_offset(this->get_section_name(),
2683 *dot_value - start_address,
2684 symtab, layout);
2685
2686 // Compute the load address for the following section.
2687 if (this->output_section_ == NULL)
2688 *load_address = *dot_value;
2689 else if (this->load_address_ == NULL)
2690 {
2691 if (lma_region == NULL)
2692 *load_address = *dot_value;
2693 else
2694 *load_address =
2695 lma_region->get_current_address()->eval(symtab, layout, false);
2696 }
2697 else
2698 *load_address = (this->output_section_->load_address()
2699 + (*dot_value - start_address));
2700
2701 if (this->output_section_ != NULL)
2702 {
2703 if (this->is_relro_)
2704 this->output_section_->set_is_relro();
2705 else
2706 this->output_section_->clear_is_relro();
2707
2708 // If this is a NOLOAD section, keep dot and load address unchanged.
2709 if (this->output_section_->is_noload())
2710 {
2711 *dot_value = old_dot_value;
2712 *load_address = old_load_address;
2713 }
2714 }
2715 }
2716
2717 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2718 // this section is constrained, and the input sections do not match,
2719 // return the constraint, and set *POSD.
2720
2721 Section_constraint
2722 Output_section_definition::check_constraint(Output_section_definition** posd)
2723 {
2724 switch (this->constraint_)
2725 {
2726 case CONSTRAINT_NONE:
2727 return CONSTRAINT_NONE;
2728
2729 case CONSTRAINT_ONLY_IF_RO:
2730 if (this->output_section_ != NULL
2731 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2732 {
2733 *posd = this;
2734 return CONSTRAINT_ONLY_IF_RO;
2735 }
2736 return CONSTRAINT_NONE;
2737
2738 case CONSTRAINT_ONLY_IF_RW:
2739 if (this->output_section_ != NULL
2740 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2741 {
2742 *posd = this;
2743 return CONSTRAINT_ONLY_IF_RW;
2744 }
2745 return CONSTRAINT_NONE;
2746
2747 case CONSTRAINT_SPECIAL:
2748 if (this->output_section_ != NULL)
2749 gold_error(_("SPECIAL constraints are not implemented"));
2750 return CONSTRAINT_NONE;
2751
2752 default:
2753 gold_unreachable();
2754 }
2755 }
2756
2757 // See if this is the alternate output section for a constrained
2758 // output section. If it is, transfer the Output_section and return
2759 // true. Otherwise return false.
2760
2761 bool
2762 Output_section_definition::alternate_constraint(
2763 Output_section_definition* posd,
2764 Section_constraint constraint)
2765 {
2766 if (this->name_ != posd->name_)
2767 return false;
2768
2769 switch (constraint)
2770 {
2771 case CONSTRAINT_ONLY_IF_RO:
2772 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2773 return false;
2774 break;
2775
2776 case CONSTRAINT_ONLY_IF_RW:
2777 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2778 return false;
2779 break;
2780
2781 default:
2782 gold_unreachable();
2783 }
2784
2785 // We have found the alternate constraint. We just need to move
2786 // over the Output_section. When constraints are used properly,
2787 // THIS should not have an output_section pointer, as all the input
2788 // sections should have matched the other definition.
2789
2790 if (this->output_section_ != NULL)
2791 gold_error(_("mismatched definition for constrained sections"));
2792
2793 this->output_section_ = posd->output_section_;
2794 posd->output_section_ = NULL;
2795
2796 if (this->is_relro_)
2797 this->output_section_->set_is_relro();
2798 else
2799 this->output_section_->clear_is_relro();
2800
2801 return true;
2802 }
2803
2804 // Get the list of segments to use for an allocated section when using
2805 // a PHDRS clause.
2806
2807 Output_section*
2808 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2809 bool* orphan)
2810 {
2811 // Update phdrs_list even if we don't have an output section. It
2812 // might be used by the following sections.
2813 if (this->phdrs_ != NULL)
2814 *phdrs_list = this->phdrs_;
2815
2816 if (this->output_section_ == NULL)
2817 return NULL;
2818 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2819 return NULL;
2820 *orphan = false;
2821 return this->output_section_;
2822 }
2823
2824 // Look for an output section by name and return the address, the load
2825 // address, the alignment, and the size. This is used when an
2826 // expression refers to an output section which was not actually
2827 // created. This returns true if the section was found, false
2828 // otherwise.
2829
2830 bool
2831 Output_section_definition::get_output_section_info(const char* name,
2832 uint64_t* address,
2833 uint64_t* load_address,
2834 uint64_t* addralign,
2835 uint64_t* size) const
2836 {
2837 if (this->name_ != name)
2838 return false;
2839
2840 if (this->output_section_ != NULL)
2841 {
2842 *address = this->output_section_->address();
2843 if (this->output_section_->has_load_address())
2844 *load_address = this->output_section_->load_address();
2845 else
2846 *load_address = *address;
2847 *addralign = this->output_section_->addralign();
2848 *size = this->output_section_->current_data_size();
2849 }
2850 else
2851 {
2852 *address = this->evaluated_address_;
2853 *load_address = this->evaluated_load_address_;
2854 *addralign = this->evaluated_addralign_;
2855 *size = 0;
2856 }
2857
2858 return true;
2859 }
2860
2861 // Print for debugging.
2862
2863 void
2864 Output_section_definition::print(FILE* f) const
2865 {
2866 fprintf(f, " %s ", this->name_.c_str());
2867
2868 if (this->address_ != NULL)
2869 {
2870 this->address_->print(f);
2871 fprintf(f, " ");
2872 }
2873
2874 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2875 fprintf(f, "(%s) ",
2876 this->script_section_type_name(this->script_section_type_));
2877
2878 fprintf(f, ": ");
2879
2880 if (this->load_address_ != NULL)
2881 {
2882 fprintf(f, "AT(");
2883 this->load_address_->print(f);
2884 fprintf(f, ") ");
2885 }
2886
2887 if (this->align_ != NULL)
2888 {
2889 fprintf(f, "ALIGN(");
2890 this->align_->print(f);
2891 fprintf(f, ") ");
2892 }
2893
2894 if (this->subalign_ != NULL)
2895 {
2896 fprintf(f, "SUBALIGN(");
2897 this->subalign_->print(f);
2898 fprintf(f, ") ");
2899 }
2900
2901 fprintf(f, "{\n");
2902
2903 for (Output_section_elements::const_iterator p = this->elements_.begin();
2904 p != this->elements_.end();
2905 ++p)
2906 (*p)->print(f);
2907
2908 fprintf(f, " }");
2909
2910 if (this->fill_ != NULL)
2911 {
2912 fprintf(f, " = ");
2913 this->fill_->print(f);
2914 }
2915
2916 if (this->phdrs_ != NULL)
2917 {
2918 for (String_list::const_iterator p = this->phdrs_->begin();
2919 p != this->phdrs_->end();
2920 ++p)
2921 fprintf(f, " :%s", p->c_str());
2922 }
2923
2924 fprintf(f, "\n");
2925 }
2926
2927 Script_sections::Section_type
2928 Output_section_definition::section_type() const
2929 {
2930 switch (this->script_section_type_)
2931 {
2932 case SCRIPT_SECTION_TYPE_NONE:
2933 return Script_sections::ST_NONE;
2934 case SCRIPT_SECTION_TYPE_NOLOAD:
2935 return Script_sections::ST_NOLOAD;
2936 case SCRIPT_SECTION_TYPE_COPY:
2937 case SCRIPT_SECTION_TYPE_DSECT:
2938 case SCRIPT_SECTION_TYPE_INFO:
2939 case SCRIPT_SECTION_TYPE_OVERLAY:
2940 // There are not really support so we treat them as ST_NONE. The
2941 // parse should have issued errors for them already.
