gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gold / target-reloc.h
1 // target-reloc.h -- target specific relocation support -*- C++ -*-
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_TARGET_RELOC_H
24 #define GOLD_TARGET_RELOC_H
25
26 #include "elfcpp.h"
27 #include "symtab.h"
28 #include "object.h"
29 #include "reloc.h"
30 #include "reloc-types.h"
31
32 namespace gold
33 {
34
35 // This function implements the generic part of reloc scanning. The
36 // template parameter Scan must be a class type which provides two
37 // functions: local() and global(). Those functions implement the
38 // machine specific part of scanning. We do it this way to
39 // avoid making a function call for each relocation, and to avoid
40 // repeating the generic code for each target.
41
42 template<int size, bool big_endian, typename Target_type,
43 typename Scan, typename Classify_reloc>
44 inline void
45 scan_relocs(
46 Symbol_table* symtab,
47 Layout* layout,
48 Target_type* target,
49 Sized_relobj_file<size, big_endian>* object,
50 unsigned int data_shndx,
51 const unsigned char* prelocs,
52 size_t reloc_count,
53 Output_section* output_section,
54 bool needs_special_offset_handling,
55 size_t local_count,
56 const unsigned char* plocal_syms)
57 {
58 typedef typename Classify_reloc::Reltype Reltype;
59 const int reloc_size = Classify_reloc::reloc_size;
60 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
61 Scan scan;
62
63 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
64 {
65 Reltype reloc(prelocs);
66
67 if (needs_special_offset_handling
68 && !output_section->is_input_address_mapped(object, data_shndx,
69 reloc.get_r_offset()))
70 continue;
71
72 unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
73 unsigned int r_type = Classify_reloc::get_r_type(&reloc);
74
75 if (r_sym < local_count)
76 {
77 gold_assert(plocal_syms != NULL);
78 typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
79 + r_sym * sym_size);
80 unsigned int shndx = lsym.get_st_shndx();
81 bool is_ordinary;
82 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
83 // If RELOC is a relocation against a local symbol in a
84 // section we are discarding then we can ignore it. It will
85 // eventually become a reloc against the value zero.
86 //
87 // FIXME: We should issue a warning if this is an
88 // allocated section; is this the best place to do it?
89 //
90 // FIXME: The old GNU linker would in some cases look
91 // for the linkonce section which caused this section to
92 // be discarded, and, if the other section was the same
93 // size, change the reloc to refer to the other section.
94 // That seems risky and weird to me, and I don't know of
95 // any case where it is actually required.
96 bool is_discarded = (is_ordinary
97 && shndx != elfcpp::SHN_UNDEF
98 && !object->is_section_included(shndx)
99 && !symtab->is_section_folded(object, shndx));
100 scan.local(symtab, layout, target, object, data_shndx,
101 output_section, reloc, r_type, lsym, is_discarded);
102 }
103 else
104 {
105 Symbol* gsym = object->global_symbol(r_sym);
106 gold_assert(gsym != NULL);
107 if (gsym->is_forwarder())
108 gsym = symtab->resolve_forwards(gsym);
109
110 scan.global(symtab, layout, target, object, data_shndx,
111 output_section, reloc, r_type, gsym);
112 }
113 }
114 }
115
116 // Behavior for relocations to discarded comdat sections.
117
118 enum Comdat_behavior
119 {
120 CB_UNDETERMINED, // Not yet determined -- need to look at section name.
121 CB_PRETEND, // Attempt to map to the corresponding kept section.
122 CB_IGNORE, // Ignore the relocation.
123 CB_ERROR // Print an error.
124 };
125
126 class Default_comdat_behavior
127 {
128 public:
129 // Decide what the linker should do for relocations that refer to
130 // discarded comdat sections. This decision is based on the name of
131 // the section being relocated.
132
133 inline Comdat_behavior
134 get(const char* name)
135 {
136 if (Layout::is_debug_info_section(name))
137 return CB_PRETEND;
138 if (strcmp(name, ".eh_frame") == 0
139 || strcmp(name, ".gcc_except_table") == 0)
140 return CB_IGNORE;
141 return CB_ERROR;
142 }
143 };
144
145 // Give an error for a symbol with non-default visibility which is not
146 // defined locally.
