gas and ld pluralization fixes
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2017 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean map_head_is_link_order = FALSE;
65 static lang_output_section_statement_type *default_common_section;
66 static bfd_boolean map_option_f;
67 static bfd_vma print_dot;
68 static lang_input_statement_type *first_file;
69 static const char *current_target;
70 static lang_statement_list_type statement_list;
71 static lang_statement_list_type *stat_save[10];
72 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
73 static struct unique_sections *unique_section_list;
74 static struct asneeded_minfo *asneeded_list_head;
75 static unsigned int opb_shift = 0;
76
77 /* Forward declarations. */
78 static void exp_init_os (etree_type *);
79 static lang_input_statement_type *lookup_name (const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93 static void lang_do_memory_regions (void);
94
95 /* Exported variables. */
96 const char *output_target;
97 lang_output_section_statement_type *abs_output_section;
98 lang_statement_list_type lang_output_section_statement;
99 lang_statement_list_type *stat_ptr = &statement_list;
100 lang_statement_list_type file_chain = { NULL, NULL };
101 lang_statement_list_type input_file_chain;
102 struct bfd_sym_chain entry_symbol = { NULL, NULL };
103 const char *entry_section = ".text";
104 struct lang_input_statement_flags input_flags;
105 bfd_boolean entry_from_cmdline;
106 bfd_boolean undef_from_cmdline;
107 bfd_boolean lang_has_input_file = FALSE;
108 bfd_boolean had_output_filename = FALSE;
109 bfd_boolean lang_float_flag = FALSE;
110 bfd_boolean delete_output_file_on_failure = FALSE;
111 struct lang_phdr *lang_phdr_list;
112 struct lang_nocrossrefs *nocrossref_list;
113 struct asneeded_minfo **asneeded_list_tail;
114
115 /* Functions that traverse the linker script and might evaluate
116 DEFINED() need to increment this at the start of the traversal. */
117 int lang_statement_iteration = 0;
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (!link_info.resolve_section_groups
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
226 false. */
227
228 static bfd_boolean
229 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
230 lang_input_statement_type *file)
231 {
232 struct name_list *list_tmp;
233
234 for (list_tmp = exclude_list;
235 list_tmp;
236 list_tmp = list_tmp->next)
237 {
238 char *p = archive_path (list_tmp->name);
239
240 if (p != NULL)
241 {
242 if (input_statement_is_archive_path (list_tmp->name, p, file))
243 return TRUE;
244 }
245
246 else if (name_match (list_tmp->name, file->filename) == 0)
247 return TRUE;
248
249 /* FIXME: Perhaps remove the following at some stage? Matching
250 unadorned archives like this was never documented and has
251 been superceded by the archive:path syntax. */
252 else if (file->the_bfd != NULL
253 && file->the_bfd->my_archive != NULL
254 && name_match (list_tmp->name,
255 file->the_bfd->my_archive->filename) == 0)
256 return TRUE;
257 }
258
259 return FALSE;
260 }
261
262 /* Try processing a section against a wildcard. This just calls
263 the callback unless the filename exclusion list is present
264 and excludes the file. It's hardly ever present so this
265 function is very fast. */
266
267 static void
268 walk_wild_consider_section (lang_wild_statement_type *ptr,
269 lang_input_statement_type *file,
270 asection *s,
271 struct wildcard_list *sec,
272 callback_t callback,
273 void *data)
274 {
275 /* Don't process sections from files which were excluded. */
276 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
277 return;
278
279 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
280 }
281
282 /* Lowest common denominator routine that can handle everything correctly,
283 but slowly. */
284
285 static void
286 walk_wild_section_general (lang_wild_statement_type *ptr,
287 lang_input_statement_type *file,
288 callback_t callback,
289 void *data)
290 {
291 asection *s;
292 struct wildcard_list *sec;
293
294 for (s = file->the_bfd->sections; s != NULL; s = s->next)
295 {
296 sec = ptr->section_list;
297 if (sec == NULL)
298 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
299
300 while (sec != NULL)
301 {
302 bfd_boolean skip = FALSE;
303
304 if (sec->spec.name != NULL)
305 {
306 const char *sname = bfd_get_section_name (file->the_bfd, s);
307
308 skip = name_match (sec->spec.name, sname) != 0;
309 }
310
311 if (!skip)
312 walk_wild_consider_section (ptr, file, s, sec, callback, data);
313
314 sec = sec->next;
315 }
316 }
317 }
318
319 /* Routines to find a single section given its name. If there's more
320 than one section with that name, we report that. */
321
322 typedef struct
323 {
324 asection *found_section;
325 bfd_boolean multiple_sections_found;
326 } section_iterator_callback_data;
327
328 static bfd_boolean
329 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
330 {
331 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
332
333 if (d->found_section != NULL)
334 {
335 d->multiple_sections_found = TRUE;
336 return TRUE;
337 }
338
339 d->found_section = s;
340 return FALSE;
341 }
342
343 static asection *
344 find_section (lang_input_statement_type *file,
345 struct wildcard_list *sec,
346 bfd_boolean *multiple_sections_found)
347 {
348 section_iterator_callback_data cb_data = { NULL, FALSE };
349
350 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
351 section_iterator_callback, &cb_data);
352 *multiple_sections_found = cb_data.multiple_sections_found;
353 return cb_data.found_section;
354 }
355
356 /* Code for handling simple wildcards without going through fnmatch,
357 which can be expensive because of charset translations etc. */
358
359 /* A simple wild is a literal string followed by a single '*',
360 where the literal part is at least 4 characters long. */
361
362 static bfd_boolean
363 is_simple_wild (const char *name)
364 {
365 size_t len = strcspn (name, "*?[");
366 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
367 }
368
369 static bfd_boolean
370 match_simple_wild (const char *pattern, const char *name)
371 {
372 /* The first four characters of the pattern are guaranteed valid
373 non-wildcard characters. So we can go faster. */
374 if (pattern[0] != name[0] || pattern[1] != name[1]
375 || pattern[2] != name[2] || pattern[3] != name[3])
376 return FALSE;
377
378 pattern += 4;
379 name += 4;
380 while (*pattern != '*')
381 if (*name++ != *pattern++)
382 return FALSE;
383
384 return TRUE;
385 }
386
387 /* Return the numerical value of the init_priority attribute from
388 section name NAME. */
389
390 static unsigned long
391 get_init_priority (const char *name)
392 {
393 char *end;
394 unsigned long init_priority;
395
396 /* GCC uses the following section names for the init_priority
397 attribute with numerical values 101 and 65535 inclusive. A
398 lower value means a higher priority.
399
400 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
401 decimal numerical value of the init_priority attribute.
402 The order of execution in .init_array is forward and
403 .fini_array is backward.
404 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
405 decimal numerical value of the init_priority attribute.
406 The order of execution in .ctors is backward and .dtors
407 is forward.
408 */
409 if (strncmp (name, ".init_array.", 12) == 0
410 || strncmp (name, ".fini_array.", 12) == 0)
411 {
412 init_priority = strtoul (name + 12, &end, 10);
413 return *end ? 0 : init_priority;
414 }
415 else if (strncmp (name, ".ctors.", 7) == 0
416 || strncmp (name, ".dtors.", 7) == 0)
417 {
418 init_priority = strtoul (name + 7, &end, 10);
419 return *end ? 0 : 65535 - init_priority;
420 }
421
422 return 0;
423 }
424
425 /* Compare sections ASEC and BSEC according to SORT. */
426
427 static int
428 compare_section (sort_type sort, asection *asec, asection *bsec)
429 {
430 int ret;
431 unsigned long ainit_priority, binit_priority;
432
433 switch (sort)
434 {
435 default:
436 abort ();
437
438 case by_init_priority:
439 ainit_priority
440 = get_init_priority (bfd_get_section_name (asec->owner, asec));
441 binit_priority
442 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
443 if (ainit_priority == 0 || binit_priority == 0)
444 goto sort_by_name;
445 ret = ainit_priority - binit_priority;
446 if (ret)
447 break;
448 else
449 goto sort_by_name;
450
451 case by_alignment_name:
452 ret = (bfd_section_alignment (bsec->owner, bsec)
453 - bfd_section_alignment (asec->owner, asec));
454 if (ret)
455 break;
456 /* Fall through. */
457
458 case by_name:
459 sort_by_name:
460 ret = strcmp (bfd_get_section_name (asec->owner, asec),
461 bfd_get_section_name (bsec->owner, bsec));
462 break;
463
464 case by_name_alignment:
465 ret = strcmp (bfd_get_section_name (asec->owner, asec),
466 bfd_get_section_name (bsec->owner, bsec));
467 if (ret)
468 break;
469 /* Fall through. */
470
471 case by_alignment:
472 ret = (bfd_section_alignment (bsec->owner, bsec)
473 - bfd_section_alignment (asec->owner, asec));
474 break;
475 }
476
477 return ret;
478 }
479
480 /* Build a Binary Search Tree to sort sections, unlike insertion sort
481 used in wild_sort(). BST is considerably faster if the number of
482 of sections are large. */
483
484 static lang_section_bst_type **
485 wild_sort_fast (lang_wild_statement_type *wild,
486 struct wildcard_list *sec,
487 lang_input_statement_type *file ATTRIBUTE_UNUSED,
488 asection *section)
489 {
490 lang_section_bst_type **tree;
491
492 tree = &wild->tree;
493 if (!wild->filenames_sorted
494 && (sec == NULL || sec->spec.sorted == none))
495 {
496 /* Append at the right end of tree. */
497 while (*tree)
498 tree = &((*tree)->right);
499 return tree;
500 }
501
502 while (*tree)
503 {
504 /* Find the correct node to append this section. */
505 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
506 tree = &((*tree)->left);
507 else
508 tree = &((*tree)->right);
509 }
510
511 return tree;
512 }
513
514 /* Use wild_sort_fast to build a BST to sort sections. */
515
516 static void
517 output_section_callback_fast (lang_wild_statement_type *ptr,
518 struct wildcard_list *sec,
519 asection *section,
520 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
521 lang_input_statement_type *file,
522 void *output)
523 {
524 lang_section_bst_type *node;
525 lang_section_bst_type **tree;
526 lang_output_section_statement_type *os;
527
528 os = (lang_output_section_statement_type *) output;
529
530 if (unique_section_p (section, os))
531 return;
532
533 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
534 node->left = 0;
535 node->right = 0;
536 node->section = section;
537
538 tree = wild_sort_fast (ptr, sec, file, section);
539 if (tree != NULL)
540 *tree = node;
541 }
542
543 /* Convert a sorted sections' BST back to list form. */
544
545 static void
546 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
547 lang_section_bst_type *tree,
548 void *output)
549 {
550 if (tree->left)
551 output_section_callback_tree_to_list (ptr, tree->left, output);
552
553 lang_add_section (&ptr->children, tree->section, NULL,
554 (lang_output_section_statement_type *) output);
555
556 if (tree->right)
557 output_section_callback_tree_to_list (ptr, tree->right, output);
558
559 free (tree);
560 }
561
562 /* Specialized, optimized routines for handling different kinds of
563 wildcards */
564
565 static void
566 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
567 lang_input_statement_type *file,
568 callback_t callback,
569 void *data)
570 {
571 /* We can just do a hash lookup for the section with the right name.
572 But if that lookup discovers more than one section with the name
573 (should be rare), we fall back to the general algorithm because
574 we would otherwise have to sort the sections to make sure they
575 get processed in the bfd's order. */
576 bfd_boolean multiple_sections_found;
577 struct wildcard_list *sec0 = ptr->handler_data[0];
578 asection *s0 = find_section (file, sec0, &multiple_sections_found);
579
580 if (multiple_sections_found)
581 walk_wild_section_general (ptr, file, callback, data);
582 else if (s0)
583 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
584 }
585
586 static void
587 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
588 lang_input_statement_type *file,
589 callback_t callback,
590 void *data)
591 {
592 asection *s;
593 struct wildcard_list *wildsec0 = ptr->handler_data[0];
594
595 for (s = file->the_bfd->sections; s != NULL; s = s->next)
596 {
597 const char *sname = bfd_get_section_name (file->the_bfd, s);
598 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
602 }
603 }
604
605 static void
606 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
607 lang_input_statement_type *file,
608 callback_t callback,
609 void *data)
610 {
611 asection *s;
612 struct wildcard_list *sec0 = ptr->handler_data[0];
613 struct wildcard_list *wildsec1 = ptr->handler_data[1];
614 bfd_boolean multiple_sections_found;
615 asection *s0 = find_section (file, sec0, &multiple_sections_found);
616
617 if (multiple_sections_found)
618 {
619 walk_wild_section_general (ptr, file, callback, data);
620 return;
621 }
622
623 /* Note that if the section was not found, s0 is NULL and
624 we'll simply never succeed the s == s0 test below. */
625 for (s = file->the_bfd->sections; s != NULL; s = s->next)
626 {
627 /* Recall that in this code path, a section cannot satisfy more
628 than one spec, so if s == s0 then it cannot match
629 wildspec1. */
630 if (s == s0)
631 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
632 else
633 {
634 const char *sname = bfd_get_section_name (file->the_bfd, s);
635 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
636
637 if (!skip)
638 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
639 data);
640 }
641 }
642 }
643
644 static void
645 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
646 lang_input_statement_type *file,
647 callback_t callback,
648 void *data)
649 {
650 asection *s;
651 struct wildcard_list *sec0 = ptr->handler_data[0];
652 struct wildcard_list *wildsec1 = ptr->handler_data[1];
653 struct wildcard_list *wildsec2 = ptr->handler_data[2];
654 bfd_boolean multiple_sections_found;
655 asection *s0 = find_section (file, sec0, &multiple_sections_found);
656
657 if (multiple_sections_found)
658 {
659 walk_wild_section_general (ptr, file, callback, data);
660 return;
661 }
662
663 for (s = file->the_bfd->sections; s != NULL; s = s->next)
664 {
665 if (s == s0)
666 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
667 else
668 {
669 const char *sname = bfd_get_section_name (file->the_bfd, s);
670 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
671
672 if (!skip)
673 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
674 else
675 {
676 skip = !match_simple_wild (wildsec2->spec.name, sname);
677 if (!skip)
678 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
679 data);
680 }
681 }
682 }
683 }
684
685 static void
686 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
687 lang_input_statement_type *file,
688 callback_t callback,
689 void *data)
690 {
691 asection *s;
692 struct wildcard_list *sec0 = ptr->handler_data[0];
693 struct wildcard_list *sec1 = ptr->handler_data[1];
694 struct wildcard_list *wildsec2 = ptr->handler_data[2];
695 struct wildcard_list *wildsec3 = ptr->handler_data[3];
696 bfd_boolean multiple_sections_found;
697 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
698
699 if (multiple_sections_found)
700 {
701 walk_wild_section_general (ptr, file, callback, data);
702 return;
703 }
704
705 s1 = find_section (file, sec1, &multiple_sections_found);
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 if (s == s1)
718 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
719 else
720 {
721 const char *sname = bfd_get_section_name (file->the_bfd, s);
722 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
723 sname);
724
725 if (!skip)
726 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
727 data);
728 else
729 {
730 skip = !match_simple_wild (wildsec3->spec.name, sname);
731 if (!skip)
732 walk_wild_consider_section (ptr, file, s, wildsec3,
733 callback, data);
734 }
735 }
736 }
737 }
738
739 static void
740 walk_wild_section (lang_wild_statement_type *ptr,
741 lang_input_statement_type *file,
742 callback_t callback,
743 void *data)
744 {
745 if (file->flags.just_syms)
746 return;
747
748 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
749 }
750
751 /* Returns TRUE when name1 is a wildcard spec that might match
752 something name2 can match. We're conservative: we return FALSE
753 only if the prefixes of name1 and name2 are different up to the
754 first wildcard character. */
755
756 static bfd_boolean
757 wild_spec_can_overlap (const char *name1, const char *name2)
758 {
759 size_t prefix1_len = strcspn (name1, "?*[");
760 size_t prefix2_len = strcspn (name2, "?*[");
761 size_t min_prefix_len;
762
763 /* Note that if there is no wildcard character, then we treat the
764 terminating 0 as part of the prefix. Thus ".text" won't match
765 ".text." or ".text.*", for example. */
766 if (name1[prefix1_len] == '\0')
767 prefix1_len++;
768 if (name2[prefix2_len] == '\0')
769 prefix2_len++;
770
771 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
772
773 return memcmp (name1, name2, min_prefix_len) == 0;
774 }
775
776 /* Select specialized code to handle various kinds of wildcard
777 statements. */
778
779 static void
780 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
781 {
782 int sec_count = 0;
783 int wild_name_count = 0;
784 struct wildcard_list *sec;
785 int signature;
786 int data_counter;
787
788 ptr->walk_wild_section_handler = walk_wild_section_general;
789 ptr->handler_data[0] = NULL;
790 ptr->handler_data[1] = NULL;
791 ptr->handler_data[2] = NULL;
792 ptr->handler_data[3] = NULL;
793 ptr->tree = NULL;
794
795 /* Count how many wildcard_specs there are, and how many of those
796 actually use wildcards in the name. Also, bail out if any of the
797 wildcard names are NULL. (Can this actually happen?
798 walk_wild_section used to test for it.) And bail out if any
799 of the wildcards are more complex than a simple string
800 ending in a single '*'. */
801 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
802 {
803 ++sec_count;
804 if (sec->spec.name == NULL)
805 return;
806 if (wildcardp (sec->spec.name))
807 {
808 ++wild_name_count;
809 if (!is_simple_wild (sec->spec.name))
810 return;
811 }
812 }
813
814 /* The zero-spec case would be easy to optimize but it doesn't
815 happen in practice. Likewise, more than 4 specs doesn't
816 happen in practice. */
817 if (sec_count == 0 || sec_count > 4)
818 return;
819
820 /* Check that no two specs can match the same section. */
821 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
822 {
823 struct wildcard_list *sec2;
824 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
825 {
826 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
827 return;
828 }
829 }
830
831 signature = (sec_count << 8) + wild_name_count;
832 switch (signature)
833 {
834 case 0x0100:
835 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
836 break;
837 case 0x0101:
838 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
839 break;
840 case 0x0201:
841 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
842 break;
843 case 0x0302:
844 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
845 break;
846 case 0x0402:
847 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
848 break;
849 default:
850 return;
851 }
852
853 /* Now fill the data array with pointers to the specs, first the
854 specs with non-wildcard names, then the specs with wildcard
855 names. It's OK to process the specs in different order from the
856 given order, because we've already determined that no section
857 will match more than one spec. */
858 data_counter = 0;
859 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
860 if (!wildcardp (sec->spec.name))
861 ptr->handler_data[data_counter++] = sec;
862 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
863 if (wildcardp (sec->spec.name))
864 ptr->handler_data[data_counter++] = sec;
865 }
866
867 /* Handle a wild statement for a single file F. */
868
869 static void
870 walk_wild_file (lang_wild_statement_type *s,
871 lang_input_statement_type *f,
872 callback_t callback,
873 void *data)
874 {
875 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
876 return;
877
878 if (f->the_bfd == NULL
879 || !bfd_check_format (f->the_bfd, bfd_archive))
880 walk_wild_section (s, f, callback, data);
881 else
882 {
883 bfd *member;
884
885 /* This is an archive file. We must map each member of the
886 archive separately. */
887 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
888 while (member != NULL)
889 {
890 /* When lookup_name is called, it will call the add_symbols
891 entry point for the archive. For each element of the
892 archive which is included, BFD will call ldlang_add_file,
893 which will set the usrdata field of the member to the
894 lang_input_statement. */
895 if (member->usrdata != NULL)
896 {
897 walk_wild_section (s,
898 (lang_input_statement_type *) member->usrdata,
899 callback, data);
900 }
901
902 member = bfd_openr_next_archived_file (f->the_bfd, member);
903 }
904 }
905 }
906
907 static void
908 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
909 {
910 const char *file_spec = s->filename;
911 char *p;
912
913 if (file_spec == NULL)
914 {
915 /* Perform the iteration over all files in the list. */
916 LANG_FOR_EACH_INPUT_STATEMENT (f)
917 {
918 walk_wild_file (s, f, callback, data);
919 }
920 }
921 else if ((p = archive_path (file_spec)) != NULL)
922 {
923 LANG_FOR_EACH_INPUT_STATEMENT (f)
924 {
925 if (input_statement_is_archive_path (file_spec, p, f))
926 walk_wild_file (s, f, callback, data);
927 }
928 }
929 else if (wildcardp (file_spec))
930 {
931 LANG_FOR_EACH_INPUT_STATEMENT (f)
932 {
933 if (fnmatch (file_spec, f->filename, 0) == 0)
934 walk_wild_file (s, f, callback, data);
935 }
936 }
937 else
938 {
939 lang_input_statement_type *f;
940
941 /* Perform the iteration over a single file. */
942 f = lookup_name (file_spec);
943 if (f)
944 walk_wild_file (s, f, callback, data);
945 }
946 }
947
948 /* lang_for_each_statement walks the parse tree and calls the provided
949 function for each node, except those inside output section statements
950 with constraint set to -1. */
951
952 void
953 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
954 lang_statement_union_type *s)
955 {
956 for (; s != NULL; s = s->header.next)
957 {
958 func (s);
959
960 switch (s->header.type)
961 {
962 case lang_constructors_statement_enum:
963 lang_for_each_statement_worker (func, constructor_list.head);
964 break;
965 case lang_output_section_statement_enum:
966 if (s->output_section_statement.constraint != -1)
967 lang_for_each_statement_worker
968 (func, s->output_section_statement.children.head);
969 break;
970 case lang_wild_statement_enum:
971 lang_for_each_statement_worker (func,
972 s->wild_statement.children.head);
973 break;
974 case lang_group_statement_enum:
975 lang_for_each_statement_worker (func,
976 s->group_statement.children.head);
977 break;
978 case lang_data_statement_enum:
979 case lang_reloc_statement_enum:
980 case lang_object_symbols_statement_enum:
981 case lang_output_statement_enum:
982 case lang_target_statement_enum:
983 case lang_input_section_enum:
984 case lang_input_statement_enum:
985 case lang_assignment_statement_enum:
986 case lang_padding_statement_enum:
987 case lang_address_statement_enum:
988 case lang_fill_statement_enum:
989 case lang_insert_statement_enum:
990 break;
991 default:
992 FAIL ();
993 break;
994 }
995 }
996 }
997
998 void
999 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1000 {
1001 lang_for_each_statement_worker (func, statement_list.head);
1002 }
1003
1004 /*----------------------------------------------------------------------*/
1005
1006 void
1007 lang_list_init (lang_statement_list_type *list)
1008 {
1009 list->head = NULL;
1010 list->tail = &list->head;
1011 }
1012
1013 void
1014 push_stat_ptr (lang_statement_list_type *new_ptr)
1015 {
1016 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1017 abort ();
1018 *stat_save_ptr++ = stat_ptr;
1019 stat_ptr = new_ptr;
1020 }
1021
1022 void
1023 pop_stat_ptr (void)
1024 {
1025 if (stat_save_ptr <= stat_save)
1026 abort ();
1027 stat_ptr = *--stat_save_ptr;
1028 }
1029
1030 /* Build a new statement node for the parse tree. */
1031
1032 static lang_statement_union_type *
1033 new_statement (enum statement_enum type,
1034 size_t size,
1035 lang_statement_list_type *list)
1036 {
1037 lang_statement_union_type *new_stmt;
1038
1039 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1040 new_stmt->header.type = type;
1041 new_stmt->header.next = NULL;
1042 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1043 return new_stmt;
1044 }
1045
1046 /* Build a new input file node for the language. There are several
1047 ways in which we treat an input file, eg, we only look at symbols,
1048 or prefix it with a -l etc.
1049
1050 We can be supplied with requests for input files more than once;
1051 they may, for example be split over several lines like foo.o(.text)
1052 foo.o(.data) etc, so when asked for a file we check that we haven't
1053 got it already so we don't duplicate the bfd. */
1054
1055 static lang_input_statement_type *
1056 new_afile (const char *name,
1057 lang_input_file_enum_type file_type,
1058 const char *target,
1059 bfd_boolean add_to_list)
1060 {
1061 lang_input_statement_type *p;
1062
1063 lang_has_input_file = TRUE;
1064
1065 if (add_to_list)
1066 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1067 else
1068 {
1069 p = (lang_input_statement_type *)
1070 stat_alloc (sizeof (lang_input_statement_type));
1071 p->header.type = lang_input_statement_enum;
1072 p->header.next = NULL;
1073 }
1074
1075 memset (&p->the_bfd, 0,
1076 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1077 p->target = target;
1078 p->flags.dynamic = input_flags.dynamic;
1079 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1080 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1081 p->flags.whole_archive = input_flags.whole_archive;
1082 p->flags.sysrooted = input_flags.sysrooted;
1083
1084 switch (file_type)
1085 {
1086 case lang_input_file_is_symbols_only_enum:
1087 p->filename = name;
1088 p->local_sym_name = name;
1089 p->flags.real = TRUE;
1090 p->flags.just_syms = TRUE;
1091 break;
1092 case lang_input_file_is_fake_enum:
1093 p->filename = name;
1094 p->local_sym_name = name;
1095 break;
1096 case lang_input_file_is_l_enum:
1097 if (name[0] == ':' && name[1] != '\0')
1098 {
1099 p->filename = name + 1;
1100 p->flags.full_name_provided = TRUE;
1101 }
1102 else
1103 p->filename = name;
1104 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1105 p->flags.maybe_archive = TRUE;
1106 p->flags.real = TRUE;
1107 p->flags.search_dirs = TRUE;
1108 break;
1109 case lang_input_file_is_marker_enum:
1110 p->filename = name;
1111 p->local_sym_name = name;
1112 p->flags.search_dirs = TRUE;
1113 break;
1114 case lang_input_file_is_search_file_enum:
1115 p->filename = name;
1116 p->local_sym_name = name;
1117 p->flags.real = TRUE;
1118 p->flags.search_dirs = TRUE;
1119 break;
1120 case lang_input_file_is_file_enum:
1121 p->filename = name;
1122 p->local_sym_name = name;
1123 p->flags.real = TRUE;
1124 break;
1125 default:
1126 FAIL ();
1127 }
1128
1129 lang_statement_append (&input_file_chain,
1130 (lang_statement_union_type *) p,
1131 &p->next_real_file);
1132 return p;
1133 }
1134
1135 lang_input_statement_type *
1136 lang_add_input_file (const char *name,
1137 lang_input_file_enum_type file_type,
1138 const char *target)
1139 {
1140 if (name != NULL
1141 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot,
1146 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1147 (const char *) NULL);
1148
1149 /* We've now forcibly prepended the sysroot, making the input
1150 file independent of the context. Therefore, temporarily
1151 force a non-sysrooted context for this statement, so it won't
1152 get the sysroot prepended again when opened. (N.B. if it's a
1153 script, any child nodes with input files starting with "/"
1154 will be handled as "sysrooted" as they'll be found to be
1155 within the sysroot subdirectory.) */
1156 unsigned int outer_sysrooted = input_flags.sysrooted;
1157 input_flags.sysrooted = 0;
1158 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1159 input_flags.sysrooted = outer_sysrooted;
1160 return ret;
1161 }
1162
1163 return new_afile (name, file_type, target, TRUE);
1164 }
1165
1166 struct out_section_hash_entry
1167 {
1168 struct bfd_hash_entry root;
1169 lang_statement_union_type s;
1170 };
1171
1172 /* The hash table. */
1173
1174 static struct bfd_hash_table output_section_statement_table;
1175
1176 /* Support routines for the hash table used by lang_output_section_find,
1177 initialize the table, fill in an entry and remove the table. */
1178
1179 static struct bfd_hash_entry *
1180 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1181 struct bfd_hash_table *table,
1182 const char *string)
1183 {
1184 lang_output_section_statement_type **nextp;
1185 struct out_section_hash_entry *ret;
1186
1187 if (entry == NULL)
1188 {
1189 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1190 sizeof (*ret));
1191 if (entry == NULL)
1192 return entry;
1193 }
1194
1195 entry = bfd_hash_newfunc (entry, table, string);
1196 if (entry == NULL)
1197 return entry;
1198
1199 ret = (struct out_section_hash_entry *) entry;
1200 memset (&ret->s, 0, sizeof (ret->s));
1201 ret->s.header.type = lang_output_section_statement_enum;
1202 ret->s.output_section_statement.subsection_alignment = -1;
1203 ret->s.output_section_statement.section_alignment = -1;
1204 ret->s.output_section_statement.block_value = 1;
1205 lang_list_init (&ret->s.output_section_statement.children);
1206 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1207
1208 /* For every output section statement added to the list, except the
1209 first one, lang_output_section_statement.tail points to the "next"
1210 field of the last element of the list. */
1211 if (lang_output_section_statement.head != NULL)
1212 ret->s.output_section_statement.prev
1213 = ((lang_output_section_statement_type *)
1214 ((char *) lang_output_section_statement.tail
1215 - offsetof (lang_output_section_statement_type, next)));
1216
1217 /* GCC's strict aliasing rules prevent us from just casting the
1218 address, so we store the pointer in a variable and cast that
1219 instead. */
1220 nextp = &ret->s.output_section_statement.next;
1221 lang_statement_append (&lang_output_section_statement,
1222 &ret->s,
1223 (lang_statement_union_type **) nextp);
1224 return &ret->root;
1225 }
1226
1227 static void
1228 output_section_statement_table_init (void)
1229 {
1230 if (!bfd_hash_table_init_n (&output_section_statement_table,
1231 output_section_statement_newfunc,
1232 sizeof (struct out_section_hash_entry),
1233 61))
1234 einfo (_("%P%F: can not create hash table: %E\n"));
1235 }
1236
1237 static void
1238 output_section_statement_table_free (void)
1239 {
1240 bfd_hash_table_free (&output_section_statement_table);
1241 }
1242
1243 /* Build enough state so that the parser can build its tree. */
1244
1245 void
1246 lang_init (void)
1247 {
1248 obstack_begin (&stat_obstack, 1000);
1249
1250 stat_ptr = &statement_list;
1251
1252 output_section_statement_table_init ();
1253
1254 lang_list_init (stat_ptr);
1255
1256 lang_list_init (&input_file_chain);
1257 lang_list_init (&lang_output_section_statement);
1258 lang_list_init (&file_chain);
1259 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1260 NULL);
1261 abs_output_section =
1262 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1263
1264 abs_output_section->bfd_section = bfd_abs_section_ptr;
1265
1266 asneeded_list_head = NULL;
1267 asneeded_list_tail = &asneeded_list_head;
1268 }
1269
1270 void
1271 lang_finish (void)
1272 {
1273 output_section_statement_table_free ();
1274 }
1275
1276 /*----------------------------------------------------------------------
1277 A region is an area of memory declared with the
1278 MEMORY { name:org=exp, len=exp ... }
1279 syntax.