2942 return Script_sections::ST_NONE;
2943 default:
2944 gold_unreachable();
2945 }
2946 }
2947
2948 // Return the name of a script section type.
2949
2950 const char*
2951 Output_section_definition::script_section_type_name(
2952 Script_section_type script_section_type)
2953 {
2954 switch (script_section_type)
2955 {
2956 case SCRIPT_SECTION_TYPE_NONE:
2957 return "NONE";
2958 case SCRIPT_SECTION_TYPE_NOLOAD:
2959 return "NOLOAD";
2960 case SCRIPT_SECTION_TYPE_DSECT:
2961 return "DSECT";
2962 case SCRIPT_SECTION_TYPE_COPY:
2963 return "COPY";
2964 case SCRIPT_SECTION_TYPE_INFO:
2965 return "INFO";
2966 case SCRIPT_SECTION_TYPE_OVERLAY:
2967 return "OVERLAY";
2968 default:
2969 gold_unreachable();
2970 }
2971 }
2972
2973 void
2974 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2975 {
2976 gold_assert(mr != NULL);
2977 // Add the current section to the specified region's list.
2978 mr->add_section(this, set_vma);
2979 }
2980
2981 // An output section created to hold orphaned input sections. These
2982 // do not actually appear in linker scripts. However, for convenience
2983 // when setting the output section addresses, we put a marker to these
2984 // sections in the appropriate place in the list of SECTIONS elements.
2985
2986 class Orphan_output_section : public Sections_element
2987 {
2988 public:
2989 Orphan_output_section(Output_section* os)
2990 : os_(os)
2991 { }
2992
2993 // Return whether the orphan output section is relro. We can just
2994 // check the output section because we always set the flag, if
2995 // needed, just after we create the Orphan_output_section.
2996 bool
2997 is_relro() const
2998 { return this->os_->is_relro(); }
2999
3000 // Initialize OSP with an output section. This should have been
3001 // done already.
3002 void
3003 orphan_section_init(Orphan_section_placement*,
3004 Script_sections::Elements_iterator)
3005 { gold_unreachable(); }
3006
3007 // Set section addresses.
3008 void
3009 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
3010 uint64_t*);
3011
3012 // Get the list of segments to use for an allocated section when
3013 // using a PHDRS clause.
3014 Output_section*
3015 allocate_to_segment(String_list**, bool*);
3016
3017 // Return the associated Output_section.
3018 Output_section*
3019 get_output_section() const
3020 { return this->os_; }
3021
3022 // Print for debugging.
3023 void
3024 print(FILE* f) const
3025 {
3026 fprintf(f, " marker for orphaned output section %s\n",
3027 this->os_->name());
3028 }
3029
3030 private:
3031 Output_section* os_;
3032 };
3033
3034 // Set section addresses.
3035
3036 void
3037 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
3038 uint64_t* dot_value,
3039 uint64_t*,
3040 uint64_t* load_address)
3041 {
3042 typedef std::list<Output_section::Input_section> Input_section_list;
3043
3044 bool have_load_address = *load_address != *dot_value;
3045
3046 uint64_t address = *dot_value;
3047 address = align_address(address, this->os_->addralign());
3048
3049 // If input section sorting is requested via --section-ordering-file or
3050 // linker plugins, then do it here. This is important because we want
3051 // any sorting specified in the linker scripts, which will be done after
3052 // this, to take precedence. The final order of input sections is then
3053 // guaranteed to be according to the linker script specification.
3054 if (this->os_ != NULL
3055 && this->os_->input_section_order_specified())
3056 this->os_->sort_attached_input_sections();
3057
3058 // For a relocatable link, all orphan sections are put at
3059 // address 0. In general we expect all sections to be at
3060 // address 0 for a relocatable link, but we permit the linker
3061 // script to override that for specific output sections.
3062 if (parameters->options().relocatable())
3063 {
3064 address = 0;
3065 *load_address = 0;
3066 have_load_address = false;
3067 }
3068
3069 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
3070 {
3071 this->os_->set_address(address);
3072 if (have_load_address)
3073 this->os_->set_load_address(align_address(*load_address,
3074 this->os_->addralign()));
3075 }
3076
3077 Input_section_list input_sections;
3078 address += this->os_->get_input_sections(address, "", &input_sections);
3079
3080 for (Input_section_list::iterator p = input_sections.begin();
3081 p != input_sections.end();
3082 ++p)
3083 {
3084 uint64_t addralign = p->addralign();
3085 if (!p->is_input_section())
3086 p->output_section_data()->finalize_data_size();
3087 uint64_t size = p->data_size();
3088 address = align_address(address, addralign);
3089 this->os_->add_script_input_section(*p);
3090 address += size;
3091 }
3092
3093 if (parameters->options().relocatable())
3094 {
3095 // For a relocatable link, reset DOT_VALUE to 0.
3096 *dot_value = 0;
3097 *load_address = 0;
3098 }
3099 else if (this->os_ == NULL
3100 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
3101 || this->os_->type() != elfcpp::SHT_NOBITS)
3102 {
3103 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
3104 if (!have_load_address)
3105 *load_address = address;
3106 else
3107 *load_address += address - *dot_value;
3108
3109 *dot_value = address;
3110 }
3111 }
3112
3113 // Get the list of segments to use for an allocated section when using
3114 // a PHDRS clause. If this is an allocated section, return the
3115 // Output_section. We don't change the list of segments.
3116
3117 Output_section*
3118 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3119 {
3120 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3121 return NULL;
3122 *orphan = true;
3123 return this->os_;
3124 }
3125
3126 // Class Phdrs_element. A program header from a PHDRS clause.
3127
3128 class Phdrs_element
3129 {
3130 public:
3131 Phdrs_element(const char* name, size_t namelen, unsigned int type,
3132 bool includes_filehdr, bool includes_phdrs,
3133 bool is_flags_valid, unsigned int flags,
3134 Expression* load_address)
3135 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3136 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3137 flags_(flags), load_address_(load_address), load_address_value_(0),
3138 segment_(NULL)
3139 { }
3140
3141 // Return the name of this segment.
3142 const std::string&
3143 name() const
3144 { return this->name_; }
3145
3146 // Return the type of the segment.
3147 unsigned int
3148 type() const
3149 { return this->type_; }
3150
3151 // Whether to include the file header.
3152 bool
3153 includes_filehdr() const
3154 { return this->includes_filehdr_; }
3155
3156 // Whether to include the program headers.
3157 bool
3158 includes_phdrs() const
3159 { return this->includes_phdrs_; }
3160
3161 // Return whether there is a load address.
3162 bool
3163 has_load_address() const
3164 { return this->load_address_ != NULL; }
3165
3166 // Evaluate the load address expression if there is one.