147
148 inline void
149 visibility_error(const Symbol* sym)
150 {
151 const char* v;
152 switch (sym->visibility())
153 {
154 case elfcpp::STV_INTERNAL:
155 v = _("internal");
156 break;
157 case elfcpp::STV_HIDDEN:
158 v = _("hidden");
159 break;
160 case elfcpp::STV_PROTECTED:
161 v = _("protected");
162 break;
163 default:
164 gold_unreachable();
165 }
166 gold_error(_("%s symbol '%s' is not defined locally"),
167 v, sym->name());
168 }
169
170 // Return true if we are should issue an error saying that SYM is an
171 // undefined symbol. This is called if there is a relocation against
172 // SYM.
173
174 inline bool
175 issue_undefined_symbol_error(const Symbol* sym)
176 {
177 // We only report global symbols.
178 if (sym == NULL)
179 return false;
180
181 // We only report undefined symbols.
182 if (!sym->is_undefined() && !sym->is_placeholder())
183 return false;
184
185 // We don't report weak symbols.
186 if (sym->is_weak_undefined())
187 return false;
188
189 // We don't report symbols defined in discarded sections,
190 // unless they're placeholder symbols that should have been
191 // provided by a plugin.
192 if (sym->is_defined_in_discarded_section() && !sym->is_placeholder())
193 return false;
194
195 // If the target defines this symbol, don't report it here.
196 if (parameters->target().is_defined_by_abi(sym))
197 return false;
198
199 // See if we've been told to ignore whether this symbol is
200 // undefined.
201 const char* const u = parameters->options().unresolved_symbols();
202 if (u != NULL)
203 {
204 if (strcmp(u, "ignore-all") == 0)
205 return false;
206 if (strcmp(u, "report-all") == 0)
207 return true;
208 if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
209 return false;
210 if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
211 return false;
212 }
213
214 // If the symbol is hidden, report it.
215 if (sym->visibility() == elfcpp::STV_HIDDEN)
216 return true;
217
218 // When creating a shared library, only report unresolved symbols if
219 // -z defs was used.
220 if (parameters->options().shared() && !parameters->options().defs())
221 return false;
222
223 // Otherwise issue a warning.
224 return true;
225 }
226
227 template<int size, bool big_endian>
228 inline void
229 issue_discarded_error(
230 const Relocate_info<size, big_endian>* relinfo,
231 size_t shndx,
232 section_offset_type offset,
233 unsigned int r_sym,
234 const Symbol* gsym)
235 {
236 Sized_relobj_file<size, big_endian>* object = relinfo->object;
237
238 if (gsym == NULL)
239 {
240 gold_error_at_location(
241 relinfo, shndx, offset,
242 _("relocation refers to local symbol \"%s\" [%u], "
243 "which is defined in a discarded section"),
244 object->get_symbol_name(r_sym), r_sym);
245 }
246 else
247 {
248 gold_error_at_location(
249 relinfo, shndx, offset,
250 _("relocation refers to global symbol \"%s\", "
251 "which is defined in a discarded section"),
252 gsym->demangled_name().c_str());
253 }
254
255 bool is_ordinary;
256 typename elfcpp::Elf_types<size>::Elf_Addr value;
257 unsigned int orig_shndx = object->symbol_section_and_value(r_sym, &value,
258 &is_ordinary);
259 if (orig_shndx != elfcpp::SHN_UNDEF)
260 {
261 unsigned int key_symndx;
262 Relobj* kept_obj = object->find_kept_section_object(orig_shndx,
263 &key_symndx);
264 if (key_symndx != 0)
265 gold_info(_(" section group signature: \"%s\""),
266 object->get_symbol_name(key_symndx));
267 if (kept_obj != NULL)
268 gold_info(_(" prevailing definition is from %s"),
269 kept_obj->name().c_str());
270 }
271 }
272
273 // This function implements the generic part of relocation processing.
274 // The template parameter Relocate must be a class type which provides
275 // a single function, relocate(), which implements the machine
276 // specific part of a relocation.