1280
1281 We maintain a list of all the regions here.
1282
1283 If no regions are specified in the script, then the default is used
1284 which is created when looked up to be the entire data space.
1285
1286 If create is true we are creating a region inside a MEMORY block.
1287 In this case it is probably an error to create a region that has
1288 already been created. If we are not inside a MEMORY block it is
1289 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1290 and so we issue a warning.
1291
1292 Each region has at least one name. The first name is either
1293 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1294 alias names to an existing region within a script with
1295 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1296 region. */
1297
1298 static lang_memory_region_type *lang_memory_region_list;
1299 static lang_memory_region_type **lang_memory_region_list_tail
1300 = &lang_memory_region_list;
1301
1302 lang_memory_region_type *
1303 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1304 {
1305 lang_memory_region_name *n;
1306 lang_memory_region_type *r;
1307 lang_memory_region_type *new_region;
1308
1309 /* NAME is NULL for LMA memspecs if no region was specified. */
1310 if (name == NULL)
1311 return NULL;
1312
1313 for (r = lang_memory_region_list; r != NULL; r = r->next)
1314 for (n = &r->name_list; n != NULL; n = n->next)
1315 if (strcmp (n->name, name) == 0)
1316 {
1317 if (create)
1318 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1319 NULL, name);
1320 return r;
1321 }
1322
1323 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1324 einfo (_("%P:%S: warning: memory region `%s' not declared\n"),
1325 NULL, name);
1326
1327 new_region = (lang_memory_region_type *)
1328 stat_alloc (sizeof (lang_memory_region_type));
1329
1330 new_region->name_list.name = xstrdup (name);
1331 new_region->name_list.next = NULL;
1332 new_region->next = NULL;
1333 new_region->origin_exp = NULL;
1334 new_region->origin = 0;
1335 new_region->length_exp = NULL;
1336 new_region->length = ~(bfd_size_type) 0;
1337 new_region->current = 0;
1338 new_region->last_os = NULL;
1339 new_region->flags = 0;
1340 new_region->not_flags = 0;
1341 new_region->had_full_message = FALSE;
1342
1343 *lang_memory_region_list_tail = new_region;
1344 lang_memory_region_list_tail = &new_region->next;
1345
1346 return new_region;
1347 }
1348
1349 void
1350 lang_memory_region_alias (const char *alias, const char *region_name)
1351 {
1352 lang_memory_region_name *n;
1353 lang_memory_region_type *r;
1354 lang_memory_region_type *region;
1355
1356 /* The default region must be unique. This ensures that it is not necessary
1357 to iterate through the name list if someone wants the check if a region is
1358 the default memory region. */
1359 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1360 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1361 einfo (_("%F%P:%S: error: alias for default memory region\n"), NULL);
1362
1363 /* Look for the target region and check if the alias is not already
1364 in use. */
1365 region = NULL;
1366 for (r = lang_memory_region_list; r != NULL; r = r->next)
1367 for (n = &r->name_list; n != NULL; n = n->next)
1368 {
1369 if (region == NULL && strcmp (n->name, region_name) == 0)
1370 region = r;
1371 if (strcmp (n->name, alias) == 0)
1372 einfo (_("%F%P:%S: error: redefinition of memory region "
1373 "alias `%s'\n"),
1374 NULL, alias);
1375 }
1376
1377 /* Check if the target region exists. */
1378 if (region == NULL)
1379 einfo (_("%F%P:%S: error: memory region `%s' "
1380 "for alias `%s' does not exist\n"),
1381 NULL, region_name, alias);
1382
1383 /* Add alias to region name list. */
1384 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1385 n->name = xstrdup (alias);
1386 n->next = region->name_list.next;
1387 region->name_list.next = n;
1388 }
1389
1390 static lang_memory_region_type *
1391 lang_memory_default (asection *section)
1392 {
1393 lang_memory_region_type *p;
1394
1395 flagword sec_flags = section->flags;
1396
1397 /* Override SEC_DATA to mean a writable section. */
1398 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1399 sec_flags |= SEC_DATA;
1400
1401 for (p = lang_memory_region_list; p != NULL; p = p->next)
1402 {
1403 if ((p->flags & sec_flags) != 0
1404 && (p->not_flags & sec_flags) == 0)
1405 {
1406 return p;
1407 }
1408 }
1409 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1410 }
1411
1412 /* Get the output section statement directly from the userdata. */
1413
1414 lang_output_section_statement_type *
1415 lang_output_section_get (const asection *output_section)
1416 {
1417 return get_userdata (output_section);
1418 }
1419
1420 /* Find or create an output_section_statement with the given NAME.
1421 If CONSTRAINT is non-zero match one with that constraint, otherwise
1422 match any non-negative constraint. If CREATE, always make a
1423 new output_section_statement for SPECIAL CONSTRAINT. */
1424
1425 lang_output_section_statement_type *
1426 lang_output_section_statement_lookup (const char *name,
1427 int constraint,
1428 bfd_boolean create)
1429 {
1430 struct out_section_hash_entry *entry;
1431
1432 entry = ((struct out_section_hash_entry *)
1433 bfd_hash_lookup (&output_section_statement_table, name,
1434 create, FALSE));
1435 if (entry == NULL)
1436 {
1437 if (create)
1438 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1439 return NULL;
1440 }
1441
1442 if (entry->s.output_section_statement.name != NULL)
1443 {
1444 /* We have a section of this name, but it might not have the correct
1445 constraint. */
1446 struct out_section_hash_entry *last_ent;
1447
1448 name = entry->s.output_section_statement.name;
1449 if (create && constraint == SPECIAL)
1450 /* Not traversing to the end reverses the order of the second
1451 and subsequent SPECIAL sections in the hash table chain,
1452 but that shouldn't matter. */
1453 last_ent = entry;
1454 else
1455 do
1456 {
1457 if (constraint == entry->s.output_section_statement.constraint
1458 || (constraint == 0
1459 && entry->s.output_section_statement.constraint >= 0))
1460 return &entry->s.output_section_statement;
1461 last_ent = entry;
1462 entry = (struct out_section_hash_entry *) entry->root.next;
1463 }
1464 while (entry != NULL
1465 && name == entry->s.output_section_statement.name);
1466
1467 if (!create)
1468 return NULL;
1469
1470 entry
1471 = ((struct out_section_hash_entry *)
1472 output_section_statement_newfunc (NULL,
1473 &output_section_statement_table,
1474 name));
1475 if (entry == NULL)
1476 {
1477 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1478 return NULL;
1479 }
1480 entry->root = last_ent->root;
1481 last_ent->root.next = &entry->root;
1482 }
1483
1484 entry->s.output_section_statement.name = name;
1485 entry->s.output_section_statement.constraint = constraint;
1486 return &entry->s.output_section_statement;
1487 }
1488
1489 /* Find the next output_section_statement with the same name as OS.
1490 If CONSTRAINT is non-zero, find one with that constraint otherwise
1491 match any non-negative constraint. */
1492
1493 lang_output_section_statement_type *
1494 next_matching_output_section_statement (lang_output_section_statement_type *os,
1495 int constraint)
1496 {
1497 /* All output_section_statements are actually part of a
1498 struct out_section_hash_entry. */
1499 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1500 ((char *) os
1501 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1502 const char *name = os->name;
1503
1504 ASSERT (name == entry->root.string);
1505 do
1506 {
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 if (entry == NULL
1509 || name != entry->s.output_section_statement.name)
1510 return NULL;
1511 }
1512 while (constraint != entry->s.output_section_statement.constraint
1513 && (constraint != 0
1514 || entry->s.output_section_statement.constraint < 0));
1515
1516 return &entry->s.output_section_statement;
1517 }
1518
1519 /* A variant of lang_output_section_find used by place_orphan.
1520 Returns the output statement that should precede a new output
1521 statement for SEC. If an exact match is found on certain flags,
1522 sets *EXACT too. */
1523
1524 lang_output_section_statement_type *
1525 lang_output_section_find_by_flags (const asection *sec,
1526 flagword sec_flags,
1527 lang_output_section_statement_type **exact,
1528 lang_match_sec_type_func match_type)
1529 {
1530 lang_output_section_statement_type *first, *look, *found;
1531 flagword look_flags, differ;
1532
1533 /* We know the first statement on this list is *ABS*. May as well
1534 skip it. */
1535 first = &lang_output_section_statement.head->output_section_statement;
1536 first = first->next;
1537
1538 /* First try for an exact match. */
1539 found = NULL;
1540 for (look = first; look; look = look->next)
1541 {
1542 look_flags = look->flags;
1543 if (look->bfd_section != NULL)
1544 {
1545 look_flags = look->bfd_section->flags;
1546 if (match_type && !match_type (link_info.output_bfd,
1547 look->bfd_section,
1548 sec->owner, sec))
1549 continue;
1550 }
1551 differ = look_flags ^ sec_flags;
1552 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1553 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1554 found = look;
1555 }
1556 if (found != NULL)
1557 {
1558 if (exact != NULL)
1559 *exact = found;
1560 return found;
1561 }
1562
1563 if ((sec_flags & SEC_CODE) != 0
1564 && (sec_flags & SEC_ALLOC) != 0)
1565 {
1566 /* Try for a rw code section. */
1567 for (look = first; look; look = look->next)
1568 {
1569 look_flags = look->flags;
1570 if (look->bfd_section != NULL)
1571 {
1572 look_flags = look->bfd_section->flags;
1573 if (match_type && !match_type (link_info.output_bfd,
1574 look->bfd_section,
1575 sec->owner, sec))
1576 continue;
1577 }
1578 differ = look_flags ^ sec_flags;
1579 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1580 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1581 found = look;
1582 }
1583 }
1584 else if ((sec_flags & SEC_READONLY) != 0
1585 && (sec_flags & SEC_ALLOC) != 0)
1586 {
1587 /* .rodata can go after .text, .sdata2 after .rodata. */
1588 for (look = first; look; look = look->next)
1589 {
1590 look_flags = look->flags;
1591 if (look->bfd_section != NULL)
1592 {
1593 look_flags = look->bfd_section->flags;
1594 if (match_type && !match_type (link_info.output_bfd,
1595 look->bfd_section,
1596 sec->owner, sec))
1597 continue;
1598 }
1599 differ = look_flags ^ sec_flags;
1600 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY | SEC_SMALL_DATA))
1602 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1603 | SEC_READONLY))
1604 && !(look_flags & SEC_SMALL_DATA)))
1605 found = look;
1606 }
1607 }
1608 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1612 as if it were a loaded section, and don't use match_type. */
1613 bfd_boolean seen_thread_local = FALSE;
1614
1615 match_type = NULL;
1616 for (look = first; look; look = look->next)
1617 {
1618 look_flags = look->flags;
1619 if (look->bfd_section != NULL)
1620 look_flags = look->bfd_section->flags;
1621
1622 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1623 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1624 {
1625 /* .tdata and .tbss must be adjacent and in that order. */
1626 if (!(look_flags & SEC_LOAD)
1627 && (sec_flags & SEC_LOAD))
1628 /* ..so if we're at a .tbss section and we're placing
1629 a .tdata section stop looking and return the
1630 previous section. */
1631 break;
1632 found = look;
1633 seen_thread_local = TRUE;
1634 }
1635 else if (seen_thread_local)
1636 break;
1637 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1638 found = look;
1639 }
1640 }
1641 else if ((sec_flags & SEC_SMALL_DATA) != 0
1642 && (sec_flags & SEC_ALLOC) != 0)
1643 {
1644 /* .sdata goes after .data, .sbss after .sdata. */
1645 for (look = first; look; look = look->next)
1646 {
1647 look_flags = look->flags;
1648 if (look->bfd_section != NULL)
1649 {
1650 look_flags = look->bfd_section->flags;
1651 if (match_type && !match_type (link_info.output_bfd,
1652 look->bfd_section,
1653 sec->owner, sec))
1654 continue;
1655 }
1656 differ = look_flags ^ sec_flags;
1657 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1658 | SEC_THREAD_LOCAL))
1659 || ((look_flags & SEC_SMALL_DATA)
1660 && !(sec_flags & SEC_HAS_CONTENTS)))
1661 found = look;
1662 }
1663 }
1664 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1665 && (sec_flags & SEC_ALLOC) != 0)
1666 {
1667 /* .data goes after .rodata. */
1668 for (look = first; look; look = look->next)
1669 {
1670 look_flags = look->flags;
1671 if (look->bfd_section != NULL)
1672 {
1673 look_flags = look->bfd_section->flags;
1674 if (match_type && !match_type (link_info.output_bfd,
1675 look->bfd_section,
1676 sec->owner, sec))
1677 continue;
1678 }
1679 differ = look_flags ^ sec_flags;
1680 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1681 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_ALLOC) != 0)
1686 {
1687 /* .bss goes after any other alloc section. */
1688 for (look = first; look; look = look->next)
1689 {
1690 look_flags = look->flags;
1691 if (look->bfd_section != NULL)
1692 {
1693 look_flags = look->bfd_section->flags;
1694 if (match_type && !match_type (link_info.output_bfd,
1695 look->bfd_section,
1696 sec->owner, sec))
1697 continue;
1698 }
1699 differ = look_flags ^ sec_flags;
1700 if (!(differ & SEC_ALLOC))
1701 found = look;
1702 }
1703 }
1704 else
1705 {
1706 /* non-alloc go last. */
1707 for (look = first; look; look = look->next)
1708 {
1709 look_flags = look->flags;
1710 if (look->bfd_section != NULL)
1711 look_flags = look->bfd_section->flags;
1712 differ = look_flags ^ sec_flags;
1713 if (!(differ & SEC_DEBUGGING))
1714 found = look;
1715 }
1716 return found;
1717 }
1718
1719 if (found || !match_type)
1720 return found;
1721
1722 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1723 }
1724
1725 /* Find the last output section before given output statement.
1726 Used by place_orphan. */
1727
1728 static asection *
1729 output_prev_sec_find (lang_output_section_statement_type *os)
1730 {
1731 lang_output_section_statement_type *lookup;
1732
1733 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1734 {
1735 if (lookup->constraint < 0)
1736 continue;
1737
1738 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1739 return lookup->bfd_section;
1740 }
1741
1742 return NULL;
1743 }
1744
1745 /* Look for a suitable place for a new output section statement. The
1746 idea is to skip over anything that might be inside a SECTIONS {}
1747 statement in a script, before we find another output section
1748 statement. Assignments to "dot" before an output section statement
1749 are assumed to belong to it, except in two cases; The first
1750 assignment to dot, and assignments before non-alloc sections.
1751 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1752 similar assignments that set the initial address, or we might
1753 insert non-alloc note sections among assignments setting end of
1754 image symbols. */
1755
1756 static lang_statement_union_type **
1757 insert_os_after (lang_output_section_statement_type *after)
1758 {
1759 lang_statement_union_type **where;
1760 lang_statement_union_type **assign = NULL;
1761 bfd_boolean ignore_first;
1762
1763 ignore_first
1764 = after == &lang_output_section_statement.head->output_section_statement;
1765
1766 for (where = &after->header.next;
1767 *where != NULL;
1768 where = &(*where)->header.next)
1769 {
1770 switch ((*where)->header.type)
1771 {
1772 case lang_assignment_statement_enum:
1773 if (assign == NULL)
1774 {
1775 lang_assignment_statement_type *ass;
1776
1777 ass = &(*where)->assignment_statement;
1778 if (ass->exp->type.node_class != etree_assert
1779 && ass->exp->assign.dst[0] == '.'
1780 && ass->exp->assign.dst[1] == 0
1781 && !ignore_first)
1782 assign = where;
1783 }
1784 ignore_first = FALSE;
1785 continue;
1786 case lang_wild_statement_enum:
1787 case lang_input_section_enum:
1788 case lang_object_symbols_statement_enum:
1789 case lang_fill_statement_enum:
1790 case lang_data_statement_enum:
1791 case lang_reloc_statement_enum:
1792 case lang_padding_statement_enum:
1793 case lang_constructors_statement_enum:
1794 assign = NULL;
1795 continue;
1796 case lang_output_section_statement_enum:
1797 if (assign != NULL)
1798 {
1799 asection *s = (*where)->output_section_statement.bfd_section;
1800
1801 if (s == NULL
1802 || s->map_head.s == NULL
1803 || (s->flags & SEC_ALLOC) != 0)
1804 where = assign;
1805 }
1806 break;
1807 case lang_input_statement_enum:
1808 case lang_address_statement_enum:
1809 case lang_target_statement_enum:
1810 case lang_output_statement_enum:
1811 case lang_group_statement_enum:
1812 case lang_insert_statement_enum:
1813 continue;
1814 }
1815 break;
1816 }
1817
1818 return where;
1819 }
1820
1821 lang_output_section_statement_type *
1822 lang_insert_orphan (asection *s,
1823 const char *secname,
1824 int constraint,
1825 lang_output_section_statement_type *after,
1826 struct orphan_save *place,
1827 etree_type *address,
1828 lang_statement_list_type *add_child)
1829 {
1830 lang_statement_list_type add;
1831 lang_output_section_statement_type *os;
1832 lang_output_section_statement_type **os_tail;
1833
1834 /* If we have found an appropriate place for the output section
1835 statements for this orphan, add them to our own private list,
1836 inserting them later into the global statement list. */
1837 if (after != NULL)
1838 {
1839 lang_list_init (&add);
1840 push_stat_ptr (&add);
1841 }
1842
1843 if (bfd_link_relocatable (&link_info)
1844 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1845 address = exp_intop (0);
1846
1847 os_tail = ((lang_output_section_statement_type **)
1848 lang_output_section_statement.tail);
1849 os = lang_enter_output_section_statement (secname, address, normal_section,
1850 NULL, NULL, NULL, constraint, 0);
1851
1852 if (add_child == NULL)
1853 add_child = &os->children;
1854 lang_add_section (add_child, s, NULL, os);
1855
1856 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1857 {
1858 const char *region = (after->region
1859 ? after->region->name_list.name
1860 : DEFAULT_MEMORY_REGION);
1861 const char *lma_region = (after->lma_region
1862 ? after->lma_region->name_list.name
1863 : NULL);
1864 lang_leave_output_section_statement (NULL, region, after->phdrs,
1865 lma_region);
1866 }
1867 else
1868 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1869 NULL);
1870
1871 /* Restore the global list pointer. */
1872 if (after != NULL)
1873 pop_stat_ptr ();
1874
1875 if (after != NULL && os->bfd_section != NULL)
1876 {
1877 asection *snew, *as;
1878
1879 snew = os->bfd_section;
1880
1881 /* Shuffle the bfd section list to make the output file look
1882 neater. This is really only cosmetic. */
1883 if (place->section == NULL
1884 && after != (&lang_output_section_statement.head
1885 ->output_section_statement))
1886 {
1887 asection *bfd_section = after->bfd_section;
1888
1889 /* If the output statement hasn't been used to place any input
1890 sections (and thus doesn't have an output bfd_section),
1891 look for the closest prior output statement having an
1892 output section. */
1893 if (bfd_section == NULL)
1894 bfd_section = output_prev_sec_find (after);
1895
1896 if (bfd_section != NULL && bfd_section != snew)
1897 place->section = &bfd_section->next;
1898 }
1899
1900 if (place->section == NULL)
1901 place->section = &link_info.output_bfd->sections;
1902
1903 as = *place->section;
1904
1905 if (!as)
1906 {
1907 /* Put the section at the end of the list. */
1908
1909 /* Unlink the section. */
1910 bfd_section_list_remove (link_info.output_bfd, snew);
1911
1912 /* Now tack it back on in the right place. */
1913 bfd_section_list_append (link_info.output_bfd, snew);
1914 }
1915 else if (as != snew && as->prev != snew)
1916 {
1917 /* Unlink the section. */
1918 bfd_section_list_remove (link_info.output_bfd, snew);
1919
1920 /* Now tack it back on in the right place. */
1921 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1922 }
1923
1924 /* Save the end of this list. Further ophans of this type will
1925 follow the one we've just added. */
1926 place->section = &snew->next;
1927
1928 /* The following is non-cosmetic. We try to put the output
1929 statements in some sort of reasonable order here, because they
1930 determine the final load addresses of the orphan sections.
1931 In addition, placing output statements in the wrong order may
1932 require extra segments. For instance, given a typical
1933 situation of all read-only sections placed in one segment and
1934 following that a segment containing all the read-write
1935 sections, we wouldn't want to place an orphan read/write
1936 section before or amongst the read-only ones. */
1937 if (add.head != NULL)
1938 {
1939 lang_output_section_statement_type *newly_added_os;
1940
1941 if (place->stmt == NULL)
1942 {
1943 lang_statement_union_type **where = insert_os_after (after);
1944
1945 *add.tail = *where;
1946 *where = add.head;
1947
1948 place->os_tail = &after->next;
1949 }
1950 else
1951 {
1952 /* Put it after the last orphan statement we added. */
1953 *add.tail = *place->stmt;
1954 *place->stmt = add.head;
1955 }
1956
1957 /* Fix the global list pointer if we happened to tack our
1958 new list at the tail. */
1959 if (*stat_ptr->tail == add.head)
1960 stat_ptr->tail = add.tail;
1961
1962 /* Save the end of this list. */
1963 place->stmt = add.tail;
1964
1965 /* Do the same for the list of output section statements. */
1966 newly_added_os = *os_tail;
1967 *os_tail = NULL;
1968 newly_added_os->prev = (lang_output_section_statement_type *)
1969 ((char *) place->os_tail
1970 - offsetof (lang_output_section_statement_type, next));
1971 newly_added_os->next = *place->os_tail;
1972 if (newly_added_os->next != NULL)
1973 newly_added_os->next->prev = newly_added_os;
1974 *place->os_tail = newly_added_os;
1975 place->os_tail = &newly_added_os->next;
1976
1977 /* Fixing the global list pointer here is a little different.
1978 We added to the list in lang_enter_output_section_statement,
1979 trimmed off the new output_section_statment above when
1980 assigning *os_tail = NULL, but possibly added it back in
1981 the same place when assigning *place->os_tail. */
1982 if (*os_tail == NULL)
1983 lang_output_section_statement.tail
1984 = (lang_statement_union_type **) os_tail;
1985 }
1986 }
1987 return os;
1988 }
1989
1990 static void
1991 lang_print_asneeded (void)
1992 {
1993 struct asneeded_minfo *m;
1994
1995 if (asneeded_list_head == NULL)
1996 return;
1997
1998 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
1999
2000 for (m = asneeded_list_head; m != NULL; m = m->next)
2001 {
2002 size_t len;
2003
2004 minfo ("%s", m->soname);
2005 len = strlen (m->soname);
2006
2007 if (len >= 29)
2008 {
2009 print_nl ();
2010 len = 0;
2011 }
2012 while (len < 30)
2013 {
2014 print_space ();
2015 ++len;
2016 }
2017
2018 if (m->ref != NULL)
2019 minfo ("%B ", m->ref);
2020 minfo ("(%T)\n", m->name);
2021 }
2022 }
2023
2024 static void
2025 lang_map_flags (flagword flag)
2026 {
2027 if (flag & SEC_ALLOC)
2028 minfo ("a");
2029
2030 if (flag & SEC_CODE)
2031 minfo ("x");
2032
2033 if (flag & SEC_READONLY)
2034 minfo ("r");
2035
2036 if (flag & SEC_DATA)
2037 minfo ("w");
2038
2039 if (flag & SEC_LOAD)
2040 minfo ("l");
2041 }
2042
2043 void
2044 lang_map (void)
2045 {
2046 lang_memory_region_type *m;
2047 bfd_boolean dis_header_printed = FALSE;
2048
2049 LANG_FOR_EACH_INPUT_STATEMENT (file)
2050 {
2051 asection *s;
2052
2053 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2054 || file->flags.just_syms)
2055 continue;
2056
2057 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2058 if ((s->output_section == NULL
2059 || s->output_section->owner != link_info.output_bfd)
2060 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2061 {
2062 if (!dis_header_printed)
2063 {
2064 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2065 dis_header_printed = TRUE;
2066 }
2067
2068 print_input_section (s, TRUE);
2069 }
2070 }
2071
2072 minfo (_("\nMemory Configuration\n\n"));
2073 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2074 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2075
2076 for (m = lang_memory_region_list; m != NULL; m = m->next)
2077 {
2078 char buf[100];
2079 int len;
2080
2081 fprintf (config.map_file, "%-16s ", m->name_list.name);
2082
2083 sprintf_vma (buf, m->origin);
2084 minfo ("0x%s ", buf);
2085 len = strlen (buf);
2086 while (len < 16)
2087 {
2088 print_space ();
2089 ++len;
2090 }
2091
2092 minfo ("0x%V", m->length);
2093 if (m->flags || m->not_flags)
2094 {
2095 #ifndef BFD64
2096 minfo (" ");
2097 #endif
2098 if (m->flags)
2099 {
2100 print_space ();
2101 lang_map_flags (m->flags);
2102 }
2103
2104 if (m->not_flags)
2105 {
2106 minfo (" !");
2107 lang_map_flags (m->not_flags);
2108 }
2109 }
2110
2111 print_nl ();
2112 }
2113
2114 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2115
2116 if (!link_info.reduce_memory_overheads)
2117 {
2118 obstack_begin (&map_obstack, 1000);
2119 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2120 }
2121 lang_statement_iteration++;
2122 print_statements ();
2123
2124 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2125 config.map_file);
2126 }
2127
2128 static bfd_boolean
2129 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2130 void *info ATTRIBUTE_UNUSED)
2131 {
2132 if ((hash_entry->type == bfd_link_hash_defined
2133 || hash_entry->type == bfd_link_hash_defweak)
2134 && hash_entry->u.def.section->owner != link_info.output_bfd
2135 && hash_entry->u.def.section->owner != NULL)
2136 {
2137 input_section_userdata_type *ud;
2138 struct map_symbol_def *def;
2139
2140 ud = ((input_section_userdata_type *)
2141 get_userdata (hash_entry->u.def.section));
2142 if (!ud)
2143 {
2144 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2145 get_userdata (hash_entry->u.def.section) = ud;
2146 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2147 ud->map_symbol_def_count = 0;
2148 }
2149 else if (!ud->map_symbol_def_tail)
2150 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2151
2152 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2153 def->entry = hash_entry;
2154 *(ud->map_symbol_def_tail) = def;
2155 ud->map_symbol_def_tail = &def->next;
2156 ud->map_symbol_def_count++;
2157 }
2158 return TRUE;
2159 }
2160
2161 /* Initialize an output section. */
2162
2163 static void
2164 init_os (lang_output_section_statement_type *s, flagword flags)
2165 {
2166 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2167 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2168
2169 if (s->constraint != SPECIAL)
2170 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2171 if (s->bfd_section == NULL)
2172 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2173 s->name, flags);
2174 if (s->bfd_section == NULL)
2175 {
2176 einfo (_("%P%F: output format %s cannot represent section"
2177 " called %s: %E\n"),
2178 link_info.output_bfd->xvec->name, s->name);
2179 }
2180 s->bfd_section->output_section = s->bfd_section;
2181 s->bfd_section->output_offset = 0;
2182
2183 /* Set the userdata of the output section to the output section
2184 statement to avoid lookup. */
2185 get_userdata (s->bfd_section) = s;
2186
2187 /* If there is a base address, make sure that any sections it might
2188 mention are initialized. */
2189 if (s->addr_tree != NULL)
2190 exp_init_os (s->addr_tree);
2191
2192 if (s->load_base != NULL)
2193 exp_init_os (s->load_base);
2194
2195 /* If supplied an alignment, set it. */
2196 if (s->section_alignment != -1)
2197 s->bfd_section->alignment_power = s->section_alignment;
2198 }
2199
2200 /* Make sure that all output sections mentioned in an expression are
2201 initialized. */
2202
2203 static void
2204 exp_init_os (etree_type *exp)
2205 {
2206 switch (exp->type.node_class)
2207 {
2208 case etree_assign:
2209 case etree_provide:
2210 exp_init_os (exp->assign.src);
2211 break;
2212
2213 case etree_binary:
2214 exp_init_os (exp->binary.lhs);
2215 exp_init_os (exp->binary.rhs);
2216 break;
2217
2218 case etree_trinary:
2219 exp_init_os (exp->trinary.cond);
2220 exp_init_os (exp->trinary.lhs);
2221 exp_init_os (exp->trinary.rhs);
2222 break;
2223
2224 case etree_assert:
2225 exp_init_os (exp->assert_s.child);
2226 break;
2227
2228 case etree_unary:
2229 exp_init_os (exp->unary.child);
2230 break;
2231
2232 case etree_name:
2233 switch (exp->type.node_code)
2234 {
2235 case ADDR:
2236 case LOADADDR:
2237 case SIZEOF:
2238 {
2239 lang_output_section_statement_type *os;
2240
2241 os = lang_output_section_find (exp->name.name);
2242 if (os != NULL && os->bfd_section == NULL)
2243 init_os (os, 0);
2244 }
2245 }
2246 break;
2247
2248 default:
2249 break;
2250 }
2251 }
2252 \f
2253 static void
2254 section_already_linked (bfd *abfd, asection *sec, void *data)
2255 {
2256 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2257
2258 /* If we are only reading symbols from this object, then we want to
2259 discard all sections. */
2260 if (entry->flags.just_syms)
2261 {
2262 bfd_link_just_syms (abfd, sec, &link_info);
2263 return;
2264 }
2265
2266 /* Deal with SHF_EXCLUDE ELF sections. */
2267 if (!bfd_link_relocatable (&link_info)
2268 && (abfd->flags & BFD_PLUGIN) == 0
2269 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2270 sec->output_section = bfd_abs_section_ptr;
2271
2272 if (!(abfd->flags & DYNAMIC))
2273 bfd_section_already_linked (abfd, sec, &link_info);
2274 }
2275 \f
2276
2277 /* Returns true if SECTION is one we know will be discarded based on its
2278 section flags, otherwise returns false. */
2279
2280 static bfd_boolean
2281 lang_discard_section_p (asection *section)
2282 {
2283 bfd_boolean discard;
2284 flagword flags = section->flags;
2285
2286 /* Discard sections marked with SEC_EXCLUDE. */
2287 discard = (flags & SEC_EXCLUDE) != 0;
2288
2289 /* Discard the group descriptor sections when we're finally placing the
2290 sections from within the group. */
2291 if ((flags & SEC_GROUP) != 0
2292 && link_info.resolve_section_groups)
2293 discard = TRUE;
2294
2295 /* Discard debugging sections if we are stripping debugging
2296 information. */
2297 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2298 && (flags & SEC_DEBUGGING) != 0)
2299 discard = TRUE;
2300
2301 return discard;
2302 }
2303
2304 /* The wild routines.