3167 void
3168 eval_load_address(Symbol_table* symtab, Layout* layout)
3169 {
3170 if (this->load_address_ != NULL)
3171 this->load_address_value_ = this->load_address_->eval(symtab, layout,
3172 true);
3173 }
3174
3175 // Return the load address.
3176 uint64_t
3177 load_address() const
3178 {
3179 gold_assert(this->load_address_ != NULL);
3180 return this->load_address_value_;
3181 }
3182
3183 // Create the segment.
3184 Output_segment*
3185 create_segment(Layout* layout)
3186 {
3187 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3188 return this->segment_;
3189 }
3190
3191 // Return the segment.
3192 Output_segment*
3193 segment()
3194 { return this->segment_; }
3195
3196 // Release the segment.
3197 void
3198 release_segment()
3199 { this->segment_ = NULL; }
3200
3201 // Set the segment flags if appropriate.
3202 void
3203 set_flags_if_valid()
3204 {
3205 if (this->is_flags_valid_)
3206 this->segment_->set_flags(this->flags_);
3207 }
3208
3209 // Print for debugging.
3210 void
3211 print(FILE*) const;
3212
3213 private:
3214 // The name used in the script.
3215 std::string name_;
3216 // The type of the segment (PT_LOAD, etc.).
3217 unsigned int type_;
3218 // Whether this segment includes the file header.
3219 bool includes_filehdr_;
3220 // Whether this segment includes the section headers.
3221 bool includes_phdrs_;
3222 // Whether the flags were explicitly specified.
3223 bool is_flags_valid_;
3224 // The flags for this segment (PF_R, etc.) if specified.
3225 unsigned int flags_;
3226 // The expression for the load address for this segment. This may
3227 // be NULL.
3228 Expression* load_address_;
3229 // The actual load address from evaluating the expression.
3230 uint64_t load_address_value_;
3231 // The segment itself.
3232 Output_segment* segment_;
3233 };
3234
3235 // Print for debugging.
3236
3237 void
3238 Phdrs_element::print(FILE* f) const
3239 {
3240 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3241 if (this->includes_filehdr_)
3242 fprintf(f, " FILEHDR");
3243 if (this->includes_phdrs_)
3244 fprintf(f, " PHDRS");
3245 if (this->is_flags_valid_)
3246 fprintf(f, " FLAGS(%u)", this->flags_);
3247 if (this->load_address_ != NULL)
3248 {
3249 fprintf(f, " AT(");
3250 this->load_address_->print(f);
3251 fprintf(f, ")");
3252 }
3253 fprintf(f, ";\n");
3254 }
3255
3256 // Add a memory region.
3257
3258 void
3259 Script_sections::add_memory_region(const char* name, size_t namelen,
3260 unsigned int attributes,
3261 Expression* start, Expression* length)
3262 {
3263 if (this->memory_regions_ == NULL)
3264 this->memory_regions_ = new Memory_regions();
3265 else if (this->find_memory_region(name, namelen))
3266 {
3267 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3268 name);
3269 // FIXME: Add a GOLD extension to allow multiple regions with the same
3270 // name. This would amount to a single region covering disjoint blocks
3271 // of memory, which is useful for embedded devices.
3272 }
3273
3274 // FIXME: Check the length and start values. Currently we allow
3275 // non-constant expressions for these values, whereas LD does not.
3276
3277 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3278 // describe a region that packs from the end address going down, rather
3279 // than the start address going up. This would be useful for embedded
3280 // devices.
3281
3282 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3283 start, length));
3284 }
3285
3286 // Find a memory region.
3287
3288 Memory_region*
3289 Script_sections::find_memory_region(const char* name, size_t namelen)
3290 {
3291 if (this->memory_regions_ == NULL)
3292 return NULL;
3293
3294 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3295 m != this->memory_regions_->end();
3296 ++m)
3297 if ((*m)->name_match(name, namelen))
3298 return *m;
3299
3300 return NULL;
3301 }
3302
3303 // Find a memory region's origin.
3304
3305 Expression*
3306 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3307 {
3308 Memory_region* mr = find_memory_region(name, namelen);
3309 if (mr == NULL)
3310 return NULL;
3311
3312 return mr->start_address();
3313 }
3314
3315 // Find a memory region's length.
3316
3317 Expression*
3318 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3319 {
3320 Memory_region* mr = find_memory_region(name, namelen);
3321 if (mr == NULL)
3322 return NULL;
3323
3324 return mr->length();
3325 }
3326
3327 // Set the memory region to use for the current section.
3328
3329 void
3330 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3331 {
3332 gold_assert(!this->sections_elements_->empty());
3333 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3334 }
3335
3336 // Class Script_sections.
3337
3338 Script_sections::Script_sections()
3339 : saw_sections_clause_(false),
3340 in_sections_clause_(false),
3341 sections_elements_(NULL),
3342 output_section_(NULL),
3343 memory_regions_(NULL),
3344 phdrs_elements_(NULL),
3345 orphan_section_placement_(NULL),
3346 data_segment_align_start_(),
3347 saw_data_segment_align_(false),
3348 saw_relro_end_(false),
3349 saw_segment_start_expression_(false),
3350 segments_created_(false)
3351 {
3352 }
3353
3354 // Start a SECTIONS clause.
3355
3356 void
3357 Script_sections::start_sections()
3358 {
3359 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3360 this->saw_sections_clause_ = true;
3361 this->in_sections_clause_ = true;
3362 if (this->sections_elements_ == NULL)
3363 this->sections_elements_ = new Sections_elements;
3364 }
3365
3366 // Finish a SECTIONS clause.
3367
3368 void
3369 Script_sections::finish_sections()
3370 {
3371 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3372 this->in_sections_clause_ = false;
3373 }
3374
3375 // Add a symbol to be defined.
3376
3377 void
3378 Script_sections::add_symbol_assignment(const char* name, size_t length,
3379 Expression* val, bool provide,
3380 bool hidden)
3381 {
3382 if (this->output_section_ != NULL)
3383 this->output_section_->add_symbol_assignment(name, length, val,
3384 provide, hidden);
3385 else
3386 {
3387 Sections_element* p = new Sections_element_assignment(name, length,
3388 val, provide,
3389 hidden);
3390 this->sections_elements_->push_back(p);
3391 }
3392 }
3393
3394 // Add an assignment to the special dot symbol.
3395
3396 void
3397 Script_sections::add_dot_assignment(Expression* val)
3398 {
3399 if (this->output_section_ != NULL)
3400 this->output_section_->add_dot_assignment(val);
3401 else
3402 {
3403 // The GNU linker permits assignments to . to appears outside of
3404 // a SECTIONS clause, and treats it as appearing inside, so
3405 // sections_elements_ may be NULL here.
3406 if (this->sections_elements_ == NULL)
3407 {
3408 this->sections_elements_ = new Sections_elements;
3409 this->saw_sections_clause_ = true;
3410 }
3411
3412 Sections_element* p = new Sections_element_dot_assignment(val);
3413 this->sections_elements_->push_back(p);
3414 }
3415 }
3416
3417 // Add an assertion.
