gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gold / symtab.h
1 // symtab.h -- the gold symbol table -*- C++ -*-
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // Symbol_table
24 // The symbol table.
25
26 #ifndef GOLD_SYMTAB_H
27 #define GOLD_SYMTAB_H
28
29 #include <string>
30 #include <utility>
31 #include <vector>
32
33 #include "elfcpp.h"
34 #include "parameters.h"
35 #include "stringpool.h"
36 #include "object.h"
37
38 namespace gold
39 {
40
41 class Mapfile;
42 class Object;
43 class Relobj;
44 template<int size, bool big_endian>
45 class Sized_relobj_file;
46 template<int size, bool big_endian>
47 class Sized_pluginobj;
48 class Dynobj;
49 template<int size, bool big_endian>
50 class Sized_dynobj;
51 template<int size, bool big_endian>
52 class Sized_incrobj;
53 class Versions;
54 class Version_script_info;
55 class Input_objects;
56 class Output_data;
57 class Output_section;
58 class Output_segment;
59 class Output_file;
60 class Output_symtab_xindex;
61 class Garbage_collection;
62 class Icf;
63
64 // The base class of an entry in the symbol table. The symbol table
65 // can have a lot of entries, so we don't want this class too big.
66 // Size dependent fields can be found in the template class
67 // Sized_symbol. Targets may support their own derived classes.
68
69 class Symbol
70 {
71 public:
72 // Because we want the class to be small, we don't use any virtual
73 // functions. But because symbols can be defined in different
74 // places, we need to classify them. This enum is the different
75 // sources of symbols we support.
76 enum Source
77 {
78 // Symbol defined in a relocatable or dynamic input file--this is
79 // the most common case.
80 FROM_OBJECT,
81 // Symbol defined in an Output_data, a special section created by
82 // the target.
83 IN_OUTPUT_DATA,
84 // Symbol defined in an Output_segment, with no associated
85 // section.
86 IN_OUTPUT_SEGMENT,
87 // Symbol value is constant.
88 IS_CONSTANT,
89 // Symbol is undefined.
90 IS_UNDEFINED
91 };
92
93 // When the source is IN_OUTPUT_SEGMENT, we need to describe what
94 // the offset means.
95 enum Segment_offset_base
96 {
97 // From the start of the segment.
98 SEGMENT_START,
99 // From the end of the segment.
100 SEGMENT_END,
101 // From the filesz of the segment--i.e., after the loaded bytes
102 // but before the bytes which are allocated but zeroed.
103 SEGMENT_BSS
104 };
105
106 // Return the symbol name.
107 const char*
108 name() const
109 { return this->name_; }
110
111 // Return the (ANSI) demangled version of the name, if
112 // parameters.demangle() is true. Otherwise, return the name. This
113 // is intended to be used only for logging errors, so it's not
114 // super-efficient.
115 std::string
116 demangled_name() const;
117
118 // Return the symbol version. This will return NULL for an
119 // unversioned symbol.
120 const char*
121 version() const
122 { return this->version_; }
123
124 void
125 clear_version()
126 { this->version_ = NULL; }
127
128 // Return whether this version is the default for this symbol name
129 // (eg, "foo@@V2" is a default version; "foo@V1" is not). Only
130 // meaningful for versioned symbols.
131 bool
132 is_default() const
133 {
134 gold_assert(this->version_ != NULL);
135 return this->is_def_;
136 }
137
138 // Set that this version is the default for this symbol name.
139 void
140 set_is_default()
141 { this->is_def_ = true; }
142
143 // Set that this version is not the default for this symbol name.
144 void
145 set_is_not_default()
146 { this->is_def_ = false; }
147
148 // Return the symbol's name as name@version (or name@@version).
149 std::string
150 versioned_name() const;
151
152 // Return the symbol source.
153 Source
154 source() const
155 { return this->source_; }
156
157 // Return the object with which this symbol is associated.
158 Object*
159 object() const
160 {
161 gold_assert(this->source_ == FROM_OBJECT);
162 return this->u1_.object;
163 }
164
165 // Return the index of the section in the input relocatable or
166 // dynamic object file.
167 unsigned int
168 shndx(bool* is_ordinary) const
169 {
170 gold_assert(this->source_ == FROM_OBJECT);
171 *is_ordinary = this->is_ordinary_shndx_;
172 return this->u2_.shndx;
173 }
174
175 // Return the output data section with which this symbol is
176 // associated, if the symbol was specially defined with respect to
177 // an output data section.
178 Output_data*
179 output_data() const
180 {
181 gold_assert(this->source_ == IN_OUTPUT_DATA);
182 return this->u1_.output_data;
183 }
184
185 // If this symbol was defined with respect to an output data
186 // section, return whether the value is an offset from end.
187 bool
188 offset_is_from_end() const
189 {
190 gold_assert(this->source_ == IN_OUTPUT_DATA);
191 return this->u2_.offset_is_from_end;
192 }
193
194 // Return the output segment with which this symbol is associated,
195 // if the symbol was specially defined with respect to an output
196 // segment.
197 Output_segment*
198 output_segment() const
199 {
200 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
201 return this->u1_.output_segment;
202 }
203
204 // If this symbol was defined with respect to an output segment,
205 // return the offset base.
206 Segment_offset_base
207 offset_base() const
208 {
209 gold_assert(this->source_ == IN_OUTPUT_SEGMENT);
210 return this->u2_.offset_base;
211 }
212
213 // Return the symbol binding.
214 elfcpp::STB
215 binding() const
216 { return this->binding_; }
217
218 // Return the symbol type.
219 elfcpp::STT
220 type() const
221 { return this->type_; }
222
223 // Set the symbol type.
224 void
225 set_type(elfcpp::STT type)
226 { this->type_ = type; }
227
228 // Return true for function symbol.
229 bool
230 is_func() const
231 {
232 return (this->type_ == elfcpp::STT_FUNC
233 || this->type_ == elfcpp::STT_GNU_IFUNC);
234 }
235
236 // Return the symbol visibility.
237 elfcpp::STV
238 visibility() const
239 { return this->visibility_; }
240
241 // Set the visibility.
242 void
243 set_visibility(elfcpp::STV visibility)
244 { this->visibility_ = visibility; }
245
246 // Override symbol visibility.
247 void
248 override_visibility(elfcpp::STV);
249
250 // Set whether the symbol was originally a weak undef or a regular undef
251 // when resolved by a dynamic def or by a special symbol.
252 inline void
253 set_undef_binding(elfcpp::STB bind)
254 {
255 if (!this->undef_binding_set_ || this->undef_binding_weak_)
256 {
257 this->undef_binding_weak_ = bind == elfcpp::STB_WEAK;
258 this->undef_binding_set_ = true;
259 }
260 }
261
262 // Return TRUE if a weak undef was resolved by a dynamic def or
263 // by a special symbol.
264 inline bool
265 is_undef_binding_weak() const
266 { return this->undef_binding_weak_; }
267
268 // Return the non-visibility part of the st_other field.
269 unsigned char
270 nonvis() const
271 { return this->nonvis_; }
272
273 // Set the non-visibility part of the st_other field.
274 void
275 set_nonvis(unsigned int nonvis)
276 { this->nonvis_ = nonvis; }
277
278 // Return whether this symbol is a forwarder. This will never be
279 // true of a symbol found in the hash table, but may be true of
280 // symbol pointers attached to object files.
281 bool
282 is_forwarder() const
283 { return this->is_forwarder_; }
284
285 // Mark this symbol as a forwarder.
286 void
287 set_forwarder()
288 { this->is_forwarder_ = true; }
289
290 // Return whether this symbol has an alias in the weak aliases table
291 // in Symbol_table.
292 bool
293 has_alias() const
294 { return this->has_alias_; }
295
296 // Mark this symbol as having an alias.
297 void
298 set_has_alias()
299 { this->has_alias_ = true; }
300
301 // Return whether this symbol needs an entry in the dynamic symbol
302 // table.
303 bool
304 needs_dynsym_entry() const
305 {
306 return (this->needs_dynsym_entry_
307 || (this->in_reg()
308 && this->in_dyn()
309 && this->is_externally_visible()));
310 }
311
312 // Mark this symbol as needing an entry in the dynamic symbol table.
313 void
314 set_needs_dynsym_entry()
315 { this->needs_dynsym_entry_ = true; }
316
317 // Return whether this symbol should be added to the dynamic symbol
318 // table.
319 bool
320 should_add_dynsym_entry(Symbol_table*) const;
321
322 // Return whether this symbol has been seen in a regular object.
323 bool
324 in_reg() const
325 { return this->in_reg_; }
326
327 // Mark this symbol as having been seen in a regular object.
328 void
329 set_in_reg()
330 { this->in_reg_ = true; }
331
332 // Forget this symbol was seen in a regular object.
333 void
334 clear_in_reg()
335 { this->in_reg_ = false; }
336
337 // Return whether this symbol has been seen in a dynamic object.