2305
2306 These expand statements like *(.text) and foo.o to a list of
2307 explicit actions, like foo.o(.text), bar.o(.text) and
2308 foo.o(.text, .data). */
2309
2310 /* Add SECTION to the output section OUTPUT. Do this by creating a
2311 lang_input_section statement which is placed at PTR. */
2312
2313 void
2314 lang_add_section (lang_statement_list_type *ptr,
2315 asection *section,
2316 struct flag_info *sflag_info,
2317 lang_output_section_statement_type *output)
2318 {
2319 flagword flags = section->flags;
2320
2321 bfd_boolean discard;
2322 lang_input_section_type *new_section;
2323 bfd *abfd = link_info.output_bfd;
2324
2325 /* Is this section one we know should be discarded? */
2326 discard = lang_discard_section_p (section);
2327
2328 /* Discard input sections which are assigned to a section named
2329 DISCARD_SECTION_NAME. */
2330 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2331 discard = TRUE;
2332
2333 if (discard)
2334 {
2335 if (section->output_section == NULL)
2336 {
2337 /* This prevents future calls from assigning this section. */
2338 section->output_section = bfd_abs_section_ptr;
2339 }
2340 return;
2341 }
2342
2343 if (sflag_info)
2344 {
2345 bfd_boolean keep;
2346
2347 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2348 if (!keep)
2349 return;
2350 }
2351
2352 if (section->output_section != NULL)
2353 return;
2354
2355 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2356 to an output section, because we want to be able to include a
2357 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2358 section (I don't know why we want to do this, but we do).
2359 build_link_order in ldwrite.c handles this case by turning
2360 the embedded SEC_NEVER_LOAD section into a fill. */
2361 flags &= ~ SEC_NEVER_LOAD;
2362
2363 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2364 already been processed. One reason to do this is that on pe
2365 format targets, .text$foo sections go into .text and it's odd
2366 to see .text with SEC_LINK_ONCE set. */
2367 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2368 {
2369 if (link_info.resolve_section_groups)
2370 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2371 else
2372 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2373 }
2374 else if (!bfd_link_relocatable (&link_info))
2375 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2376
2377 switch (output->sectype)
2378 {
2379 case normal_section:
2380 case overlay_section:
2381 break;
2382 case noalloc_section:
2383 flags &= ~SEC_ALLOC;
2384 break;
2385 case noload_section:
2386 flags &= ~SEC_LOAD;
2387 flags |= SEC_NEVER_LOAD;
2388 /* Unfortunately GNU ld has managed to evolve two different
2389 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2390 alloc, no contents section. All others get a noload, noalloc
2391 section. */
2392 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2393 flags &= ~SEC_HAS_CONTENTS;
2394 else
2395 flags &= ~SEC_ALLOC;
2396 break;
2397 }
2398
2399 if (output->bfd_section == NULL)
2400 init_os (output, flags);
2401
2402 /* If SEC_READONLY is not set in the input section, then clear
2403 it from the output section. */
2404 output->bfd_section->flags &= flags | ~SEC_READONLY;
2405
2406 if (output->bfd_section->linker_has_input)
2407 {
2408 /* Only set SEC_READONLY flag on the first input section. */
2409 flags &= ~ SEC_READONLY;
2410
2411 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2412 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2413 != (flags & (SEC_MERGE | SEC_STRINGS))
2414 || ((flags & SEC_MERGE) != 0
2415 && output->bfd_section->entsize != section->entsize))
2416 {
2417 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2418 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2419 }
2420 }
2421 output->bfd_section->flags |= flags;
2422
2423 if (!output->bfd_section->linker_has_input)
2424 {
2425 output->bfd_section->linker_has_input = 1;
2426 /* This must happen after flags have been updated. The output
2427 section may have been created before we saw its first input
2428 section, eg. for a data statement. */
2429 bfd_init_private_section_data (section->owner, section,
2430 link_info.output_bfd,
2431 output->bfd_section,
2432 &link_info);
2433 if ((flags & SEC_MERGE) != 0)
2434 output->bfd_section->entsize = section->entsize;
2435 }
2436
2437 if ((flags & SEC_TIC54X_BLOCK) != 0
2438 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2439 {
2440 /* FIXME: This value should really be obtained from the bfd... */
2441 output->block_value = 128;
2442 }
2443
2444 if (section->alignment_power > output->bfd_section->alignment_power)
2445 output->bfd_section->alignment_power = section->alignment_power;
2446
2447 section->output_section = output->bfd_section;
2448
2449 if (!map_head_is_link_order)
2450 {
2451 asection *s = output->bfd_section->map_tail.s;
2452 output->bfd_section->map_tail.s = section;
2453 section->map_head.s = NULL;
2454 section->map_tail.s = s;
2455 if (s != NULL)
2456 s->map_head.s = section;
2457 else
2458 output->bfd_section->map_head.s = section;
2459 }
2460
2461 /* Add a section reference to the list. */
2462 new_section = new_stat (lang_input_section, ptr);
2463 new_section->section = section;
2464 }
2465
2466 /* Handle wildcard sorting. This returns the lang_input_section which
2467 should follow the one we are going to create for SECTION and FILE,
2468 based on the sorting requirements of WILD. It returns NULL if the
2469 new section should just go at the end of the current list. */
2470
2471 static lang_statement_union_type *
2472 wild_sort (lang_wild_statement_type *wild,
2473 struct wildcard_list *sec,
2474 lang_input_statement_type *file,
2475 asection *section)
2476 {
2477 lang_statement_union_type *l;
2478
2479 if (!wild->filenames_sorted
2480 && (sec == NULL || sec->spec.sorted == none))
2481 return NULL;
2482
2483 for (l = wild->children.head; l != NULL; l = l->header.next)
2484 {
2485 lang_input_section_type *ls;
2486
2487 if (l->header.type != lang_input_section_enum)
2488 continue;
2489 ls = &l->input_section;
2490
2491 /* Sorting by filename takes precedence over sorting by section
2492 name. */
2493
2494 if (wild->filenames_sorted)
2495 {
2496 const char *fn, *ln;
2497 bfd_boolean fa, la;
2498 int i;
2499
2500 /* The PE support for the .idata section as generated by
2501 dlltool assumes that files will be sorted by the name of
2502 the archive and then the name of the file within the
2503 archive. */
2504
2505 if (file->the_bfd != NULL
2506 && file->the_bfd->my_archive != NULL)
2507 {
2508 fn = bfd_get_filename (file->the_bfd->my_archive);
2509 fa = TRUE;
2510 }
2511 else
2512 {
2513 fn = file->filename;
2514 fa = FALSE;
2515 }
2516
2517 if (ls->section->owner->my_archive != NULL)
2518 {
2519 ln = bfd_get_filename (ls->section->owner->my_archive);
2520 la = TRUE;
2521 }
2522 else
2523 {
2524 ln = ls->section->owner->filename;
2525 la = FALSE;
2526 }
2527
2528 i = filename_cmp (fn, ln);
2529 if (i > 0)
2530 continue;
2531 else if (i < 0)
2532 break;
2533
2534 if (fa || la)
2535 {
2536 if (fa)
2537 fn = file->filename;
2538 if (la)
2539 ln = ls->section->owner->filename;
2540
2541 i = filename_cmp (fn, ln);
2542 if (i > 0)
2543 continue;
2544 else if (i < 0)
2545 break;
2546 }
2547 }
2548
2549 /* Here either the files are not sorted by name, or we are
2550 looking at the sections for this file. */
2551
2552 if (sec != NULL
2553 && sec->spec.sorted != none
2554 && sec->spec.sorted != by_none)
2555 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2556 break;
2557 }
2558
2559 return l;
2560 }
2561
2562 /* Expand a wild statement for a particular FILE. SECTION may be
2563 NULL, in which case it is a wild card. */
2564
2565 static void
2566 output_section_callback (lang_wild_statement_type *ptr,
2567 struct wildcard_list *sec,
2568 asection *section,
2569 struct flag_info *sflag_info,
2570 lang_input_statement_type *file,
2571 void *output)
2572 {
2573 lang_statement_union_type *before;
2574 lang_output_section_statement_type *os;
2575
2576 os = (lang_output_section_statement_type *) output;
2577
2578 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2579 if (unique_section_p (section, os))
2580 return;
2581
2582 before = wild_sort (ptr, sec, file, section);
2583
2584 /* Here BEFORE points to the lang_input_section which
2585 should follow the one we are about to add. If BEFORE
2586 is NULL, then the section should just go at the end
2587 of the current list. */
2588
2589 if (before == NULL)
2590 lang_add_section (&ptr->children, section, sflag_info, os);
2591 else
2592 {
2593 lang_statement_list_type list;
2594 lang_statement_union_type **pp;
2595
2596 lang_list_init (&list);
2597 lang_add_section (&list, section, sflag_info, os);
2598
2599 /* If we are discarding the section, LIST.HEAD will
2600 be NULL. */
2601 if (list.head != NULL)
2602 {
2603 ASSERT (list.head->header.next == NULL);
2604
2605 for (pp = &ptr->children.head;
2606 *pp != before;
2607 pp = &(*pp)->header.next)
2608 ASSERT (*pp != NULL);
2609
2610 list.head->header.next = *pp;
2611 *pp = list.head;
2612 }
2613 }
2614 }
2615
2616 /* Check if all sections in a wild statement for a particular FILE
2617 are readonly. */
2618
2619 static void
2620 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2621 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2622 asection *section,
2623 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2624 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2625 void *output)
2626 {
2627 lang_output_section_statement_type *os;
2628
2629 os = (lang_output_section_statement_type *) output;
2630
2631 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2632 if (unique_section_p (section, os))
2633 return;
2634
2635 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2636 os->all_input_readonly = FALSE;
2637 }
2638
2639 /* This is passed a file name which must have been seen already and
2640 added to the statement tree. We will see if it has been opened
2641 already and had its symbols read. If not then we'll read it. */
2642
2643 static lang_input_statement_type *
2644 lookup_name (const char *name)
2645 {
2646 lang_input_statement_type *search;
2647
2648 for (search = (lang_input_statement_type *) input_file_chain.head;
2649 search != NULL;
2650 search = (lang_input_statement_type *) search->next_real_file)
2651 {
2652 /* Use the local_sym_name as the name of the file that has
2653 already been loaded as filename might have been transformed
2654 via the search directory lookup mechanism. */
2655 const char *filename = search->local_sym_name;
2656
2657 if (filename != NULL
2658 && filename_cmp (filename, name) == 0)
2659 break;
2660 }
2661
2662 if (search == NULL)
2663 search = new_afile (name, lang_input_file_is_search_file_enum,
2664 default_target, FALSE);
2665
2666 /* If we have already added this file, or this file is not real
2667 don't add this file. */
2668 if (search->flags.loaded || !search->flags.real)
2669 return search;
2670
2671 if (!load_symbols (search, NULL))
2672 return NULL;
2673
2674 return search;
2675 }
2676
2677 /* Save LIST as a list of libraries whose symbols should not be exported. */
2678
2679 struct excluded_lib
2680 {
2681 char *name;
2682 struct excluded_lib *next;
2683 };
2684 static struct excluded_lib *excluded_libs;
2685
2686 void
2687 add_excluded_libs (const char *list)
2688 {
2689 const char *p = list, *end;
2690
2691 while (*p != '\0')
2692 {
2693 struct excluded_lib *entry;
2694 end = strpbrk (p, ",:");
2695 if (end == NULL)
2696 end = p + strlen (p);
2697 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2698 entry->next = excluded_libs;
2699 entry->name = (char *) xmalloc (end - p + 1);
2700 memcpy (entry->name, p, end - p);
2701 entry->name[end - p] = '\0';
2702 excluded_libs = entry;
2703 if (*end == '\0')
2704 break;
2705 p = end + 1;
2706 }
2707 }
2708
2709 static void
2710 check_excluded_libs (bfd *abfd)
2711 {
2712 struct excluded_lib *lib = excluded_libs;
2713
2714 while (lib)
2715 {
2716 int len = strlen (lib->name);
2717 const char *filename = lbasename (abfd->filename);
2718
2719 if (strcmp (lib->name, "ALL") == 0)
2720 {
2721 abfd->no_export = TRUE;
2722 return;
2723 }
2724
2725 if (filename_ncmp (lib->name, filename, len) == 0
2726 && (filename[len] == '\0'
2727 || (filename[len] == '.' && filename[len + 1] == 'a'
2728 && filename[len + 2] == '\0')))
2729 {
2730 abfd->no_export = TRUE;
2731 return;
2732 }
2733
2734 lib = lib->next;
2735 }
2736 }
2737
2738 /* Get the symbols for an input file. */
2739
2740 bfd_boolean
2741 load_symbols (lang_input_statement_type *entry,
2742 lang_statement_list_type *place)
2743 {
2744 char **matching;
2745
2746 if (entry->flags.loaded)
2747 return TRUE;
2748
2749 ldfile_open_file (entry);
2750
2751 /* Do not process further if the file was missing. */
2752 if (entry->flags.missing_file)
2753 return TRUE;
2754
2755 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2756 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2757 {
2758 bfd_error_type err;
2759 struct lang_input_statement_flags save_flags;
2760 extern FILE *yyin;
2761
2762 err = bfd_get_error ();
2763
2764 /* See if the emulation has some special knowledge. */
2765 if (ldemul_unrecognized_file (entry))
2766 return TRUE;
2767
2768 if (err == bfd_error_file_ambiguously_recognized)
2769 {
2770 char **p;
2771
2772 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2773 einfo (_("%B: matching formats:"), entry->the_bfd);
2774 for (p = matching; *p != NULL; p++)
2775 einfo (" %s", *p);
2776 einfo ("%F\n");
2777 }
2778 else if (err != bfd_error_file_not_recognized
2779 || place == NULL)
2780 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2781
2782 bfd_close (entry->the_bfd);
2783 entry->the_bfd = NULL;
2784
2785 /* Try to interpret the file as a linker script. */
2786 save_flags = input_flags;
2787 ldfile_open_command_file (entry->filename);
2788
2789 push_stat_ptr (place);
2790 input_flags.add_DT_NEEDED_for_regular
2791 = entry->flags.add_DT_NEEDED_for_regular;
2792 input_flags.add_DT_NEEDED_for_dynamic
2793 = entry->flags.add_DT_NEEDED_for_dynamic;
2794 input_flags.whole_archive = entry->flags.whole_archive;
2795 input_flags.dynamic = entry->flags.dynamic;
2796
2797 ldfile_assumed_script = TRUE;
2798 parser_input = input_script;
2799 yyparse ();
2800 ldfile_assumed_script = FALSE;
2801
2802 /* missing_file is sticky. sysrooted will already have been
2803 restored when seeing EOF in yyparse, but no harm to restore
2804 again. */
2805 save_flags.missing_file |= input_flags.missing_file;
2806 input_flags = save_flags;
2807 pop_stat_ptr ();
2808 fclose (yyin);
2809 yyin = NULL;
2810 entry->flags.loaded = TRUE;
2811
2812 return TRUE;
2813 }
2814
2815 if (ldemul_recognized_file (entry))
2816 return TRUE;
2817
2818 /* We don't call ldlang_add_file for an archive. Instead, the
2819 add_symbols entry point will call ldlang_add_file, via the
2820 add_archive_element callback, for each element of the archive
2821 which is used. */
2822 switch (bfd_get_format (entry->the_bfd))
2823 {
2824 default:
2825 break;
2826
2827 case bfd_object:
2828 if (!entry->flags.reload)
2829 ldlang_add_file (entry);
2830 if (trace_files || verbose)
2831 info_msg ("%I\n", entry);
2832 break;
2833
2834 case bfd_archive:
2835 check_excluded_libs (entry->the_bfd);
2836
2837 entry->the_bfd->usrdata = entry;
2838 if (entry->flags.whole_archive)
2839 {
2840 bfd *member = NULL;
2841 bfd_boolean loaded = TRUE;
2842
2843 for (;;)
2844 {
2845 bfd *subsbfd;
2846 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2847
2848 if (member == NULL)
2849 break;
2850
2851 if (!bfd_check_format (member, bfd_object))
2852 {
2853 einfo (_("%F%B: member %B in archive is not an object\n"),
2854 entry->the_bfd, member);
2855 loaded = FALSE;
2856 }
2857
2858 subsbfd = member;
2859 if (!(*link_info.callbacks
2860 ->add_archive_element) (&link_info, member,
2861 "--whole-archive", &subsbfd))
2862 abort ();
2863
2864 /* Potentially, the add_archive_element hook may have set a
2865 substitute BFD for us. */
2866 if (!bfd_link_add_symbols (subsbfd, &link_info))
2867 {
2868 einfo (_("%F%B: error adding symbols: %E\n"), member);
2869 loaded = FALSE;
2870 }
2871 }
2872
2873 entry->flags.loaded = loaded;
2874 return loaded;
2875 }
2876 break;
2877 }
2878
2879 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2880 entry->flags.loaded = TRUE;
2881 else
2882 einfo (_("%F%B: error adding symbols: %E\n"), entry->the_bfd);
2883
2884 return entry->flags.loaded;
2885 }
2886
2887 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2888 may be NULL, indicating that it is a wildcard. Separate
2889 lang_input_section statements are created for each part of the
2890 expansion; they are added after the wild statement S. OUTPUT is
2891 the output section. */
2892
2893 static void
2894 wild (lang_wild_statement_type *s,
2895 const char *target ATTRIBUTE_UNUSED,
2896 lang_output_section_statement_type *output)
2897 {
2898 struct wildcard_list *sec;
2899
2900 if (s->handler_data[0]
2901 && s->handler_data[0]->spec.sorted == by_name
2902 && !s->filenames_sorted)
2903 {
2904 lang_section_bst_type *tree;
2905
2906 walk_wild (s, output_section_callback_fast, output);
2907
2908 tree = s->tree;
2909 if (tree)
2910 {
2911 output_section_callback_tree_to_list (s, tree, output);
2912 s->tree = NULL;
2913 }
2914 }
2915 else
2916 walk_wild (s, output_section_callback, output);
2917
2918 if (default_common_section == NULL)
2919 for (sec = s->section_list; sec != NULL; sec = sec->next)
2920 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2921 {
2922 /* Remember the section that common is going to in case we
2923 later get something which doesn't know where to put it. */
2924 default_common_section = output;
2925 break;
2926 }
2927 }
2928
2929 /* Return TRUE iff target is the sought target. */
2930
2931 static int
2932 get_target (const bfd_target *target, void *data)
2933 {
2934 const char *sought = (const char *) data;
2935
2936 return strcmp (target->name, sought) == 0;
2937 }
2938
2939 /* Like strcpy() but convert to lower case as well. */
2940
2941 static void
2942 stricpy (char *dest, char *src)
2943 {
2944 char c;
2945
2946 while ((c = *src++) != 0)
2947 *dest++ = TOLOWER (c);
2948
2949 *dest = 0;
2950 }
2951
2952 /* Remove the first occurrence of needle (if any) in haystack
2953 from haystack. */
2954
2955 static void
2956 strcut (char *haystack, char *needle)
2957 {
2958 haystack = strstr (haystack, needle);
2959
2960 if (haystack)
2961 {
2962 char *src;
2963
2964 for (src = haystack + strlen (needle); *src;)
2965 *haystack++ = *src++;
2966
2967 *haystack = 0;
2968 }
2969 }
2970
2971 /* Compare two target format name strings.
2972 Return a value indicating how "similar" they are. */
2973
2974 static int
2975 name_compare (char *first, char *second)
2976 {
2977 char *copy1;
2978 char *copy2;
2979 int result;
2980
2981 copy1 = (char *) xmalloc (strlen (first) + 1);
2982 copy2 = (char *) xmalloc (strlen (second) + 1);
2983
2984 /* Convert the names to lower case. */
2985 stricpy (copy1, first);
2986 stricpy (copy2, second);
2987
2988 /* Remove size and endian strings from the name. */
2989 strcut (copy1, "big");
2990 strcut (copy1, "little");
2991 strcut (copy2, "big");
2992 strcut (copy2, "little");
2993
2994 /* Return a value based on how many characters match,
2995 starting from the beginning. If both strings are
2996 the same then return 10 * their length. */
2997 for (result = 0; copy1[result] == copy2[result]; result++)
2998 if (copy1[result] == 0)
2999 {
3000 result *= 10;
3001 break;
3002 }
3003
3004 free (copy1);
3005 free (copy2);
3006
3007 return result;
3008 }
3009
3010 /* Set by closest_target_match() below. */
3011 static const bfd_target *winner;
3012
3013 /* Scan all the valid bfd targets looking for one that has the endianness
3014 requirement that was specified on the command line, and is the nearest
3015 match to the original output target. */
3016
3017 static int
3018 closest_target_match (const bfd_target *target, void *data)
3019 {
3020 const bfd_target *original = (const bfd_target *) data;
3021
3022 if (command_line.endian == ENDIAN_BIG
3023 && target->byteorder != BFD_ENDIAN_BIG)
3024 return 0;
3025
3026 if (command_line.endian == ENDIAN_LITTLE
3027 && target->byteorder != BFD_ENDIAN_LITTLE)
3028 return 0;
3029
3030 /* Must be the same flavour. */
3031 if (target->flavour != original->flavour)
3032 return 0;
3033
3034 /* Ignore generic big and little endian elf vectors. */
3035 if (strcmp (target->name, "elf32-big") == 0
3036 || strcmp (target->name, "elf64-big") == 0
3037 || strcmp (target->name, "elf32-little") == 0
3038 || strcmp (target->name, "elf64-little") == 0)
3039 return 0;
3040
3041 /* If we have not found a potential winner yet, then record this one. */
3042 if (winner == NULL)
3043 {
3044 winner = target;
3045 return 0;
3046 }
3047
3048 /* Oh dear, we now have two potential candidates for a successful match.
3049 Compare their names and choose the better one. */
3050 if (name_compare (target->name, original->name)
3051 > name_compare (winner->name, original->name))
3052 winner = target;
3053
3054 /* Keep on searching until wqe have checked them all. */
3055 return 0;
3056 }
3057
3058 /* Return the BFD target format of the first input file. */
3059
3060 static char *
3061 get_first_input_target (void)
3062 {
3063 char *target = NULL;
3064
3065 LANG_FOR_EACH_INPUT_STATEMENT (s)
3066 {
3067 if (s->header.type == lang_input_statement_enum
3068 && s->flags.real)
3069 {
3070 ldfile_open_file (s);
3071
3072 if (s->the_bfd != NULL
3073 && bfd_check_format (s->the_bfd, bfd_object))
3074 {
3075 target = bfd_get_target (s->the_bfd);
3076
3077 if (target != NULL)
3078 break;
3079 }
3080 }
3081 }
3082
3083 return target;
3084 }
3085
3086 const char *
3087 lang_get_output_target (void)
3088 {
3089 const char *target;
3090
3091 /* Has the user told us which output format to use? */
3092 if (output_target != NULL)
3093 return output_target;
3094
3095 /* No - has the current target been set to something other than
3096 the default? */
3097 if (current_target != default_target && current_target != NULL)
3098 return current_target;
3099
3100 /* No - can we determine the format of the first input file? */
3101 target = get_first_input_target ();
3102 if (target != NULL)
3103 return target;
3104
3105 /* Failed - use the default output target. */
3106 return default_target;
3107 }
3108
3109 /* Open the output file. */
3110
3111 static void
3112 open_output (const char *name)
3113 {
3114 output_target = lang_get_output_target ();
3115
3116 /* Has the user requested a particular endianness on the command
3117 line? */
3118 if (command_line.endian != ENDIAN_UNSET)
3119 {
3120 /* Get the chosen target. */
3121 const bfd_target *target
3122 = bfd_iterate_over_targets (get_target, (void *) output_target);
3123
3124 /* If the target is not supported, we cannot do anything. */
3125 if (target != NULL)
3126 {
3127 enum bfd_endian desired_endian;
3128
3129 if (command_line.endian == ENDIAN_BIG)
3130 desired_endian = BFD_ENDIAN_BIG;
3131 else
3132 desired_endian = BFD_ENDIAN_LITTLE;
3133
3134 /* See if the target has the wrong endianness. This should
3135 not happen if the linker script has provided big and
3136 little endian alternatives, but some scrips don't do
3137 this. */
3138 if (target->byteorder != desired_endian)
3139 {
3140 /* If it does, then see if the target provides
3141 an alternative with the correct endianness. */
3142 if (target->alternative_target != NULL
3143 && (target->alternative_target->byteorder == desired_endian))
3144 output_target = target->alternative_target->name;
3145 else
3146 {
3147 /* Try to find a target as similar as possible to
3148 the default target, but which has the desired
3149 endian characteristic. */
3150 bfd_iterate_over_targets (closest_target_match,
3151 (void *) target);
3152
3153 /* Oh dear - we could not find any targets that
3154 satisfy our requirements. */
3155 if (winner == NULL)
3156 einfo (_("%P: warning: could not find any targets"
3157 " that match endianness requirement\n"));
3158 else
3159 output_target = winner->name;
3160 }
3161 }
3162 }
3163 }
3164
3165 link_info.output_bfd = bfd_openw (name, output_target);
3166
3167 if (link_info.output_bfd == NULL)
3168 {
3169 if (bfd_get_error () == bfd_error_invalid_target)
3170 einfo (_("%P%F: target %s not found\n"), output_target);
3171
3172 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3173 }
3174
3175 delete_output_file_on_failure = TRUE;
3176
3177 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3178 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3179 if (!bfd_set_arch_mach (link_info.output_bfd,
3180 ldfile_output_architecture,
3181 ldfile_output_machine))
3182 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3183
3184 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3185 if (link_info.hash == NULL)
3186 einfo (_("%P%F: can not create hash table: %E\n"));
3187
3188 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3189 }
3190
3191 static void
3192 ldlang_open_output (lang_statement_union_type *statement)
3193 {
3194 switch (statement->header.type)
3195 {
3196 case lang_output_statement_enum:
3197 ASSERT (link_info.output_bfd == NULL);
3198 open_output (statement->output_statement.name);
3199 ldemul_set_output_arch ();
3200 if (config.magic_demand_paged
3201 && !bfd_link_relocatable (&link_info))
3202 link_info.output_bfd->flags |= D_PAGED;
3203 else
3204 link_info.output_bfd->flags &= ~D_PAGED;
3205 if (config.text_read_only)
3206 link_info.output_bfd->flags |= WP_TEXT;
3207 else
3208 link_info.output_bfd->flags &= ~WP_TEXT;
3209 if (link_info.traditional_format)
3210 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3211 else
3212 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3213 break;
3214
3215 case lang_target_statement_enum:
3216 current_target = statement->target_statement.target;
3217 break;
3218 default:
3219 break;
3220 }
3221 }
3222
3223 static void
3224 init_opb (void)
3225 {
3226 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3227 ldfile_output_machine);
3228 opb_shift = 0;
3229 if (x > 1)
3230 while ((x & 1) == 0)
3231 {
3232 x >>= 1;
3233 ++opb_shift;
3234 }
3235 ASSERT (x == 1);
3236 }
3237
3238 /* Open all the input files. */
3239
3240 enum open_bfd_mode
3241 {
3242 OPEN_BFD_NORMAL = 0,
3243 OPEN_BFD_FORCE = 1,
3244 OPEN_BFD_RESCAN = 2
3245 };
3246 #ifdef ENABLE_PLUGINS
3247 static lang_input_statement_type *plugin_insert = NULL;
3248 #endif
3249
3250 static void
3251 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3252 {
3253 for (; s != NULL; s = s->header.next)
3254 {
3255 switch (s->header.type)
3256 {
3257 case lang_constructors_statement_enum:
3258 open_input_bfds (constructor_list.head, mode);
3259 break;
3260 case lang_output_section_statement_enum:
3261 open_input_bfds (s->output_section_statement.children.head, mode);
3262 break;
3263 case lang_wild_statement_enum:
3264 /* Maybe we should load the file's symbols. */
3265 if ((mode & OPEN_BFD_RESCAN) == 0
3266 && s->wild_statement.filename
3267 && !wildcardp (s->wild_statement.filename)
3268 && !archive_path (s->wild_statement.filename))
3269 lookup_name (s->wild_statement.filename);
3270 open_input_bfds (s->wild_statement.children.head, mode);
3271 break;
3272 case lang_group_statement_enum:
3273 {
3274 struct bfd_link_hash_entry *undefs;
3275
3276 /* We must continually search the entries in the group
3277 until no new symbols are added to the list of undefined
3278 symbols. */
3279
3280 do
3281 {
3282 undefs = link_info.hash->undefs_tail;
3283 open_input_bfds (s->group_statement.children.head,
3284 mode | OPEN_BFD_FORCE);
3285 }
3286 while (undefs != link_info.hash->undefs_tail);
3287 }
3288 break;
3289 case lang_target_statement_enum:
3290 current_target = s->target_statement.target;
3291 break;
3292 case lang_input_statement_enum:
3293 if (s->input_statement.flags.real)
3294 {
3295 lang_statement_union_type **os_tail;
3296 lang_statement_list_type add;
3297 bfd *abfd;
3298
3299 s->input_statement.target = current_target;
3300
3301 /* If we are being called from within a group, and this
3302 is an archive which has already been searched, then
3303 force it to be researched unless the whole archive
3304 has been loaded already. Do the same for a rescan.