3418
3419 void
3420 Script_sections::add_assertion(Expression* check, const char* message,
3421 size_t messagelen)
3422 {
3423 if (this->output_section_ != NULL)
3424 this->output_section_->add_assertion(check, message, messagelen);
3425 else
3426 {
3427 Sections_element* p = new Sections_element_assertion(check, message,
3428 messagelen);
3429 this->sections_elements_->push_back(p);
3430 }
3431 }
3432
3433 // Start processing entries for an output section.
3434
3435 void
3436 Script_sections::start_output_section(
3437 const char* name,
3438 size_t namelen,
3439 const Parser_output_section_header* header)
3440 {
3441 Output_section_definition* posd = new Output_section_definition(name,
3442 namelen,
3443 header);
3444 this->sections_elements_->push_back(posd);
3445 gold_assert(this->output_section_ == NULL);
3446 this->output_section_ = posd;
3447 }
3448
3449 // Stop processing entries for an output section.
3450
3451 void
3452 Script_sections::finish_output_section(
3453 const Parser_output_section_trailer* trailer)
3454 {
3455 gold_assert(this->output_section_ != NULL);
3456 this->output_section_->finish(trailer);
3457 this->output_section_ = NULL;
3458 }
3459
3460 // Add a data item to the current output section.
3461
3462 void
3463 Script_sections::add_data(int size, bool is_signed, Expression* val)
3464 {
3465 gold_assert(this->output_section_ != NULL);
3466 this->output_section_->add_data(size, is_signed, val);
3467 }
3468
3469 // Add a fill value setting to the current output section.
3470
3471 void
3472 Script_sections::add_fill(Expression* val)
3473 {
3474 gold_assert(this->output_section_ != NULL);
3475 this->output_section_->add_fill(val);
3476 }
3477
3478 // Add an input section specification to the current output section.
3479
3480 void
3481 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3482 {
3483 gold_assert(this->output_section_ != NULL);
3484 this->output_section_->add_input_section(spec, keep);
3485 }
3486
3487 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3488 // subsequent output sections may be relro.
3489
3490 void
3491 Script_sections::data_segment_align()
3492 {
3493 if (this->saw_data_segment_align_)
3494 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3495 gold_assert(!this->sections_elements_->empty());
3496 Sections_elements::iterator p = this->sections_elements_->end();
3497 --p;
3498 this->data_segment_align_start_ = p;
3499 this->saw_data_segment_align_ = true;
3500 }
3501
3502 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3503 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3504
3505 void
3506 Script_sections::data_segment_relro_end()
3507 {
3508 if (this->saw_relro_end_)
3509 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3510 "in a linker script"));
3511 this->saw_relro_end_ = true;
3512
3513 if (!this->saw_data_segment_align_)
3514 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3515 else
3516 {
3517 Sections_elements::iterator p = this->data_segment_align_start_;
3518 for (++p; p != this->sections_elements_->end(); ++p)
3519 (*p)->set_is_relro();
3520 }
3521 }
3522
3523 // Create any required sections.
3524
3525 void
3526 Script_sections::create_sections(Layout* layout)
3527 {
3528 if (!this->saw_sections_clause_)
3529 return;
3530 for (Sections_elements::iterator p = this->sections_elements_->begin();
3531 p != this->sections_elements_->end();
3532 ++p)
3533 (*p)->create_sections(layout);
3534 }
3535
3536 // Add any symbols we are defining to the symbol table.
3537
3538 void
3539 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3540 {
3541 if (!this->saw_sections_clause_)
3542 return;
3543 for (Sections_elements::iterator p = this->sections_elements_->begin();
3544 p != this->sections_elements_->end();
3545 ++p)
3546 (*p)->add_symbols_to_table(symtab);
3547 }
3548
3549 // Finalize symbols and check assertions.
3550
3551 void
3552 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3553 {
3554 if (!this->saw_sections_clause_)
3555 return;
3556 uint64_t dot_value = 0;
3557 for (Sections_elements::iterator p = this->sections_elements_->begin();
3558 p != this->sections_elements_->end();
3559 ++p)
3560 (*p)->finalize_symbols(symtab, layout, &dot_value);
3561 }
3562
3563 // Return the name of the output section to use for an input file name
3564 // and section name.
3565
3566 const char*
3567 Script_sections::output_section_name(
3568 const char* file_name,
3569 const char* section_name,
3570 Output_section*** output_section_slot,
3571 Script_sections::Section_type* psection_type,
3572 bool* keep,
3573 bool is_input_section)
3574 {
3575 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3576 p != this->sections_elements_->end();
3577 ++p)
3578 {
3579 const char* ret = (*p)->output_section_name(file_name, section_name,
3580 output_section_slot,
3581 psection_type, keep,
3582 is_input_section);
3583
3584 if (ret != NULL)
3585 {
3586 // The special name /DISCARD/ means that the input section
3587 // should be discarded.
3588 if (strcmp(ret, "/DISCARD/") == 0)
3589 {
3590 *output_section_slot = NULL;
3591 *psection_type = Script_sections::ST_NONE;
3592 return NULL;
3593 }
3594 return ret;
3595 }
3596 }
3597
3598 // We have an orphan section.
3599 *output_section_slot = NULL;
3600 *psection_type = Script_sections::ST_NONE;
3601 *keep = false;
3602
3603 General_options::Orphan_handling orphan_handling =
3604 parameters->options().orphan_handling_enum();
3605 if (orphan_handling == General_options::ORPHAN_DISCARD)
3606 return NULL;
3607 if (orphan_handling == General_options::ORPHAN_ERROR)
3608 {
3609 if (file_name == NULL)
3610 gold_error(_("unplaced orphan section '%s'"), section_name);
3611 else
3612 gold_error(_("unplaced orphan section '%s' from '%s'"),
3613 section_name, file_name);
3614 return NULL;
3615 }
3616 if (orphan_handling == General_options::ORPHAN_WARN)
3617 {
3618 if (file_name == NULL)
3619 gold_warning(_("orphan section '%s' is being placed in section '%s'"),
3620 section_name, section_name);
3621 else
3622 gold_warning(_("orphan section '%s' from '%s' is being placed "
3623 "in section '%s'"),
3624 section_name, file_name, section_name);
3625 }
3626
3627 // If we couldn't find a mapping for the name, the output section
3628 // gets the name of the input section.
3629 return section_name;
3630 }
3631
3632 // Place a marker for an orphan output section into the SECTIONS
3633 // clause.
3634
3635 void
3636 Script_sections::place_orphan(Output_section* os)
3637 {
3638 Orphan_section_placement* osp = this->orphan_section_placement_;
3639 if (osp == NULL)
3640 {
3641 // Initialize the Orphan_section_placement structure.
3642 osp = new Orphan_section_placement();
3643 for (Sections_elements::iterator p = this->sections_elements_->begin();
3644 p != this->sections_elements_->end();
3645 ++p)
3646 (*p)->orphan_section_init(osp, p);
3647 gold_assert(!this->sections_elements_->empty());
3648 Sections_elements::iterator last = this->sections_elements_->end();
3649 --last;
3650 osp->last_init(last);
3651 this->orphan_section_placement_ = osp;
3652 }
3653
3654 Orphan_output_section* orphan = new Orphan_output_section(os);
3655
3656 // Look for where to put ORPHAN.