338 bool
339 in_dyn() const
340 { return this->in_dyn_; }
341
342 // Mark this symbol as having been seen in a dynamic object.
343 void
344 set_in_dyn()
345 { this->in_dyn_ = true; }
346
347 // Return whether this symbol is defined in a dynamic object.
348 bool
349 from_dyn() const
350 { return this->source_ == FROM_OBJECT && this->object()->is_dynamic(); }
351
352 // Return whether this symbol has been seen in a real ELF object.
353 // (IN_REG will return TRUE if the symbol has been seen in either
354 // a real ELF object or an object claimed by a plugin.)
355 bool
356 in_real_elf() const
357 { return this->in_real_elf_; }
358
359 // Mark this symbol as having been seen in a real ELF object.
360 void
361 set_in_real_elf()
362 { this->in_real_elf_ = true; }
363
364 // Return whether this symbol was defined in a section that was
365 // discarded from the link. This is used to control some error
366 // reporting.
367 bool
368 is_defined_in_discarded_section() const
369 { return this->is_defined_in_discarded_section_; }
370
371 // Mark this symbol as having been defined in a discarded section.
372 void
373 set_is_defined_in_discarded_section()
374 { this->is_defined_in_discarded_section_ = true; }
375
376 // Return the index of this symbol in the output file symbol table.
377 // A value of -1U means that this symbol is not going into the
378 // output file. This starts out as zero, and is set to a non-zero
379 // value by Symbol_table::finalize. It is an error to ask for the
380 // symbol table index before it has been set.
381 unsigned int
382 symtab_index() const
383 {
384 gold_assert(this->symtab_index_ != 0);
385 return this->symtab_index_;
386 }
387
388 // Set the index of the symbol in the output file symbol table.
389 void
390 set_symtab_index(unsigned int index)
391 {
392 gold_assert(index != 0);
393 this->symtab_index_ = index;
394 }
395
396 // Return whether this symbol already has an index in the output
397 // file symbol table.
398 bool
399 has_symtab_index() const
400 { return this->symtab_index_ != 0; }
401
402 // Return the index of this symbol in the dynamic symbol table. A
403 // value of -1U means that this symbol is not going into the dynamic
404 // symbol table. This starts out as zero, and is set to a non-zero
405 // during Layout::finalize. It is an error to ask for the dynamic
406 // symbol table index before it has been set.
407 unsigned int
408 dynsym_index() const
409 {
410 gold_assert(this->dynsym_index_ != 0);
411 return this->dynsym_index_;
412 }
413
414 // Set the index of the symbol in the dynamic symbol table.
415 void
416 set_dynsym_index(unsigned int index)
417 {
418 gold_assert(index != 0);
419 this->dynsym_index_ = index;
420 }
421
422 // Return whether this symbol already has an index in the dynamic
423 // symbol table.
424 bool
425 has_dynsym_index() const
426 { return this->dynsym_index_ != 0; }
427
428 // Return whether this symbol has an entry in the GOT section.
429 // For a TLS symbol, this GOT entry will hold its tp-relative offset.
430 bool
431 has_got_offset(unsigned int got_type) const
432 { return this->got_offsets_.get_offset(got_type) != -1U; }
433
434 // Return the offset into the GOT section of this symbol.
435 unsigned int
436 got_offset(unsigned int got_type) const
437 {
438 unsigned int got_offset = this->got_offsets_.get_offset(got_type);
439 gold_assert(got_offset != -1U);
440 return got_offset;
441 }
442
443 // Set the GOT offset of this symbol.
444 void
445 set_got_offset(unsigned int got_type, unsigned int got_offset)
446 { this->got_offsets_.set_offset(got_type, got_offset); }
447
448 // Return the GOT offset list.
449 const Got_offset_list*
450 got_offset_list() const
451 { return this->got_offsets_.get_list(); }
452
453 // Return whether this symbol has an entry in the PLT section.
454 bool
455 has_plt_offset() const
456 { return this->plt_offset_ != -1U; }
457
458 // Return the offset into the PLT section of this symbol.
459 unsigned int
460 plt_offset() const
461 {
462 gold_assert(this->has_plt_offset());
463 return this->plt_offset_;
464 }
465
466 // Set the PLT offset of this symbol.
467 void
468 set_plt_offset(unsigned int plt_offset)
469 {
470 gold_assert(plt_offset != -1U);
471 this->plt_offset_ = plt_offset;
472 }
473
474 // Return whether this dynamic symbol needs a special value in the
475 // dynamic symbol table.
476 bool
477 needs_dynsym_value() const
478 { return this->needs_dynsym_value_; }
479
480 // Set that this dynamic symbol needs a special value in the dynamic
481 // symbol table.
482 void
483 set_needs_dynsym_value()
484 {
485 gold_assert(this->object()->is_dynamic());
486 this->needs_dynsym_value_ = true;
487 }
488
489 // Return true if the final value of this symbol is known at link
490 // time.
491 bool
492 final_value_is_known() const;
493
494 // Return true if SHNDX represents a common symbol. This depends on
495 // the target.
496 static bool
497 is_common_shndx(unsigned int shndx);
498
499 // Return whether this is a defined symbol (not undefined or
500 // common).
501 bool
502 is_defined() const
503 {
504 bool is_ordinary;
505 if (this->source_ != FROM_OBJECT)
506 return this->source_ != IS_UNDEFINED;
507 unsigned int shndx = this->shndx(&is_ordinary);
508 return (is_ordinary
509 ? shndx != elfcpp::SHN_UNDEF
510 : !Symbol::is_common_shndx(shndx));
511 }
512
513 // Return true if this symbol is from a dynamic object.
514 bool
515 is_from_dynobj() const
516 {
517 return this->source_ == FROM_OBJECT && this->object()->is_dynamic();
518 }
519
520 // Return whether this is a placeholder symbol from a plugin object.
521 bool
522 is_placeholder() const
523 {
524 return this->source_ == FROM_OBJECT && this->object()->pluginobj() != NULL;
525 }
526
527 // Return whether this is an undefined symbol.
528 bool
529 is_undefined() const
530 {
531 bool is_ordinary;
532 return ((this->source_ == FROM_OBJECT
533 && this->shndx(&is_ordinary) == elfcpp::SHN_UNDEF
534 && is_ordinary)
535 || this->source_ == IS_UNDEFINED);
536 }
537
538 // Return whether this is a weak undefined symbol.
539 bool
540 is_weak_undefined() const
541 {
542 return (this->is_undefined()
543 && (this->binding() == elfcpp::STB_WEAK
544 || this->is_undef_binding_weak()
545 || parameters->options().weak_unresolved_symbols()));
546 }
547
548 // Return whether this is a strong undefined symbol.
549 bool
550 is_strong_undefined() const
551 {
552 return (this->is_undefined()
553 && this->binding() != elfcpp::STB_WEAK
554 && !this->is_undef_binding_weak()
555 && !parameters->options().weak_unresolved_symbols());
556 }
557
558 // Return whether this is an absolute symbol.
559 bool
560 is_absolute() const
561 {
562 bool is_ordinary;
563 return ((this->source_ == FROM_OBJECT
564 && this->shndx(&is_ordinary) == elfcpp::SHN_ABS
565 && !is_ordinary)
566 || this->source_ == IS_CONSTANT);
567 }
568
569 // Return whether this is a common symbol.
570 bool
571 is_common() const
572 {
573 if (this->source_ != FROM_OBJECT)
574 return false;
575 bool is_ordinary;
576 unsigned int shndx = this->shndx(&is_ordinary);
577 return !is_ordinary && Symbol::is_common_shndx(shndx);
578 }
579
580 // Return whether this symbol can be seen outside this object.
581 bool
582 is_externally_visible() const
583 {
584 return ((this->visibility_ == elfcpp::STV_DEFAULT
585 || this->visibility_ == elfcpp::STV_PROTECTED)
586 && !this->is_forced_local_);
587 }
588
589 // Return true if this symbol can be preempted by a definition in
590 // another link unit.
591 bool
592 is_preemptible() const
593 {
594 // It doesn't make sense to ask whether a symbol defined in
595 // another object is preemptible.
596 gold_assert(!this->is_from_dynobj());
597
598 // It doesn't make sense to ask whether an undefined symbol
599 // is preemptible.
600 gold_assert(!this->is_undefined());
601
602 // If a symbol does not have default visibility, it can not be
603 // seen outside this link unit and therefore is not preemptible.
604 if (this->visibility_ != elfcpp::STV_DEFAULT)
605 return false;
606
607 // If this symbol has been forced to be a local symbol by a
608 // version script, then it is not visible outside this link unit
609 // and is not preemptible.
610 if (this->is_forced_local_)
611 return false;
612
613 // If we are not producing a shared library, then nothing is
614 // preemptible.
615 if (!parameters->options().shared())
616 return false;
617
618 // If the symbol was named in a --dynamic-list script, it is preemptible.
619 if (parameters->options().in_dynamic_list(this->name()))
620 return true;
621
622 // If the user used -Bsymbolic, then nothing (else) is preemptible.