3305 Likewise reload --as-needed shared libs. */
3306 if (mode != OPEN_BFD_NORMAL
3307 #ifdef ENABLE_PLUGINS
3308 && ((mode & OPEN_BFD_RESCAN) == 0
3309 || plugin_insert == NULL)
3310 #endif
3311 && s->input_statement.flags.loaded
3312 && (abfd = s->input_statement.the_bfd) != NULL
3313 && ((bfd_get_format (abfd) == bfd_archive
3314 && !s->input_statement.flags.whole_archive)
3315 || (bfd_get_format (abfd) == bfd_object
3316 && ((abfd->flags) & DYNAMIC) != 0
3317 && s->input_statement.flags.add_DT_NEEDED_for_regular
3318 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3319 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3320 {
3321 s->input_statement.flags.loaded = FALSE;
3322 s->input_statement.flags.reload = TRUE;
3323 }
3324
3325 os_tail = lang_output_section_statement.tail;
3326 lang_list_init (&add);
3327
3328 if (!load_symbols (&s->input_statement, &add))
3329 config.make_executable = FALSE;
3330
3331 if (add.head != NULL)
3332 {
3333 /* If this was a script with output sections then
3334 tack any added statements on to the end of the
3335 list. This avoids having to reorder the output
3336 section statement list. Very likely the user
3337 forgot -T, and whatever we do here will not meet
3338 naive user expectations. */
3339 if (os_tail != lang_output_section_statement.tail)
3340 {
3341 einfo (_("%P: warning: %s contains output sections;"
3342 " did you forget -T?\n"),
3343 s->input_statement.filename);
3344 *stat_ptr->tail = add.head;
3345 stat_ptr->tail = add.tail;
3346 }
3347 else
3348 {
3349 *add.tail = s->header.next;
3350 s->header.next = add.head;
3351 }
3352 }
3353 }
3354 #ifdef ENABLE_PLUGINS
3355 /* If we have found the point at which a plugin added new
3356 files, clear plugin_insert to enable archive rescan. */
3357 if (&s->input_statement == plugin_insert)
3358 plugin_insert = NULL;
3359 #endif
3360 break;
3361 case lang_assignment_statement_enum:
3362 if (s->assignment_statement.exp->type.node_class != etree_assert
3363 && s->assignment_statement.exp->assign.defsym)
3364 /* This is from a --defsym on the command line. */
3365 exp_fold_tree_no_dot (s->assignment_statement.exp);
3366 break;
3367 default:
3368 break;
3369 }
3370 }
3371
3372 /* Exit if any of the files were missing. */
3373 if (input_flags.missing_file)
3374 einfo ("%F");
3375 }
3376
3377 /* Add the supplied name to the symbol table as an undefined reference.
3378 This is a two step process as the symbol table doesn't even exist at
3379 the time the ld command line is processed. First we put the name
3380 on a list, then, once the output file has been opened, transfer the
3381 name to the symbol table. */
3382
3383 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3384
3385 #define ldlang_undef_chain_list_head entry_symbol.next
3386
3387 void
3388 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3389 {
3390 ldlang_undef_chain_list_type *new_undef;
3391
3392 undef_from_cmdline = undef_from_cmdline || cmdline;
3393 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3394 new_undef->next = ldlang_undef_chain_list_head;
3395 ldlang_undef_chain_list_head = new_undef;
3396
3397 new_undef->name = xstrdup (name);
3398
3399 if (link_info.output_bfd != NULL)
3400 insert_undefined (new_undef->name);
3401 }
3402
3403 /* Insert NAME as undefined in the symbol table. */
3404
3405 static void
3406 insert_undefined (const char *name)
3407 {
3408 struct bfd_link_hash_entry *h;
3409
3410 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3411 if (h == NULL)
3412 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3413 if (h->type == bfd_link_hash_new)
3414 {
3415 h->type = bfd_link_hash_undefined;
3416 h->u.undef.abfd = NULL;
3417 if (is_elf_hash_table (link_info.hash))
3418 ((struct elf_link_hash_entry *) h)->mark = 1;
3419 bfd_link_add_undef (link_info.hash, h);
3420 }
3421 }
3422
3423 /* Run through the list of undefineds created above and place them
3424 into the linker hash table as undefined symbols belonging to the
3425 script file. */
3426
3427 static void
3428 lang_place_undefineds (void)
3429 {
3430 ldlang_undef_chain_list_type *ptr;
3431
3432 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3433 insert_undefined (ptr->name);
3434 }
3435
3436 /* Structure used to build the list of symbols that the user has required
3437 be defined. */
3438
3439 struct require_defined_symbol
3440 {
3441 const char *name;
3442 struct require_defined_symbol *next;
3443 };
3444
3445 /* The list of symbols that the user has required be defined. */
3446
3447 static struct require_defined_symbol *require_defined_symbol_list;
3448
3449 /* Add a new symbol NAME to the list of symbols that are required to be
3450 defined. */
3451
3452 void
3453 ldlang_add_require_defined (const char *const name)
3454 {
3455 struct require_defined_symbol *ptr;
3456
3457 ldlang_add_undef (name, TRUE);
3458 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3459 ptr->next = require_defined_symbol_list;
3460 ptr->name = strdup (name);
3461 require_defined_symbol_list = ptr;
3462 }
3463
3464 /* Check that all symbols the user required to be defined, are defined,
3465 raise an error if we find a symbol that is not defined. */
3466
3467 static void
3468 ldlang_check_require_defined_symbols (void)
3469 {
3470 struct require_defined_symbol *ptr;
3471
3472 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3473 {
3474 struct bfd_link_hash_entry *h;
3475
3476 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3477 FALSE, FALSE, TRUE);
3478 if (h == NULL
3479 || (h->type != bfd_link_hash_defined
3480 && h->type != bfd_link_hash_defweak))
3481 einfo(_("%P%X: required symbol `%s' not defined\n"), ptr->name);
3482 }
3483 }
3484
3485 /* Check for all readonly or some readwrite sections. */
3486
3487 static void
3488 check_input_sections
3489 (lang_statement_union_type *s,
3490 lang_output_section_statement_type *output_section_statement)
3491 {
3492 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3493 {
3494 switch (s->header.type)
3495 {
3496 case lang_wild_statement_enum:
3497 walk_wild (&s->wild_statement, check_section_callback,
3498 output_section_statement);
3499 if (!output_section_statement->all_input_readonly)
3500 return;
3501 break;
3502 case lang_constructors_statement_enum:
3503 check_input_sections (constructor_list.head,
3504 output_section_statement);
3505 if (!output_section_statement->all_input_readonly)
3506 return;
3507 break;
3508 case lang_group_statement_enum:
3509 check_input_sections (s->group_statement.children.head,
3510 output_section_statement);
3511 if (!output_section_statement->all_input_readonly)
3512 return;
3513 break;
3514 default:
3515 break;
3516 }
3517 }
3518 }
3519
3520 /* Update wildcard statements if needed. */
3521
3522 static void
3523 update_wild_statements (lang_statement_union_type *s)
3524 {
3525 struct wildcard_list *sec;
3526
3527 switch (sort_section)
3528 {
3529 default:
3530 FAIL ();
3531
3532 case none:
3533 break;
3534
3535 case by_name:
3536 case by_alignment:
3537 for (; s != NULL; s = s->header.next)
3538 {
3539 switch (s->header.type)
3540 {
3541 default:
3542 break;
3543
3544 case lang_wild_statement_enum:
3545 for (sec = s->wild_statement.section_list; sec != NULL;
3546 sec = sec->next)
3547 {
3548 switch (sec->spec.sorted)
3549 {
3550 case none:
3551 sec->spec.sorted = sort_section;
3552 break;
3553 case by_name:
3554 if (sort_section == by_alignment)
3555 sec->spec.sorted = by_name_alignment;
3556 break;
3557 case by_alignment:
3558 if (sort_section == by_name)
3559 sec->spec.sorted = by_alignment_name;
3560 break;
3561 default:
3562 break;
3563 }
3564 }
3565 break;
3566
3567 case lang_constructors_statement_enum:
3568 update_wild_statements (constructor_list.head);
3569 break;
3570
3571 case lang_output_section_statement_enum:
3572 /* Don't sort .init/.fini sections. */
3573 if (strcmp (s->output_section_statement.name, ".init") != 0
3574 && strcmp (s->output_section_statement.name, ".fini") != 0)
3575 update_wild_statements
3576 (s->output_section_statement.children.head);
3577 break;
3578
3579 case lang_group_statement_enum:
3580 update_wild_statements (s->group_statement.children.head);
3581 break;
3582 }
3583 }
3584 break;
3585 }
3586 }
3587
3588 /* Open input files and attach to output sections. */
3589
3590 static void
3591 map_input_to_output_sections
3592 (lang_statement_union_type *s, const char *target,
3593 lang_output_section_statement_type *os)
3594 {
3595 for (; s != NULL; s = s->header.next)
3596 {
3597 lang_output_section_statement_type *tos;
3598 flagword flags;
3599
3600 switch (s->header.type)
3601 {
3602 case lang_wild_statement_enum:
3603 wild (&s->wild_statement, target, os);
3604 break;
3605 case lang_constructors_statement_enum:
3606 map_input_to_output_sections (constructor_list.head,
3607 target,
3608 os);
3609 break;
3610 case lang_output_section_statement_enum:
3611 tos = &s->output_section_statement;
3612 if (tos->constraint != 0)
3613 {
3614 if (tos->constraint != ONLY_IF_RW
3615 && tos->constraint != ONLY_IF_RO)
3616 break;
3617 tos->all_input_readonly = TRUE;
3618 check_input_sections (tos->children.head, tos);
3619 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3620 {
3621 tos->constraint = -1;
3622 break;
3623 }
3624 }
3625 map_input_to_output_sections (tos->children.head,
3626 target,
3627 tos);
3628 break;
3629 case lang_output_statement_enum:
3630 break;
3631 case lang_target_statement_enum:
3632 target = s->target_statement.target;
3633 break;
3634 case lang_group_statement_enum:
3635 map_input_to_output_sections (s->group_statement.children.head,
3636 target,
3637 os);
3638 break;
3639 case lang_data_statement_enum:
3640 /* Make sure that any sections mentioned in the expression
3641 are initialized. */
3642 exp_init_os (s->data_statement.exp);
3643 /* The output section gets CONTENTS, ALLOC and LOAD, but
3644 these may be overridden by the script. */
3645 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3646 switch (os->sectype)
3647 {
3648 case normal_section:
3649 case overlay_section:
3650 break;
3651 case noalloc_section:
3652 flags = SEC_HAS_CONTENTS;
3653 break;
3654 case noload_section:
3655 if (bfd_get_flavour (link_info.output_bfd)
3656 == bfd_target_elf_flavour)
3657 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3658 else
3659 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3660 break;
3661 }
3662 if (os->bfd_section == NULL)
3663 init_os (os, flags);
3664 else
3665 os->bfd_section->flags |= flags;
3666 break;
3667 case lang_input_section_enum:
3668 break;
3669 case lang_fill_statement_enum:
3670 case lang_object_symbols_statement_enum:
3671 case lang_reloc_statement_enum:
3672 case lang_padding_statement_enum:
3673 case lang_input_statement_enum:
3674 if (os != NULL && os->bfd_section == NULL)
3675 init_os (os, 0);
3676 break;
3677 case lang_assignment_statement_enum:
3678 if (os != NULL && os->bfd_section == NULL)
3679 init_os (os, 0);
3680
3681 /* Make sure that any sections mentioned in the assignment
3682 are initialized. */
3683 exp_init_os (s->assignment_statement.exp);
3684 break;
3685 case lang_address_statement_enum:
3686 /* Mark the specified section with the supplied address.
3687 If this section was actually a segment marker, then the
3688 directive is ignored if the linker script explicitly
3689 processed the segment marker. Originally, the linker
3690 treated segment directives (like -Ttext on the
3691 command-line) as section directives. We honor the
3692 section directive semantics for backwards compatibility;
3693 linker scripts that do not specifically check for
3694 SEGMENT_START automatically get the old semantics. */
3695 if (!s->address_statement.segment
3696 || !s->address_statement.segment->used)
3697 {
3698 const char *name = s->address_statement.section_name;
3699
3700 /* Create the output section statement here so that
3701 orphans with a set address will be placed after other
3702 script sections. If we let the orphan placement code
3703 place them in amongst other sections then the address
3704 will affect following script sections, which is
3705 likely to surprise naive users. */
3706 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3707 tos->addr_tree = s->address_statement.address;
3708 if (tos->bfd_section == NULL)
3709 init_os (tos, 0);
3710 }
3711 break;
3712 case lang_insert_statement_enum:
3713 break;
3714 }
3715 }
3716 }
3717
3718 /* An insert statement snips out all the linker statements from the
3719 start of the list and places them after the output section
3720 statement specified by the insert. This operation is complicated
3721 by the fact that we keep a doubly linked list of output section
3722 statements as well as the singly linked list of all statements. */
3723
3724 static void
3725 process_insert_statements (void)
3726 {
3727 lang_statement_union_type **s;
3728 lang_output_section_statement_type *first_os = NULL;
3729 lang_output_section_statement_type *last_os = NULL;
3730 lang_output_section_statement_type *os;
3731
3732 /* "start of list" is actually the statement immediately after
3733 the special abs_section output statement, so that it isn't
3734 reordered. */
3735 s = &lang_output_section_statement.head;
3736 while (*(s = &(*s)->header.next) != NULL)
3737 {
3738 if ((*s)->header.type == lang_output_section_statement_enum)
3739 {
3740 /* Keep pointers to the first and last output section
3741 statement in the sequence we may be about to move. */
3742 os = &(*s)->output_section_statement;
3743
3744 ASSERT (last_os == NULL || last_os->next == os);
3745 last_os = os;
3746
3747 /* Set constraint negative so that lang_output_section_find
3748 won't match this output section statement. At this
3749 stage in linking constraint has values in the range
3750 [-1, ONLY_IN_RW]. */
3751 last_os->constraint = -2 - last_os->constraint;
3752 if (first_os == NULL)
3753 first_os = last_os;
3754 }
3755 else if ((*s)->header.type == lang_insert_statement_enum)
3756 {
3757 lang_insert_statement_type *i = &(*s)->insert_statement;
3758 lang_output_section_statement_type *where;
3759 lang_statement_union_type **ptr;
3760 lang_statement_union_type *first;
3761
3762 where = lang_output_section_find (i->where);
3763 if (where != NULL && i->is_before)
3764 {
3765 do
3766 where = where->prev;
3767 while (where != NULL && where->constraint < 0);
3768 }
3769 if (where == NULL)
3770 {
3771 einfo (_("%F%P: %s not found for insert\n"), i->where);
3772 return;
3773 }
3774
3775 /* Deal with reordering the output section statement list. */
3776 if (last_os != NULL)
3777 {
3778 asection *first_sec, *last_sec;
3779 struct lang_output_section_statement_struct **next;
3780
3781 /* Snip out the output sections we are moving. */
3782 first_os->prev->next = last_os->next;
3783 if (last_os->next == NULL)
3784 {
3785 next = &first_os->prev->next;
3786 lang_output_section_statement.tail
3787 = (lang_statement_union_type **) next;
3788 }
3789 else
3790 last_os->next->prev = first_os->prev;
3791 /* Add them in at the new position. */
3792 last_os->next = where->next;
3793 if (where->next == NULL)
3794 {
3795 next = &last_os->next;
3796 lang_output_section_statement.tail
3797 = (lang_statement_union_type **) next;
3798 }
3799 else
3800 where->next->prev = last_os;
3801 first_os->prev = where;
3802 where->next = first_os;
3803
3804 /* Move the bfd sections in the same way. */
3805 first_sec = NULL;
3806 last_sec = NULL;
3807 for (os = first_os; os != NULL; os = os->next)
3808 {
3809 os->constraint = -2 - os->constraint;
3810 if (os->bfd_section != NULL
3811 && os->bfd_section->owner != NULL)
3812 {
3813 last_sec = os->bfd_section;
3814 if (first_sec == NULL)
3815 first_sec = last_sec;
3816 }
3817 if (os == last_os)
3818 break;
3819 }
3820 if (last_sec != NULL)
3821 {
3822 asection *sec = where->bfd_section;
3823 if (sec == NULL)
3824 sec = output_prev_sec_find (where);
3825
3826 /* The place we want to insert must come after the
3827 sections we are moving. So if we find no
3828 section or if the section is the same as our
3829 last section, then no move is needed. */
3830 if (sec != NULL && sec != last_sec)
3831 {
3832 /* Trim them off. */
3833 if (first_sec->prev != NULL)
3834 first_sec->prev->next = last_sec->next;
3835 else
3836 link_info.output_bfd->sections = last_sec->next;
3837 if (last_sec->next != NULL)
3838 last_sec->next->prev = first_sec->prev;
3839 else
3840 link_info.output_bfd->section_last = first_sec->prev;
3841 /* Add back. */
3842 last_sec->next = sec->next;
3843 if (sec->next != NULL)
3844 sec->next->prev = last_sec;
3845 else
3846 link_info.output_bfd->section_last = last_sec;
3847 first_sec->prev = sec;
3848 sec->next = first_sec;
3849 }
3850 }
3851
3852 first_os = NULL;
3853 last_os = NULL;
3854 }
3855
3856 ptr = insert_os_after (where);
3857 /* Snip everything after the abs_section output statement we
3858 know is at the start of the list, up to and including
3859 the insert statement we are currently processing. */
3860 first = lang_output_section_statement.head->header.next;
3861 lang_output_section_statement.head->header.next = (*s)->header.next;
3862 /* Add them back where they belong. */
3863 *s = *ptr;
3864 if (*s == NULL)
3865 statement_list.tail = s;
3866 *ptr = first;
3867 s = &lang_output_section_statement.head;
3868 }
3869 }
3870
3871 /* Undo constraint twiddling. */
3872 for (os = first_os; os != NULL; os = os->next)
3873 {
3874 os->constraint = -2 - os->constraint;
3875 if (os == last_os)
3876 break;
3877 }
3878 }
3879
3880 /* An output section might have been removed after its statement was
3881 added. For example, ldemul_before_allocation can remove dynamic
3882 sections if they turn out to be not needed. Clean them up here. */
3883
3884 void
3885 strip_excluded_output_sections (void)
3886 {
3887 lang_output_section_statement_type *os;
3888
3889 /* Run lang_size_sections (if not already done). */
3890 if (expld.phase != lang_mark_phase_enum)
3891 {
3892 expld.phase = lang_mark_phase_enum;
3893 expld.dataseg.phase = exp_dataseg_none;
3894 one_lang_size_sections_pass (NULL, FALSE);
3895 lang_reset_memory_regions ();
3896 }
3897
3898 for (os = &lang_output_section_statement.head->output_section_statement;
3899 os != NULL;
3900 os = os->next)
3901 {
3902 asection *output_section;
3903 bfd_boolean exclude;
3904
3905 if (os->constraint < 0)
3906 continue;
3907
3908 output_section = os->bfd_section;
3909 if (output_section == NULL)
3910 continue;
3911
3912 exclude = (output_section->rawsize == 0
3913 && (output_section->flags & SEC_KEEP) == 0
3914 && !bfd_section_removed_from_list (link_info.output_bfd,
3915 output_section));
3916
3917 /* Some sections have not yet been sized, notably .gnu.version,
3918 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3919 input sections, so don't drop output sections that have such
3920 input sections unless they are also marked SEC_EXCLUDE. */
3921 if (exclude && output_section->map_head.s != NULL)
3922 {
3923 asection *s;
3924
3925 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3926 if ((s->flags & SEC_EXCLUDE) == 0
3927 && ((s->flags & SEC_LINKER_CREATED) != 0
3928 || link_info.emitrelocations))
3929 {
3930 exclude = FALSE;
3931 break;
3932 }
3933 }
3934
3935 if (exclude)
3936 {
3937 /* We don't set bfd_section to NULL since bfd_section of the
3938 removed output section statement may still be used. */
3939 if (!os->update_dot)
3940 os->ignored = TRUE;
3941 output_section->flags |= SEC_EXCLUDE;
3942 bfd_section_list_remove (link_info.output_bfd, output_section);
3943 link_info.output_bfd->section_count--;
3944 }
3945 }
3946 }
3947
3948 /* Called from ldwrite to clear out asection.map_head and
3949 asection.map_tail for use as link_orders in ldwrite.