3657 Sections_elements::iterator* where;
3658 if (osp->find_place(os, &where))
3659 {
3660 if ((**where)->is_relro())
3661 os->set_is_relro();
3662 else
3663 os->clear_is_relro();
3664
3665 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3666 // so that the next one goes after this one.
3667 Sections_elements::iterator p = *where;
3668 gold_assert(p != this->sections_elements_->end());
3669 ++p;
3670 *where = this->sections_elements_->insert(p, orphan);
3671 }
3672 else
3673 {
3674 os->clear_is_relro();
3675 // We don't have a place to put this orphan section. Put it,
3676 // and all other sections like it, at the end, but before the
3677 // sections which always come at the end.
3678 Sections_elements::iterator last = osp->last_place();
3679 *where = this->sections_elements_->insert(last, orphan);
3680 }
3681
3682 if ((os->flags() & elfcpp::SHF_ALLOC) != 0)
3683 osp->update_last_alloc(*where);
3684 }
3685
3686 // Set the addresses of all the output sections. Walk through all the
3687 // elements, tracking the dot symbol. Apply assignments which set
3688 // absolute symbol values, in case they are used when setting dot.
3689 // Fill in data statement values. As we find output sections, set the
3690 // address, set the address of all associated input sections, and
3691 // update dot. Return the segment which should hold the file header
3692 // and segment headers, if any.
3693
3694 Output_segment*
3695 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3696 {
3697 gold_assert(this->saw_sections_clause_);
3698
3699 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3700 // for our representation.
3701 for (Sections_elements::iterator p = this->sections_elements_->begin();
3702 p != this->sections_elements_->end();
3703 ++p)
3704 {
3705 Output_section_definition* posd;
3706 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3707 if (failed_constraint != CONSTRAINT_NONE)
3708 {
3709 Sections_elements::iterator q;
3710 for (q = this->sections_elements_->begin();
3711 q != this->sections_elements_->end();
3712 ++q)
3713 {
3714 if (q != p)
3715 {
3716 if ((*q)->alternate_constraint(posd, failed_constraint))
3717 break;
3718 }
3719 }
3720
3721 if (q == this->sections_elements_->end())
3722 gold_error(_("no matching section constraint"));
3723 }
3724 }
3725
3726 // Force the alignment of the first TLS section to be the maximum
3727 // alignment of all TLS sections.
3728 Output_section* first_tls = NULL;
3729 uint64_t tls_align = 0;
3730 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3731 p != this->sections_elements_->end();
3732 ++p)
3733 {
3734 Output_section* os = (*p)->get_output_section();
3735 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3736 {
3737 if (first_tls == NULL)
3738 first_tls = os;
3739 if (os->addralign() > tls_align)
3740 tls_align = os->addralign();
3741 }
3742 }
3743 if (first_tls != NULL)
3744 first_tls->set_addralign(tls_align);
3745
3746 // For a relocatable link, we implicitly set dot to zero.
3747 uint64_t dot_value = 0;
3748 uint64_t dot_alignment = 0;
3749 uint64_t load_address = 0;
3750
3751 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3752 // to set section addresses. If the script has any SEGMENT_START
3753 // expression, we do not set the section addresses.
3754 bool use_tsection_options =
3755 (!this->saw_segment_start_expression_
3756 && (parameters->options().user_set_Ttext()
3757 || parameters->options().user_set_Tdata()
3758 || parameters->options().user_set_Tbss()));
3759
3760 for (Sections_elements::iterator p = this->sections_elements_->begin();
3761 p != this->sections_elements_->end();
3762 ++p)
3763 {
3764 Output_section* os = (*p)->get_output_section();
3765
3766 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3767 // the special sections by names and doing dot assignments.
3768 if (use_tsection_options
3769 && os != NULL
3770 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3771 {
3772 uint64_t new_dot_value = dot_value;
3773
3774 if (parameters->options().user_set_Ttext()
3775 && strcmp(os->name(), ".text") == 0)
3776 new_dot_value = parameters->options().Ttext();
3777 else if (parameters->options().user_set_Tdata()
3778 && strcmp(os->name(), ".data") == 0)
3779 new_dot_value = parameters->options().Tdata();
3780 else if (parameters->options().user_set_Tbss()
3781 && strcmp(os->name(), ".bss") == 0)
3782 new_dot_value = parameters->options().Tbss();
3783
3784 // Update dot and load address if necessary.
3785 if (new_dot_value < dot_value)
3786 gold_error(_("dot may not move backward"));
3787 else if (new_dot_value != dot_value)
3788 {
3789 dot_value = new_dot_value;
3790 load_address = new_dot_value;
3791 }
3792 }
3793
3794 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3795 &load_address);
3796 }
3797
3798 if (this->phdrs_elements_ != NULL)
3799 {
3800 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3801 p != this->phdrs_elements_->end();
3802 ++p)
3803 (*p)->eval_load_address(symtab, layout);
3804 }
3805
3806 return this->create_segments(layout, dot_alignment);
3807 }
3808
3809 // Sort the sections in order to put them into segments.
3810
3811 class Sort_output_sections
3812 {
3813 public:
3814 Sort_output_sections(const Script_sections::Sections_elements* elements)
3815 : elements_(elements)
3816 { }
3817
3818 bool
3819 operator()(const Output_section* os1, const Output_section* os2) const;
3820
3821 private:
3822 int
3823 script_compare(const Output_section* os1, const Output_section* os2) const;
3824
3825 private:
3826 const Script_sections::Sections_elements* elements_;
3827 };
3828
3829 bool
3830 Sort_output_sections::operator()(const Output_section* os1,
3831 const Output_section* os2) const
3832 {
3833 // Sort first by the load address.
3834 uint64_t lma1 = (os1->has_load_address()
3835 ? os1->load_address()
3836 : os1->address());
3837 uint64_t lma2 = (os2->has_load_address()
3838 ? os2->load_address()
3839 : os2->address());
3840 if (lma1 != lma2)
3841 return lma1 < lma2;
3842
3843 // Then sort by the virtual address.
3844 if (os1->address() != os2->address())
3845 return os1->address() < os2->address();
3846
3847 // If the linker script says which of these sections is first, go
3848 // with what it says.
3849 int i = this->script_compare(os1, os2);
3850 if (i != 0)
3851 return i < 0;
3852
3853 // Sort PROGBITS before NOBITS.
3854 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3855 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3856 if (nobits1 != nobits2)
3857 return nobits2;
3858
3859 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3860 // beginning.
3861 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3862 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3863 if (tls1 != tls2)
3864 return nobits1 ? tls1 : tls2;
3865
3866 // Sort non-NOLOAD before NOLOAD.
3867 if (os1->is_noload() && !os2->is_noload())
3868 return true;
3869 if (!os1->is_noload() && os2->is_noload())
3870 return true;
3871
3872 // The sections seem practically identical. Sort by name to get a
3873 // stable sort.
3874 return os1->name() < os2->name();
3875 }
3876
3877 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3878 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3879 // empty sections in the order in which they appear in a linker
3880 // script.