623 if (parameters->options().Bsymbolic())
624 return false;
625
626 // If the user used -Bsymbolic-functions, then functions are not
627 // preemptible. We explicitly check for not being STT_OBJECT,
628 // rather than for being STT_FUNC, because that is what the GNU
629 // linker does.
630 if (this->type() != elfcpp::STT_OBJECT
631 && parameters->options().Bsymbolic_functions())
632 return false;
633
634 // Otherwise the symbol is preemptible.
635 return true;
636 }
637
638 // Return true if this symbol is a function that needs a PLT entry.
639 bool
640 needs_plt_entry() const
641 {
642 // An undefined symbol from an executable does not need a PLT entry.
643 if (this->is_undefined() && !parameters->options().shared())
644 return false;
645
646 // An STT_GNU_IFUNC symbol always needs a PLT entry, even when
647 // doing a static link.
648 if (this->type() == elfcpp::STT_GNU_IFUNC)
649 return true;
650
651 // We only need a PLT entry for a function.
652 if (!this->is_func())
653 return false;
654
655 // If we're doing a static link or a -pie link, we don't create
656 // PLT entries.
657 if (parameters->doing_static_link()
658 || parameters->options().pie())
659 return false;
660
661 // We need a PLT entry if the function is defined in a dynamic
662 // object, or is undefined when building a shared object, or if it
663 // is subject to pre-emption.
664 return (this->is_from_dynobj()
665 || this->is_undefined()
666 || this->is_preemptible());
667 }
668
669 // When determining whether a reference to a symbol needs a dynamic
670 // relocation, we need to know several things about the reference.
671 // These flags may be or'ed together. 0 means that the symbol
672 // isn't referenced at all.
673 enum Reference_flags
674 {
675 // A reference to the symbol's absolute address. This includes
676 // references that cause an absolute address to be stored in the GOT.
677 ABSOLUTE_REF = 1,
678 // A reference that calculates the offset of the symbol from some
679 // anchor point, such as the PC or GOT.
680 RELATIVE_REF = 2,
681 // A TLS-related reference.
682 TLS_REF = 4,
683 // A reference that can always be treated as a function call.
684 FUNCTION_CALL = 8,
685 // When set, says that dynamic relocations are needed even if a
686 // symbol has a plt entry.
687 FUNC_DESC_ABI = 16,
688 };
689
690 // Given a direct absolute or pc-relative static relocation against
691 // the global symbol, this function returns whether a dynamic relocation
692 // is needed.
693
694 bool
695 needs_dynamic_reloc(int flags) const
696 {
697 // No dynamic relocations in a static link!
698 if (parameters->doing_static_link())
699 return false;
700
701 // A reference to an undefined symbol from an executable should be
702 // statically resolved to 0, and does not need a dynamic relocation.
703 // This matches gnu ld behavior.
704 if (this->is_undefined() && !parameters->options().shared())
705 return false;
706
707 // A reference to an absolute symbol does not need a dynamic relocation.
708 if (this->is_absolute())
709 return false;
710
711 // An absolute reference within a position-independent output file
712 // will need a dynamic relocation.
713 if ((flags & ABSOLUTE_REF)
714 && parameters->options().output_is_position_independent())
715 return true;
716
717 // A function call that can branch to a local PLT entry does not need
718 // a dynamic relocation.
719 if ((flags & FUNCTION_CALL) && this->has_plt_offset())
720 return false;
721
722 // A reference to any PLT entry in a non-position-independent executable
723 // does not need a dynamic relocation.
724 if (!(flags & FUNC_DESC_ABI)
725 && !parameters->options().output_is_position_independent()
726 && this->has_plt_offset())
727 return false;
728
729 // A reference to a symbol defined in a dynamic object or to a
730 // symbol that is preemptible will need a dynamic relocation.
731 if (this->is_from_dynobj()
732 || this->is_undefined()
733 || this->is_preemptible())
734 return true;
735
736 // For all other cases, return FALSE.
737 return false;
738 }
739
740 // Whether we should use the PLT offset associated with a symbol for
741 // a relocation. FLAGS is a set of Reference_flags.
742
743 bool
744 use_plt_offset(int flags) const
745 {
746 // If the symbol doesn't have a PLT offset, then naturally we
747 // don't want to use it.
748 if (!this->has_plt_offset())
749 return false;
750
751 // For a STT_GNU_IFUNC symbol we always have to use the PLT entry.
752 if (this->type() == elfcpp::STT_GNU_IFUNC)
753 return true;
754
755 // If we are going to generate a dynamic relocation, then we will
756 // wind up using that, so no need to use the PLT entry.
757 if (this->needs_dynamic_reloc(flags))
758 return false;
759
760 // If the symbol is from a dynamic object, we need to use the PLT
761 // entry.
762 if (this->is_from_dynobj())
763 return true;
764
765 // If we are generating a shared object, and this symbol is
766 // undefined or preemptible, we need to use the PLT entry.
767 if (parameters->options().shared()
768 && (this->is_undefined() || this->is_preemptible()))
769 return true;
770
771 // If this is a call to a weak undefined symbol, we need to use
772 // the PLT entry; the symbol may be defined by a library loaded
773 // at runtime.
774 if ((flags & FUNCTION_CALL) && this->is_weak_undefined())
775 return true;
776
777 // Otherwise we can use the regular definition.
778 return false;
779 }
780
781 // Given a direct absolute static relocation against
782 // the global symbol, where a dynamic relocation is needed, this
783 // function returns whether a relative dynamic relocation can be used.
784 // The caller must determine separately whether the static relocation
785 // is compatible with a relative relocation.
786
787 bool
788 can_use_relative_reloc(bool is_function_call) const
789 {
790 // A function call that can branch to a local PLT entry can
791 // use a RELATIVE relocation.
792 if (is_function_call && this->has_plt_offset())
793 return true;
794
795 // A reference to a symbol defined in a dynamic object or to a
796 // symbol that is preemptible can not use a RELATIVE relocation.
797 if (this->is_from_dynobj()
798 || this->is_undefined()
799 || this->is_preemptible())
800 return false;
801
802 // For all other cases, return TRUE.
803 return true;
804 }
805
806 // Return the output section where this symbol is defined. Return
807 // NULL if the symbol has an absolute value.
808 Output_section*
809 output_section() const;
810
811 // Set the symbol's output section. This is used for symbols
812 // defined in scripts. This should only be called after the symbol
813 // table has been finalized.
814 void
815 set_output_section(Output_section*);
816
817 // Set the symbol's output segment. This is used for pre-defined
818 // symbols whose segments aren't known until after layout is done
819 // (e.g., __ehdr_start).
820 void
821 set_output_segment(Output_segment*, Segment_offset_base);
822
823 // Set the symbol to undefined. This is used for pre-defined
824 // symbols whose segments aren't known until after layout is done
825 // (e.g., __ehdr_start).
826 void
827 set_undefined();
828
829 // Return whether there should be a warning for references to this
830 // symbol.
831 bool
832 has_warning() const
833 { return this->has_warning_; }
834
835 // Mark this symbol as having a warning.
836 void
837 set_has_warning()
838 { this->has_warning_ = true; }
839
840 // Return whether this symbol is defined by a COPY reloc from a
841 // dynamic object.
842 bool
843 is_copied_from_dynobj() const
844 { return this->is_copied_from_dynobj_; }
845
846 // Mark this symbol as defined by a COPY reloc.
847 void
848 set_is_copied_from_dynobj()
849 { this->is_copied_from_dynobj_ = true; }
850
851 // Return whether this symbol is forced to visibility STB_LOCAL
852 // by a "local:" entry in a version script.
853 bool
854 is_forced_local() const
855 { return this->is_forced_local_; }
856
857 // Mark this symbol as forced to STB_LOCAL visibility.
858 void
859 set_is_forced_local()
860 { this->is_forced_local_ = true; }
861
862 // Return true if this may need a COPY relocation.
863 // References from an executable object to non-function symbols
864 // defined in a dynamic object may need a COPY relocation.
865 bool
866 may_need_copy_reloc() const
867 {
868 return (parameters->options().copyreloc()
869 && this->is_from_dynobj()
870 && !this->is_func());
871 }
872
873 // Return true if this symbol was predefined by the linker.
874 bool
875 is_predefined() const
876 { return this->is_predefined_; }
877
878 // Return true if this is a C++ vtable symbol.
879 bool
880 is_cxx_vtable() const
881 { return is_prefix_of("_ZTV", this->name_); }
882
883 // Return true if this symbol is protected in a shared object.
884 // This is not the same as checking if visibility() == elfcpp::STV_PROTECTED,
885 // because the visibility_ field reflects the symbol's visibility from
886 // outside the shared object.
887 bool
888 is_protected() const
889 { return this->is_protected_; }
890
891 // Mark this symbol as protected in a shared object.
892 void
893 set_is_protected()
894 { this->is_protected_ = true; }
895
896 // Return state of PowerPC64 ELFv2 specific flag.