277
278 // The template parameter Relocate_comdat_behavior is a class type
279 // which provides a single function, get(), which determines what the
280 // linker should do for relocations that refer to discarded comdat
281 // sections.
282
283 // SIZE is the ELF size: 32 or 64. BIG_ENDIAN is the endianness of
284 // the data. SH_TYPE is the section type: SHT_REL or SHT_RELA.
285 // RELOCATE implements operator() to do a relocation.
286
287 // PRELOCS points to the relocation data. RELOC_COUNT is the number
288 // of relocs. OUTPUT_SECTION is the output section.
289 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
290 // mapped to output offsets.
291
292 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
293 // VIEW_SIZE is the size. These refer to the input section, unless
294 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
295 // the output section.
296
297 // RELOC_SYMBOL_CHANGES is used for -fsplit-stack support. If it is
298 // not NULL, it is a vector indexed by relocation index. If that
299 // entry is not NULL, it points to a global symbol which used as the
300 // symbol for the relocation, ignoring the symbol index in the
301 // relocation.
302
303 template<int size, bool big_endian, typename Target_type,
304 typename Relocate,
305 typename Relocate_comdat_behavior,
306 typename Classify_reloc>
307 inline void
308 relocate_section(
309 const Relocate_info<size, big_endian>* relinfo,
310 Target_type* target,
311 const unsigned char* prelocs,
312 size_t reloc_count,
313 Output_section* output_section,
314 bool needs_special_offset_handling,
315 unsigned char* view,
316 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
317 section_size_type view_size,
318 const Reloc_symbol_changes* reloc_symbol_changes)
319 {
320 typedef typename Classify_reloc::Reltype Reltype;
321 const int reloc_size = Classify_reloc::reloc_size;
322 Relocate relocate;
323 Relocate_comdat_behavior relocate_comdat_behavior;
324
325 Sized_relobj_file<size, big_endian>* object = relinfo->object;
326 unsigned int local_count = object->local_symbol_count();
327
328 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
329
330 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
331 {
332 Reltype reloc(prelocs);
333
334 section_offset_type offset =
335 convert_to_section_size_type(reloc.get_r_offset());
336
337 if (needs_special_offset_handling)
338 {
339 offset = output_section->output_offset(relinfo->object,
340 relinfo->data_shndx,
341 offset);
342 if (offset == -1)
343 continue;
344 }
345
346 unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
347
348 const Sized_symbol<size>* sym;
349
350 Symbol_value<size> symval;
351 const Symbol_value<size> *psymval;
352 bool is_defined_in_discarded_section;
353 unsigned int shndx;
354 const Symbol* gsym = NULL;
355 if (r_sym < local_count
356 && (reloc_symbol_changes == NULL
357 || (*reloc_symbol_changes)[i] == NULL))
358 {
359 sym = NULL;
360 psymval = object->local_symbol(r_sym);
361
362 // If the local symbol belongs to a section we are discarding,
363 // and that section is a debug section, try to find the
364 // corresponding kept section and map this symbol to its
365 // counterpart in the kept section. The symbol must not
366 // correspond to a section we are folding.
367 bool is_ordinary;
368 shndx = psymval->input_shndx(&is_ordinary);
369 is_defined_in_discarded_section =
370 (is_ordinary
371 && shndx != elfcpp::SHN_UNDEF
372 && !object->is_section_included(shndx)
373 && !relinfo->symtab->is_section_folded(object, shndx));
374 }
375 else
376 {
377 if (reloc_symbol_changes != NULL
378 && (*reloc_symbol_changes)[i] != NULL)
379 gsym = (*reloc_symbol_changes)[i];
380 else
381 {
382 gsym = object->global_symbol(r_sym);
383 gold_assert(gsym != NULL);
384 if (gsym->is_forwarder())
385 gsym = relinfo->symtab->resolve_forwards(gsym);
386 }
387
388 sym = static_cast<const Sized_symbol<size>*>(gsym);
389 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
390 symval.set_output_symtab_index(sym->symtab_index());
391 else
392 symval.set_no_output_symtab_entry();
393 symval.set_output_value(sym->value());
394 if (gsym->type() == elfcpp::STT_TLS)
395 symval.set_is_tls_symbol();
396 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
397 symval.set_is_ifunc_symbol();
398 psymval = &symval;
399
400 is_defined_in_discarded_section =
401 (gsym->is_defined_in_discarded_section()
402 && gsym->is_undefined());
403 shndx = 0;
404 }
405
406 Symbol_value<size> symval2;
407 if (is_defined_in_discarded_section)
408 {
409 std::string name = object->section_name(relinfo->data_shndx);
410
411 if (comdat_behavior == CB_UNDETERMINED)
412 comdat_behavior = relocate_comdat_behavior.get(name.c_str());
413
414 if (comdat_behavior == CB_PRETEND)
415 {
416 // FIXME: This case does not work for global symbols.