3950 FIXME: Except for sh64elf.em which starts creating link_orders in
3951 its after_allocation routine so needs to call it early. */
3952
3953 void
3954 lang_clear_os_map (void)
3955 {
3956 lang_output_section_statement_type *os;
3957
3958 if (map_head_is_link_order)
3959 return;
3960
3961 for (os = &lang_output_section_statement.head->output_section_statement;
3962 os != NULL;
3963 os = os->next)
3964 {
3965 asection *output_section;
3966
3967 if (os->constraint < 0)
3968 continue;
3969
3970 output_section = os->bfd_section;
3971 if (output_section == NULL)
3972 continue;
3973
3974 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3975 output_section->map_head.link_order = NULL;
3976 output_section->map_tail.link_order = NULL;
3977 }
3978
3979 /* Stop future calls to lang_add_section from messing with map_head
3980 and map_tail link_order fields. */
3981 map_head_is_link_order = TRUE;
3982 }
3983
3984 static void
3985 print_output_section_statement
3986 (lang_output_section_statement_type *output_section_statement)
3987 {
3988 asection *section = output_section_statement->bfd_section;
3989 int len;
3990
3991 if (output_section_statement != abs_output_section)
3992 {
3993 minfo ("\n%s", output_section_statement->name);
3994
3995 if (section != NULL)
3996 {
3997 print_dot = section->vma;
3998
3999 len = strlen (output_section_statement->name);
4000 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4001 {
4002 print_nl ();
4003 len = 0;
4004 }
4005 while (len < SECTION_NAME_MAP_LENGTH)
4006 {
4007 print_space ();
4008 ++len;
4009 }
4010
4011 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4012
4013 if (section->vma != section->lma)
4014 minfo (_(" load address 0x%V"), section->lma);
4015
4016 if (output_section_statement->update_dot_tree != NULL)
4017 exp_fold_tree (output_section_statement->update_dot_tree,
4018 bfd_abs_section_ptr, &print_dot);
4019 }
4020
4021 print_nl ();
4022 }
4023
4024 print_statement_list (output_section_statement->children.head,
4025 output_section_statement);
4026 }
4027
4028 static void
4029 print_assignment (lang_assignment_statement_type *assignment,
4030 lang_output_section_statement_type *output_section)
4031 {
4032 unsigned int i;
4033 bfd_boolean is_dot;
4034 etree_type *tree;
4035 asection *osec;
4036
4037 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4038 print_space ();
4039
4040 if (assignment->exp->type.node_class == etree_assert)
4041 {
4042 is_dot = FALSE;
4043 tree = assignment->exp->assert_s.child;
4044 }
4045 else
4046 {
4047 const char *dst = assignment->exp->assign.dst;
4048
4049 is_dot = (dst[0] == '.' && dst[1] == 0);
4050 if (!is_dot)
4051 expld.assign_name = dst;
4052 tree = assignment->exp->assign.src;
4053 }
4054
4055 osec = output_section->bfd_section;
4056 if (osec == NULL)
4057 osec = bfd_abs_section_ptr;
4058
4059 if (assignment->exp->type.node_class != etree_provide)
4060 exp_fold_tree (tree, osec, &print_dot);
4061 else
4062 expld.result.valid_p = FALSE;
4063
4064 if (expld.result.valid_p)
4065 {
4066 bfd_vma value;
4067
4068 if (assignment->exp->type.node_class == etree_assert
4069 || is_dot
4070 || expld.assign_name != NULL)
4071 {
4072 value = expld.result.value;
4073
4074 if (expld.result.section != NULL)
4075 value += expld.result.section->vma;
4076
4077 minfo ("0x%V", value);
4078 if (is_dot)
4079 print_dot = value;
4080 }
4081 else
4082 {
4083 struct bfd_link_hash_entry *h;
4084
4085 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4086 FALSE, FALSE, TRUE);
4087 if (h)
4088 {
4089 value = h->u.def.value;
4090 value += h->u.def.section->output_section->vma;
4091 value += h->u.def.section->output_offset;
4092
4093 minfo ("[0x%V]", value);
4094 }
4095 else
4096 minfo ("[unresolved]");
4097 }
4098 }
4099 else
4100 {
4101 if (assignment->exp->type.node_class == etree_provide)
4102 minfo ("[!provide]");
4103 else
4104 minfo ("*undef* ");
4105 #ifdef BFD64
4106 minfo (" ");
4107 #endif
4108 }
4109 expld.assign_name = NULL;
4110
4111 minfo (" ");
4112 exp_print_tree (assignment->exp);
4113 print_nl ();
4114 }
4115
4116 static void
4117 print_input_statement (lang_input_statement_type *statm)
4118 {
4119 if (statm->filename != NULL
4120 && (statm->the_bfd == NULL
4121 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4122 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4123 }
4124
4125 /* Print all symbols defined in a particular section. This is called
4126 via bfd_link_hash_traverse, or by print_all_symbols. */
4127
4128 static bfd_boolean
4129 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4130 {
4131 asection *sec = (asection *) ptr;
4132
4133 if ((hash_entry->type == bfd_link_hash_defined
4134 || hash_entry->type == bfd_link_hash_defweak)
4135 && sec == hash_entry->u.def.section)
4136 {
4137 int i;
4138
4139 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4140 print_space ();
4141 minfo ("0x%V ",
4142 (hash_entry->u.def.value
4143 + hash_entry->u.def.section->output_offset
4144 + hash_entry->u.def.section->output_section->vma));
4145
4146 minfo (" %T\n", hash_entry->root.string);
4147 }
4148
4149 return TRUE;
4150 }
4151
4152 static int
4153 hash_entry_addr_cmp (const void *a, const void *b)
4154 {
4155 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4156 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4157
4158 if (l->u.def.value < r->u.def.value)
4159 return -1;
4160 else if (l->u.def.value > r->u.def.value)
4161 return 1;
4162 else
4163 return 0;
4164 }
4165
4166 static void
4167 print_all_symbols (asection *sec)
4168 {
4169 input_section_userdata_type *ud
4170 = (input_section_userdata_type *) get_userdata (sec);
4171 struct map_symbol_def *def;
4172 struct bfd_link_hash_entry **entries;
4173 unsigned int i;
4174
4175 if (!ud)
4176 return;
4177
4178 *ud->map_symbol_def_tail = 0;
4179
4180 /* Sort the symbols by address. */
4181 entries = (struct bfd_link_hash_entry **)
4182 obstack_alloc (&map_obstack,
4183 ud->map_symbol_def_count * sizeof (*entries));
4184
4185 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4186 entries[i] = def->entry;
4187
4188 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4189 hash_entry_addr_cmp);
4190
4191 /* Print the symbols. */
4192 for (i = 0; i < ud->map_symbol_def_count; i++)
4193 print_one_symbol (entries[i], sec);
4194
4195 obstack_free (&map_obstack, entries);
4196 }
4197
4198 /* Print information about an input section to the map file. */
4199
4200 static void
4201 print_input_section (asection *i, bfd_boolean is_discarded)
4202 {
4203 bfd_size_type size = i->size;
4204 int len;
4205 bfd_vma addr;
4206
4207 init_opb ();
4208
4209 print_space ();
4210 minfo ("%s", i->name);
4211
4212 len = 1 + strlen (i->name);
4213 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4214 {
4215 print_nl ();
4216 len = 0;
4217 }
4218 while (len < SECTION_NAME_MAP_LENGTH)
4219 {
4220 print_space ();
4221 ++len;
4222 }
4223
4224 if (i->output_section != NULL
4225 && i->output_section->owner == link_info.output_bfd)
4226 addr = i->output_section->vma + i->output_offset;
4227 else
4228 {
4229 addr = print_dot;
4230 if (!is_discarded)
4231 size = 0;
4232 }
4233
4234 minfo ("0x%V %W %B\n", addr, size, i->owner);
4235
4236 if (size != i->rawsize && i->rawsize != 0)
4237 {
4238 len = SECTION_NAME_MAP_LENGTH + 3;
4239 #ifdef BFD64
4240 len += 16;
4241 #else
4242 len += 8;
4243 #endif
4244 while (len > 0)
4245 {
4246 print_space ();
4247 --len;
4248 }
4249
4250 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4251 }
4252
4253 if (i->output_section != NULL
4254 && i->output_section->owner == link_info.output_bfd)
4255 {
4256 if (link_info.reduce_memory_overheads)
4257 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4258 else
4259 print_all_symbols (i);
4260
4261 /* Update print_dot, but make sure that we do not move it
4262 backwards - this could happen if we have overlays and a
4263 later overlay is shorter than an earier one. */
4264 if (addr + TO_ADDR (size) > print_dot)
4265 print_dot = addr + TO_ADDR (size);
4266 }
4267 }
4268
4269 static void
4270 print_fill_statement (lang_fill_statement_type *fill)
4271 {
4272 size_t size;
4273 unsigned char *p;
4274 fputs (" FILL mask 0x", config.map_file);
4275 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4276 fprintf (config.map_file, "%02x", *p);
4277 fputs ("\n", config.map_file);
4278 }
4279
4280 static void
4281 print_data_statement (lang_data_statement_type *data)
4282 {
4283 int i;
4284 bfd_vma addr;
4285 bfd_size_type size;
4286 const char *name;
4287
4288 init_opb ();
4289 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4290 print_space ();
4291
4292 addr = data->output_offset;
4293 if (data->output_section != NULL)
4294 addr += data->output_section->vma;
4295
4296 switch (data->type)
4297 {
4298 default:
4299 abort ();
4300 case BYTE:
4301 size = BYTE_SIZE;
4302 name = "BYTE";
4303 break;
4304 case SHORT:
4305 size = SHORT_SIZE;
4306 name = "SHORT";
4307 break;
4308 case LONG:
4309 size = LONG_SIZE;
4310 name = "LONG";
4311 break;
4312 case QUAD:
4313 size = QUAD_SIZE;
4314 name = "QUAD";
4315 break;
4316 case SQUAD:
4317 size = QUAD_SIZE;
4318 name = "SQUAD";
4319 break;
4320 }
4321
4322 if (size < TO_SIZE ((unsigned) 1))
4323 size = TO_SIZE ((unsigned) 1);
4324 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4325
4326 if (data->exp->type.node_class != etree_value)
4327 {
4328 print_space ();
4329 exp_print_tree (data->exp);
4330 }
4331
4332 print_nl ();
4333
4334 print_dot = addr + TO_ADDR (size);
4335 }
4336
4337 /* Print an address statement. These are generated by options like
4338 -Ttext. */
4339
4340 static void
4341 print_address_statement (lang_address_statement_type *address)
4342 {
4343 minfo (_("Address of section %s set to "), address->section_name);
4344 exp_print_tree (address->address);
4345 print_nl ();
4346 }
4347
4348 /* Print a reloc statement. */
4349
4350 static void
4351 print_reloc_statement (lang_reloc_statement_type *reloc)
4352 {
4353 int i;
4354 bfd_vma addr;
4355 bfd_size_type size;
4356
4357 init_opb ();
4358 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4359 print_space ();
4360
4361 addr = reloc->output_offset;
4362 if (reloc->output_section != NULL)
4363 addr += reloc->output_section->vma;
4364
4365 size = bfd_get_reloc_size (reloc->howto);
4366
4367 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4368
4369 if (reloc->name != NULL)
4370 minfo ("%s+", reloc->name);
4371 else
4372 minfo ("%s+", reloc->section->name);
4373
4374 exp_print_tree (reloc->addend_exp);
4375
4376 print_nl ();
4377
4378 print_dot = addr + TO_ADDR (size);
4379 }
4380
4381 static void
4382 print_padding_statement (lang_padding_statement_type *s)
4383 {
4384 int len;
4385 bfd_vma addr;
4386
4387 init_opb ();
4388 minfo (" *fill*");
4389
4390 len = sizeof " *fill*" - 1;
4391 while (len < SECTION_NAME_MAP_LENGTH)
4392 {
4393 print_space ();
4394 ++len;
4395 }
4396
4397 addr = s->output_offset;
4398 if (s->output_section != NULL)
4399 addr += s->output_section->vma;
4400 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4401
4402 if (s->fill->size != 0)
4403 {
4404 size_t size;
4405 unsigned char *p;
4406 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4407 fprintf (config.map_file, "%02x", *p);
4408 }
4409
4410 print_nl ();
4411
4412 print_dot = addr + TO_ADDR (s->size);
4413 }
4414
4415 static void
4416 print_wild_statement (lang_wild_statement_type *w,
4417 lang_output_section_statement_type *os)
4418 {
4419 struct wildcard_list *sec;
4420
4421 print_space ();
4422
4423 if (w->exclude_name_list)
4424 {
4425 name_list *tmp;
4426 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4427 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4428 minfo (" %s", tmp->name);
4429 minfo (") ");
4430 }
4431
4432 if (w->filenames_sorted)
4433 minfo ("SORT_BY_NAME(");
4434 if (w->filename != NULL)
4435 minfo ("%s", w->filename);
4436 else
4437 minfo ("*");
4438 if (w->filenames_sorted)
4439 minfo (")");
4440
4441 minfo ("(");
4442 for (sec = w->section_list; sec; sec = sec->next)
4443 {
4444 int closing_paren = 0;
4445
4446 switch (sec->spec.sorted)
4447 {
4448 case none:
4449 break;
4450
4451 case by_name:
4452 minfo ("SORT_BY_NAME(");
4453 closing_paren = 1;
4454 break;
4455
4456 case by_alignment:
4457 minfo ("SORT_BY_ALIGNMENT(");
4458 closing_paren = 1;
4459 break;
4460
4461 case by_name_alignment:
4462 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4463 closing_paren = 2;
4464 break;
4465
4466 case by_alignment_name:
4467 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4468 closing_paren = 2;
4469 break;
4470
4471 case by_none:
4472 minfo ("SORT_NONE(");
4473 closing_paren = 1;
4474 break;
4475
4476 case by_init_priority:
4477 minfo ("SORT_BY_INIT_PRIORITY(");
4478 closing_paren = 1;
4479 break;
4480 }
4481
4482 if (sec->spec.exclude_name_list != NULL)
4483 {
4484 name_list *tmp;
4485 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4486 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4487 minfo (" %s", tmp->name);
4488 minfo (") ");
4489 }
4490 if (sec->spec.name != NULL)
4491 minfo ("%s", sec->spec.name);
4492 else
4493 minfo ("*");
4494 for (;closing_paren > 0; closing_paren--)
4495 minfo (")");
4496 if (sec->next)
4497 minfo (" ");
4498 }
4499 minfo (")");
4500
4501 print_nl ();
4502
4503 print_statement_list (w->children.head, os);
4504 }
4505
4506 /* Print a group statement. */
4507
4508 static void
4509 print_group (lang_group_statement_type *s,
4510 lang_output_section_statement_type *os)
4511 {
4512 fprintf (config.map_file, "START GROUP\n");
4513 print_statement_list (s->children.head, os);
4514 fprintf (config.map_file, "END GROUP\n");
4515 }
4516
4517 /* Print the list of statements in S.
4518 This can be called for any statement type. */
4519
4520 static void
4521 print_statement_list (lang_statement_union_type *s,
4522 lang_output_section_statement_type *os)
4523 {
4524 while (s != NULL)
4525 {
4526 print_statement (s, os);
4527 s = s->header.next;
4528 }
4529 }
4530
4531 /* Print the first statement in statement list S.
4532 This can be called for any statement type. */
4533
4534 static void
4535 print_statement (lang_statement_union_type *s,
4536 lang_output_section_statement_type *os)
4537 {
4538 switch (s->header.type)
4539 {
4540 default:
4541 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4542 FAIL ();
4543 break;
4544 case lang_constructors_statement_enum:
4545 if (constructor_list.head != NULL)
4546 {
4547 if (constructors_sorted)
4548 minfo (" SORT (CONSTRUCTORS)\n");
4549 else
4550 minfo (" CONSTRUCTORS\n");
4551 print_statement_list (constructor_list.head, os);
4552 }
4553 break;
4554 case lang_wild_statement_enum:
4555 print_wild_statement (&s->wild_statement, os);
4556 break;
4557 case lang_address_statement_enum:
4558 print_address_statement (&s->address_statement);
4559 break;
4560 case lang_object_symbols_statement_enum:
4561 minfo (" CREATE_OBJECT_SYMBOLS\n");
4562 break;
4563 case lang_fill_statement_enum:
4564 print_fill_statement (&s->fill_statement);
4565 break;
4566 case lang_data_statement_enum:
4567 print_data_statement (&s->data_statement);
4568 break;
4569 case lang_reloc_statement_enum:
4570 print_reloc_statement (&s->reloc_statement);
4571 break;
4572 case lang_input_section_enum:
4573 print_input_section (s->input_section.section, FALSE);
4574 break;
4575 case lang_padding_statement_enum:
4576 print_padding_statement (&s->padding_statement);
4577 break;
4578 case lang_output_section_statement_enum:
4579 print_output_section_statement (&s->output_section_statement);
4580 break;
4581 case lang_assignment_statement_enum:
4582 print_assignment (&s->assignment_statement, os);
4583 break;
4584 case lang_target_statement_enum:
4585 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4586 break;
4587 case lang_output_statement_enum:
4588 minfo ("OUTPUT(%s", s->output_statement.name);
4589 if (output_target != NULL)
4590 minfo (" %s", output_target);
4591 minfo (")\n");
4592 break;
4593 case lang_input_statement_enum:
4594 print_input_statement (&s->input_statement);
4595 break;
4596 case lang_group_statement_enum:
4597 print_group (&s->group_statement, os);
4598 break;
4599 case lang_insert_statement_enum:
4600 minfo ("INSERT %s %s\n",
4601 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4602 s->insert_statement.where);
4603 break;
4604 }
4605 }
4606
4607 static void
4608 print_statements (void)
4609 {
4610 print_statement_list (statement_list.head, abs_output_section);
4611 }
4612
4613 /* Print the first N statements in statement list S to STDERR.
4614 If N == 0, nothing is printed.
4615 If N < 0, the entire list is printed.
4616 Intended to be called from GDB. */
4617
4618 void
4619 dprint_statement (lang_statement_union_type *s, int n)
4620 {
4621 FILE *map_save = config.map_file;
4622
4623 config.map_file = stderr;
4624
4625 if (n < 0)
4626 print_statement_list (s, abs_output_section);
4627 else
4628 {
4629 while (s && --n >= 0)
4630 {
4631 print_statement (s, abs_output_section);
4632 s = s->header.next;
4633 }
4634 }
4635
4636 config.map_file = map_save;
4637 }
4638
4639 static void
4640 insert_pad (lang_statement_union_type **ptr,
4641 fill_type *fill,
4642 bfd_size_type alignment_needed,
4643 asection *output_section,
4644 bfd_vma dot)
4645 {
4646 static fill_type zero_fill;
4647 lang_statement_union_type *pad = NULL;
4648
4649 if (ptr != &statement_list.head)
4650 pad = ((lang_statement_union_type *)
4651 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4652 if (pad != NULL
4653 && pad->header.type == lang_padding_statement_enum
4654 && pad->padding_statement.output_section == output_section)
4655 {
4656 /* Use the existing pad statement. */
4657 }
4658 else if ((pad = *ptr) != NULL
4659 && pad->header.type == lang_padding_statement_enum
4660 && pad->padding_statement.output_section == output_section)
4661 {
4662 /* Use the existing pad statement. */
4663 }
4664 else
4665 {
4666 /* Make a new padding statement, linked into existing chain. */
4667 pad = (lang_statement_union_type *)
4668 stat_alloc (sizeof (lang_padding_statement_type));
4669 pad->header.next = *ptr;
4670 *ptr = pad;
4671 pad->header.type = lang_padding_statement_enum;
4672 pad->padding_statement.output_section = output_section;
4673 if (fill == NULL)
4674 fill = &zero_fill;
4675 pad->padding_statement.fill = fill;
4676 }
4677 pad->padding_statement.output_offset = dot - output_section->vma;
4678 pad->padding_statement.size = alignment_needed;
4679 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4680 - output_section->vma);
4681 }
4682
4683 /* Work out how much this section will move the dot point. */
4684
4685 static bfd_vma
4686 size_input_section
4687 (lang_statement_union_type **this_ptr,
4688 lang_output_section_statement_type *output_section_statement,
4689 fill_type *fill,
4690 bfd_vma dot)
4691 {
4692 lang_input_section_type *is = &((*this_ptr)->input_section);
4693 asection *i = is->section;
4694 asection *o = output_section_statement->bfd_section;
4695
4696 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4697 i->output_offset = i->vma - o->vma;
4698 else if (((i->flags & SEC_EXCLUDE) != 0)
4699 || output_section_statement->ignored)
4700 i->output_offset = dot - o->vma;
4701 else
4702 {
4703 bfd_size_type alignment_needed;
4704
4705 /* Align this section first to the input sections requirement,
4706 then to the output section's requirement. If this alignment
4707 is greater than any seen before, then record it too. Perform
4708 the alignment by inserting a magic 'padding' statement. */
4709
4710 if (output_section_statement->subsection_alignment != -1)
4711 i->alignment_power = output_section_statement->subsection_alignment;
4712
4713 if (o->alignment_power < i->alignment_power)
4714 o->alignment_power = i->alignment_power;
4715
4716 alignment_needed = align_power (dot, i->alignment_power) - dot;
4717
4718 if (alignment_needed != 0)
4719 {
4720 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4721 dot += alignment_needed;
4722 }
4723
4724 /* Remember where in the output section this input section goes. */
4725 i->output_offset = dot - o->vma;
4726
4727 /* Mark how big the output section must be to contain this now. */
4728 dot += TO_ADDR (i->size);
4729 o->size = TO_SIZE (dot - o->vma);
4730 }
4731
4732 return dot;
4733 }
4734
4735 struct check_sec
4736 {
4737 asection *sec;
4738 bfd_boolean warned;
4739 };
4740
4741 static int
4742 sort_sections_by_lma (const void *arg1, const void *arg2)
4743 {
4744 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4745 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4746
4747 if (sec1->lma < sec2->lma)
4748 return -1;
4749 else if (sec1->lma > sec2->lma)
4750 return 1;
4751 else if (sec1->id < sec2->id)
4752 return -1;
4753 else if (sec1->id > sec2->id)
4754 return 1;
4755
4756 return 0;
4757 }
4758
4759 static int
4760 sort_sections_by_vma (const void *arg1, const void *arg2)
4761 {
4762 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4763 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4764
4765 if (sec1->vma < sec2->vma)
4766 return -1;
4767 else if (sec1->vma > sec2->vma)
4768 return 1;
4769 else if (sec1->id < sec2->id)
4770 return -1;
4771 else if (sec1->id > sec2->id)
4772 return 1;
4773
4774 return 0;
4775 }
4776
4777 #define IS_TBSS(s) \
4778 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4779
4780 #define IGNORE_SECTION(s) \
4781 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4782
4783 /* Check to see if any allocated sections overlap with other allocated
4784 sections. This can happen if a linker script specifies the output
4785 section addresses of the two sections. Also check whether any memory
4786 region has overflowed. */
4787
4788 static void
4789 lang_check_section_addresses (void)
4790 {
4791 asection *s, *p;
4792 struct check_sec *sections;
4793 size_t i, count;
4794 bfd_vma addr_mask;
4795 bfd_vma s_start;
4796 bfd_vma s_end;
4797 bfd_vma p_start = 0;
4798 bfd_vma p_end = 0;
4799 lang_memory_region_type *m;
4800 bfd_boolean overlays;
4801
4802 /* Detect address space overflow on allocated sections. */
4803 addr_mask = ((bfd_vma) 1 <<
4804 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
4805 addr_mask = (addr_mask << 1) + 1;
4806 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4807 if ((s->flags & SEC_ALLOC) != 0)
4808 {
4809 s_end = (s->vma + s->size) & addr_mask;
4810 if (s_end != 0 && s_end < (s->vma & addr_mask))
4811 einfo (_("%X%P: section %s VMA wraps around address space\n"),
4812 s->name);
4813 else
4814 {
4815 s_end = (s->lma + s->size) & addr_mask;
4816 if (s_end != 0 && s_end < (s->lma & addr_mask))
4817 einfo (_("%X%P: section %s LMA wraps around address space\n"),
4818 s->name);
4819 }
4820 }
4821
4822 if (bfd_count_sections (link_info.output_bfd) <= 1)
4823 return;
4824
4825 count = bfd_count_sections (link_info.output_bfd);
4826 sections = XNEWVEC (struct check_sec, count);
4827
4828 /* Scan all sections in the output list. */
4829 count = 0;
4830 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4831 {
4832 if (IGNORE_SECTION (s)
4833 || s->size == 0)
4834 continue;
4835
4836 sections[count].sec = s;
4837 sections[count].warned = FALSE;
4838 count++;
4839 }
4840
4841 if (count <= 1)
4842 {
4843 free (sections);
4844 return;
4845 }
4846
4847 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
4848
4849 /* First check section LMAs. There should be no overlap of LMAs on
4850 loadable sections, even with overlays. */
4851 for (p = NULL, i = 0; i < count; i++)
4852 {
4853 s = sections[i].sec;
4854 if ((s->flags & SEC_LOAD) != 0)
4855 {
4856 s_start = s->lma;
4857 s_end = s_start + TO_ADDR (s->size) - 1;
4858
4859 /* Look for an overlap. We have sorted sections by lma, so
4860 we know that s_start >= p_start. Besides the obvious
4861 case of overlap when the current section starts before
4862 the previous one ends, we also must have overlap if the
4863 previous section wraps around the address space. */
4864 if (p != NULL
4865 && (s_start <= p_end
4866 || p_end < p_start))
4867 {
4868 einfo (_("%X%P: section %s LMA [%V,%V]"
4869 " overlaps section %s LMA [%V,%V]\n"),
4870 s->name, s_start, s_end, p->name, p_start, p_end);
4871 sections[i].warned = TRUE;
4872 }
4873 p = s;
4874 p_start = s_start;
4875 p_end = s_end;
4876 }
4877 }
4878
4879 /* If any non-zero size allocated section (excluding tbss) starts at
4880 exactly the same VMA as another such section, then we have
4881 overlays. Overlays generated by the OVERLAY keyword will have
4882 this property. It is possible to intentionally generate overlays
4883 that fail this test, but it would be unusual. */
4884 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
4885 overlays = FALSE;
4886 p_start = sections[0].sec->vma;
4887 for (i = 1; i < count; i++)
4888 {
4889 s_start = sections[i].sec->vma;
4890 if (p_start == s_start)
4891 {
4892 overlays = TRUE;
4893 break;
4894 }
4895 p_start = s_start;
4896 }
4897
4898 /* Now check section VMAs if no overlays were detected. */
4899 if (!overlays)
4900 {
4901 for (p = NULL, i = 0; i < count; i++)
4902 {
4903 s = sections[i].sec;
4904 s_start = s->vma;
4905 s_end = s_start + TO_ADDR (s->size) - 1;
4906
4907 if (p != NULL
4908 && !sections[i].warned
4909 && (s_start <= p_end
4910 || p_end < p_start))
4911 einfo (_("%X%P: section %s VMA [%V,%V]"
4912 " overlaps section %s VMA [%V,%V]\n"),
4913 s->name, s_start, s_end, p->name, p_start, p_end);
4914 p = s;
4915 p_start = s_start;
4916 p_end = s_end;
4917 }
4918 }
4919
4920 free (sections);
4921
4922 /* If any memory region has overflowed, report by how much.
4923 We do not issue this diagnostic for regions that had sections
4924 explicitly placed outside their bounds; os_region_check's
4925 diagnostics are adequate for that case.
4926
4927 FIXME: It is conceivable that m->current - (m->origin + m->length)
4928 might overflow a 32-bit integer. There is, alas, no way to print
4929 a bfd_vma quantity in decimal. */
4930 for (m = lang_memory_region_list; m; m = m->next)
4931 if (m->had_full_message)
4932 {
4933 unsigned long over = m->current - (m->origin + m->length);
4934 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
4935 "%X%P: region `%s' overflowed by %lu bytes\n",
4936 over),
4937 m->name_list.name, over);
4938 }
4939 }
4940
4941 /* Make sure the new address is within the region. We explicitly permit the
4942 current address to be at the exact end of the region when the address is
4943 non-zero, in case the region is at the end of addressable memory and the
4944 calculation wraps around. */
4945
4946 static void
4947 os_region_check (lang_output_section_statement_type *os,
4948 lang_memory_region_type *region,
4949 etree_type *tree,
4950 bfd_vma rbase)
4951 {
4952 if ((region->current < region->origin
4953 || (region->current - region->origin > region->length))
4954 && ((region->current != region->origin + region->length)
4955 || rbase == 0))
4956 {
4957 if (tree != NULL)
4958 {
4959 einfo (_("%X%P: address 0x%v of %B section `%s'"
4960 " is not within region `%s'\n"),
4961 region->current,
4962 os->bfd_section->owner,
4963 os->bfd_section->name,
4964 region->name_list.name);
4965 }
4966 else if (!region->had_full_message)
4967 {
4968 region->had_full_message = TRUE;
4969
4970 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4971 os->bfd_section->owner,
4972 os->bfd_section->name,
4973 region->name_list.name);
4974 }
4975 }
4976 }
4977
4978 /* Set the sizes for all the output sections. */
4979
4980 static bfd_vma
4981 lang_size_sections_1
4982 (lang_statement_union_type **prev,
4983 lang_output_section_statement_type *output_section_statement,
4984 fill_type *fill,
4985 bfd_vma dot,
4986 bfd_boolean *relax,
4987 bfd_boolean check_regions)
4988 {
4989 lang_statement_union_type *s;
4990
4991 /* Size up the sections from their constituent parts. */
4992 for (s = *prev; s != NULL; s = s->header.next)
4993 {
4994 switch (s->header.type)
4995 {
4996 case lang_output_section_statement_enum:
4997 {
4998 bfd_vma newdot, after, dotdelta;
4999 lang_output_section_statement_type *os;
5000 lang_memory_region_type *r;
5001 int section_alignment = 0;
5002
5003 os = &s->output_section_statement;
5004 if (os->constraint == -1)
5005 break;
5006
5007 /* FIXME: We shouldn't need to zero section vmas for ld -r
5008 here, in lang_insert_orphan, or in the default linker scripts.
5009 This is covering for coff backend linker bugs. See PR6945. */
5010 if (os->addr_tree == NULL
5011 && bfd_link_relocatable (&link_info)
5012 && (bfd_get_flavour (link_info.output_bfd)
5013 == bfd_target_coff_flavour))
5014 os->addr_tree = exp_intop (0);
5015 if (os->addr_tree != NULL)
5016 {
5017 os->processed_vma = FALSE;
5018 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5019
5020 if (expld.result.valid_p)
5021 {
5022 dot = expld.result.value;
5023 if (expld.result.section != NULL)
5024 dot += expld.result.section->vma;
5025 }
5026 else if (expld.phase != lang_mark_phase_enum)
5027 einfo (_("%F%S: non constant or forward reference"
5028 " address expression for section %s\n"),
5029 os->addr_tree, os->name);
5030 }
5031
5032 if (os->bfd_section == NULL)
5033 /* This section was removed or never actually created. */
5034 break;
5035
5036 /* If this is a COFF shared library section, use the size and
5037 address from the input section. FIXME: This is COFF
5038 specific; it would be cleaner if there were some other way
5039 to do this, but nothing simple comes to mind. */
5040 if (((bfd_get_flavour (link_info.output_bfd)
5041 == bfd_target_ecoff_flavour)
5042 || (bfd_get_flavour (link_info.output_bfd)
5043 == bfd_target_coff_flavour))
5044 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5045 {
5046 asection *input;
5047
5048 if (os->children.head == NULL
5049 || os->children.head->header.next != NULL
5050 || (os->children.head->header.type
5051 != lang_input_section_enum))
5052 einfo (_("%P%X: Internal error on COFF shared library"
5053 " section %s\n"), os->name);
5054
5055 input = os->children.head->input_section.section;
5056 bfd_set_section_vma (os->bfd_section->owner,
5057 os->bfd_section,
5058 bfd_section_vma (input->owner, input));
5059 os->bfd_section->size = input->size;
5060 break;
5061 }
5062
5063 newdot = dot;
5064 dotdelta = 0;
5065 if (bfd_is_abs_section (os->bfd_section))
5066 {
5067 /* No matter what happens, an abs section starts at zero. */
5068 ASSERT (os->bfd_section->vma == 0);
5069 }
5070 else
5071 {
5072 if (os->addr_tree == NULL)
5073 {
5074 /* No address specified for this section, get one
5075 from the region specification. */
5076 if (os->region == NULL
5077 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5078 && os->region->name_list.name[0] == '*'
5079 && strcmp (os->region->name_list.name,
5080 DEFAULT_MEMORY_REGION) == 0))
5081 {
5082 os->region = lang_memory_default (os->bfd_section);
5083 }
5084
5085 /* If a loadable section is using the default memory
5086 region, and some non default memory regions were
5087 defined, issue an error message. */
5088 if (!os->ignored
5089 && !IGNORE_SECTION (os->bfd_section)
5090 && !bfd_link_relocatable (&link_info)
5091 && check_regions
5092 && strcmp (os->region->name_list.name,
5093 DEFAULT_MEMORY_REGION) == 0
5094 && lang_memory_region_list != NULL
5095 && (strcmp (lang_memory_region_list->name_list.name,
5096 DEFAULT_MEMORY_REGION) != 0
5097 || lang_memory_region_list->next != NULL)
5098 && expld.phase != lang_mark_phase_enum)
5099 {
5100 /* By default this is an error rather than just a
5101 warning because if we allocate the section to the
5102 default memory region we can end up creating an
5103 excessively large binary, or even seg faulting when
5104 attempting to perform a negative seek. See
5105 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5106 for an example of this. This behaviour can be
5107 overridden by the using the --no-check-sections
5108 switch. */
5109 if (command_line.check_section_addresses)
5110 einfo (_("%P%F: error: no memory region specified"
5111 " for loadable section `%s'\n"),
5112 bfd_get_section_name (link_info.output_bfd,
5113 os->bfd_section));
5114 else
5115 einfo (_("%P: warning: no memory region specified"
5116 " for loadable section `%s'\n"),
5117 bfd_get_section_name (link_info.output_bfd,
5118 os->bfd_section));
5119 }
5120
5121 newdot = os->region->current;
5122 section_alignment = os->bfd_section->alignment_power;
5123 }
5124 else
5125 section_alignment = os->section_alignment;
5126
5127 /* Align to what the section needs. */
5128 if (section_alignment > 0)
5129 {
5130 bfd_vma savedot = newdot;
5131 newdot = align_power (newdot, section_alignment);
5132
5133 dotdelta = newdot - savedot;
5134 if (dotdelta != 0
5135 && (config.warn_section_align
5136 || os->addr_tree != NULL)
5137 && expld.phase != lang_mark_phase_enum)
5138 einfo (ngettext ("%P: warning: changing start of "
5139 "section %s by %lu byte\n",
5140 "%P: warning: changing start of "
5141 "section %s by %lu bytes\n",
5142 (unsigned long) dotdelta),
5143 os->name, (unsigned long) dotdelta);
5144 }
5145
5146 bfd_set_section_vma (0, os->bfd_section, newdot);
5147
5148 os->bfd_section->output_offset = 0;
5149 }
5150
5151 lang_size_sections_1 (&os->children.head, os,
5152 os->fill, newdot, relax, check_regions);
5153
5154 os->processed_vma = TRUE;
5155
5156 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5157 /* Except for some special linker created sections,
5158 no output section should change from zero size
5159 after strip_excluded_output_sections. A non-zero
5160 size on an ignored section indicates that some
5161 input section was not sized early enough. */
5162 ASSERT (os->bfd_section->size == 0);
5163 else
5164 {
5165 dot = os->bfd_section->vma;
5166
5167 /* Put the section within the requested block size, or
5168 align at the block boundary. */
5169 after = ((dot
5170 + TO_ADDR (os->bfd_section->size)
5171 + os->block_value - 1)
5172 & - (bfd_vma) os->block_value);
5173
5174 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5175 }
5176
5177 /* Set section lma. */
5178 r = os->region;
5179 if (r == NULL)
5180 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5181
5182 if (os->load_base)
5183 {
5184 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5185 os->bfd_section->lma = lma;
5186 }
5187 else if (os->lma_region != NULL)
5188 {
5189 bfd_vma lma = os->lma_region->current;
5190
5191 if (os->align_lma_with_input)
5192 lma += dotdelta;
5193 else
5194 {
5195 /* When LMA_REGION is the same as REGION, align the LMA
5196 as we did for the VMA, possibly including alignment
5197 from the bfd section. If a different region, then
5198 only align according to the value in the output
5199 statement. */
5200 if (os->lma_region != os->region)
5201 section_alignment = os->section_alignment;
5202 if (section_alignment > 0)
5203 lma = align_power (lma, section_alignment);
5204 }
5205 os->bfd_section->lma = lma;
5206 }
5207 else if (r->last_os != NULL
5208 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5209 {
5210 bfd_vma lma;
5211 asection *last;
5212
5213 last = r->last_os->output_section_statement.bfd_section;
5214
5215 /* A backwards move of dot should be accompanied by
5216 an explicit assignment to the section LMA (ie.