897 bool
898 non_zero_localentry() const
899 { return this->non_zero_localentry_; }
900
901 // Set PowerPC64 ELFv2 specific flag.
902 void
903 set_non_zero_localentry()
904 { this->non_zero_localentry_ = true; }
905
906 // Completely override existing symbol. Everything bar name_,
907 // version_, and is_forced_local_ flag are copied. version_ is
908 // cleared if from->version_ is clear. Returns true if this symbol
909 // should be forced local.
910 bool
911 clone(const Symbol* from);
912
913 protected:
914 // Instances of this class should always be created at a specific
915 // size.
916 Symbol()
917 { memset(static_cast<void*>(this), 0, sizeof *this); }
918
919 // Initialize the general fields.
920 void
921 init_fields(const char* name, const char* version,
922 elfcpp::STT type, elfcpp::STB binding,
923 elfcpp::STV visibility, unsigned char nonvis);
924
925 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
926 // section index, IS_ORDINARY is whether it is a normal section
927 // index rather than a special code.
928 template<int size, bool big_endian>
929 void
930 init_base_object(const char* name, const char* version, Object* object,
931 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
932 bool is_ordinary);
933
934 // Initialize fields for an Output_data.
935 void
936 init_base_output_data(const char* name, const char* version, Output_data*,
937 elfcpp::STT, elfcpp::STB, elfcpp::STV,
938 unsigned char nonvis, bool offset_is_from_end,
939 bool is_predefined);
940
941 // Initialize fields for an Output_segment.
942 void
943 init_base_output_segment(const char* name, const char* version,
944 Output_segment* os, elfcpp::STT type,
945 elfcpp::STB binding, elfcpp::STV visibility,
946 unsigned char nonvis,
947 Segment_offset_base offset_base,
948 bool is_predefined);
949
950 // Initialize fields for a constant.
951 void
952 init_base_constant(const char* name, const char* version, elfcpp::STT type,
953 elfcpp::STB binding, elfcpp::STV visibility,
954 unsigned char nonvis, bool is_predefined);
955
956 // Initialize fields for an undefined symbol.
957 void
958 init_base_undefined(const char* name, const char* version, elfcpp::STT type,
959 elfcpp::STB binding, elfcpp::STV visibility,
960 unsigned char nonvis);
961
962 // Override existing symbol.
963 template<int size, bool big_endian>
964 void
965 override_base(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
966 bool is_ordinary, Object* object, const char* version);
967
968 // Override existing symbol with a special symbol.
969 void
970 override_base_with_special(const Symbol* from);
971
972 // Override symbol version.
973 void
974 override_version(const char* version);
975
976 // Allocate a common symbol by giving it a location in the output
977 // file.
978 void
979 allocate_base_common(Output_data*);
980
981 private:
982 Symbol(const Symbol&);
983 Symbol& operator=(const Symbol&);
984
985 // Symbol name (expected to point into a Stringpool).
986 const char* name_;
987 // Symbol version (expected to point into a Stringpool). This may
988 // be NULL.
989 const char* version_;
990
991 union
992 {
993 // This is used if SOURCE_ == FROM_OBJECT.
994 // Object in which symbol is defined, or in which it was first
995 // seen.
996 Object* object;
997
998 // This is used if SOURCE_ == IN_OUTPUT_DATA.
999 // Output_data in which symbol is defined. Before
1000 // Layout::finalize the symbol's value is an offset within the
1001 // Output_data.
1002 Output_data* output_data;
1003
1004 // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1005 // Output_segment in which the symbol is defined. Before
1006 // Layout::finalize the symbol's value is an offset.
1007 Output_segment* output_segment;
1008 } u1_;
1009
1010 union
1011 {
1012 // This is used if SOURCE_ == FROM_OBJECT.
1013 // Section number in object in which symbol is defined.
1014 unsigned int shndx;
1015
1016 // This is used if SOURCE_ == IN_OUTPUT_DATA.
1017 // True if the offset is from the end, false if the offset is
1018 // from the beginning.
1019 bool offset_is_from_end;
1020
1021 // This is used if SOURCE_ == IN_OUTPUT_SEGMENT.
1022 // The base to use for the offset before Layout::finalize.
1023 Segment_offset_base offset_base;
1024 } u2_;
1025
1026 // The index of this symbol in the output file. If the symbol is
1027 // not going into the output file, this value is -1U. This field
1028 // starts as always holding zero. It is set to a non-zero value by
1029 // Symbol_table::finalize.
1030 unsigned int symtab_index_;
1031
1032 // The index of this symbol in the dynamic symbol table. If the
1033 // symbol is not going into the dynamic symbol table, this value is
1034 // -1U. This field starts as always holding zero. It is set to a
1035 // non-zero value during Layout::finalize.
1036 unsigned int dynsym_index_;
1037
1038 // If this symbol has an entry in the PLT section, then this is the
1039 // offset from the start of the PLT section. This is -1U if there
1040 // is no PLT entry.
1041 unsigned int plt_offset_;
1042
1043 // The GOT section entries for this symbol. A symbol may have more
1044 // than one GOT offset (e.g., when mixing modules compiled with two
1045 // different TLS models), but will usually have at most one.
1046 Got_offset_list got_offsets_;
1047
1048 // Symbol type (bits 0 to 3).
1049 elfcpp::STT type_ : 4;
1050 // Symbol binding (bits 4 to 7).
1051 elfcpp::STB binding_ : 4;
1052 // Symbol visibility (bits 8 to 9).
1053 elfcpp::STV visibility_ : 2;
1054 // Rest of symbol st_other field (bits 10 to 15).
1055 unsigned int nonvis_ : 6;
1056 // The type of symbol (bits 16 to 18).
1057 Source source_ : 3;
1058 // True if this is the default version of the symbol (bit 19).
1059 bool is_def_ : 1;
1060 // True if this symbol really forwards to another symbol. This is
1061 // used when we discover after the fact that two different entries
1062 // in the hash table really refer to the same symbol. This will
1063 // never be set for a symbol found in the hash table, but may be set
1064 // for a symbol found in the list of symbols attached to an Object.
1065 // It forwards to the symbol found in the forwarders_ map of
1066 // Symbol_table (bit 20).
1067 bool is_forwarder_ : 1;
1068 // True if the symbol has an alias in the weak_aliases table in
1069 // Symbol_table (bit 21).
1070 bool has_alias_ : 1;
1071 // True if this symbol needs to be in the dynamic symbol table (bit
1072 // 22).
1073 bool needs_dynsym_entry_ : 1;
1074 // True if we've seen this symbol in a regular object (bit 23).
1075 bool in_reg_ : 1;
1076 // True if we've seen this symbol in a dynamic object (bit 24).
1077 bool in_dyn_ : 1;
1078 // True if this is a dynamic symbol which needs a special value in
1079 // the dynamic symbol table (bit 25).
1080 bool needs_dynsym_value_ : 1;
1081 // True if there is a warning for this symbol (bit 26).
1082 bool has_warning_ : 1;
1083 // True if we are using a COPY reloc for this symbol, so that the
1084 // real definition lives in a dynamic object (bit 27).
1085 bool is_copied_from_dynobj_ : 1;
1086 // True if this symbol was forced to local visibility by a version
1087 // script (bit 28).
1088 bool is_forced_local_ : 1;
1089 // True if the field u2_.shndx is an ordinary section
1090 // index, not one of the special codes from SHN_LORESERVE to
1091 // SHN_HIRESERVE (bit 29).
1092 bool is_ordinary_shndx_ : 1;
1093 // True if we've seen this symbol in a "real" ELF object (bit 30).
1094 // If the symbol has been seen in a relocatable, non-IR, object file,
1095 // it's known to be referenced from outside the IR. A reference from
1096 // a dynamic object doesn't count as a "real" ELF, and we'll simply
1097 // mark the symbol as "visible" from outside the IR. The compiler
1098 // can use this distinction to guide its handling of COMDAT symbols.
1099 bool in_real_elf_ : 1;
1100 // True if this symbol is defined in a section which was discarded
1101 // (bit 31).
1102 bool is_defined_in_discarded_section_ : 1;
1103 // True if UNDEF_BINDING_WEAK_ has been set (bit 32).
1104 bool undef_binding_set_ : 1;
1105 // True if this symbol was a weak undef resolved by a dynamic def
1106 // or by a special symbol (bit 33).
1107 bool undef_binding_weak_ : 1;
1108 // True if this symbol is a predefined linker symbol (bit 34).
1109 bool is_predefined_ : 1;
1110 // True if this symbol has protected visibility in a shared object (bit 35).
1111 // The visibility_ field will be STV_DEFAULT in this case because we
1112 // must treat it as such from outside the shared object.
1113 bool is_protected_ : 1;
1114 // Used by PowerPC64 ELFv2 to track st_other localentry (bit 36).
1115 bool non_zero_localentry_ : 1;
1116 };
1117
1118 // The parts of a symbol which are size specific. Using a template
1119 // derived class like this helps us use less space on a 32-bit system.