417 // We have no place to store the original section index.
418 // Fortunately this does not matter for comdat sections,
419 // only for sections explicitly discarded by a linker
420 // script.
421 bool found;
422 typename elfcpp::Elf_types<size>::Elf_Addr value =
423 object->map_to_kept_section(shndx, name, &found);
424 if (found)
425 symval2.set_output_value(value + psymval->input_value());
426 else
427 symval2.set_output_value(0);
428 }
429 else
430 {
431 if (comdat_behavior == CB_ERROR)
432 issue_discarded_error(relinfo, i, offset, r_sym, gsym);
433 symval2.set_output_value(0);
434 }
435 symval2.set_no_output_symtab_entry();
436 psymval = &symval2;
437 }
438
439 // If OFFSET is out of range, still let the target decide to
440 // ignore the relocation. Pass in NULL as the VIEW argument so
441 // that it can return quickly without trashing an invalid memory
442 // address.
443 unsigned char *v = view + offset;
444 if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
445 v = NULL;
446
447 if (!relocate.relocate(relinfo, Classify_reloc::sh_type, target,
448 output_section, i, prelocs, sym, psymval,
449 v, view_address + offset, view_size))
450 continue;
451
452 if (v == NULL)
453 {
454 gold_error_at_location(relinfo, i, offset,
455 _("reloc has bad offset %zu"),
456 static_cast<size_t>(offset));
457 continue;
458 }
459
460 if (issue_undefined_symbol_error(sym))
461 gold_undefined_symbol_at_location(sym, relinfo, i, offset);
462 else if (sym != NULL
463 && sym->visibility() != elfcpp::STV_DEFAULT
464 && (sym->is_strong_undefined() || sym->is_from_dynobj()))
465 visibility_error(sym);
466
467 if (sym != NULL && sym->has_warning())
468 relinfo->symtab->issue_warning(sym, relinfo, i, offset);
469 }
470 }
471
472 // Apply an incremental relocation.
473
474 template<int size, bool big_endian, typename Target_type,
475 typename Relocate>
476 void
477 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
478 Target_type* target,
479 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
480 unsigned int r_type,
481 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
482 const Symbol* gsym,
483 unsigned char* view,
484 typename elfcpp::Elf_types<size>::Elf_Addr address,
485 section_size_type view_size)
486 {
487 // Construct the ELF relocation in a temporary buffer.
488 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
489 unsigned char relbuf[reloc_size];
490 elfcpp::Rela_write<size, big_endian> orel(relbuf);
491 orel.put_r_offset(r_offset);
492 orel.put_r_info(elfcpp::elf_r_info<size>(0, r_type));
493 orel.put_r_addend(r_addend);
494
495 // Setup a Symbol_value for the global symbol.
496 const Sized_symbol<size>* sym = static_cast<const Sized_symbol<size>*>(gsym);
497 Symbol_value<size> symval;
498 gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
499 symval.set_output_symtab_index(sym->symtab_index());
500 symval.set_output_value(sym->value());
501 if (gsym->type() == elfcpp::STT_TLS)
502 symval.set_is_tls_symbol();
503 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
504 symval.set_is_ifunc_symbol();
505
506 Relocate relocate;
507 relocate.relocate(relinfo, elfcpp::SHT_RELA, target, NULL,
508 -1U, relbuf, sym, &symval,
509 view + r_offset, address + r_offset, view_size);
510 }
511
512 // A class for inquiring about properties of a relocation,
513 // used while scanning relocs during a relocatable link and
514 // garbage collection. This class may be used as the default
515 // for SHT_RELA targets, but SHT_REL targets must implement
516 // a derived class that overrides get_size_for_reloc.