5217 os->load_base set) because backwards moves can
5218 create overlapping LMAs. */
5219 if (dot < last->vma
5220 && os->bfd_section->size != 0
5221 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5222 {
5223 /* If dot moved backwards then leave lma equal to
5224 vma. This is the old default lma, which might
5225 just happen to work when the backwards move is
5226 sufficiently large. Nag if this changes anything,
5227 so people can fix their linker scripts. */
5228
5229 if (last->vma != last->lma)
5230 einfo (_("%P: warning: dot moved backwards "
5231 "before `%s'\n"), os->name);
5232 }
5233 else
5234 {
5235 /* If this is an overlay, set the current lma to that
5236 at the end of the previous section. */
5237 if (os->sectype == overlay_section)
5238 lma = last->lma + TO_ADDR (last->size);
5239
5240 /* Otherwise, keep the same lma to vma relationship
5241 as the previous section. */
5242 else
5243 lma = dot + last->lma - last->vma;
5244
5245 if (section_alignment > 0)
5246 lma = align_power (lma, section_alignment);
5247 os->bfd_section->lma = lma;
5248 }
5249 }
5250 os->processed_lma = TRUE;
5251
5252 /* Keep track of normal sections using the default
5253 lma region. We use this to set the lma for
5254 following sections. Overlays or other linker
5255 script assignment to lma might mean that the
5256 default lma == vma is incorrect.
5257 To avoid warnings about dot moving backwards when using
5258 -Ttext, don't start tracking sections until we find one
5259 of non-zero size or with lma set differently to vma.
5260 Do this tracking before we short-cut the loop so that we
5261 track changes for the case where the section size is zero,
5262 but the lma is set differently to the vma. This is
5263 important, if an orphan section is placed after an
5264 otherwise empty output section that has an explicit lma
5265 set, we want that lma reflected in the orphans lma. */
5266 if (!IGNORE_SECTION (os->bfd_section)
5267 && (os->bfd_section->size != 0
5268 || (r->last_os == NULL
5269 && os->bfd_section->vma != os->bfd_section->lma)
5270 || (r->last_os != NULL
5271 && dot >= (r->last_os->output_section_statement
5272 .bfd_section->vma)))
5273 && os->lma_region == NULL
5274 && !bfd_link_relocatable (&link_info))
5275 r->last_os = s;
5276
5277 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5278 break;
5279
5280 /* .tbss sections effectively have zero size. */
5281 if (!IS_TBSS (os->bfd_section)
5282 || bfd_link_relocatable (&link_info))
5283 dotdelta = TO_ADDR (os->bfd_section->size);
5284 else
5285 dotdelta = 0;
5286 dot += dotdelta;
5287
5288 if (os->update_dot_tree != 0)
5289 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5290
5291 /* Update dot in the region ?
5292 We only do this if the section is going to be allocated,
5293 since unallocated sections do not contribute to the region's
5294 overall size in memory. */
5295 if (os->region != NULL
5296 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5297 {
5298 os->region->current = dot;
5299
5300 if (check_regions)
5301 /* Make sure the new address is within the region. */
5302 os_region_check (os, os->region, os->addr_tree,
5303 os->bfd_section->vma);
5304
5305 if (os->lma_region != NULL && os->lma_region != os->region
5306 && ((os->bfd_section->flags & SEC_LOAD)
5307 || os->align_lma_with_input))
5308 {
5309 os->lma_region->current = os->bfd_section->lma + dotdelta;
5310
5311 if (check_regions)
5312 os_region_check (os, os->lma_region, NULL,
5313 os->bfd_section->lma);
5314 }
5315 }
5316 }
5317 break;
5318
5319 case lang_constructors_statement_enum:
5320 dot = lang_size_sections_1 (&constructor_list.head,
5321 output_section_statement,
5322 fill, dot, relax, check_regions);
5323 break;
5324
5325 case lang_data_statement_enum:
5326 {
5327 unsigned int size = 0;
5328
5329 s->data_statement.output_offset =
5330 dot - output_section_statement->bfd_section->vma;
5331 s->data_statement.output_section =
5332 output_section_statement->bfd_section;
5333
5334 /* We might refer to provided symbols in the expression, and
5335 need to mark them as needed. */
5336 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5337
5338 switch (s->data_statement.type)
5339 {
5340 default:
5341 abort ();
5342 case QUAD:
5343 case SQUAD:
5344 size = QUAD_SIZE;
5345 break;
5346 case LONG:
5347 size = LONG_SIZE;
5348 break;
5349 case SHORT:
5350 size = SHORT_SIZE;
5351 break;
5352 case BYTE:
5353 size = BYTE_SIZE;
5354 break;
5355 }
5356 if (size < TO_SIZE ((unsigned) 1))
5357 size = TO_SIZE ((unsigned) 1);
5358 dot += TO_ADDR (size);
5359 output_section_statement->bfd_section->size
5360 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5361
5362 }
5363 break;
5364
5365 case lang_reloc_statement_enum:
5366 {
5367 int size;
5368
5369 s->reloc_statement.output_offset =
5370 dot - output_section_statement->bfd_section->vma;
5371 s->reloc_statement.output_section =
5372 output_section_statement->bfd_section;
5373 size = bfd_get_reloc_size (s->reloc_statement.howto);
5374 dot += TO_ADDR (size);
5375 output_section_statement->bfd_section->size
5376 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5377 }
5378 break;
5379
5380 case lang_wild_statement_enum:
5381 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5382 output_section_statement,
5383 fill, dot, relax, check_regions);
5384 break;
5385
5386 case lang_object_symbols_statement_enum:
5387 link_info.create_object_symbols_section =
5388 output_section_statement->bfd_section;
5389 break;
5390
5391 case lang_output_statement_enum:
5392 case lang_target_statement_enum:
5393 break;
5394
5395 case lang_input_section_enum:
5396 {
5397 asection *i;
5398
5399 i = s->input_section.section;
5400 if (relax)
5401 {
5402 bfd_boolean again;
5403
5404 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5405 einfo (_("%P%F: can't relax section: %E\n"));
5406 if (again)
5407 *relax = TRUE;
5408 }
5409 dot = size_input_section (prev, output_section_statement,
5410 fill, dot);
5411 }
5412 break;
5413
5414 case lang_input_statement_enum:
5415 break;
5416
5417 case lang_fill_statement_enum:
5418 s->fill_statement.output_section =
5419 output_section_statement->bfd_section;
5420
5421 fill = s->fill_statement.fill;
5422 break;
5423
5424 case lang_assignment_statement_enum:
5425 {
5426 bfd_vma newdot = dot;
5427 etree_type *tree = s->assignment_statement.exp;
5428
5429 expld.dataseg.relro = exp_dataseg_relro_none;
5430
5431 exp_fold_tree (tree,
5432 output_section_statement->bfd_section,
5433 &newdot);
5434
5435 if (expld.dataseg.relro == exp_dataseg_relro_start)
5436 {
5437 if (!expld.dataseg.relro_start_stat)
5438 expld.dataseg.relro_start_stat = s;
5439 else
5440 {
5441 ASSERT (expld.dataseg.relro_start_stat == s);
5442 }
5443 }
5444 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5445 {
5446 if (!expld.dataseg.relro_end_stat)
5447 expld.dataseg.relro_end_stat = s;
5448 else
5449 {
5450 ASSERT (expld.dataseg.relro_end_stat == s);
5451 }
5452 }
5453 expld.dataseg.relro = exp_dataseg_relro_none;
5454
5455 /* This symbol may be relative to this section. */
5456 if ((tree->type.node_class == etree_provided
5457 || tree->type.node_class == etree_assign)
5458 && (tree->assign.dst [0] != '.'
5459 || tree->assign.dst [1] != '\0'))
5460 output_section_statement->update_dot = 1;
5461
5462 if (!output_section_statement->ignored)
5463 {
5464 if (output_section_statement == abs_output_section)
5465 {
5466 /* If we don't have an output section, then just adjust
5467 the default memory address. */
5468 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5469 FALSE)->current = newdot;
5470 }
5471 else if (newdot != dot)
5472 {
5473 /* Insert a pad after this statement. We can't
5474 put the pad before when relaxing, in case the
5475 assignment references dot. */
5476 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5477 output_section_statement->bfd_section, dot);
5478
5479 /* Don't neuter the pad below when relaxing. */
5480 s = s->header.next;
5481
5482 /* If dot is advanced, this implies that the section
5483 should have space allocated to it, unless the
5484 user has explicitly stated that the section
5485 should not be allocated. */
5486 if (output_section_statement->sectype != noalloc_section
5487 && (output_section_statement->sectype != noload_section
5488 || (bfd_get_flavour (link_info.output_bfd)
5489 == bfd_target_elf_flavour)))
5490 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5491 }
5492 dot = newdot;
5493 }
5494 }
5495 break;
5496
5497 case lang_padding_statement_enum:
5498 /* If this is the first time lang_size_sections is called,
5499 we won't have any padding statements. If this is the
5500 second or later passes when relaxing, we should allow
5501 padding to shrink. If padding is needed on this pass, it
5502 will be added back in. */
5503 s->padding_statement.size = 0;
5504
5505 /* Make sure output_offset is valid. If relaxation shrinks
5506 the section and this pad isn't needed, it's possible to
5507 have output_offset larger than the final size of the
5508 section. bfd_set_section_contents will complain even for
5509 a pad size of zero. */
5510 s->padding_statement.output_offset
5511 = dot - output_section_statement->bfd_section->vma;
5512 break;
5513
5514 case lang_group_statement_enum:
5515 dot = lang_size_sections_1 (&s->group_statement.children.head,
5516 output_section_statement,
5517 fill, dot, relax, check_regions);
5518 break;
5519
5520 case lang_insert_statement_enum:
5521 break;
5522
5523 /* We can only get here when relaxing is turned on. */
5524 case lang_address_statement_enum:
5525 break;
5526
5527 default:
5528 FAIL ();
5529 break;
5530 }
5531 prev = &s->header.next;
5532 }
5533 return dot;
5534 }
5535
5536 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5537 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5538 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5539 segments. We are allowed an opportunity to override this decision. */
5540
5541 bfd_boolean
5542 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5543 bfd *abfd ATTRIBUTE_UNUSED,
5544 asection *current_section,
5545 asection *previous_section,
5546 bfd_boolean new_segment)
5547 {
5548 lang_output_section_statement_type *cur;
5549 lang_output_section_statement_type *prev;
5550
5551 /* The checks below are only necessary when the BFD library has decided
5552 that the two sections ought to be placed into the same segment. */
5553 if (new_segment)
5554 return TRUE;
5555
5556 /* Paranoia checks. */
5557 if (current_section == NULL || previous_section == NULL)
5558 return new_segment;
5559
5560 /* If this flag is set, the target never wants code and non-code
5561 sections comingled in the same segment. */
5562 if (config.separate_code
5563 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5564 return TRUE;
5565
5566 /* Find the memory regions associated with the two sections.
5567 We call lang_output_section_find() here rather than scanning the list
5568 of output sections looking for a matching section pointer because if
5569 we have a large number of sections then a hash lookup is faster. */
5570 cur = lang_output_section_find (current_section->name);
5571 prev = lang_output_section_find (previous_section->name);
5572
5573 /* More paranoia. */
5574 if (cur == NULL || prev == NULL)
5575 return new_segment;
5576
5577 /* If the regions are different then force the sections to live in
5578 different segments. See the email thread starting at the following
5579 URL for the reasons why this is necessary:
5580 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5581 return cur->region != prev->region;
5582 }
5583
5584 void
5585 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5586 {
5587 lang_statement_iteration++;
5588 lang_size_sections_1 (&statement_list.head, abs_output_section,
5589 0, 0, relax, check_regions);
5590 }
5591
5592 void
5593 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5594 {
5595 expld.phase = lang_allocating_phase_enum;
5596 expld.dataseg.phase = exp_dataseg_none;
5597
5598 one_lang_size_sections_pass (relax, check_regions);
5599 if (expld.dataseg.phase == exp_dataseg_end_seen
5600 && link_info.relro && expld.dataseg.relro_end)
5601 {
5602 bfd_vma initial_base, relro_end, desired_end;
5603 asection *sec;
5604
5605 /* Compute the expected PT_GNU_RELRO segment end. */
5606 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5607 & ~(expld.dataseg.pagesize - 1));
5608
5609 /* Adjust by the offset arg of DATA_SEGMENT_RELRO_END. */
5610 desired_end = relro_end - expld.dataseg.relro_offset;
5611
5612 /* For sections in the relro segment.. */
5613 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5614 if ((sec->flags & SEC_ALLOC) != 0
5615 && sec->vma >= expld.dataseg.base
5616 && sec->vma < expld.dataseg.relro_end - expld.dataseg.relro_offset)
5617 {
5618 /* Where do we want to put this section so that it ends as
5619 desired? */
5620 bfd_vma start, end, bump;
5621
5622 end = start = sec->vma;
5623 if (!IS_TBSS (sec))
5624 end += TO_ADDR (sec->size);
5625 bump = desired_end - end;
5626 /* We'd like to increase START by BUMP, but we must heed
5627 alignment so the increase might be less than optimum. */
5628 start += bump;
5629 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5630 /* This is now the desired end for the previous section. */
5631 desired_end = start;
5632 }
5633
5634 expld.dataseg.phase = exp_dataseg_relro_adjust;
5635 ASSERT (desired_end >= expld.dataseg.base);
5636 initial_base = expld.dataseg.base;
5637 expld.dataseg.base = desired_end;
5638 lang_reset_memory_regions ();
5639 one_lang_size_sections_pass (relax, check_regions);
5640
5641 if (expld.dataseg.relro_end > relro_end)
5642 {
5643 /* Assignments to dot, or to output section address in a
5644 user script have increased padding over the original.
5645 Revert. */
5646 expld.dataseg.base = initial_base;
5647 lang_reset_memory_regions ();
5648 one_lang_size_sections_pass (relax, check_regions);
5649 }
5650
5651 link_info.relro_start = expld.dataseg.base;
5652 link_info.relro_end = expld.dataseg.relro_end;
5653 }
5654 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5655 {
5656 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5657 a page could be saved in the data segment. */
5658 bfd_vma first, last;
5659
5660 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5661 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5662 if (first && last
5663 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5664 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5665 && first + last <= expld.dataseg.pagesize)
5666 {
5667 expld.dataseg.phase = exp_dataseg_adjust;
5668 lang_reset_memory_regions ();
5669 one_lang_size_sections_pass (relax, check_regions);
5670 }
5671 else
5672 expld.dataseg.phase = exp_dataseg_done;
5673 }
5674 else
5675 expld.dataseg.phase = exp_dataseg_done;
5676 }
5677
5678 static lang_output_section_statement_type *current_section;
5679 static lang_assignment_statement_type *current_assign;
5680 static bfd_boolean prefer_next_section;
5681
5682 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5683
5684 static bfd_vma
5685 lang_do_assignments_1 (lang_statement_union_type *s,
5686 lang_output_section_statement_type *current_os,
5687 fill_type *fill,
5688 bfd_vma dot,
5689 bfd_boolean *found_end)
5690 {
5691 for (; s != NULL; s = s->header.next)
5692 {
5693 switch (s->header.type)
5694 {
5695 case lang_constructors_statement_enum:
5696 dot = lang_do_assignments_1 (constructor_list.head,
5697 current_os, fill, dot, found_end);
5698 break;
5699
5700 case lang_output_section_statement_enum:
5701 {
5702 lang_output_section_statement_type *os;
5703 bfd_vma newdot;
5704
5705 os = &(s->output_section_statement);
5706 os->after_end = *found_end;
5707 if (os->bfd_section != NULL && !os->ignored)
5708 {
5709 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5710 {
5711 current_section = os;
5712 prefer_next_section = FALSE;
5713 }
5714 dot = os->bfd_section->vma;
5715 }
5716 newdot = lang_do_assignments_1 (os->children.head,
5717 os, os->fill, dot, found_end);
5718 if (!os->ignored)
5719 {
5720 if (os->bfd_section != NULL)
5721 {
5722 /* .tbss sections effectively have zero size. */
5723 if (!IS_TBSS (os->bfd_section)
5724 || bfd_link_relocatable (&link_info))
5725 dot += TO_ADDR (os->bfd_section->size);
5726
5727 if (os->update_dot_tree != NULL)
5728 exp_fold_tree (os->update_dot_tree,
5729 bfd_abs_section_ptr, &dot);
5730 }
5731 else
5732 dot = newdot;
5733 }
5734 }
5735 break;
5736
5737 case lang_wild_statement_enum:
5738
5739 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5740 current_os, fill, dot, found_end);
5741 break;
5742
5743 case lang_object_symbols_statement_enum:
5744 case lang_output_statement_enum:
5745 case lang_target_statement_enum:
5746 break;
5747
5748 case lang_data_statement_enum:
5749 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5750 if (expld.result.valid_p)
5751 {
5752 s->data_statement.value = expld.result.value;
5753 if (expld.result.section != NULL)
5754 s->data_statement.value += expld.result.section->vma;
5755 }
5756 else if (expld.phase == lang_final_phase_enum)
5757 einfo (_("%F%P: invalid data statement\n"));
5758 {
5759 unsigned int size;
5760 switch (s->data_statement.type)
5761 {
5762 default:
5763 abort ();
5764 case QUAD:
5765 case SQUAD:
5766 size = QUAD_SIZE;
5767 break;
5768 case LONG:
5769 size = LONG_SIZE;
5770 break;
5771 case SHORT:
5772 size = SHORT_SIZE;
5773 break;
5774 case BYTE:
5775 size = BYTE_SIZE;
5776 break;
5777 }
5778 if (size < TO_SIZE ((unsigned) 1))
5779 size = TO_SIZE ((unsigned) 1);
5780 dot += TO_ADDR (size);
5781 }
5782 break;
5783
5784 case lang_reloc_statement_enum:
5785 exp_fold_tree (s->reloc_statement.addend_exp,
5786 bfd_abs_section_ptr, &dot);
5787 if (expld.result.valid_p)
5788 s->reloc_statement.addend_value = expld.result.value;
5789 else if (expld.phase == lang_final_phase_enum)
5790 einfo (_("%F%P: invalid reloc statement\n"));
5791 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5792 break;
5793
5794 case lang_input_section_enum:
5795 {
5796 asection *in = s->input_section.section;
5797
5798 if ((in->flags & SEC_EXCLUDE) == 0)
5799 dot += TO_ADDR (in->size);
5800 }
5801 break;
5802
5803 case lang_input_statement_enum:
5804 break;
5805
5806 case lang_fill_statement_enum:
5807 fill = s->fill_statement.fill;
5808 break;
5809
5810 case lang_assignment_statement_enum:
5811 current_assign = &s->assignment_statement;
5812 if (current_assign->exp->type.node_class != etree_assert)
5813 {
5814 const char *p = current_assign->exp->assign.dst;
5815
5816 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5817 prefer_next_section = TRUE;
5818
5819 while (*p == '_')
5820 ++p;
5821 if (strcmp (p, "end") == 0)
5822 *found_end = TRUE;
5823 }
5824 exp_fold_tree (s->assignment_statement.exp,
5825 (current_os->bfd_section != NULL
5826 ? current_os->bfd_section : bfd_und_section_ptr),
5827 &dot);
5828 break;
5829
5830 case lang_padding_statement_enum:
5831 dot += TO_ADDR (s->padding_statement.size);
5832 break;
5833
5834 case lang_group_statement_enum:
5835 dot = lang_do_assignments_1 (s->group_statement.children.head,
5836 current_os, fill, dot, found_end);
5837 break;
5838
5839 case lang_insert_statement_enum:
5840 break;
5841
5842 case lang_address_statement_enum:
5843 break;
5844
5845 default:
5846 FAIL ();
5847 break;
5848 }
5849 }
5850 return dot;
5851 }
5852
5853 void
5854 lang_do_assignments (lang_phase_type phase)
5855 {
5856 bfd_boolean found_end = FALSE;
5857
5858 current_section = NULL;
5859 prefer_next_section = FALSE;
5860 expld.phase = phase;
5861 lang_statement_iteration++;
5862 lang_do_assignments_1 (statement_list.head,
5863 abs_output_section, NULL, 0, &found_end);
5864 }
5865
5866 /* For an assignment statement outside of an output section statement,
5867 choose the best of neighbouring output sections to use for values
5868 of "dot". */
5869
5870 asection *
5871 section_for_dot (void)
5872 {
5873 asection *s;
5874
5875 /* Assignments belong to the previous output section, unless there
5876 has been an assignment to "dot", in which case following
5877 assignments belong to the next output section. (The assumption
5878 is that an assignment to "dot" is setting up the address for the
5879 next output section.) Except that past the assignment to "_end"
5880 we always associate with the previous section. This exception is
5881 for targets like SH that define an alloc .stack or other
5882 weirdness after non-alloc sections. */
5883 if (current_section == NULL || prefer_next_section)
5884 {
5885 lang_statement_union_type *stmt;
5886 lang_output_section_statement_type *os;
5887
5888 for (stmt = (lang_statement_union_type *) current_assign;
5889 stmt != NULL;
5890 stmt = stmt->header.next)
5891 if (stmt->header.type == lang_output_section_statement_enum)
5892 break;
5893
5894 os = &stmt->output_section_statement;
5895 while (os != NULL
5896 && !os->after_end
5897 && (os->bfd_section == NULL
5898 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5899 || bfd_section_removed_from_list (link_info.output_bfd,
5900 os->bfd_section)))
5901 os = os->next;
5902
5903 if (current_section == NULL || os == NULL || !os->after_end)
5904 {
5905 if (os != NULL)
5906 s = os->bfd_section;
5907 else
5908 s = link_info.output_bfd->section_last;
5909 while (s != NULL
5910 && ((s->flags & SEC_ALLOC) == 0
5911 || (s->flags & SEC_THREAD_LOCAL) != 0))
5912 s = s->prev;
5913 if (s != NULL)
5914 return s;
5915
5916 return bfd_abs_section_ptr;
5917 }
5918 }
5919
5920 s = current_section->bfd_section;
5921
5922 /* The section may have been stripped. */
5923 while (s != NULL
5924 && ((s->flags & SEC_EXCLUDE) != 0
5925 || (s->flags & SEC_ALLOC) == 0
5926 || (s->flags & SEC_THREAD_LOCAL) != 0
5927 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5928 s = s->prev;
5929 if (s == NULL)
5930 s = link_info.output_bfd->sections;
5931 while (s != NULL
5932 && ((s->flags & SEC_ALLOC) == 0
5933 || (s->flags & SEC_THREAD_LOCAL) != 0))
5934 s = s->next;
5935 if (s != NULL)
5936 return s;
5937
5938 return bfd_abs_section_ptr;
5939 }
5940
5941 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
5942
5943 static struct bfd_link_hash_entry **start_stop_syms;
5944 static size_t start_stop_count = 0;
5945 static size_t start_stop_alloc = 0;
5946
5947 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
5948 to start_stop_syms. */
5949
5950 static void
5951 lang_define_start_stop (const char *symbol, asection *sec)
5952 {
5953 struct bfd_link_hash_entry *h;
5954
5955 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
5956 if (h != NULL)
5957 {
5958 if (start_stop_count == start_stop_alloc)
5959 {
5960 start_stop_alloc = 2 * start_stop_alloc + 10;
5961 start_stop_syms
5962 = xrealloc (start_stop_syms,
5963 start_stop_alloc * sizeof (*start_stop_syms));
5964 }
5965 start_stop_syms[start_stop_count++] = h;
5966 }
5967 }
5968
5969 /* Check for input sections whose names match references to
5970 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
5971 preliminary definitions. */
5972
5973 static void
5974 lang_init_start_stop (void)
5975 {
5976 bfd *abfd;
5977 asection *s;
5978 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
5979
5980 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
5981 for (s = abfd->sections; s != NULL; s = s->next)
5982 {
5983 const char *ps;
5984 const char *secname = s->name;
5985
5986 for (ps = secname; *ps != '\0'; ps++)
5987 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
5988 break;
5989 if (*ps == '\0')
5990 {
5991 char *symbol = (char *) xmalloc (10 + strlen (secname));
5992
5993 symbol[0] = leading_char;
5994 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
5995 lang_define_start_stop (symbol, s);
5996
5997 symbol[1] = leading_char;
5998 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
5999 lang_define_start_stop (symbol + 1, s);
6000
6001 free (symbol);
6002 }
6003 }
6004 }
6005
6006 /* Iterate over start_stop_syms. */
6007
6008 static void
6009 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6010 {
6011 size_t i;
6012
6013 for (i = 0; i < start_stop_count; ++i)
6014 func (start_stop_syms[i]);
6015 }
6016
6017 /* __start and __stop symbols are only supposed to be defined by the
6018 linker for orphan sections, but we now extend that to sections that
6019 map to an output section of the same name. The symbols were
6020 defined early for --gc-sections, before we mapped input to output
6021 sections, so undo those that don't satisfy this rule. */
6022
6023 static void
6024 undef_start_stop (struct bfd_link_hash_entry *h)
6025 {
6026 if (h->ldscript_def)
6027 return;
6028
6029 if (h->u.def.section->output_section == NULL
6030 || h->u.def.section->output_section->owner != link_info.output_bfd
6031 || strcmp (h->u.def.section->name,
6032 h->u.def.section->output_section->name) != 0)
6033 {
6034 h->type = bfd_link_hash_undefined;
6035 h->u.undef.abfd = NULL;
6036 }
6037 }
6038
6039 static void
6040 lang_undef_start_stop (void)
6041 {
6042 foreach_start_stop (undef_start_stop);
6043 }
6044
6045 /* Check for output sections whose names match references to
6046 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6047 preliminary definitions. */
6048
6049 static void
6050 lang_init_startof_sizeof (void)
6051 {
6052 asection *s;
6053
6054 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6055 {
6056 const char *secname = s->name;
6057 char *symbol = (char *) xmalloc (10 + strlen (secname));
6058
6059 sprintf (symbol, ".startof.%s", secname);
6060 lang_define_start_stop (symbol, s);
6061
6062 memcpy (symbol + 1, ".size", 5);
6063 lang_define_start_stop (symbol + 1, s);
6064 free (symbol);
6065 }
6066 }
6067
6068 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6069
6070 static void
6071 set_start_stop (struct bfd_link_hash_entry *h)
6072 {
6073 if (h->ldscript_def
6074 || h->type != bfd_link_hash_defined)
6075 return;
6076
6077 if (h->root.string[0] == '.')
6078 {
6079 /* .startof. or .sizeof. symbol.