1120
1121 template<int size>
1122 class Sized_symbol : public Symbol
1123 {
1124 public:
1125 typedef typename elfcpp::Elf_types<size>::Elf_Addr Value_type;
1126 typedef typename elfcpp::Elf_types<size>::Elf_WXword Size_type;
1127
1128 Sized_symbol()
1129 { }
1130
1131 // Initialize fields from an ELF symbol in OBJECT. ST_SHNDX is the
1132 // section index, IS_ORDINARY is whether it is a normal section
1133 // index rather than a special code.
1134 template<bool big_endian>
1135 void
1136 init_object(const char* name, const char* version, Object* object,
1137 const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1138 bool is_ordinary);
1139
1140 // Initialize fields for an Output_data.
1141 void
1142 init_output_data(const char* name, const char* version, Output_data*,
1143 Value_type value, Size_type symsize, elfcpp::STT,
1144 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1145 bool offset_is_from_end, bool is_predefined);
1146
1147 // Initialize fields for an Output_segment.
1148 void
1149 init_output_segment(const char* name, const char* version, Output_segment*,
1150 Value_type value, Size_type symsize, elfcpp::STT,
1151 elfcpp::STB, elfcpp::STV, unsigned char nonvis,
1152 Segment_offset_base offset_base, bool is_predefined);
1153
1154 // Initialize fields for a constant.
1155 void
1156 init_constant(const char* name, const char* version, Value_type value,
1157 Size_type symsize, elfcpp::STT, elfcpp::STB, elfcpp::STV,
1158 unsigned char nonvis, bool is_predefined);
1159
1160 // Initialize fields for an undefined symbol.
1161 void
1162 init_undefined(const char* name, const char* version, Value_type value,
1163 elfcpp::STT, elfcpp::STB, elfcpp::STV, unsigned char nonvis);
1164
1165 // Override existing symbol.
1166 template<bool big_endian>
1167 void
1168 override(const elfcpp::Sym<size, big_endian>&, unsigned int st_shndx,
1169 bool is_ordinary, Object* object, const char* version);
1170
1171 // Override existing symbol with a special symbol.
1172 void
1173 override_with_special(const Sized_symbol<size>*);
1174
1175 // Return the symbol's value.
1176 Value_type
1177 value() const
1178 { return this->value_; }
1179
1180 // Return the symbol's size (we can't call this 'size' because that
1181 // is a template parameter).
1182 Size_type
1183 symsize() const
1184 { return this->symsize_; }
1185
1186 // Set the symbol size. This is used when resolving common symbols.
1187 void
1188 set_symsize(Size_type symsize)
1189 { this->symsize_ = symsize; }
1190
1191 // Set the symbol value. This is called when we store the final
1192 // values of the symbols into the symbol table.
1193 void
1194 set_value(Value_type value)
1195 { this->value_ = value; }
1196
1197 // Allocate a common symbol by giving it a location in the output
1198 // file.
1199 void
1200 allocate_common(Output_data*, Value_type value);
1201
1202 // Completely override existing symbol. Everything bar name_,
1203 // version_, and is_forced_local_ flag are copied. version_ is
1204 // cleared if from->version_ is clear. Returns true if this symbol
1205 // should be forced local.
1206 bool
1207 clone(const Sized_symbol<size>* from);
1208
1209 private:
1210 Sized_symbol(const Sized_symbol&);
1211 Sized_symbol& operator=(const Sized_symbol&);
1212
1213 // Symbol value. Before Layout::finalize this is the offset in the
1214 // input section. This is set to the final value during
1215 // Layout::finalize.
1216 Value_type value_;
1217 // Symbol size.
1218 Size_type symsize_;
1219 };
1220
1221 // A struct describing a symbol defined by the linker, where the value
1222 // of the symbol is defined based on an output section. This is used
1223 // for symbols defined by the linker, like "_init_array_start".
1224
1225 struct Define_symbol_in_section
1226 {
1227 // The symbol name.
1228 const char* name;
1229 // The name of the output section with which this symbol should be
1230 // associated. If there is no output section with that name, the
1231 // symbol will be defined as zero.
1232 const char* output_section;
1233 // The offset of the symbol within the output section. This is an
1234 // offset from the start of the output section, unless start_at_end
1235 // is true, in which case this is an offset from the end of the
1236 // output section.
1237 uint64_t value;
1238 // The size of the symbol.
1239 uint64_t size;
1240 // The symbol type.
1241 elfcpp::STT type;
1242 // The symbol binding.
1243 elfcpp::STB binding;
1244 // The symbol visibility.
1245 elfcpp::STV visibility;
1246 // The rest of the st_other field.
1247 unsigned char nonvis;
1248 // If true, the value field is an offset from the end of the output
1249 // section.
1250 bool offset_is_from_end;
1251 // If true, this symbol is defined only if we see a reference to it.
1252 bool only_if_ref;
1253 };
1254
1255 // A struct describing a symbol defined by the linker, where the value
1256 // of the symbol is defined based on a segment. This is used for
1257 // symbols defined by the linker, like "_end". We describe the
1258 // segment with which the symbol should be associated by its
1259 // characteristics. If no segment meets these characteristics, the
1260 // symbol will be defined as zero. If there is more than one segment
1261 // which meets these characteristics, we will use the first one.
1262
1263 struct Define_symbol_in_segment
1264 {
1265 // The symbol name.
1266 const char* name;
1267 // The segment type where the symbol should be defined, typically
1268 // PT_LOAD.
1269 elfcpp::PT segment_type;
1270 // Bitmask of segment flags which must be set.
1271 elfcpp::PF segment_flags_set;
1272 // Bitmask of segment flags which must be clear.
1273 elfcpp::PF segment_flags_clear;
1274 // The offset of the symbol within the segment. The offset is
1275 // calculated from the position set by offset_base.
1276 uint64_t value;
1277 // The size of the symbol.
1278 uint64_t size;
1279 // The symbol type.
1280 elfcpp::STT type;
1281 // The symbol binding.
1282 elfcpp::STB binding;
1283 // The symbol visibility.
1284 elfcpp::STV visibility;
1285 // The rest of the st_other field.
1286 unsigned char nonvis;
1287 // The base from which we compute the offset.
1288 Symbol::Segment_offset_base offset_base;
1289 // If true, this symbol is defined only if we see a reference to it.
1290 bool only_if_ref;
1291 };
1292
1293 // Specify an object/section/offset location. Used by ODR code.
1294
1295 struct Symbol_location
1296 {
1297 // Object where the symbol is defined.
1298 Object* object;
1299 // Section-in-object where the symbol is defined.
1300 unsigned int shndx;
1301 // For relocatable objects, offset-in-section where the symbol is defined.
1302 // For dynamic objects, address where the symbol is defined.
1303 off_t offset;
1304 bool operator==(const Symbol_location& that) const
1305 {
1306 return (this->object == that.object
1307 && this->shndx == that.shndx
1308 && this->offset == that.offset);
1309 }
1310 };
1311
1312 // A map from symbol name (as a pointer into the namepool) to all
1313 // the locations the symbols is (weakly) defined (and certain other
1314 // conditions are met). This map will be used later to detect
1315 // possible One Definition Rule (ODR) violations.
1316 struct Symbol_location_hash
1317 {
1318 size_t operator()(const Symbol_location& loc) const
1319 { return reinterpret_cast<uintptr_t>(loc.object) ^ loc.offset ^ loc.shndx; }
1320 };
1321
1322 // This class manages warnings. Warnings are a GNU extension. When
1323 // we see a section named .gnu.warning.SYM in an object file, and if
1324 // we wind using the definition of SYM from that object file, then we
1325 // will issue a warning for any relocation against SYM from a
1326 // different object file. The text of the warning is the contents of
1327 // the section. This is not precisely the definition used by the old
1328 // GNU linker; the old GNU linker treated an occurrence of
1329 // .gnu.warning.SYM as defining a warning symbol. A warning symbol
1330 // would trigger a warning on any reference. However, it was
1331 // inconsistent in that a warning in a dynamic object only triggered
1332 // if there was no definition in a regular object. This linker is
1333 // different in that we only issue a warning if we use the symbol
1334 // definition from the same object file as the warning section.
1335
1336 class Warnings
1337 {
1338 public:
1339 Warnings()
1340 : warnings_()
1341 { }
1342
1343 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1344 // of the warning.
1345 void
1346 add_warning(Symbol_table* symtab, const char* name, Object* obj,
1347 const std::string& warning);
1348
1349 // For each symbol for which we should give a warning, make a note
1350 // on the symbol.
1351 void
1352 note_warnings(Symbol_table* symtab);
1353
1354 // Issue a warning for a reference to SYM at RELINFO's location.
1355 template<int size, bool big_endian>
1356 void
1357 issue_warning(const Symbol* sym, const Relocate_info<size, big_endian>*,
1358 size_t relnum, off_t reloffset) const;
1359
1360 private:
1361 Warnings(const Warnings&);
1362 Warnings& operator=(const Warnings&);
1363
1364 // What we need to know to get the warning text.