517 // The MIPS-64 target also needs to override the methods
518 // for accessing the r_sym and r_type fields of a relocation,
519 // due to its non-standard use of the r_info field.
520
521 template<int sh_type_, int size, bool big_endian>
522 class Default_classify_reloc
523 {
524 public:
525 typedef typename Reloc_types<sh_type_, size, big_endian>::Reloc
526 Reltype;
527 typedef typename Reloc_types<sh_type_, size, big_endian>::Reloc_write
528 Reltype_write;
529 static const int reloc_size =
530 Reloc_types<sh_type_, size, big_endian>::reloc_size;
531 static const int sh_type = sh_type_;
532
533 // Return the symbol referred to by the relocation.
534 static inline unsigned int
535 get_r_sym(const Reltype* reloc)
536 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
537
538 // Return the type of the relocation.
539 static inline unsigned int
540 get_r_type(const Reltype* reloc)
541 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
542
543 // Return the explicit addend of the relocation (return 0 for SHT_REL).
544 static inline typename elfcpp::Elf_types<size>::Elf_Swxword
545 get_r_addend(const Reltype* reloc)
546 { return Reloc_types<sh_type_, size, big_endian>::get_reloc_addend(reloc); }
547
548 // Write the r_info field to a new reloc, using the r_info field from
549 // the original reloc, replacing the r_sym field with R_SYM.
550 static inline void
551 put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
552 {
553 unsigned int r_type = elfcpp::elf_r_type<size>(reloc->get_r_info());
554 new_reloc->put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
555 }
556
557 // Write the r_addend field to a new reloc.
558 static inline void
559 put_r_addend(Reltype_write* to,
560 typename elfcpp::Elf_types<size>::Elf_Swxword addend)
561 { Reloc_types<sh_type_, size, big_endian>::set_reloc_addend(to, addend); }
562
563 // Return the size of the addend of the relocation (only used for SHT_REL).
564 static unsigned int
565 get_size_for_reloc(unsigned int, Relobj*)
566 {
567 gold_unreachable();
568 return 0;
569 }
570 };
571
572 // This class may be used as a typical class for the
573 // Scan_relocatable_reloc parameter to scan_relocatable_relocs.
574 // This class is intended to capture the most typical target behaviour,
575 // while still permitting targets to define their own independent class
576 // for Scan_relocatable_reloc.
577
578 template<typename Classify_reloc>
579 class Default_scan_relocatable_relocs
580 {
581 public:
582 typedef typename Classify_reloc::Reltype Reltype;
583 static const int reloc_size = Classify_reloc::reloc_size;
584 static const int sh_type = Classify_reloc::sh_type;
585
586 // Return the symbol referred to by the relocation.
587 static inline unsigned int
588 get_r_sym(const Reltype* reloc)
589 { return Classify_reloc::get_r_sym(reloc); }
590
591 // Return the type of the relocation.
592 static inline unsigned int
593 get_r_type(const Reltype* reloc)
594 { return Classify_reloc::get_r_type(reloc); }
595
596 // Return the strategy to use for a local symbol which is not a
597 // section symbol, given the relocation type.
598 inline Relocatable_relocs::Reloc_strategy
599 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
600 {
601 // We assume that relocation type 0 is NONE. Targets which are
602 // different must override.
603 if (r_type == 0 && r_sym == 0)
604 return Relocatable_relocs::RELOC_DISCARD;
605 return Relocatable_relocs::RELOC_COPY;
606 }
607
608 // Return the strategy to use for a local symbol which is a section
609 // symbol, given the relocation type.