3881
3882 int
3883 Sort_output_sections::script_compare(const Output_section* os1,
3884 const Output_section* os2) const
3885 {
3886 if (this->elements_ == NULL)
3887 return 0;
3888
3889 bool found_os1 = false;
3890 bool found_os2 = false;
3891 for (Script_sections::Sections_elements::const_iterator
3892 p = this->elements_->begin();
3893 p != this->elements_->end();
3894 ++p)
3895 {
3896 if (os2 == (*p)->get_output_section())
3897 {
3898 if (found_os1)
3899 return -1;
3900 found_os2 = true;
3901 }
3902 else if (os1 == (*p)->get_output_section())
3903 {
3904 if (found_os2)
3905 return 1;
3906 found_os1 = true;
3907 }
3908 }
3909
3910 return 0;
3911 }
3912
3913 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3914 // We treat a section with the SHF_TLS flag set as taking up space
3915 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3916 // space for them in the file.
3917
3918 bool
3919 Script_sections::is_bss_section(const Output_section* os)
3920 {
3921 return (os->type() == elfcpp::SHT_NOBITS
3922 && (os->flags() & elfcpp::SHF_TLS) == 0);
3923 }
3924
3925 // Return the size taken by the file header and the program headers.
3926
3927 size_t
3928 Script_sections::total_header_size(Layout* layout) const
3929 {
3930 size_t segment_count = layout->segment_count();
3931 size_t file_header_size;
3932 size_t segment_headers_size;
3933 if (parameters->target().get_size() == 32)
3934 {
3935 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3936 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3937 }
3938 else if (parameters->target().get_size() == 64)
3939 {
3940 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3941 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3942 }
3943 else
3944 gold_unreachable();
3945
3946 return file_header_size + segment_headers_size;
3947 }
3948
3949 // Return the amount we have to subtract from the LMA to accommodate
3950 // headers of the given size. The complication is that the file
3951 // header have to be at the start of a page, as otherwise it will not
3952 // be at the start of the file.
3953
3954 uint64_t
3955 Script_sections::header_size_adjustment(uint64_t lma,
3956 size_t sizeof_headers) const
3957 {
3958 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3959 uint64_t hdr_lma = lma - sizeof_headers;
3960 hdr_lma &= ~(abi_pagesize - 1);
3961 return lma - hdr_lma;
3962 }
3963
3964 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3965 // the segment which should hold the file header and segment headers,
3966 // if any.
3967
3968 Output_segment*
3969 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3970 {
3971 gold_assert(this->saw_sections_clause_);
3972
3973 if (parameters->options().relocatable())
3974 return NULL;
3975
3976 if (this->saw_phdrs_clause())
3977 return create_segments_from_phdrs_clause(layout, dot_alignment);
3978
3979 Layout::Section_list sections;
3980 layout->get_allocated_sections(&sections);
3981
3982 // Sort the sections by address.
3983 std::stable_sort(sections.begin(), sections.end(),
3984 Sort_output_sections(this->sections_elements_));
3985
3986 this->create_note_and_tls_segments(layout, &sections);
3987
3988 // Walk through the sections adding them to PT_LOAD segments.
3989 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3990 Output_segment* first_seg = NULL;
3991 Output_segment* current_seg = NULL;
3992 bool is_current_seg_readonly = true;
3993 uint64_t last_vma = 0;
3994 uint64_t last_lma = 0;
3995 uint64_t last_size = 0;
3996 bool in_bss = false;
3997 for (Layout::Section_list::iterator p = sections.begin();
3998 p != sections.end();
3999 ++p)
4000 {
4001 const uint64_t vma = (*p)->address();
4002 const uint64_t lma = ((*p)->has_load_address()
4003 ? (*p)->load_address()
4004 : vma);
4005 const uint64_t size = (*p)->current_data_size();
4006
4007 bool need_new_segment;
4008 if (current_seg == NULL)
4009 need_new_segment = true;
4010 else if (lma - vma != last_lma - last_vma)
4011 {
4012 // This section has a different LMA relationship than the
4013 // last one; we need a new segment.
4014 need_new_segment = true;
4015 }
4016 else if (align_address(last_lma + last_size, abi_pagesize)
4017 < align_address(lma, abi_pagesize))
4018 {
4019 // Putting this section in the segment would require
4020 // skipping a page.
4021 need_new_segment = true;
4022 }
4023 else if (in_bss && !is_bss_section(*p))
4024 {
4025 // A non-BSS section can not follow a BSS section in the
4026 // same segment.
4027 need_new_segment = true;
4028 }
4029 else if (is_current_seg_readonly
4030 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
4031 && !parameters->options().omagic())
4032 {
4033 // Don't put a writable section in the same segment as a
4034 // non-writable section.
4035 need_new_segment = true;
4036 }
4037 else
4038 {
4039 // Otherwise, reuse the existing segment.
4040 need_new_segment = false;
4041 }
4042
4043 elfcpp::Elf_Word seg_flags =
4044 Layout::section_flags_to_segment((*p)->flags());
4045
4046 if (need_new_segment)
4047 {
4048 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4049 seg_flags);
4050 current_seg->set_addresses(vma, lma);
4051 current_seg->set_minimum_p_align(dot_alignment);
4052 if (first_seg == NULL)
4053 first_seg = current_seg;
4054 is_current_seg_readonly = true;
4055 in_bss = false;
4056 }
4057
4058 current_seg->add_output_section_to_load(layout, *p, seg_flags);
4059
4060 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
4061 is_current_seg_readonly = false;
4062
4063 if (is_bss_section(*p) && size > 0)
4064 in_bss = true;
4065
4066 last_vma = vma;
4067 last_lma = lma;
4068 last_size = size;
4069 }
4070
4071 // An ELF program should work even if the program headers are not in
4072 // a PT_LOAD segment. However, it appears that the Linux kernel
4073 // does not set the AT_PHDR auxiliary entry in that case. It sets
4074 // the load address to p_vaddr - p_offset of the first PT_LOAD
4075 // segment. It then sets AT_PHDR to the load address plus the
4076 // offset to the program headers, e_phoff in the file header. This
4077 // fails when the program headers appear in the file before the
4078 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
4079 // segment to hold the file header and the program headers. This is
4080 // effectively what the GNU linker does, and it is slightly more
4081 // efficient in any case. We try to use the first PT_LOAD segment
4082 // if we can, otherwise we make a new one.
4083
4084 if (first_seg == NULL)
4085 return NULL;
4086
4087 // -n or -N mean that the program is not demand paged and there is
4088 // no need to put the program headers in a PT_LOAD segment.
4089 if (parameters->options().nmagic() || parameters->options().omagic())
4090 return NULL;
4091
4092 size_t sizeof_headers = this->total_header_size(layout);
4093
4094 uint64_t vma = first_seg->vaddr();
4095 uint64_t lma = first_seg->paddr();
4096
4097 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
4098
4099 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
4100 {
4101 first_seg->set_addresses(vma - subtract, lma - subtract);
4102 return first_seg;
4103 }
4104
4105 // If there is no room to squeeze in the headers, then punt. The
4106 // resulting executable probably won't run on GNU/Linux, but we
4107 // trust that the user knows what they are doing.
4108 if (lma < subtract || vma < subtract)
4109 return NULL;
4110
4111 // If memory regions have been specified and the address range
4112 // we are about to use is not contained within any region then
4113 // issue a warning message about the segment we are going to
4114 // create. It will be outside of any region and so possibly
4115 // using non-existent or protected memory. We test LMA rather
4116 // than VMA since we assume that the headers will never be
4117 // relocated.