1365 struct Warning_location
1366 {
1367 // The object the warning is in.
1368 Object* object;
1369 // The warning text.
1370 std::string text;
1371
1372 Warning_location()
1373 : object(NULL), text()
1374 { }
1375
1376 void
1377 set(Object* o, const std::string& t)
1378 {
1379 this->object = o;
1380 this->text = t;
1381 }
1382 };
1383
1384 // A mapping from warning symbol names (canonicalized in
1385 // Symbol_table's namepool_ field) to warning information.
1386 typedef Unordered_map<const char*, Warning_location> Warning_table;
1387
1388 Warning_table warnings_;
1389 };
1390
1391 // The main linker symbol table.
1392
1393 class Symbol_table
1394 {
1395 public:
1396 // The different places where a symbol definition can come from.
1397 enum Defined
1398 {
1399 // Defined in an object file--the normal case.
1400 OBJECT,
1401 // Defined for a COPY reloc.
1402 COPY,
1403 // Defined on the command line using --defsym.
1404 DEFSYM,
1405 // Defined (so to speak) on the command line using -u.
1406 UNDEFINED,
1407 // Defined in a linker script.
1408 SCRIPT,
1409 // Predefined by the linker.
1410 PREDEFINED,
1411 // Defined by the linker during an incremental base link, but not
1412 // a predefined symbol (e.g., common, defined in script).
1413 INCREMENTAL_BASE,
1414 };
1415
1416 // The order in which we sort common symbols.
1417 enum Sort_commons_order
1418 {
1419 SORT_COMMONS_BY_SIZE_DESCENDING,
1420 SORT_COMMONS_BY_ALIGNMENT_DESCENDING,
1421 SORT_COMMONS_BY_ALIGNMENT_ASCENDING
1422 };
1423
1424 // COUNT is an estimate of how many symbols will be inserted in the
1425 // symbol table. It's ok to put 0 if you don't know; a correct
1426 // guess will just save some CPU by reducing hashtable resizes.
1427 Symbol_table(unsigned int count, const Version_script_info& version_script);
1428
1429 ~Symbol_table();
1430
1431 void
1432 set_icf(Icf* icf)
1433 { this->icf_ = icf;}
1434
1435 Icf*
1436 icf() const
1437 { return this->icf_; }
1438
1439 // Returns true if ICF determined that this is a duplicate section.
1440 bool
1441 is_section_folded(Relobj* obj, unsigned int shndx) const;
1442
1443 void
1444 set_gc(Garbage_collection* gc)
1445 { this->gc_ = gc; }
1446
1447 Garbage_collection*
1448 gc() const
1449 { return this->gc_; }
1450
1451 // During garbage collection, this keeps undefined symbols.
1452 void
1453 gc_mark_undef_symbols(Layout*);
1454
1455 // This tells garbage collection that this symbol is referenced.
1456 void
1457 gc_mark_symbol(Symbol* sym);
1458
1459 // During garbage collection, this keeps sections that correspond to
1460 // symbols seen in dynamic objects.
1461 inline void
1462 gc_mark_dyn_syms(Symbol* sym);
1463
1464 // Add COUNT external symbols from the relocatable object RELOBJ to
1465 // the symbol table. SYMS is the symbols, SYMNDX_OFFSET is the
1466 // offset in the symbol table of the first symbol, SYM_NAMES is
1467 // their names, SYM_NAME_SIZE is the size of SYM_NAMES. This sets
1468 // SYMPOINTERS to point to the symbols in the symbol table. It sets
1469 // *DEFINED to the number of defined symbols.
1470 template<int size, bool big_endian>
1471 void
1472 add_from_relobj(Sized_relobj_file<size, big_endian>* relobj,
1473 const unsigned char* syms, size_t count,
1474 size_t symndx_offset, const char* sym_names,
1475 size_t sym_name_size,
1476 typename Sized_relobj_file<size, big_endian>::Symbols*,
1477 size_t* defined);
1478
1479 // Add one external symbol from the plugin object OBJ to the symbol table.
1480 // Returns a pointer to the resolved symbol in the symbol table.
1481 template<int size, bool big_endian>
1482 Symbol*
1483 add_from_pluginobj(Sized_pluginobj<size, big_endian>* obj,
1484 const char* name, const char* ver,
1485 elfcpp::Sym<size, big_endian>* sym);
1486
1487 // Add COUNT dynamic symbols from the dynamic object DYNOBJ to the
1488 // symbol table. SYMS is the symbols. SYM_NAMES is their names.
1489 // SYM_NAME_SIZE is the size of SYM_NAMES. The other parameters are
1490 // symbol version data.
1491 template<int size, bool big_endian>
1492 void
1493 add_from_dynobj(Sized_dynobj<size, big_endian>* dynobj,
1494 const unsigned char* syms, size_t count,
1495 const char* sym_names, size_t sym_name_size,
1496 const unsigned char* versym, size_t versym_size,
1497 const std::vector<const char*>*,
1498 typename Sized_relobj_file<size, big_endian>::Symbols*,
1499 size_t* defined);
1500
1501 // Add one external symbol from the incremental object OBJ to the symbol
1502 // table. Returns a pointer to the resolved symbol in the symbol table.
1503 template<int size, bool big_endian>
1504 Sized_symbol<size>*
1505 add_from_incrobj(Object* obj, const char* name,
1506 const char* ver, elfcpp::Sym<size, big_endian>* sym);
1507
1508 // Define a special symbol based on an Output_data. It is a
1509 // multiple definition error if this symbol is already defined.
1510 Symbol*
1511 define_in_output_data(const char* name, const char* version, Defined,
1512 Output_data*, uint64_t value, uint64_t symsize,
1513 elfcpp::STT type, elfcpp::STB binding,
1514 elfcpp::STV visibility, unsigned char nonvis,
1515 bool offset_is_from_end, bool only_if_ref);
1516
1517 // Define a special symbol based on an Output_segment. It is a
1518 // multiple definition error if this symbol is already defined.
1519 Symbol*
1520 define_in_output_segment(const char* name, const char* version, Defined,
1521 Output_segment*, uint64_t value, uint64_t symsize,
1522 elfcpp::STT type, elfcpp::STB binding,
1523 elfcpp::STV visibility, unsigned char nonvis,
1524 Symbol::Segment_offset_base, bool only_if_ref);
1525
1526 // Define a special symbol with a constant value. It is a multiple
1527 // definition error if this symbol is already defined.
1528 Symbol*
1529 define_as_constant(const char* name, const char* version, Defined,
1530 uint64_t value, uint64_t symsize, elfcpp::STT type,
1531 elfcpp::STB binding, elfcpp::STV visibility,
1532 unsigned char nonvis, bool only_if_ref,
1533 bool force_override);
1534
1535 // Define a set of symbols in output sections. If ONLY_IF_REF is
1536 // true, only define them if they are referenced.
1537 void
1538 define_symbols(const Layout*, int count, const Define_symbol_in_section*,
1539 bool only_if_ref);
1540
1541 // Define a set of symbols in output segments. If ONLY_IF_REF is
1542 // true, only defined them if they are referenced.
1543 void
1544 define_symbols(const Layout*, int count, const Define_symbol_in_segment*,
1545 bool only_if_ref);
1546
1547 // Add a target-specific global symbol.
1548 // (Used by SPARC backend to add STT_SPARC_REGISTER symbols.)
1549 void
1550 add_target_global_symbol(Symbol* sym)
1551 { this->target_symbols_.push_back(sym); }
1552
1553 // Define SYM using a COPY reloc. POSD is the Output_data where the
1554 // symbol should be defined--typically a .dyn.bss section. VALUE is
1555 // the offset within POSD.
1556 template<int size>
1557 void
1558 define_with_copy_reloc(Sized_symbol<size>* sym, Output_data* posd,
1559 typename elfcpp::Elf_types<size>::Elf_Addr);
1560
1561 // Look up a symbol.
1562 Symbol*
1563 lookup(const char*, const char* version = NULL) const;
1564
1565 // Return the real symbol associated with the forwarder symbol FROM.
1566 Symbol*
1567 resolve_forwards(const Symbol* from) const;
1568
1569 // Return the sized version of a symbol in this table.
1570 template<int size>
1571 Sized_symbol<size>*
1572 get_sized_symbol(Symbol*) const;
1573
1574 template<int size>
1575 const Sized_symbol<size>*
1576 get_sized_symbol(const Symbol*) const;
1577
1578 // Return the count of undefined symbols seen.
1579 size_t
1580 saw_undefined() const
1581 { return this->saw_undefined_; }
1582
1583 void
1584 set_has_gnu_output()
1585 { this->has_gnu_output_ = true; }
1586
1587 // Allocate the common symbols
1588 void
1589 allocate_commons(Layout*, Mapfile*);
1590
1591 // Add a warning for symbol NAME in object OBJ. WARNING is the text
1592 // of the warning.