610 inline Relocatable_relocs::Reloc_strategy
611 local_section_strategy(unsigned int r_type, Relobj* object)
612 {
613 if (sh_type == elfcpp::SHT_RELA)
614 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
615 else
616 {
617 switch (Classify_reloc::get_size_for_reloc(r_type, object))
618 {
619 case 0:
620 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
621 case 1:
622 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
623 case 2:
624 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
625 case 4:
626 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
627 case 8:
628 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
629 default:
630 gold_unreachable();
631 }
632 }
633 }
634
635 // Return the strategy to use for a global symbol, given the
636 // relocation type, the object, and the symbol index.
637 inline Relocatable_relocs::Reloc_strategy
638 global_strategy(unsigned int, Relobj*, unsigned int)
639 { return Relocatable_relocs::RELOC_COPY; }
640 };
641
642 // This is a strategy class used with scan_relocatable_relocs
643 // and --emit-relocs.
644
645 template<typename Classify_reloc>
646 class Default_emit_relocs_strategy
647 {
648 public:
649 typedef typename Classify_reloc::Reltype Reltype;
650 static const int reloc_size = Classify_reloc::reloc_size;
651 static const int sh_type = Classify_reloc::sh_type;
652
653 // Return the symbol referred to by the relocation.
654 static inline unsigned int
655 get_r_sym(const Reltype* reloc)
656 { return Classify_reloc::get_r_sym(reloc); }
657
658 // Return the type of the relocation.
659 static inline unsigned int
660 get_r_type(const Reltype* reloc)
661 { return Classify_reloc::get_r_type(reloc); }
662
663 // A local non-section symbol.
664 inline Relocatable_relocs::Reloc_strategy
665 local_non_section_strategy(unsigned int, Relobj*, unsigned int)
666 { return Relocatable_relocs::RELOC_COPY; }
667
668 // A local section symbol.
669 inline Relocatable_relocs::Reloc_strategy
670 local_section_strategy(unsigned int, Relobj*)
671 {
672 if (sh_type == elfcpp::SHT_RELA)
673 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
674 else
675 {
676 // The addend is stored in the section contents. Since this
677 // is not a relocatable link, we are going to apply the
678 // relocation contents to the section as usual. This means
679 // that we have no way to record the original addend. If the
680 // original addend is not zero, there is basically no way for
681 // the user to handle this correctly. Caveat emptor.
682 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
683 }
684 }
685
686 // A global symbol.
687 inline Relocatable_relocs::Reloc_strategy
688 global_strategy(unsigned int, Relobj*, unsigned int)
689 { return Relocatable_relocs::RELOC_COPY; }
690 };
691
692 // Scan relocs during a relocatable link. This is a default
693 // definition which should work for most targets.
694 // Scan_relocatable_reloc must name a class type which provides three
695 // functions which return a Relocatable_relocs::Reloc_strategy code:
696 // global_strategy, local_non_section_strategy, and
697 // local_section_strategy. Most targets should be able to use
698 // Default_scan_relocatable_relocs as this class.
699
700 template<int size, bool big_endian, typename Scan_relocatable_reloc>
701 void
702 scan_relocatable_relocs(
703 Symbol_table*,
704 Layout*,
705 Sized_relobj_file<size, big_endian>* object,
706 unsigned int data_shndx,
707 const unsigned char* prelocs,
708 size_t reloc_count,
709 Output_section* output_section,
710 bool needs_special_offset_handling,
711 size_t local_symbol_count,
712 const unsigned char* plocal_syms,
713 Relocatable_relocs* rr)
714 {
715 typedef typename Scan_relocatable_reloc::Reltype Reltype;
716 const int reloc_size = Scan_relocatable_reloc::reloc_size;
717 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
718 Scan_relocatable_reloc scan;
719
720 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
721 {
722 Reltype reloc(prelocs);
723
724 Relocatable_relocs::Reloc_strategy strategy;
725
726 if (needs_special_offset_handling
727 && !output_section->is_input_address_mapped(object, data_shndx,
728 reloc.get_r_offset()))
729 strategy = Relocatable_relocs::RELOC_DISCARD;
730 else
731 {
732 const unsigned int r_sym = Scan_relocatable_reloc::get_r_sym(&reloc);
733 const unsigned int r_type =
734 Scan_relocatable_reloc::get_r_type(&reloc);
735
736 if (r_sym >= local_symbol_count)
737 strategy = scan.global_strategy(r_type, object, r_sym);
738 else
739 {
740 gold_assert(plocal_syms != NULL);
741 typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
742 + r_sym * sym_size);
743 unsigned int shndx = lsym.get_st_shndx();
744 bool is_ordinary;
745 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
746 if (is_ordinary
747 && shndx != elfcpp::SHN_UNDEF
748 && !object->is_section_included(shndx))
749 {
750 // RELOC is a relocation against a local symbol
751 // defined in a section we are discarding. Discard
752 // the reloc. FIXME: Should we issue a warning?