4118 if (this->memory_regions_ != NULL
4119 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
4120 gold_warning(_("creating a segment to contain the file and program"
4121 " headers outside of any MEMORY region"));
4122
4123 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4124 elfcpp::PF_R);
4125 load_seg->set_addresses(vma - subtract, lma - subtract);
4126
4127 return load_seg;
4128 }
4129
4130 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
4131 // segment if there are any SHT_TLS sections.
4132
4133 void
4134 Script_sections::create_note_and_tls_segments(
4135 Layout* layout,
4136 const Layout::Section_list* sections)
4137 {
4138 gold_assert(!this->saw_phdrs_clause());
4139
4140 bool saw_tls = false;
4141 for (Layout::Section_list::const_iterator p = sections->begin();
4142 p != sections->end();
4143 ++p)
4144 {
4145 if ((*p)->type() == elfcpp::SHT_NOTE)
4146 {
4147 elfcpp::Elf_Word seg_flags =
4148 Layout::section_flags_to_segment((*p)->flags());
4149 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4150 seg_flags);
4151 oseg->add_output_section_to_nonload(*p, seg_flags);
4152
4153 // Incorporate any subsequent SHT_NOTE sections, in the
4154 // hopes that the script is sensible.
4155 Layout::Section_list::const_iterator pnext = p + 1;
4156 while (pnext != sections->end()
4157 && (*pnext)->type() == elfcpp::SHT_NOTE)
4158 {
4159 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4160 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4161 p = pnext;
4162 ++pnext;
4163 }
4164 }
4165
4166 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4167 {
4168 if (saw_tls)
4169 gold_error(_("TLS sections are not adjacent"));
4170
4171 elfcpp::Elf_Word seg_flags =
4172 Layout::section_flags_to_segment((*p)->flags());
4173 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4174 seg_flags);
4175 oseg->add_output_section_to_nonload(*p, seg_flags);
4176
4177 Layout::Section_list::const_iterator pnext = p + 1;
4178 while (pnext != sections->end()
4179 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4180 {
4181 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4182 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4183 p = pnext;
4184 ++pnext;
4185 }
4186
4187 saw_tls = true;
4188 }
4189
4190 // If we see a section named .interp then put the .interp section
4191 // in a PT_INTERP segment.
4192 // This is for GNU ld compatibility.
4193 if (strcmp((*p)->name(), ".interp") == 0)
4194 {
4195 elfcpp::Elf_Word seg_flags =
4196 Layout::section_flags_to_segment((*p)->flags());
4197 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4198 seg_flags);
4199 oseg->add_output_section_to_nonload(*p, seg_flags);
4200 }
4201 }
4202
4203 this->segments_created_ = true;
4204 }
4205
4206 // Add a program header. The PHDRS clause is syntactically distinct
4207 // from the SECTIONS clause, but we implement it with the SECTIONS
4208 // support because PHDRS is useless if there is no SECTIONS clause.
4209
4210 void
4211 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4212 bool includes_filehdr, bool includes_phdrs,
4213 bool is_flags_valid, unsigned int flags,
4214 Expression* load_address)
4215 {
4216 if (this->phdrs_elements_ == NULL)
4217 this->phdrs_elements_ = new Phdrs_elements();
4218 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4219 includes_filehdr,
4220 includes_phdrs,
4221 is_flags_valid, flags,
4222 load_address));
4223 }
4224
4225 // Return the number of segments we expect to create based on the
4226 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4227
4228 size_t
4229 Script_sections::expected_segment_count(const Layout* layout) const
4230 {
4231 // If we've already created the segments, we won't be adding any more.
4232 if (this->segments_created_)
4233 return 0;
4234
4235 if (this->saw_phdrs_clause())
4236 return this->phdrs_elements_->size();
4237
4238 Layout::Section_list sections;
4239 layout->get_allocated_sections(&sections);
4240
4241 // We assume that we will need two PT_LOAD segments.
4242 size_t ret = 2;
4243
4244 bool saw_note = false;
4245 bool saw_tls = false;
4246 bool saw_interp = false;
4247 for (Layout::Section_list::const_iterator p = sections.begin();
4248 p != sections.end();
4249 ++p)
4250 {
4251 if ((*p)->type() == elfcpp::SHT_NOTE)
4252 {
4253 // Assume that all note sections will fit into a single
4254 // PT_NOTE segment.
4255 if (!saw_note)
4256 {
4257 ++ret;
4258 saw_note = true;
4259 }
4260 }
4261 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4262 {
4263 // There can only be one PT_TLS segment.
4264 if (!saw_tls)
4265 {
4266 ++ret;
4267 saw_tls = true;
4268 }
4269 }
4270 else if (strcmp((*p)->name(), ".interp") == 0)
4271 {
4272 // There can only be one PT_INTERP segment.
4273 if (!saw_interp)
4274 {
4275 ++ret;
4276 saw_interp = true;
4277 }
4278 }
4279 }
4280
4281 return ret;
4282 }
4283
4284 // Create the segments from a PHDRS clause. Return the segment which
4285 // should hold the file header and program headers, if any.
4286
4287 Output_segment*
4288 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4289 uint64_t dot_alignment)
4290 {
4291 this->attach_sections_using_phdrs_clause(layout);
4292 return this->set_phdrs_clause_addresses(layout, dot_alignment);
4293 }
4294
4295 // Create the segments from the PHDRS clause, and put the output
4296 // sections in them.
4297
4298 void
4299 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4300 {
4301 typedef std::map<std::string, Output_segment*> Name_to_segment;
4302 Name_to_segment name_to_segment;
4303 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4304 p != this->phdrs_elements_->end();
4305 ++p)
4306 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4307 this->segments_created_ = true;
4308
4309 // Walk through the output sections and attach them to segments.
4310 // Output sections in the script which do not list segments are
4311 // attached to the same set of segments as the immediately preceding
4312 // output section.
4313
4314 String_list* phdr_names = NULL;
4315 bool load_segments_only = false;
4316 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4317 p != this->sections_elements_->end();
4318 ++p)
4319 {
4320 bool is_orphan;
4321 String_list* old_phdr_names = phdr_names;
4322 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4323 if (os == NULL)
4324 continue;
4325
4326 elfcpp::Elf_Word seg_flags =
4327 Layout::section_flags_to_segment(os->flags());
4328
4329 if (phdr_names == NULL)
4330 {
4331 // Don't worry about empty orphan sections.
4332 if (is_orphan && os->current_data_size() > 0)
4333 gold_error(_("allocated section %s not in any segment"),
4334 os->name());
4335
4336 // To avoid later crashes drop this section into the first
4337 // PT_LOAD segment.
4338 for (Phdrs_elements::const_iterator ppe =
4339 this->phdrs_elements_->begin();
4340 ppe != this->phdrs_elements_->end();
4341 ++ppe)
4342 {
4343 Output_segment* oseg = (*ppe)->segment();
4344 if (oseg->type() == elfcpp::PT_LOAD)
4345 {
4346 oseg->add_output_section_to_load(layout, os, seg_flags);
4347 break;
4348 }
4349 }
4350
4351 continue;
4352 }
4353
4354 // We see a list of segments names. Disable PT_LOAD segment only
4355 // filtering.