1593 void
1594 add_warning(const char* name, Object* obj, const std::string& warning)
1595 { this->warnings_.add_warning(this, name, obj, warning); }
1596
1597 // Canonicalize a symbol name for use in the hash table.
1598 const char*
1599 canonicalize_name(const char* name)
1600 { return this->namepool_.add(name, true, NULL); }
1601
1602 // Possibly issue a warning for a reference to SYM at LOCATION which
1603 // is in OBJ.
1604 template<int size, bool big_endian>
1605 void
1606 issue_warning(const Symbol* sym,
1607 const Relocate_info<size, big_endian>* relinfo,
1608 size_t relnum, off_t reloffset) const
1609 { this->warnings_.issue_warning(sym, relinfo, relnum, reloffset); }
1610
1611 // Check candidate_odr_violations_ to find symbols with the same name
1612 // but apparently different definitions (different source-file/line-no).
1613 void
1614 detect_odr_violations(const Task*, const char* output_file_name) const;
1615
1616 // Add any undefined symbols named on the command line to the symbol
1617 // table.
1618 void
1619 add_undefined_symbols_from_command_line(Layout*);
1620
1621 // SYM is defined using a COPY reloc. Return the dynamic object
1622 // where the original definition was found.
1623 Dynobj*
1624 get_copy_source(const Symbol* sym) const;
1625
1626 // Set the dynamic symbol indexes. INDEX is the index of the first
1627 // global dynamic symbol. Return the count of forced-local symbols in
1628 // *PFORCED_LOCAL_COUNT. Pointers to the symbols are stored into
1629 // the vector. The names are stored into the Stringpool. This
1630 // returns an updated dynamic symbol index.
1631 unsigned int
1632 set_dynsym_indexes(unsigned int index, unsigned int* pforced_local_count,
1633 std::vector<Symbol*>*, Stringpool*, Versions*);
1634
1635 // Finalize the symbol table after we have set the final addresses
1636 // of all the input sections. This sets the final symbol indexes,
1637 // values and adds the names to *POOL. *PLOCAL_SYMCOUNT is the
1638 // index of the first global symbol. OFF is the file offset of the
1639 // global symbol table, DYNOFF is the offset of the globals in the
1640 // dynamic symbol table, DYN_GLOBAL_INDEX is the index of the first
1641 // global dynamic symbol, and DYNCOUNT is the number of global
1642 // dynamic symbols. This records the parameters, and returns the
1643 // new file offset. It updates *PLOCAL_SYMCOUNT if it created any
1644 // local symbols.
1645 off_t
1646 finalize(off_t off, off_t dynoff, size_t dyn_global_index, size_t dyncount,
1647 Stringpool* pool, unsigned int* plocal_symcount);
1648
1649 // Set the final file offset of the symbol table.
1650 void
1651 set_file_offset(off_t off)
1652 { this->offset_ = off; }
1653
1654 // Status code of Symbol_table::compute_final_value.
1655 enum Compute_final_value_status
1656 {
1657 // No error.
1658 CFVS_OK,
1659 // Unsupported symbol section.
1660 CFVS_UNSUPPORTED_SYMBOL_SECTION,
1661 // No output section.
1662 CFVS_NO_OUTPUT_SECTION
1663 };
1664
1665 // Compute the final value of SYM and store status in location PSTATUS.
1666 // During relaxation, this may be called multiple times for a symbol to
1667 // compute its would-be final value in each relaxation pass.
1668
1669 template<int size>
1670 typename Sized_symbol<size>::Value_type
1671 compute_final_value(const Sized_symbol<size>* sym,
1672 Compute_final_value_status* pstatus) const;
1673
1674 // Return the index of the first global symbol.
1675 unsigned int
1676 first_global_index() const
1677 { return this->first_global_index_; }
1678
1679 // Return the total number of symbols in the symbol table.
1680 unsigned int
1681 output_count() const
1682 { return this->output_count_; }
1683
1684 // Write out the global symbols.
1685 void
1686 write_globals(const Stringpool*, const Stringpool*,
1687 Output_symtab_xindex*, Output_symtab_xindex*,
1688 Output_file*) const;
1689
1690 // Write out a section symbol. Return the updated offset.
1691 void
1692 write_section_symbol(const Output_section*, Output_symtab_xindex*,
1693 Output_file*, off_t) const;
1694
1695 // Loop over all symbols, applying the function F to each.
1696 template<int size, typename F>
1697 void
1698 for_all_symbols(F f) const
1699 {
1700 for (Symbol_table_type::const_iterator p = this->table_.begin();
1701 p != this->table_.end();
1702 ++p)
1703 {
1704 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1705 f(sym);
1706 }
1707 }
1708
1709 // Dump statistical information to stderr.
1710 void
1711 print_stats() const;
1712
1713 // Return the version script information.
1714 const Version_script_info&
1715 version_script() const
1716 { return version_script_; }
1717
1718 // Completely override existing symbol.
1719 template<int size>
1720 void
1721 clone(Sized_symbol<size>* to, const Sized_symbol<size>* from)
1722 {
1723 if (to->clone(from))
1724 this->force_local(to);
1725 }
1726
1727 private:
1728 Symbol_table(const Symbol_table&);
1729 Symbol_table& operator=(const Symbol_table&);
1730
1731 // The type of the list of common symbols.
1732 typedef std::vector<Symbol*> Commons_type;
1733
1734 // The type of the symbol hash table.
1735
1736 typedef std::pair<Stringpool::Key, Stringpool::Key> Symbol_table_key;
1737
1738 // The hash function. The key values are Stringpool keys.
1739 struct Symbol_table_hash
1740 {
1741 inline size_t
1742 operator()(const Symbol_table_key& key) const
1743 {
1744 return key.first ^ key.second;
1745 }
1746 };
1747
1748 struct Symbol_table_eq
1749 {
1750 bool
1751 operator()(const Symbol_table_key&, const Symbol_table_key&) const;
1752 };
1753
1754 typedef Unordered_map<Symbol_table_key, Symbol*, Symbol_table_hash,
1755 Symbol_table_eq> Symbol_table_type;
1756
1757 typedef Unordered_map<const char*,
1758 Unordered_set<Symbol_location, Symbol_location_hash> >
1759 Odr_map;
1760
1761 // Make FROM a forwarder symbol to TO.
1762 void
1763 make_forwarder(Symbol* from, Symbol* to);
1764
1765 // Add a symbol.
1766 template<int size, bool big_endian>
1767 Sized_symbol<size>*
1768 add_from_object(Object*, const char* name, Stringpool::Key name_key,
1769 const char* version, Stringpool::Key version_key,
1770 bool def, const elfcpp::Sym<size, big_endian>& sym,
1771 unsigned int st_shndx, bool is_ordinary,
1772 unsigned int orig_st_shndx);
1773
1774 // Define a default symbol.
1775 template<int size, bool big_endian>
1776 void
1777 define_default_version(Sized_symbol<size>*, bool,
1778 Symbol_table_type::iterator);
1779
1780 // Resolve symbols.
1781 template<int size, bool big_endian>
1782 void
1783 resolve(Sized_symbol<size>* to,
1784 const elfcpp::Sym<size, big_endian>& sym,
1785 unsigned int st_shndx, bool is_ordinary,
1786 unsigned int orig_st_shndx,
1787 Object*, const char* version,
1788 bool is_default_version);
1789
1790 template<int size, bool big_endian>
1791 void
1792 resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from);
1793
1794 // Record that a symbol is forced to be local by a version script or
1795 // by visibility.
1796 void
1797 force_local(Symbol*);
1798
1799 // Adjust NAME and *NAME_KEY for wrapping.
1800 const char*
1801 wrap_symbol(const char* name, Stringpool::Key* name_key);
1802
1803 // Whether we should override a symbol, based on flags in
1804 // resolve.cc.
1805 static bool
1806 should_override(const Symbol*, unsigned int, elfcpp::STT, Defined,
1807 Object*, bool*, bool*, bool);
1808
1809 // Report a problem in symbol resolution.
1810 static void
1811 report_resolve_problem(bool is_error, const char* msg, const Symbol* to,
1812 Defined, Object* object);
1813
1814 // Override a symbol.
1815 template<int size, bool big_endian>
1816 void
1817 override(Sized_symbol<size>* tosym,
1818 const elfcpp::Sym<size, big_endian>& fromsym,
1819 unsigned int st_shndx, bool is_ordinary,
1820 Object* object, const char* version);
1821
1822 // Whether we should override a symbol with a special symbol which
1823 // is automatically defined by the linker.
1824 static bool
1825 should_override_with_special(const Symbol*, elfcpp::STT, Defined);
1826
1827 // Override a symbol with a special symbol.
1828 template<int size>
1829 void
1830 override_with_special(Sized_symbol<size>* tosym,
1831 const Sized_symbol<size>* fromsym);
1832
1833 // Record all weak alias sets for a dynamic object.