753 strategy = Relocatable_relocs::RELOC_DISCARD;
754 }
755 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
756 strategy = scan.local_non_section_strategy(r_type, object,
757 r_sym);
758 else
759 {
760 strategy = scan.local_section_strategy(r_type, object);
761 if (strategy != Relocatable_relocs::RELOC_DISCARD)
762 object->output_section(shndx)->set_needs_symtab_index();
763 }
764
765 if (strategy == Relocatable_relocs::RELOC_COPY)
766 object->set_must_have_output_symtab_entry(r_sym);
767 }
768 }
769
770 rr->set_next_reloc_strategy(strategy);
771 }
772 }
773
774 // Relocate relocs. Called for a relocatable link, and for --emit-relocs.
775 // This is a default definition which should work for most targets.
776
777 template<int size, bool big_endian, typename Classify_reloc>
778 void
779 relocate_relocs(
780 const Relocate_info<size, big_endian>* relinfo,
781 const unsigned char* prelocs,
782 size_t reloc_count,
783 Output_section* output_section,
784 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
785 unsigned char* view,
786 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
787 section_size_type view_size,
788 unsigned char* reloc_view,
789 section_size_type reloc_view_size)
790 {
791 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
792 typedef typename Classify_reloc::Reltype Reltype;
793 typedef typename Classify_reloc::Reltype_write Reltype_write;
794 const int reloc_size = Classify_reloc::reloc_size;
795 const Address invalid_address = static_cast<Address>(0) - 1;
796
797 Sized_relobj_file<size, big_endian>* const object = relinfo->object;
798 const unsigned int local_count = object->local_symbol_count();
799
800 unsigned char* pwrite = reloc_view;
801
802 const bool relocatable = parameters->options().relocatable();
803
804 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
805 {
806 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
807 if (strategy == Relocatable_relocs::RELOC_DISCARD)
808 continue;
809
810 if (strategy == Relocatable_relocs::RELOC_SPECIAL)
811 {
812 // Target wants to handle this relocation.
813 Sized_target<size, big_endian>* target =
814 parameters->sized_target<size, big_endian>();
815 target->relocate_special_relocatable(relinfo, Classify_reloc::sh_type,
816 prelocs, i, output_section,
817 offset_in_output_section,
818 view, view_address,
819 view_size, pwrite);
820 pwrite += reloc_size;
821 continue;
822 }
823 Reltype reloc(prelocs);
824 Reltype_write reloc_write(pwrite);
825
826 const unsigned int r_sym = Classify_reloc::get_r_sym(&reloc);
827
828 // Get the new symbol index.
829
830 Output_section* os = NULL;
831 unsigned int new_symndx;
832 if (r_sym < local_count)
833 {
834 switch (strategy)
835 {
836 case Relocatable_relocs::RELOC_COPY:
837 if (r_sym == 0)
838 new_symndx = 0;
839 else
840 {
841 new_symndx = object->symtab_index(r_sym);
842 gold_assert(new_symndx != -1U);
843 }
844 break;
845
846 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
847 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
848 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
849 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
850 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
851 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
852 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
853 {
854 // We are adjusting a section symbol. We need to find
855 // the symbol table index of the section symbol for
856 // the output section corresponding to input section
857 // in which this symbol is defined.