6080 .startof. already has final value. */
6081 if (h->root.string[2] == 'i')
6082 {
6083 /* .sizeof. */
6084 h->u.def.value = TO_ADDR (h->u.def.section->size);
6085 h->u.def.section = bfd_abs_section_ptr;
6086 }
6087 }
6088 else
6089 {
6090 /* __start or __stop symbol. */
6091 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6092
6093 h->u.def.section = h->u.def.section->output_section;
6094 if (h->root.string[4 + has_lead] == 'o')
6095 {
6096 /* __stop_ */
6097 h->u.def.value = TO_ADDR (h->u.def.section->size);
6098 }
6099 }
6100 }
6101
6102 static void
6103 lang_finalize_start_stop (void)
6104 {
6105 foreach_start_stop (set_start_stop);
6106 }
6107
6108 static void
6109 lang_end (void)
6110 {
6111 struct bfd_link_hash_entry *h;
6112 bfd_boolean warn;
6113
6114 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6115 || bfd_link_dll (&link_info))
6116 warn = entry_from_cmdline;
6117 else
6118 warn = TRUE;
6119
6120 /* Force the user to specify a root when generating a relocatable with
6121 --gc-sections. */
6122 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
6123 && !(entry_from_cmdline || undef_from_cmdline))
6124 einfo (_("%P%F: gc-sections requires either an entry or "
6125 "an undefined symbol\n"));
6126
6127 if (entry_symbol.name == NULL)
6128 {
6129 /* No entry has been specified. Look for the default entry, but
6130 don't warn if we don't find it. */
6131 entry_symbol.name = entry_symbol_default;
6132 warn = FALSE;
6133 }
6134
6135 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6136 FALSE, FALSE, TRUE);
6137 if (h != NULL
6138 && (h->type == bfd_link_hash_defined
6139 || h->type == bfd_link_hash_defweak)
6140 && h->u.def.section->output_section != NULL)
6141 {
6142 bfd_vma val;
6143
6144 val = (h->u.def.value
6145 + bfd_get_section_vma (link_info.output_bfd,
6146 h->u.def.section->output_section)
6147 + h->u.def.section->output_offset);
6148 if (!bfd_set_start_address (link_info.output_bfd, val))
6149 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
6150 }
6151 else
6152 {
6153 bfd_vma val;
6154 const char *send;
6155
6156 /* We couldn't find the entry symbol. Try parsing it as a
6157 number. */
6158 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6159 if (*send == '\0')
6160 {
6161 if (!bfd_set_start_address (link_info.output_bfd, val))
6162 einfo (_("%P%F: can't set start address\n"));
6163 }
6164 else
6165 {
6166 asection *ts;
6167
6168 /* Can't find the entry symbol, and it's not a number. Use
6169 the first address in the text section. */
6170 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6171 if (ts != NULL)
6172 {
6173 if (warn)
6174 einfo (_("%P: warning: cannot find entry symbol %s;"
6175 " defaulting to %V\n"),
6176 entry_symbol.name,
6177 bfd_get_section_vma (link_info.output_bfd, ts));
6178 if (!(bfd_set_start_address
6179 (link_info.output_bfd,
6180 bfd_get_section_vma (link_info.output_bfd, ts))))
6181 einfo (_("%P%F: can't set start address\n"));
6182 }
6183 else
6184 {
6185 if (warn)
6186 einfo (_("%P: warning: cannot find entry symbol %s;"
6187 " not setting start address\n"),
6188 entry_symbol.name);
6189 }
6190 }
6191 }
6192 }
6193
6194 /* This is a small function used when we want to ignore errors from
6195 BFD. */
6196
6197 static void
6198 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6199 va_list ap ATTRIBUTE_UNUSED)
6200 {
6201 /* Don't do anything. */
6202 }
6203
6204 /* Check that the architecture of all the input files is compatible
6205 with the output file. Also call the backend to let it do any
6206 other checking that is needed. */
6207
6208 static void
6209 lang_check (void)
6210 {
6211 lang_statement_union_type *file;
6212 bfd *input_bfd;
6213 const bfd_arch_info_type *compatible;
6214
6215 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6216 {
6217 #ifdef ENABLE_PLUGINS
6218 /* Don't check format of files claimed by plugin. */
6219 if (file->input_statement.flags.claimed)
6220 continue;
6221 #endif /* ENABLE_PLUGINS */
6222 input_bfd = file->input_statement.the_bfd;
6223 compatible
6224 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6225 command_line.accept_unknown_input_arch);
6226
6227 /* In general it is not possible to perform a relocatable
6228 link between differing object formats when the input
6229 file has relocations, because the relocations in the
6230 input format may not have equivalent representations in
6231 the output format (and besides BFD does not translate
6232 relocs for other link purposes than a final link). */
6233 if ((bfd_link_relocatable (&link_info)
6234 || link_info.emitrelocations)
6235 && (compatible == NULL
6236 || (bfd_get_flavour (input_bfd)
6237 != bfd_get_flavour (link_info.output_bfd)))
6238 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6239 {
6240 einfo (_("%P%F: Relocatable linking with relocations from"
6241 " format %s (%B) to format %s (%B) is not supported\n"),
6242 bfd_get_target (input_bfd), input_bfd,
6243 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6244 /* einfo with %F exits. */
6245 }
6246
6247 if (compatible == NULL)
6248 {
6249 if (command_line.warn_mismatch)
6250 einfo (_("%P%X: %s architecture of input file `%B'"
6251 " is incompatible with %s output\n"),
6252 bfd_printable_name (input_bfd), input_bfd,
6253 bfd_printable_name (link_info.output_bfd));
6254 }
6255 else if (bfd_count_sections (input_bfd))
6256 {
6257 /* If the input bfd has no contents, it shouldn't set the
6258 private data of the output bfd. */
6259
6260 bfd_error_handler_type pfn = NULL;
6261
6262 /* If we aren't supposed to warn about mismatched input
6263 files, temporarily set the BFD error handler to a
6264 function which will do nothing. We still want to call
6265 bfd_merge_private_bfd_data, since it may set up
6266 information which is needed in the output file. */
6267 if (!command_line.warn_mismatch)
6268 pfn = bfd_set_error_handler (ignore_bfd_errors);
6269 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6270 {
6271 if (command_line.warn_mismatch)
6272 einfo (_("%P%X: failed to merge target specific data"
6273 " of file %B\n"), input_bfd);
6274 }
6275 if (!command_line.warn_mismatch)
6276 bfd_set_error_handler (pfn);
6277 }
6278 }
6279 }
6280
6281 /* Look through all the global common symbols and attach them to the
6282 correct section. The -sort-common command line switch may be used
6283 to roughly sort the entries by alignment. */
6284
6285 static void
6286 lang_common (void)
6287 {
6288 if (link_info.inhibit_common_definition)
6289 return;
6290 if (bfd_link_relocatable (&link_info)
6291 && !command_line.force_common_definition)
6292 return;
6293
6294 if (!config.sort_common)
6295 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6296 else
6297 {
6298 unsigned int power;
6299
6300 if (config.sort_common == sort_descending)
6301 {
6302 for (power = 4; power > 0; power--)
6303 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6304
6305 power = 0;
6306 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6307 }
6308 else
6309 {
6310 for (power = 0; power <= 4; power++)
6311 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6312
6313 power = (unsigned int) -1;
6314 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6315 }
6316 }
6317 }
6318
6319 /* Place one common symbol in the correct section. */
6320
6321 static bfd_boolean
6322 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6323 {
6324 unsigned int power_of_two;
6325 bfd_vma size;
6326 asection *section;
6327
6328 if (h->type != bfd_link_hash_common)
6329 return TRUE;
6330
6331 size = h->u.c.size;
6332 power_of_two = h->u.c.p->alignment_power;
6333
6334 if (config.sort_common == sort_descending
6335 && power_of_two < *(unsigned int *) info)
6336 return TRUE;
6337 else if (config.sort_common == sort_ascending
6338 && power_of_two > *(unsigned int *) info)
6339 return TRUE;
6340
6341 section = h->u.c.p->section;
6342 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6343 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
6344 h->root.string);
6345
6346 if (config.map_file != NULL)
6347 {
6348 static bfd_boolean header_printed;
6349 int len;
6350 char *name;
6351 char buf[50];
6352
6353 if (!header_printed)
6354 {
6355 minfo (_("\nAllocating common symbols\n"));
6356 minfo (_("Common symbol size file\n\n"));
6357 header_printed = TRUE;
6358 }
6359
6360 name = bfd_demangle (link_info.output_bfd, h->root.string,
6361 DMGL_ANSI | DMGL_PARAMS);
6362 if (name == NULL)
6363 {
6364 minfo ("%s", h->root.string);
6365 len = strlen (h->root.string);
6366 }
6367 else
6368 {
6369 minfo ("%s", name);
6370 len = strlen (name);
6371 free (name);
6372 }
6373
6374 if (len >= 19)
6375 {
6376 print_nl ();
6377 len = 0;
6378 }
6379 while (len < 20)
6380 {
6381 print_space ();
6382 ++len;
6383 }
6384
6385 minfo ("0x");
6386 if (size <= 0xffffffff)
6387 sprintf (buf, "%lx", (unsigned long) size);
6388 else
6389 sprintf_vma (buf, size);
6390 minfo ("%s", buf);
6391 len = strlen (buf);
6392
6393 while (len < 16)
6394 {
6395 print_space ();
6396 ++len;
6397 }
6398
6399 minfo ("%B\n", section->owner);
6400 }
6401
6402 return TRUE;
6403 }
6404
6405 /* Handle a single orphan section S, placing the orphan into an appropriate
6406 output section. The effects of the --orphan-handling command line
6407 option are handled here. */
6408
6409 static void
6410 ldlang_place_orphan (asection *s)
6411 {
6412 if (config.orphan_handling == orphan_handling_discard)
6413 {
6414 lang_output_section_statement_type *os;
6415 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6416 TRUE);
6417 if (os->addr_tree == NULL
6418 && (bfd_link_relocatable (&link_info)
6419 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6420 os->addr_tree = exp_intop (0);
6421 lang_add_section (&os->children, s, NULL, os);
6422 }
6423 else
6424 {
6425 lang_output_section_statement_type *os;
6426 const char *name = s->name;
6427 int constraint = 0;
6428
6429 if (config.orphan_handling == orphan_handling_error)
6430 einfo (_("%X%P: error: unplaced orphan section `%A' from `%B'.\n"),
6431 s, s->owner);
6432
6433 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6434 constraint = SPECIAL;
6435
6436 os = ldemul_place_orphan (s, name, constraint);
6437 if (os == NULL)
6438 {
6439 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6440 if (os->addr_tree == NULL
6441 && (bfd_link_relocatable (&link_info)
6442 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6443 os->addr_tree = exp_intop (0);
6444 lang_add_section (&os->children, s, NULL, os);
6445 }
6446
6447 if (config.orphan_handling == orphan_handling_warn)
6448 einfo (_("%P: warning: orphan section `%A' from `%B' being "
6449 "placed in section `%s'.\n"),
6450 s, s->owner, os->name);
6451 }
6452 }
6453
6454 /* Run through the input files and ensure that every input section has
6455 somewhere to go. If one is found without a destination then create
6456 an input request and place it into the statement tree. */
6457
6458 static void
6459 lang_place_orphans (void)
6460 {
6461 LANG_FOR_EACH_INPUT_STATEMENT (file)
6462 {
6463 asection *s;
6464
6465 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6466 {
6467 if (s->output_section == NULL)
6468 {
6469 /* This section of the file is not attached, root
6470 around for a sensible place for it to go. */
6471
6472 if (file->flags.just_syms)
6473 bfd_link_just_syms (file->the_bfd, s, &link_info);
6474 else if (lang_discard_section_p (s))
6475 s->output_section = bfd_abs_section_ptr;
6476 else if (strcmp (s->name, "COMMON") == 0)
6477 {
6478 /* This is a lonely common section which must have
6479 come from an archive. We attach to the section
6480 with the wildcard. */
6481 if (!bfd_link_relocatable (&link_info)
6482 || command_line.force_common_definition)
6483 {
6484 if (default_common_section == NULL)
6485 default_common_section
6486 = lang_output_section_statement_lookup (".bss", 0,
6487 TRUE);
6488 lang_add_section (&default_common_section->children, s,
6489 NULL, default_common_section);
6490 }
6491 }
6492 else
6493 ldlang_place_orphan (s);
6494 }
6495 }
6496 }
6497 }
6498
6499 void
6500 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6501 {
6502 flagword *ptr_flags;
6503
6504 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6505
6506 while (*flags)
6507 {
6508 switch (*flags)
6509 {
6510 /* PR 17900: An exclamation mark in the attributes reverses
6511 the sense of any of the attributes that follow. */
6512 case '!':
6513 invert = !invert;
6514 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6515 break;
6516
6517 case 'A': case 'a':
6518 *ptr_flags |= SEC_ALLOC;
6519 break;
6520
6521 case 'R': case 'r':
6522 *ptr_flags |= SEC_READONLY;
6523 break;
6524
6525 case 'W': case 'w':
6526 *ptr_flags |= SEC_DATA;
6527 break;
6528
6529 case 'X': case 'x':
6530 *ptr_flags |= SEC_CODE;
6531 break;
6532
6533 case 'L': case 'l':
6534 case 'I': case 'i':
6535 *ptr_flags |= SEC_LOAD;
6536 break;
6537
6538 default:
6539 einfo (_("%P%F: invalid character %c (%d) in flags\n"),
6540 *flags, *flags);
6541 break;
6542 }
6543 flags++;
6544 }
6545 }
6546
6547 /* Call a function on each input file. This function will be called
6548 on an archive, but not on the elements. */
6549
6550 void
6551 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6552 {
6553 lang_input_statement_type *f;
6554
6555 for (f = &input_file_chain.head->input_statement;
6556 f != NULL;
6557 f = &f->next_real_file->input_statement)
6558 func (f);
6559 }
6560
6561 /* Call a function on each file. The function will be called on all
6562 the elements of an archive which are included in the link, but will
6563 not be called on the archive file itself. */
6564
6565 void
6566 lang_for_each_file (void (*func) (lang_input_statement_type *))
6567 {
6568 LANG_FOR_EACH_INPUT_STATEMENT (f)
6569 {
6570 func (f);
6571 }
6572 }
6573
6574 void
6575 ldlang_add_file (lang_input_statement_type *entry)
6576 {
6577 lang_statement_append (&file_chain,
6578 (lang_statement_union_type *) entry,
6579 &entry->next);
6580
6581 /* The BFD linker needs to have a list of all input BFDs involved in
6582 a link. */
6583 ASSERT (entry->the_bfd->link.next == NULL);
6584 ASSERT (entry->the_bfd != link_info.output_bfd);
6585
6586 *link_info.input_bfds_tail = entry->the_bfd;
6587 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6588 entry->the_bfd->usrdata = entry;
6589 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6590
6591 /* Look through the sections and check for any which should not be
6592 included in the link. We need to do this now, so that we can
6593 notice when the backend linker tries to report multiple
6594 definition errors for symbols which are in sections we aren't
6595 going to link. FIXME: It might be better to entirely ignore
6596 symbols which are defined in sections which are going to be
6597 discarded. This would require modifying the backend linker for
6598 each backend which might set the SEC_LINK_ONCE flag. If we do
6599 this, we should probably handle SEC_EXCLUDE in the same way. */
6600
6601 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6602 }
6603
6604 void
6605 lang_add_output (const char *name, int from_script)
6606 {
6607 /* Make -o on command line override OUTPUT in script. */
6608 if (!had_output_filename || !from_script)
6609 {
6610 output_filename = name;
6611 had_output_filename = TRUE;
6612 }
6613 }
6614
6615 static int
6616 topower (int x)
6617 {
6618 unsigned int i = 1;
6619 int l;
6620
6621 if (x < 0)
6622 return -1;
6623
6624 for (l = 0; l < 32; l++)
6625 {
6626 if (i >= (unsigned int) x)
6627 return l;
6628 i <<= 1;
6629 }
6630
6631 return 0;
6632 }
6633
6634 lang_output_section_statement_type *
6635 lang_enter_output_section_statement (const char *output_section_statement_name,
6636 etree_type *address_exp,
6637 enum section_type sectype,
6638 etree_type *align,
6639 etree_type *subalign,
6640 etree_type *ebase,
6641 int constraint,
6642 int align_with_input)
6643 {
6644 lang_output_section_statement_type *os;
6645
6646 os = lang_output_section_statement_lookup (output_section_statement_name,
6647 constraint, TRUE);
6648 current_section = os;
6649
6650 if (os->addr_tree == NULL)
6651 {
6652 os->addr_tree = address_exp;
6653 }
6654 os->sectype = sectype;
6655 if (sectype != noload_section)
6656 os->flags = SEC_NO_FLAGS;
6657 else
6658 os->flags = SEC_NEVER_LOAD;
6659 os->block_value = 1;
6660
6661 /* Make next things chain into subchain of this. */
6662 push_stat_ptr (&os->children);
6663
6664 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6665 if (os->align_lma_with_input && align != NULL)
6666 einfo (_("%F%P:%S: error: align with input and explicit align specified\n"),
6667 NULL);
6668
6669 os->subsection_alignment =
6670 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6671 os->section_alignment =
6672 topower (exp_get_value_int (align, -1, "section alignment"));
6673
6674 os->load_base = ebase;
6675 return os;
6676 }
6677
6678 void
6679 lang_final (void)
6680 {
6681 lang_output_statement_type *new_stmt;
6682
6683 new_stmt = new_stat (lang_output_statement, stat_ptr);
6684 new_stmt->name = output_filename;
6685 }
6686
6687 /* Reset the current counters in the regions. */
6688
6689 void
6690 lang_reset_memory_regions (void)
6691 {
6692 lang_memory_region_type *p = lang_memory_region_list;
6693 asection *o;
6694 lang_output_section_statement_type *os;
6695
6696 for (p = lang_memory_region_list; p != NULL; p = p->next)
6697 {
6698 p->current = p->origin;
6699 p->last_os = NULL;
6700 }
6701
6702 for (os = &lang_output_section_statement.head->output_section_statement;
6703 os != NULL;
6704 os = os->next)
6705 {
6706 os->processed_vma = FALSE;
6707 os->processed_lma = FALSE;
6708 }
6709
6710 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6711 {
6712 /* Save the last size for possible use by bfd_relax_section. */
6713 o->rawsize = o->size;
6714 o->size = 0;
6715 }
6716 }
6717
6718 /* Worker for lang_gc_sections_1. */
6719
6720 static void
6721 gc_section_callback (lang_wild_statement_type *ptr,
6722 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6723 asection *section,
6724 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6725 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6726 void *data ATTRIBUTE_UNUSED)
6727 {
6728 /* If the wild pattern was marked KEEP, the member sections
6729 should be as well. */
6730 if (ptr->keep_sections)
6731 section->flags |= SEC_KEEP;
6732 }
6733
6734 /* Iterate over sections marking them against GC. */
6735
6736 static void
6737 lang_gc_sections_1 (lang_statement_union_type *s)
6738 {
6739 for (; s != NULL; s = s->header.next)
6740 {
6741 switch (s->header.type)
6742 {
6743 case lang_wild_statement_enum:
6744 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6745 break;
6746 case lang_constructors_statement_enum:
6747 lang_gc_sections_1 (constructor_list.head);
6748 break;
6749 case lang_output_section_statement_enum:
6750 lang_gc_sections_1 (s->output_section_statement.children.head);
6751 break;
6752 case lang_group_statement_enum:
6753 lang_gc_sections_1 (s->group_statement.children.head);
6754 break;
6755 default:
6756 break;
6757 }
6758 }
6759 }
6760
6761 static void
6762 lang_gc_sections (void)
6763 {
6764 /* Keep all sections so marked in the link script. */
6765 lang_gc_sections_1 (statement_list.head);
6766
6767 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6768 the special case of debug info. (See bfd/stabs.c)
6769 Twiddle the flag here, to simplify later linker code. */
6770 if (bfd_link_relocatable (&link_info))
6771 {
6772 LANG_FOR_EACH_INPUT_STATEMENT (f)
6773 {
6774 asection *sec;
6775 #ifdef ENABLE_PLUGINS
6776 if (f->flags.claimed)
6777 continue;
6778 #endif
6779 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6780 if ((sec->flags & SEC_DEBUGGING) == 0)
6781 sec->flags &= ~SEC_EXCLUDE;
6782 }
6783 }
6784
6785 if (link_info.gc_sections)
6786 bfd_gc_sections (link_info.output_bfd, &link_info);
6787 }
6788
6789 /* Worker for lang_find_relro_sections_1. */
6790
6791 static void
6792 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6793 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6794 asection *section,
6795 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6796 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6797 void *data)
6798 {
6799 /* Discarded, excluded and ignored sections effectively have zero
6800 size. */
6801 if (section->output_section != NULL
6802 && section->output_section->owner == link_info.output_bfd
6803 && (section->output_section->flags & SEC_EXCLUDE) == 0
6804 && !IGNORE_SECTION (section)
6805 && section->size != 0)
6806 {
6807 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6808 *has_relro_section = TRUE;
6809 }
6810 }
6811
6812 /* Iterate over sections for relro sections. */
6813
6814 static void
6815 lang_find_relro_sections_1 (lang_statement_union_type *s,
6816 bfd_boolean *has_relro_section)
6817 {
6818 if (*has_relro_section)
6819 return;
6820
6821 for (; s != NULL; s = s->header.next)
6822 {
6823 if (s == expld.dataseg.relro_end_stat)
6824 break;
6825
6826 switch (s->header.type)
6827 {
6828 case lang_wild_statement_enum:
6829 walk_wild (&s->wild_statement,
6830 find_relro_section_callback,
6831 has_relro_section);
6832 break;
6833 case lang_constructors_statement_enum:
6834 lang_find_relro_sections_1 (constructor_list.head,
6835 has_relro_section);
6836 break;
6837 case lang_output_section_statement_enum:
6838 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6839 has_relro_section);
6840 break;
6841 case lang_group_statement_enum:
6842 lang_find_relro_sections_1 (s->group_statement.children.head,
6843 has_relro_section);
6844 break;
6845 default:
6846 break;
6847 }
6848 }
6849 }
6850
6851 static void
6852 lang_find_relro_sections (void)
6853 {
6854 bfd_boolean has_relro_section = FALSE;
6855
6856 /* Check all sections in the link script. */
6857
6858 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6859 &has_relro_section);
6860
6861 if (!has_relro_section)
6862 link_info.relro = FALSE;
6863 }
6864
6865 /* Relax all sections until bfd_relax_section gives up. */
6866
6867 void
6868 lang_relax_sections (bfd_boolean need_layout)
6869 {
6870 if (RELAXATION_ENABLED)
6871 {
6872 /* We may need more than one relaxation pass. */
6873 int i = link_info.relax_pass;
6874
6875 /* The backend can use it to determine the current pass. */
6876 link_info.relax_pass = 0;
6877
6878 while (i--)
6879 {
6880 /* Keep relaxing until bfd_relax_section gives up. */
6881 bfd_boolean relax_again;
6882
6883 link_info.relax_trip = -1;
6884 do
6885 {
6886 link_info.relax_trip++;
6887
6888 /* Note: pe-dll.c does something like this also. If you find
6889 you need to change this code, you probably need to change
6890 pe-dll.c also. DJ */
6891
6892 /* Do all the assignments with our current guesses as to
6893 section sizes. */
6894 lang_do_assignments (lang_assigning_phase_enum);
6895
6896 /* We must do this after lang_do_assignments, because it uses
6897 size. */
6898 lang_reset_memory_regions ();
6899
6900 /* Perform another relax pass - this time we know where the
6901 globals are, so can make a better guess. */
6902 relax_again = FALSE;
6903 lang_size_sections (&relax_again, FALSE);
6904 }
6905 while (relax_again);
6906
6907 link_info.relax_pass++;
6908 }
6909 need_layout = TRUE;
6910 }
6911
6912 if (need_layout)
6913 {
6914 /* Final extra sizing to report errors. */
6915 lang_do_assignments (lang_assigning_phase_enum);
6916 lang_reset_memory_regions ();
6917 lang_size_sections (NULL, TRUE);
6918 }
6919 }
6920
6921 #ifdef ENABLE_PLUGINS
6922 /* Find the insert point for the plugin's replacement files. We
6923 place them after the first claimed real object file, or if the
6924 first claimed object is an archive member, after the last real
6925 object file immediately preceding the archive. In the event
6926 no objects have been claimed at all, we return the first dummy
6927 object file on the list as the insert point; that works, but
6928 the callee must be careful when relinking the file_chain as it
6929 is not actually on that chain, only the statement_list and the
6930 input_file list; in that case, the replacement files must be
6931 inserted at the head of the file_chain. */
6932
6933 static lang_input_statement_type *
6934 find_replacements_insert_point (void)
6935 {
6936 lang_input_statement_type *claim1, *lastobject;
6937 lastobject = &input_file_chain.head->input_statement;
6938 for (claim1 = &file_chain.head->input_statement;
6939 claim1 != NULL;
6940 claim1 = &claim1->next->input_statement)
6941 {
6942 if (claim1->flags.claimed)
6943 return claim1->flags.claim_archive ? lastobject : claim1;
6944 /* Update lastobject if this is a real object file. */
6945 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
6946 lastobject = claim1;
6947 }
6948 /* No files were claimed by the plugin. Choose the last object
6949 file found on the list (maybe the first, dummy entry) as the
6950 insert point. */
6951 return lastobject;
6952 }
6953
6954 /* Find where to insert ADD, an archive element or shared library
6955 added during a rescan. */
6956
6957 static lang_statement_union_type **
6958 find_rescan_insertion (lang_input_statement_type *add)
6959 {
6960 bfd *add_bfd = add->the_bfd;
6961 lang_input_statement_type *f;
6962 lang_input_statement_type *last_loaded = NULL;
6963 lang_input_statement_type *before = NULL;
6964 lang_statement_union_type **iter = NULL;
6965
6966 if (add_bfd->my_archive != NULL)
6967 add_bfd = add_bfd->my_archive;
6968
6969 /* First look through the input file chain, to find an object file
6970 before the one we've rescanned. Normal object files always
6971 appear on both the input file chain and the file chain, so this
6972 lets us get quickly to somewhere near the correct place on the
6973 file chain if it is full of archive elements. Archives don't
6974 appear on the file chain, but if an element has been extracted
6975 then their input_statement->next points at it. */
6976 for (f = &input_file_chain.head->input_statement;
6977 f != NULL;
6978 f = &f->next_real_file->input_statement)
6979 {
6980 if (f->the_bfd == add_bfd)
6981 {
6982 before = last_loaded;
6983 if (f->next != NULL)
6984 return &f->next->input_statement.next;
6985 }
6986 if (f->the_bfd != NULL && f->next != NULL)
6987 last_loaded = f;
6988 }
6989
6990 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
6991 *iter != NULL;
6992 iter = &(*iter)->input_statement.next)
6993 if ((*iter)->input_statement.the_bfd->my_archive == NULL)
6994 break;
6995
6996 return iter;
6997 }
6998
6999 /* Insert SRCLIST into DESTLIST after given element by chaining
7000 on FIELD as the next-pointer. (Counterintuitively does not need
7001 a pointer to the actual after-node itself, just its chain field.) */
7002
7003 static void
7004 lang_list_insert_after (lang_statement_list_type *destlist,
7005 lang_statement_list_type *srclist,
7006 lang_statement_union_type **field)
7007 {
7008 *(srclist->tail) = *field;
7009 *field = srclist->head;
7010 if (destlist->tail == field)
7011 destlist->tail = srclist->tail;
7012 }
7013
7014 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7015 was taken as a copy of it and leave them in ORIGLIST. */
7016
7017 static void
7018 lang_list_remove_tail (lang_statement_list_type *destlist,
7019 lang_statement_list_type *origlist)
7020 {
7021 union lang_statement_union **savetail;
7022 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7023 ASSERT (origlist->head == destlist->head);
7024 savetail = origlist->tail;
7025 origlist->head = *(savetail);
7026 origlist->tail = destlist->tail;
7027 destlist->tail = savetail;
7028 *savetail = NULL;
7029 }
7030 #endif /* ENABLE_PLUGINS */
7031
7032 /* Add NAME to the list of garbage collection entry points. */
7033
7034 void
7035 lang_add_gc_name (const char *name)
7036 {
7037 struct bfd_sym_chain *sym;
7038
7039 if (name == NULL)
7040 return;
7041
7042 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
7043
7044 sym->next = link_info.gc_sym_list;
7045 sym->name = name;
7046 link_info.gc_sym_list = sym;
7047 }
7048
7049 /* Check relocations. */
7050
7051 static void
7052 lang_check_relocs (void)
7053 {
7054 if (link_info.check_relocs_after_open_input)
7055 {
7056 bfd *abfd;
7057
7058 for (abfd = link_info.input_bfds;
7059 abfd != (bfd *) NULL; abfd = abfd->link.next)
7060 if (!bfd_link_check_relocs (abfd, &link_info))
7061 {
7062 /* No object output, fail return. */
7063 config.make_executable = FALSE;
7064 /* Note: we do not abort the loop, but rather
7065 continue the scan in case there are other
7066 bad relocations to report. */
7067 }
7068 }
7069 }
7070
7071 /* Look through all output sections looking for places where we can
7072 propagate forward the lma region. */
7073
7074 static void
7075 lang_propagate_lma_regions (void)
7076 {
7077 lang_output_section_statement_type *os;
7078
7079 for (os = &lang_output_section_statement.head->output_section_statement;
7080 os != NULL;
7081 os = os->next)
7082 {
7083 if (os->prev != NULL
7084 && os->lma_region == NULL
7085 && os->load_base == NULL
7086 && os->addr_tree == NULL
7087 && os->region == os->prev->region)
7088 os->lma_region = os->prev->lma_region;
7089 }
7090 }
7091
7092 void
7093 lang_process (void)
7094 {
7095 /* Finalize dynamic list. */
7096 if (link_info.dynamic_list)
7097 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7098
7099 current_target = default_target;
7100
7101 /* Open the output file. */
7102 lang_for_each_statement (ldlang_open_output);
7103 init_opb ();
7104
7105 ldemul_create_output_section_statements ();
7106
7107 /* Add to the hash table all undefineds on the command line. */
7108 lang_place_undefineds ();
7109
7110 if (!bfd_section_already_linked_table_init ())
7111 einfo (_("%P%F: Failed to create hash table\n"));
7112
7113 /* Create a bfd for each input file. */
7114 current_target = default_target;
7115 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7116
7117 #ifdef ENABLE_PLUGINS
7118 if (link_info.lto_plugin_active)
7119 {
7120 lang_statement_list_type added;
7121 lang_statement_list_type files, inputfiles;
7122
7123 /* Now all files are read, let the plugin(s) decide if there
7124 are any more to be added to the link before we call the
7125 emulation's after_open hook. We create a private list of
7126 input statements for this purpose, which we will eventually
7127 insert into the global statement list after the first claimed
7128 file. */
7129 added = *stat_ptr;
7130 /* We need to manipulate all three chains in synchrony. */
7131 files = file_chain;
7132 inputfiles = input_file_chain;
7133 if (plugin_call_all_symbols_read ())
7134 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
7135 plugin_error_plugin ());
7136 /* Open any newly added files, updating the file chains. */
7137 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7138 /* Restore the global list pointer now they have all been added. */
7139 lang_list_remove_tail (stat_ptr, &added);
7140 /* And detach the fresh ends of the file lists. */
7141 lang_list_remove_tail (&file_chain, &files);
7142 lang_list_remove_tail (&input_file_chain, &inputfiles);
7143 /* Were any new files added? */
7144 if (added.head != NULL)
7145 {
7146 /* If so, we will insert them into the statement list immediately
7147 after the first input file that was claimed by the plugin. */
7148 plugin_insert = find_replacements_insert_point ();
7149 /* If a plugin adds input files without having claimed any, we
7150 don't really have a good idea where to place them. Just putting
7151 them at the start or end of the list is liable to leave them
7152 outside the crtbegin...crtend range. */
7153 ASSERT (plugin_insert != NULL);
7154 /* Splice the new statement list into the old one. */
7155 lang_list_insert_after (stat_ptr, &added,
7156 &plugin_insert->header.next);
7157 /* Likewise for the file chains. */
7158 lang_list_insert_after (&input_file_chain, &inputfiles,
7159 &plugin_insert->next_real_file);
7160 /* We must be careful when relinking file_chain; we may need to
7161 insert the new files at the head of the list if the insert
7162 point chosen is the dummy first input file. */
7163 if (plugin_insert->filename)
7164 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
7165 else
7166 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7167
7168 /* Rescan archives in case new undefined symbols have appeared. */
7169 files = file_chain;
7170 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7171 lang_list_remove_tail (&file_chain, &files);
7172 while (files.head != NULL)
7173 {
7174 lang_statement_union_type **insert;
7175 lang_statement_union_type **iter, *temp;
7176 bfd *my_arch;
7177
7178 insert = find_rescan_insertion (&files.head->input_statement);
7179 /* All elements from an archive can be added at once. */
7180 iter = &files.head->input_statement.next;
7181 my_arch = files.head->input_statement.the_bfd->my_archive;
7182 if (my_arch != NULL)
7183 for (; *iter != NULL; iter = &(*iter)->input_statement.next)
7184 if ((*iter)->input_statement.the_bfd->my_archive != my_arch)
7185 break;
7186 temp = *insert;
7187 *insert = files.head;
7188 files.head = *iter;
7189 *iter = temp;
7190 if (my_arch != NULL)
7191 {
7192 lang_input_statement_type *parent = my_arch->usrdata;
7193 if (parent != NULL)
7194 parent->next = (lang_statement_union_type *)
7195 ((char *) iter
7196 - offsetof (lang_input_statement_type, next));
7197 }
7198 }
7199 }
7200 }
7201 #endif /* ENABLE_PLUGINS */
7202
7203 /* Make sure that nobody has tried to add a symbol to this list
7204 before now. */
7205 ASSERT (link_info.gc_sym_list == NULL);
7206
7207 link_info.gc_sym_list = &entry_symbol;
7208
7209 if (entry_symbol.name == NULL)
7210 {
7211 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7212
7213 /* entry_symbol is normally initialied by a ENTRY definition in the
7214 linker script or the -e command line option. But if neither of
7215 these have been used, the target specific backend may still have
7216 provided an entry symbol via a call to lang_default_entry().