1834 template<int size>
1835 void
1836 record_weak_aliases(std::vector<Sized_symbol<size>*>*);
1837
1838 // Define a special symbol.
1839 template<int size, bool big_endian>
1840 Sized_symbol<size>*
1841 define_special_symbol(const char** pname, const char** pversion,
1842 bool only_if_ref, elfcpp::STV visibility,
1843 Sized_symbol<size>** poldsym,
1844 bool* resolve_oldsym, bool is_forced_local);
1845
1846 // Define a symbol in an Output_data, sized version.
1847 template<int size>
1848 Sized_symbol<size>*
1849 do_define_in_output_data(const char* name, const char* version, Defined,
1850 Output_data*,
1851 typename elfcpp::Elf_types<size>::Elf_Addr value,
1852 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1853 elfcpp::STT type, elfcpp::STB binding,
1854 elfcpp::STV visibility, unsigned char nonvis,
1855 bool offset_is_from_end, bool only_if_ref);
1856
1857 // Define a symbol in an Output_segment, sized version.
1858 template<int size>
1859 Sized_symbol<size>*
1860 do_define_in_output_segment(
1861 const char* name, const char* version, Defined, Output_segment* os,
1862 typename elfcpp::Elf_types<size>::Elf_Addr value,
1863 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1864 elfcpp::STT type, elfcpp::STB binding,
1865 elfcpp::STV visibility, unsigned char nonvis,
1866 Symbol::Segment_offset_base offset_base, bool only_if_ref);
1867
1868 // Define a symbol as a constant, sized version.
1869 template<int size>
1870 Sized_symbol<size>*
1871 do_define_as_constant(
1872 const char* name, const char* version, Defined,
1873 typename elfcpp::Elf_types<size>::Elf_Addr value,
1874 typename elfcpp::Elf_types<size>::Elf_WXword ssize,
1875 elfcpp::STT type, elfcpp::STB binding,
1876 elfcpp::STV visibility, unsigned char nonvis,
1877 bool only_if_ref, bool force_override);
1878
1879 // Add any undefined symbols named on the command line to the symbol
1880 // table, sized version.
1881 template<int size>
1882 void
1883 do_add_undefined_symbols_from_command_line(Layout*);
1884
1885 // Add one undefined symbol.
1886 template<int size>
1887 void
1888 add_undefined_symbol_from_command_line(const char* name);
1889
1890 // Types of common symbols.
1891
1892 enum Commons_section_type
1893 {
1894 COMMONS_NORMAL,
1895 COMMONS_TLS,
1896 COMMONS_SMALL,
1897 COMMONS_LARGE
1898 };
1899
1900 // Allocate the common symbols, sized version.
1901 template<int size>
1902 void
1903 do_allocate_commons(Layout*, Mapfile*, Sort_commons_order);
1904
1905 // Allocate the common symbols from one list.
1906 template<int size>
1907 void
1908 do_allocate_commons_list(Layout*, Commons_section_type, Commons_type*,
1909 Mapfile*, Sort_commons_order);
1910
1911 // Returns all of the lines attached to LOC, not just the one the
1912 // instruction actually came from. This helps the ODR checker avoid
1913 // false positives.
1914 static std::vector<std::string>
1915 linenos_from_loc(const Task* task, const Symbol_location& loc);
1916
1917 // Implement detect_odr_violations.
1918 template<int size, bool big_endian>
1919 void
1920 sized_detect_odr_violations() const;
1921
1922 // Finalize symbols specialized for size.
1923 template<int size>
1924 off_t
1925 sized_finalize(off_t, Stringpool*, unsigned int*);
1926
1927 // Finalize a symbol. Return whether it should be added to the
1928 // symbol table.
1929 template<int size>
1930 bool
1931 sized_finalize_symbol(Symbol*);
1932
1933 // Add a symbol the final symtab by setting its index.
1934 template<int size>
1935 void
1936 add_to_final_symtab(Symbol*, Stringpool*, unsigned int* pindex, off_t* poff);
1937
1938 // Write globals specialized for size and endianness.
1939 template<int size, bool big_endian>
1940 void
1941 sized_write_globals(const Stringpool*, const Stringpool*,
1942 Output_symtab_xindex*, Output_symtab_xindex*,
1943 Output_file*) const;
1944
1945 // Write out a symbol to P.
1946 template<int size, bool big_endian>
1947 void
1948 sized_write_symbol(Sized_symbol<size>*,
1949 typename elfcpp::Elf_types<size>::Elf_Addr value,
1950 unsigned int shndx, elfcpp::STB,
1951 const Stringpool*, unsigned char* p) const;
1952
1953 // Possibly warn about an undefined symbol from a dynamic object.
1954 void
1955 warn_about_undefined_dynobj_symbol(Symbol*) const;
1956
1957 // Write out a section symbol, specialized for size and endianness.
1958 template<int size, bool big_endian>
1959 void
1960 sized_write_section_symbol(const Output_section*, Output_symtab_xindex*,
1961 Output_file*, off_t) const;
1962
1963 // The type of the list of symbols which have been forced local.
1964 typedef std::vector<Symbol*> Forced_locals;
1965
1966 // A map from symbols with COPY relocs to the dynamic objects where
1967 // they are defined.
1968 typedef Unordered_map<const Symbol*, Dynobj*> Copied_symbol_dynobjs;
1969
1970 // We increment this every time we see a new undefined symbol, for
1971 // use in archive groups.
1972 size_t saw_undefined_;
1973 // The index of the first global symbol in the output file.
1974 unsigned int first_global_index_;
1975 // The file offset within the output symtab section where we should
1976 // write the table.
1977 off_t offset_;
1978 // The number of global symbols we want to write out.
1979 unsigned int output_count_;
1980 // The file offset of the global dynamic symbols, or 0 if none.
1981 off_t dynamic_offset_;
1982 // The index of the first global dynamic symbol (including
1983 // forced-local symbols).
1984 unsigned int first_dynamic_global_index_;
1985 // The number of global dynamic symbols (including forced-local symbols),
1986 // or 0 if none.
1987 unsigned int dynamic_count_;
1988 // Set if a STT_GNU_IFUNC or STB_GNU_UNIQUE symbol will be output.
1989 bool has_gnu_output_;
1990 // The symbol hash table.
1991 Symbol_table_type table_;
1992 // A pool of symbol names. This is used for all global symbols.
1993 // Entries in the hash table point into this pool.
1994 Stringpool namepool_;
1995 // Forwarding symbols.
1996 Unordered_map<const Symbol*, Symbol*> forwarders_;
1997 // Weak aliases. A symbol in this list points to the next alias.
1998 // The aliases point to each other in a circular list.
1999 Unordered_map<Symbol*, Symbol*> weak_aliases_;
2000 // We don't expect there to be very many common symbols, so we keep
2001 // a list of them. When we find a common symbol we add it to this
2002 // list. It is possible that by the time we process the list the
2003 // symbol is no longer a common symbol. It may also have become a
2004 // forwarder.
2005 Commons_type commons_;
2006 // This is like the commons_ field, except that it holds TLS common
2007 // symbols.
2008 Commons_type tls_commons_;
2009 // This is for small common symbols.
2010 Commons_type small_commons_;
2011 // This is for large common symbols.
2012 Commons_type large_commons_;
2013 // A list of symbols which have been forced to be local. We don't
2014 // expect there to be very many of them, so we keep a list of them
2015 // rather than walking the whole table to find them.
2016 Forced_locals forced_locals_;
2017 // Manage symbol warnings.
2018 Warnings warnings_;
2019 // Manage potential One Definition Rule (ODR) violations.
2020 Odr_map candidate_odr_violations_;
2021
2022 // When we emit a COPY reloc for a symbol, we define it in an
2023 // Output_data. When it's time to emit version information for it,
2024 // we need to know the dynamic object in which we found the original
2025 // definition. This maps symbols with COPY relocs to the dynamic
2026 // object where they were defined.
2027 Copied_symbol_dynobjs copied_symbol_dynobjs_;
2028 // Information parsed from the version script, if any.
2029 const Version_script_info& version_script_;
2030 Garbage_collection* gc_;
2031 Icf* icf_;
2032 // Target-specific symbols, if any.
2033 std::vector<Symbol*> target_symbols_;
2034 };
2035
2036 // We inline get_sized_symbol for efficiency.
2037
2038 template<int size>
2039 Sized_symbol<size>*
2040 Symbol_table::get_sized_symbol(Symbol* sym) const
2041 {
2042 gold_assert(size == parameters->target().get_size());
2043 return static_cast<Sized_symbol<size>*>(sym);
2044 }
2045
2046 template<int size>
2047 const Sized_symbol<size>*
2048 Symbol_table::get_sized_symbol(const Symbol* sym) const
2049 {
2050 gold_assert(size == parameters->target().get_size());
2051 return static_cast<const Sized_symbol<size>*>(sym);
2052 }
2053
2054 } // End namespace gold.
2055
2056 #endif // !defined(GOLD_SYMTAB_H)
This page took 0.071459 seconds and 4 git commands to generate.