858 gold_assert(r_sym < local_count);
859 bool is_ordinary;
860 unsigned int shndx =
861 object->local_symbol_input_shndx(r_sym, &is_ordinary);
862 gold_assert(is_ordinary);
863 os = object->output_section(shndx);
864 gold_assert(os != NULL);
865 gold_assert(os->needs_symtab_index());
866 new_symndx = os->symtab_index();
867 }
868 break;
869
870 default:
871 gold_unreachable();
872 }
873 }
874 else
875 {
876 const Symbol* gsym = object->global_symbol(r_sym);
877 gold_assert(gsym != NULL);
878 if (gsym->is_forwarder())
879 gsym = relinfo->symtab->resolve_forwards(gsym);
880
881 gold_assert(gsym->has_symtab_index());
882 new_symndx = gsym->symtab_index();
883 }
884
885 // Get the new offset--the location in the output section where
886 // this relocation should be applied.
887
888 Address offset = reloc.get_r_offset();
889 Address new_offset;
890 if (offset_in_output_section != invalid_address)
891 new_offset = offset + offset_in_output_section;
892 else
893 {
894 section_offset_type sot_offset =
895 convert_types<section_offset_type, Address>(offset);
896 section_offset_type new_sot_offset =
897 output_section->output_offset(object, relinfo->data_shndx,
898 sot_offset);
899 gold_assert(new_sot_offset != -1);
900 new_offset = new_sot_offset;
901 }
902
903 // In an object file, r_offset is an offset within the section.
904 // In an executable or dynamic object, generated by
905 // --emit-relocs, r_offset is an absolute address.
906 if (!relocatable)
907 {
908 new_offset += view_address;
909 if (offset_in_output_section != invalid_address)
910 new_offset -= offset_in_output_section;
911 }
912
913 reloc_write.put_r_offset(new_offset);
914 Classify_reloc::put_r_info(&reloc_write, &reloc, new_symndx);
915
916 // Handle the reloc addend based on the strategy.
917
918 if (strategy == Relocatable_relocs::RELOC_COPY)
919 {
920 if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
921 Classify_reloc::put_r_addend(&reloc_write,
922 Classify_reloc::get_r_addend(&reloc));
923 }
924 else
925 {
926 // The relocation uses a section symbol in the input file.
927 // We are adjusting it to use a section symbol in the output
928 // file. The input section symbol refers to some address in
929 // the input section. We need the relocation in the output
930 // file to refer to that same address. This adjustment to
931 // the addend is the same calculation we use for a simple
932 // absolute relocation for the input section symbol.
933
934 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
935
936 unsigned char* padd = view + offset;
937 switch (strategy)
938 {
939 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
940 {
941 typename elfcpp::Elf_types<size>::Elf_Swxword addend
942 = Classify_reloc::get_r_addend(&reloc);
943 addend = psymval->value(object, addend);
944 // In a relocatable link, the symbol value is relative to
945 // the start of the output section. For a non-relocatable
946 // link, we need to adjust the addend.
947 if (!relocatable)
948 {
949 gold_assert(os != NULL);
950 addend -= os->address();
951 }
952 Classify_reloc::put_r_addend(&reloc_write, addend);
953 }
954 break;
955
956 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
957 break;
958
959 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
960 Relocate_functions<size, big_endian>::rel8(padd, object,
961 psymval);
962 break;
963
964 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
965 Relocate_functions<size, big_endian>::rel16(padd, object,
966 psymval);
967 break;
968
969 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
970 Relocate_functions<size, big_endian>::rel32(padd, object,
971 psymval);
972 break;
973
974 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
975 Relocate_functions<size, big_endian>::rel64(padd, object,
976 psymval);
977 break;
978
979 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED:
980 Relocate_functions<size, big_endian>::rel32_unaligned(padd,
981 object,
982 psymval);
983 break;
984
985 default:
986 gold_unreachable();
987 }
988 }
989
990 pwrite += reloc_size;
991 }
992
993 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
994 == reloc_view_size);
995 }
996
997 } // End namespace gold.
998
999 #endif // !defined(GOLD_TARGET_RELOC_H)
This page took 0.049997 seconds and 4 git commands to generate.