4356 if (old_phdr_names != phdr_names)
4357 load_segments_only = false;
4358
4359 // If this is an orphan section--one that was not explicitly
4360 // mentioned in the linker script--then it should not inherit
4361 // any segment type other than PT_LOAD. Otherwise, e.g., the
4362 // PT_INTERP segment will pick up following orphan sections,
4363 // which does not make sense. If this is not an orphan section,
4364 // we trust the linker script.
4365 if (is_orphan)
4366 {
4367 // Enable PT_LOAD segments only filtering until we see another
4368 // list of segment names.
4369 load_segments_only = true;
4370 }
4371
4372 bool in_load_segment = false;
4373 for (String_list::const_iterator q = phdr_names->begin();
4374 q != phdr_names->end();
4375 ++q)
4376 {
4377 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4378 if (r == name_to_segment.end())
4379 gold_error(_("no segment %s"), q->c_str());
4380 else
4381 {
4382 if (load_segments_only
4383 && r->second->type() != elfcpp::PT_LOAD)
4384 continue;
4385
4386 if (r->second->type() != elfcpp::PT_LOAD)
4387 r->second->add_output_section_to_nonload(os, seg_flags);
4388 else
4389 {
4390 r->second->add_output_section_to_load(layout, os, seg_flags);
4391 if (in_load_segment)
4392 gold_error(_("section in two PT_LOAD segments"));
4393 in_load_segment = true;
4394 }
4395 }
4396 }
4397
4398 if (!in_load_segment)
4399 gold_error(_("allocated section not in any PT_LOAD segment"));
4400 }
4401 }
4402
4403 // Set the addresses for segments created from a PHDRS clause. Return
4404 // the segment which should hold the file header and program headers,
4405 // if any.
4406
4407 Output_segment*
4408 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4409 uint64_t dot_alignment)
4410 {
4411 Output_segment* load_seg = NULL;
4412 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4413 p != this->phdrs_elements_->end();
4414 ++p)
4415 {
4416 // Note that we have to set the flags after adding the output
4417 // sections to the segment, as adding an output segment can
4418 // change the flags.
4419 (*p)->set_flags_if_valid();
4420
4421 Output_segment* oseg = (*p)->segment();
4422
4423 if (oseg->type() != elfcpp::PT_LOAD)
4424 {
4425 // The addresses of non-PT_LOAD segments are set from the
4426 // PT_LOAD segments.
4427 if ((*p)->has_load_address())
4428 gold_error(_("may only specify load address for PT_LOAD segment"));
4429 continue;
4430 }
4431
4432 oseg->set_minimum_p_align(dot_alignment);
4433
4434 // The output sections should have addresses from the SECTIONS
4435 // clause. The addresses don't have to be in order, so find the
4436 // one with the lowest load address. Use that to set the
4437 // address of the segment.
4438
4439 Output_section* osec = oseg->section_with_lowest_load_address();
4440 if (osec == NULL)
4441 {
4442 oseg->set_addresses(0, 0);
4443 continue;
4444 }
4445
4446 uint64_t vma = osec->address();
4447 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4448
4449 // Override the load address of the section with the load
4450 // address specified for the segment.
4451 if ((*p)->has_load_address())
4452 {
4453 if (osec->has_load_address())
4454 gold_warning(_("PHDRS load address overrides "
4455 "section %s load address"),
4456 osec->name());
4457
4458 lma = (*p)->load_address();
4459 }
4460
4461 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4462 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4463 {
4464 // We could support this if we wanted to.
4465 gold_error(_("using only one of FILEHDR and PHDRS is "
4466 "not currently supported"));
4467 }
4468 if (headers)
4469 {
4470 size_t sizeof_headers = this->total_header_size(layout);
4471 uint64_t subtract = this->header_size_adjustment(lma,
4472 sizeof_headers);
4473 if (lma >= subtract && vma >= subtract)
4474 {
4475 lma -= subtract;
4476 vma -= subtract;
4477 }
4478 else
4479 {
4480 gold_error(_("sections loaded on first page without room "
4481 "for file and program headers "
4482 "are not supported"));
4483 }
4484
4485 if (load_seg != NULL)
4486 gold_error(_("using FILEHDR and PHDRS on more than one "
4487 "PT_LOAD segment is not currently supported"));
4488 load_seg = oseg;
4489 }
4490
4491 oseg->set_addresses(vma, lma);
4492 }
4493
4494 return load_seg;
4495 }
4496
4497 // Add the file header and segment headers to non-load segments
4498 // specified in the PHDRS clause.
4499
4500 void
4501 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4502 Output_data* segment_headers)
4503 {
4504 gold_assert(this->saw_phdrs_clause());
4505 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4506 p != this->phdrs_elements_->end();
4507 ++p)
4508 {
4509 if ((*p)->type() != elfcpp::PT_LOAD)
4510 {
4511 if ((*p)->includes_phdrs())
4512 (*p)->segment()->add_initial_output_data(segment_headers);
4513 if ((*p)->includes_filehdr())
4514 (*p)->segment()->add_initial_output_data(file_header);
4515 }
4516 }
4517 }
4518
4519 // Look for an output section by name and return the address, the load
4520 // address, the alignment, and the size. This is used when an
4521 // expression refers to an output section which was not actually
4522 // created. This returns true if the section was found, false
4523 // otherwise.
4524
4525 bool
4526 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4527 uint64_t* load_address,
4528 uint64_t* addralign,
4529 uint64_t* size) const
4530 {
4531 if (!this->saw_sections_clause_)
4532 return false;
4533 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4534 p != this->sections_elements_->end();
4535 ++p)
4536 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4537 size))
4538 return true;
4539 return false;
4540 }
4541
4542 // Release all Output_segments. This remove all pointers to all
4543 // Output_segments.
4544
4545 void
4546 Script_sections::release_segments()
4547 {
4548 if (this->saw_phdrs_clause())
4549 {
4550 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4551 p != this->phdrs_elements_->end();
4552 ++p)
4553 (*p)->release_segment();
4554 }
4555 this->segments_created_ = false;
4556 }
4557
4558 // Print the SECTIONS clause to F for debugging.
4559
4560 void
4561 Script_sections::print(FILE* f) const
4562 {
4563 if (this->phdrs_elements_ != NULL)
4564 {
4565 fprintf(f, "PHDRS {\n");
4566 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4567 p != this->phdrs_elements_->end();
4568 ++p)
4569 (*p)->print(f);
4570 fprintf(f, "}\n");
4571 }
4572
4573 if (this->memory_regions_ != NULL)
4574 {
4575 fprintf(f, "MEMORY {\n");
4576 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4577 m != this->memory_regions_->end();
4578 ++m)
4579 (*m)->print(f);
4580 fprintf(f, "}\n");
4581 }
4582
4583 if (!this->saw_sections_clause_)
4584 return;
4585
4586 fprintf(f, "SECTIONS {\n");
4587
4588 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4589 p != this->sections_elements_->end();
4590 ++p)
4591 (*p)->print(f);
4592
4593 fprintf(f, "}\n");
4594 }
4595
4596 } // End namespace gold.
This page took 0.124888 seconds and 4 git commands to generate.