7217 Unfortunately this value will not be processed until lang_end()
7218 is called, long after this function has finished. So detect this
7219 case here and add the target's entry symbol to the list of starting
7220 points for garbage collection resolution. */
7221 lang_add_gc_name (entry_symbol_default);
7222 }
7223
7224 lang_add_gc_name (link_info.init_function);
7225 lang_add_gc_name (link_info.fini_function);
7226
7227 ldemul_after_open ();
7228 if (config.map_file != NULL)
7229 lang_print_asneeded ();
7230
7231 bfd_section_already_linked_table_free ();
7232
7233 /* Make sure that we're not mixing architectures. We call this
7234 after all the input files have been opened, but before we do any
7235 other processing, so that any operations merge_private_bfd_data
7236 does on the output file will be known during the rest of the
7237 link. */
7238 lang_check ();
7239
7240 /* Handle .exports instead of a version script if we're told to do so. */
7241 if (command_line.version_exports_section)
7242 lang_do_version_exports_section ();
7243
7244 /* Build all sets based on the information gathered from the input
7245 files. */
7246 ldctor_build_sets ();
7247
7248 /* Give initial values for __start and __stop symbols, so that ELF
7249 gc_sections will keep sections referenced by these symbols. Must
7250 be done before lang_do_assignments below. */
7251 if (config.build_constructors)
7252 lang_init_start_stop ();
7253
7254 /* PR 13683: We must rerun the assignments prior to running garbage
7255 collection in order to make sure that all symbol aliases are resolved. */
7256 lang_do_assignments (lang_mark_phase_enum);
7257
7258 lang_do_memory_regions();
7259 expld.phase = lang_first_phase_enum;
7260
7261 /* Size up the common data. */
7262 lang_common ();
7263
7264 /* Remove unreferenced sections if asked to. */
7265 lang_gc_sections ();
7266
7267 /* Check relocations. */
7268 lang_check_relocs ();
7269
7270 ldemul_after_check_relocs ();
7271
7272 /* Update wild statements. */
7273 update_wild_statements (statement_list.head);
7274
7275 /* Run through the contours of the script and attach input sections
7276 to the correct output sections. */
7277 lang_statement_iteration++;
7278 map_input_to_output_sections (statement_list.head, NULL, NULL);
7279
7280 process_insert_statements ();
7281
7282 /* Find any sections not attached explicitly and handle them. */
7283 lang_place_orphans ();
7284
7285 if (!bfd_link_relocatable (&link_info))
7286 {
7287 asection *found;
7288
7289 /* Merge SEC_MERGE sections. This has to be done after GC of
7290 sections, so that GCed sections are not merged, but before
7291 assigning dynamic symbols, since removing whole input sections
7292 is hard then. */
7293 bfd_merge_sections (link_info.output_bfd, &link_info);
7294
7295 /* Look for a text section and set the readonly attribute in it. */
7296 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7297
7298 if (found != NULL)
7299 {
7300 if (config.text_read_only)
7301 found->flags |= SEC_READONLY;
7302 else
7303 found->flags &= ~SEC_READONLY;
7304 }
7305 }
7306
7307 /* Copy forward lma regions for output sections in same lma region. */
7308 lang_propagate_lma_regions ();
7309
7310 /* Defining __start/__stop symbols early for --gc-sections to work
7311 around a glibc build problem can result in these symbols being
7312 defined when they should not be. Fix them now. */
7313 if (config.build_constructors)
7314 lang_undef_start_stop ();
7315
7316 /* Define .startof./.sizeof. symbols with preliminary values before
7317 dynamic symbols are created. */
7318 if (!bfd_link_relocatable (&link_info))
7319 lang_init_startof_sizeof ();
7320
7321 /* Do anything special before sizing sections. This is where ELF
7322 and other back-ends size dynamic sections. */
7323 ldemul_before_allocation ();
7324
7325 /* We must record the program headers before we try to fix the
7326 section positions, since they will affect SIZEOF_HEADERS. */
7327 lang_record_phdrs ();
7328
7329 /* Check relro sections. */
7330 if (link_info.relro && !bfd_link_relocatable (&link_info))
7331 lang_find_relro_sections ();
7332
7333 /* Size up the sections. */
7334 lang_size_sections (NULL, !RELAXATION_ENABLED);
7335
7336 /* See if anything special should be done now we know how big
7337 everything is. This is where relaxation is done. */
7338 ldemul_after_allocation ();
7339
7340 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
7341 lang_finalize_start_stop ();
7342
7343 /* Do all the assignments, now that we know the final resting places
7344 of all the symbols. */
7345 lang_do_assignments (lang_final_phase_enum);
7346
7347 ldemul_finish ();
7348
7349 /* Convert absolute symbols to section relative. */
7350 ldexp_finalize_syms ();
7351
7352 /* Make sure that the section addresses make sense. */
7353 if (command_line.check_section_addresses)
7354 lang_check_section_addresses ();
7355
7356 /* Check any required symbols are known. */
7357 ldlang_check_require_defined_symbols ();
7358
7359 lang_end ();
7360 }
7361
7362 /* EXPORTED TO YACC */
7363
7364 void
7365 lang_add_wild (struct wildcard_spec *filespec,
7366 struct wildcard_list *section_list,
7367 bfd_boolean keep_sections)
7368 {
7369 struct wildcard_list *curr, *next;
7370 lang_wild_statement_type *new_stmt;
7371
7372 /* Reverse the list as the parser puts it back to front. */
7373 for (curr = section_list, section_list = NULL;
7374 curr != NULL;
7375 section_list = curr, curr = next)
7376 {
7377 next = curr->next;
7378 curr->next = section_list;
7379 }
7380
7381 if (filespec != NULL && filespec->name != NULL)
7382 {
7383 if (strcmp (filespec->name, "*") == 0)
7384 filespec->name = NULL;
7385 else if (!wildcardp (filespec->name))
7386 lang_has_input_file = TRUE;
7387 }
7388
7389 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7390 new_stmt->filename = NULL;
7391 new_stmt->filenames_sorted = FALSE;
7392 new_stmt->section_flag_list = NULL;
7393 new_stmt->exclude_name_list = NULL;
7394 if (filespec != NULL)
7395 {
7396 new_stmt->filename = filespec->name;
7397 new_stmt->filenames_sorted = filespec->sorted == by_name;
7398 new_stmt->section_flag_list = filespec->section_flag_list;
7399 new_stmt->exclude_name_list = filespec->exclude_name_list;
7400 }
7401 new_stmt->section_list = section_list;
7402 new_stmt->keep_sections = keep_sections;
7403 lang_list_init (&new_stmt->children);
7404 analyze_walk_wild_section_handler (new_stmt);
7405 }
7406
7407 void
7408 lang_section_start (const char *name, etree_type *address,
7409 const segment_type *segment)
7410 {
7411 lang_address_statement_type *ad;
7412
7413 ad = new_stat (lang_address_statement, stat_ptr);
7414 ad->section_name = name;
7415 ad->address = address;
7416 ad->segment = segment;
7417 }
7418
7419 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7420 because of a -e argument on the command line, or zero if this is
7421 called by ENTRY in a linker script. Command line arguments take
7422 precedence. */
7423
7424 void
7425 lang_add_entry (const char *name, bfd_boolean cmdline)
7426 {
7427 if (entry_symbol.name == NULL
7428 || cmdline
7429 || !entry_from_cmdline)
7430 {
7431 entry_symbol.name = name;
7432 entry_from_cmdline = cmdline;
7433 }
7434 }
7435
7436 /* Set the default start symbol to NAME. .em files should use this,
7437 not lang_add_entry, to override the use of "start" if neither the
7438 linker script nor the command line specifies an entry point. NAME
7439 must be permanently allocated. */
7440 void
7441 lang_default_entry (const char *name)
7442 {
7443 entry_symbol_default = name;
7444 }
7445
7446 void
7447 lang_add_target (const char *name)
7448 {
7449 lang_target_statement_type *new_stmt;
7450
7451 new_stmt = new_stat (lang_target_statement, stat_ptr);
7452 new_stmt->target = name;
7453 }
7454
7455 void
7456 lang_add_map (const char *name)
7457 {
7458 while (*name)
7459 {
7460 switch (*name)
7461 {
7462 case 'F':
7463 map_option_f = TRUE;
7464 break;
7465 }
7466 name++;
7467 }
7468 }
7469
7470 void
7471 lang_add_fill (fill_type *fill)
7472 {
7473 lang_fill_statement_type *new_stmt;
7474
7475 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7476 new_stmt->fill = fill;
7477 }
7478
7479 void
7480 lang_add_data (int type, union etree_union *exp)
7481 {
7482 lang_data_statement_type *new_stmt;
7483
7484 new_stmt = new_stat (lang_data_statement, stat_ptr);
7485 new_stmt->exp = exp;
7486 new_stmt->type = type;
7487 }
7488
7489 /* Create a new reloc statement. RELOC is the BFD relocation type to
7490 generate. HOWTO is the corresponding howto structure (we could
7491 look this up, but the caller has already done so). SECTION is the
7492 section to generate a reloc against, or NAME is the name of the
7493 symbol to generate a reloc against. Exactly one of SECTION and
7494 NAME must be NULL. ADDEND is an expression for the addend. */
7495
7496 void
7497 lang_add_reloc (bfd_reloc_code_real_type reloc,
7498 reloc_howto_type *howto,
7499 asection *section,
7500 const char *name,
7501 union etree_union *addend)
7502 {
7503 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7504
7505 p->reloc = reloc;
7506 p->howto = howto;
7507 p->section = section;
7508 p->name = name;
7509 p->addend_exp = addend;
7510
7511 p->addend_value = 0;
7512 p->output_section = NULL;
7513 p->output_offset = 0;
7514 }
7515
7516 lang_assignment_statement_type *
7517 lang_add_assignment (etree_type *exp)
7518 {
7519 lang_assignment_statement_type *new_stmt;
7520
7521 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7522 new_stmt->exp = exp;
7523 return new_stmt;
7524 }
7525
7526 void
7527 lang_add_attribute (enum statement_enum attribute)
7528 {
7529 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7530 }
7531
7532 void
7533 lang_startup (const char *name)
7534 {
7535 if (first_file->filename != NULL)
7536 {
7537 einfo (_("%P%F: multiple STARTUP files\n"));
7538 }
7539 first_file->filename = name;
7540 first_file->local_sym_name = name;
7541 first_file->flags.real = TRUE;
7542 }
7543
7544 void
7545 lang_float (bfd_boolean maybe)
7546 {
7547 lang_float_flag = maybe;
7548 }
7549
7550
7551 /* Work out the load- and run-time regions from a script statement, and
7552 store them in *LMA_REGION and *REGION respectively.
7553
7554 MEMSPEC is the name of the run-time region, or the value of
7555 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7556 LMA_MEMSPEC is the name of the load-time region, or null if the
7557 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7558 had an explicit load address.
7559
7560 It is an error to specify both a load region and a load address. */
7561
7562 static void
7563 lang_get_regions (lang_memory_region_type **region,
7564 lang_memory_region_type **lma_region,
7565 const char *memspec,
7566 const char *lma_memspec,
7567 bfd_boolean have_lma,
7568 bfd_boolean have_vma)
7569 {
7570 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7571
7572 /* If no runtime region or VMA has been specified, but the load region
7573 has been specified, then use the load region for the runtime region
7574 as well. */
7575 if (lma_memspec != NULL
7576 && !have_vma
7577 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7578 *region = *lma_region;
7579 else
7580 *region = lang_memory_region_lookup (memspec, FALSE);
7581
7582 if (have_lma && lma_memspec != 0)
7583 einfo (_("%X%P:%S: section has both a load address and a load region\n"),
7584 NULL);
7585 }
7586
7587 void
7588 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7589 lang_output_section_phdr_list *phdrs,
7590 const char *lma_memspec)
7591 {
7592 lang_get_regions (&current_section->region,
7593 &current_section->lma_region,
7594 memspec, lma_memspec,
7595 current_section->load_base != NULL,
7596 current_section->addr_tree != NULL);
7597
7598 current_section->fill = fill;
7599 current_section->phdrs = phdrs;
7600 pop_stat_ptr ();
7601 }
7602
7603 void
7604 lang_statement_append (lang_statement_list_type *list,
7605 lang_statement_union_type *element,
7606 lang_statement_union_type **field)
7607 {
7608 *(list->tail) = element;
7609 list->tail = field;
7610 }
7611
7612 /* Set the output format type. -oformat overrides scripts. */
7613
7614 void
7615 lang_add_output_format (const char *format,
7616 const char *big,
7617 const char *little,
7618 int from_script)
7619 {
7620 if (output_target == NULL || !from_script)
7621 {
7622 if (command_line.endian == ENDIAN_BIG
7623 && big != NULL)
7624 format = big;
7625 else if (command_line.endian == ENDIAN_LITTLE
7626 && little != NULL)
7627 format = little;
7628
7629 output_target = format;
7630 }
7631 }
7632
7633 void
7634 lang_add_insert (const char *where, int is_before)
7635 {
7636 lang_insert_statement_type *new_stmt;
7637
7638 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7639 new_stmt->where = where;
7640 new_stmt->is_before = is_before;
7641 saved_script_handle = previous_script_handle;
7642 }
7643
7644 /* Enter a group. This creates a new lang_group_statement, and sets
7645 stat_ptr to build new statements within the group. */
7646
7647 void
7648 lang_enter_group (void)
7649 {
7650 lang_group_statement_type *g;
7651
7652 g = new_stat (lang_group_statement, stat_ptr);
7653 lang_list_init (&g->children);
7654 push_stat_ptr (&g->children);
7655 }
7656
7657 /* Leave a group. This just resets stat_ptr to start writing to the
7658 regular list of statements again. Note that this will not work if
7659 groups can occur inside anything else which can adjust stat_ptr,
7660 but currently they can't. */
7661
7662 void
7663 lang_leave_group (void)
7664 {
7665 pop_stat_ptr ();
7666 }
7667
7668 /* Add a new program header. This is called for each entry in a PHDRS
7669 command in a linker script. */
7670
7671 void
7672 lang_new_phdr (const char *name,
7673 etree_type *type,
7674 bfd_boolean filehdr,
7675 bfd_boolean phdrs,
7676 etree_type *at,
7677 etree_type *flags)
7678 {
7679 struct lang_phdr *n, **pp;
7680 bfd_boolean hdrs;
7681
7682 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7683 n->next = NULL;
7684 n->name = name;
7685 n->type = exp_get_value_int (type, 0, "program header type");
7686 n->filehdr = filehdr;
7687 n->phdrs = phdrs;
7688 n->at = at;
7689 n->flags = flags;
7690
7691 hdrs = n->type == 1 && (phdrs || filehdr);
7692
7693 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7694 if (hdrs
7695 && (*pp)->type == 1
7696 && !((*pp)->filehdr || (*pp)->phdrs))
7697 {
7698 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported"
7699 " when prior PT_LOAD headers lack them\n"), NULL);
7700 hdrs = FALSE;
7701 }
7702
7703 *pp = n;
7704 }
7705
7706 /* Record the program header information in the output BFD. FIXME: We
7707 should not be calling an ELF specific function here. */
7708
7709 static void
7710 lang_record_phdrs (void)
7711 {
7712 unsigned int alc;
7713 asection **secs;
7714 lang_output_section_phdr_list *last;
7715 struct lang_phdr *l;
7716 lang_output_section_statement_type *os;
7717
7718 alc = 10;
7719 secs = (asection **) xmalloc (alc * sizeof (asection *));
7720 last = NULL;
7721
7722 for (l = lang_phdr_list; l != NULL; l = l->next)
7723 {
7724 unsigned int c;
7725 flagword flags;
7726 bfd_vma at;
7727
7728 c = 0;
7729 for (os = &lang_output_section_statement.head->output_section_statement;
7730 os != NULL;
7731 os = os->next)
7732 {
7733 lang_output_section_phdr_list *pl;
7734
7735 if (os->constraint < 0)
7736 continue;
7737
7738 pl = os->phdrs;
7739 if (pl != NULL)
7740 last = pl;
7741 else
7742 {
7743 if (os->sectype == noload_section
7744 || os->bfd_section == NULL
7745 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7746 continue;
7747
7748 /* Don't add orphans to PT_INTERP header. */
7749 if (l->type == 3)
7750 continue;
7751
7752 if (last == NULL)
7753 {
7754 lang_output_section_statement_type *tmp_os;
7755
7756 /* If we have not run across a section with a program
7757 header assigned to it yet, then scan forwards to find
7758 one. This prevents inconsistencies in the linker's
7759 behaviour when a script has specified just a single
7760 header and there are sections in that script which are
7761 not assigned to it, and which occur before the first
7762 use of that header. See here for more details:
7763 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7764 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7765 if (tmp_os->phdrs)
7766 {
7767 last = tmp_os->phdrs;
7768 break;
7769 }
7770 if (last == NULL)
7771 einfo (_("%F%P: no sections assigned to phdrs\n"));
7772 }
7773 pl = last;
7774 }
7775
7776 if (os->bfd_section == NULL)
7777 continue;
7778
7779 for (; pl != NULL; pl = pl->next)
7780 {
7781 if (strcmp (pl->name, l->name) == 0)
7782 {
7783 if (c >= alc)
7784 {
7785 alc *= 2;
7786 secs = (asection **) xrealloc (secs,
7787 alc * sizeof (asection *));
7788 }
7789 secs[c] = os->bfd_section;
7790 ++c;
7791 pl->used = TRUE;
7792 }
7793 }
7794 }
7795
7796 if (l->flags == NULL)
7797 flags = 0;
7798 else
7799 flags = exp_get_vma (l->flags, 0, "phdr flags");
7800
7801 if (l->at == NULL)
7802 at = 0;
7803 else
7804 at = exp_get_vma (l->at, 0, "phdr load address");
7805
7806 if (!bfd_record_phdr (link_info.output_bfd, l->type,
7807 l->flags != NULL, flags, l->at != NULL,
7808 at, l->filehdr, l->phdrs, c, secs))
7809 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7810 }
7811
7812 free (secs);
7813
7814 /* Make sure all the phdr assignments succeeded. */
7815 for (os = &lang_output_section_statement.head->output_section_statement;
7816 os != NULL;
7817 os = os->next)
7818 {
7819 lang_output_section_phdr_list *pl;
7820
7821 if (os->constraint < 0
7822 || os->bfd_section == NULL)
7823 continue;
7824
7825 for (pl = os->phdrs;
7826 pl != NULL;
7827 pl = pl->next)
7828 if (!pl->used && strcmp (pl->name, "NONE") != 0)
7829 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7830 os->name, pl->name);
7831 }
7832 }
7833
7834 /* Record a list of sections which may not be cross referenced. */
7835
7836 void
7837 lang_add_nocrossref (lang_nocrossref_type *l)
7838 {
7839 struct lang_nocrossrefs *n;
7840
7841 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7842 n->next = nocrossref_list;
7843 n->list = l;
7844 n->onlyfirst = FALSE;
7845 nocrossref_list = n;
7846
7847 /* Set notice_all so that we get informed about all symbols. */
7848 link_info.notice_all = TRUE;
7849 }
7850
7851 /* Record a section that cannot be referenced from a list of sections. */
7852
7853 void
7854 lang_add_nocrossref_to (lang_nocrossref_type *l)
7855 {
7856 lang_add_nocrossref (l);
7857 nocrossref_list->onlyfirst = TRUE;
7858 }
7859 \f
7860 /* Overlay handling. We handle overlays with some static variables. */
7861
7862 /* The overlay virtual address. */
7863 static etree_type *overlay_vma;
7864 /* And subsection alignment. */
7865 static etree_type *overlay_subalign;
7866
7867 /* An expression for the maximum section size seen so far. */
7868 static etree_type *overlay_max;
7869
7870 /* A list of all the sections in this overlay. */
7871
7872 struct overlay_list {
7873 struct overlay_list *next;
7874 lang_output_section_statement_type *os;
7875 };
7876
7877 static struct overlay_list *overlay_list;
7878
7879 /* Start handling an overlay. */
7880
7881 void
7882 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7883 {
7884 /* The grammar should prevent nested overlays from occurring. */
7885 ASSERT (overlay_vma == NULL
7886 && overlay_subalign == NULL
7887 && overlay_max == NULL);
7888
7889 overlay_vma = vma_expr;
7890 overlay_subalign = subalign;
7891 }
7892
7893 /* Start a section in an overlay. We handle this by calling
7894 lang_enter_output_section_statement with the correct VMA.
7895 lang_leave_overlay sets up the LMA and memory regions. */
7896
7897 void
7898 lang_enter_overlay_section (const char *name)
7899 {
7900 struct overlay_list *n;
7901 etree_type *size;
7902
7903 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7904 0, overlay_subalign, 0, 0, 0);
7905
7906 /* If this is the first section, then base the VMA of future
7907 sections on this one. This will work correctly even if `.' is
7908 used in the addresses. */
7909 if (overlay_list == NULL)
7910 overlay_vma = exp_nameop (ADDR, name);
7911
7912 /* Remember the section. */
7913 n = (struct overlay_list *) xmalloc (sizeof *n);
7914 n->os = current_section;
7915 n->next = overlay_list;
7916 overlay_list = n;
7917
7918 size = exp_nameop (SIZEOF, name);
7919
7920 /* Arrange to work out the maximum section end address. */
7921 if (overlay_max == NULL)
7922 overlay_max = size;
7923 else
7924 overlay_max = exp_binop (MAX_K, overlay_max, size);
7925 }
7926
7927 /* Finish a section in an overlay. There isn't any special to do
7928 here. */
7929
7930 void
7931 lang_leave_overlay_section (fill_type *fill,
7932 lang_output_section_phdr_list *phdrs)
7933 {
7934 const char *name;
7935 char *clean, *s2;
7936 const char *s1;
7937 char *buf;
7938
7939 name = current_section->name;
7940
7941 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7942 region and that no load-time region has been specified. It doesn't
7943 really matter what we say here, since lang_leave_overlay will
7944 override it. */
7945 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7946
7947 /* Define the magic symbols. */
7948
7949 clean = (char *) xmalloc (strlen (name) + 1);
7950 s2 = clean;
7951 for (s1 = name; *s1 != '\0'; s1++)
7952 if (ISALNUM (*s1) || *s1 == '_')
7953 *s2++ = *s1;
7954 *s2 = '\0';
7955
7956 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7957 sprintf (buf, "__load_start_%s", clean);
7958 lang_add_assignment (exp_provide (buf,
7959 exp_nameop (LOADADDR, name),
7960 FALSE));
7961
7962 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7963 sprintf (buf, "__load_stop_%s", clean);
7964 lang_add_assignment (exp_provide (buf,
7965 exp_binop ('+',
7966 exp_nameop (LOADADDR, name),
7967 exp_nameop (SIZEOF, name)),
7968 FALSE));
7969
7970 free (clean);
7971 }
7972
7973 /* Finish an overlay. If there are any overlay wide settings, this
7974 looks through all the sections in the overlay and sets them. */
7975
7976 void
7977 lang_leave_overlay (etree_type *lma_expr,
7978 int nocrossrefs,
7979 fill_type *fill,
7980 const char *memspec,
7981 lang_output_section_phdr_list *phdrs,
7982 const char *lma_memspec)
7983 {
7984 lang_memory_region_type *region;
7985 lang_memory_region_type *lma_region;
7986 struct overlay_list *l;
7987 lang_nocrossref_type *nocrossref;
7988
7989 lang_get_regions (&region, &lma_region,
7990 memspec, lma_memspec,
7991 lma_expr != NULL, FALSE);
7992
7993 nocrossref = NULL;
7994
7995 /* After setting the size of the last section, set '.' to end of the
7996 overlay region. */
7997 if (overlay_list != NULL)
7998 {
7999 overlay_list->os->update_dot = 1;
8000 overlay_list->os->update_dot_tree
8001 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8002 }
8003
8004 l = overlay_list;
8005 while (l != NULL)
8006 {
8007 struct overlay_list *next;
8008
8009 if (fill != NULL && l->os->fill == NULL)
8010 l->os->fill = fill;
8011
8012 l->os->region = region;
8013 l->os->lma_region = lma_region;
8014
8015 /* The first section has the load address specified in the
8016 OVERLAY statement. The rest are worked out from that.
8017 The base address is not needed (and should be null) if
8018 an LMA region was specified. */
8019 if (l->next == 0)
8020 {
8021 l->os->load_base = lma_expr;
8022 l->os->sectype = normal_section;
8023 }
8024 if (phdrs != NULL && l->os->phdrs == NULL)
8025 l->os->phdrs = phdrs;
8026
8027 if (nocrossrefs)
8028 {
8029 lang_nocrossref_type *nc;
8030
8031 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8032 nc->name = l->os->name;
8033 nc->next = nocrossref;
8034 nocrossref = nc;
8035 }
8036
8037 next = l->next;
8038 free (l);
8039 l = next;
8040 }
8041
8042 if (nocrossref != NULL)
8043 lang_add_nocrossref (nocrossref);
8044
8045 overlay_vma = NULL;
8046 overlay_list = NULL;
8047 overlay_max = NULL;
8048 overlay_subalign = NULL;
8049 }
8050 \f
8051 /* Version handling. This is only useful for ELF. */
8052
8053 /* If PREV is NULL, return first version pattern matching particular symbol.
8054 If PREV is non-NULL, return first version pattern matching particular
8055 symbol after PREV (previously returned by lang_vers_match). */
8056
8057 static struct bfd_elf_version_expr *
8058 lang_vers_match (struct bfd_elf_version_expr_head *head,
8059 struct bfd_elf_version_expr *prev,
8060 const char *sym)
8061 {
8062 const char *c_sym;
8063 const char *cxx_sym = sym;
8064 const char *java_sym = sym;
8065 struct bfd_elf_version_expr *expr = NULL;
8066 enum demangling_styles curr_style;
8067
8068 curr_style = CURRENT_DEMANGLING_STYLE;
8069 cplus_demangle_set_style (no_demangling);
8070 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8071 if (!c_sym)
8072 c_sym = sym;
8073 cplus_demangle_set_style (curr_style);
8074
8075 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8076 {
8077 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8078 DMGL_PARAMS | DMGL_ANSI);
8079 if (!cxx_sym)
8080 cxx_sym = sym;
8081 }
8082 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8083 {
8084 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8085 if (!java_sym)
8086 java_sym = sym;
8087 }
8088
8089 if (head->htab && (prev == NULL || prev->literal))
8090 {
8091 struct bfd_elf_version_expr e;
8092
8093 switch (prev ? prev->mask : 0)
8094 {
8095 case 0:
8096 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8097 {
8098 e.pattern = c_sym;
8099 expr = (struct bfd_elf_version_expr *)
8100 htab_find ((htab_t) head->htab, &e);
8101 while (expr && strcmp (expr->pattern, c_sym) == 0)
8102 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8103 goto out_ret;
8104 else
8105 expr = expr->next;
8106 }
8107 /* Fallthrough */
8108 case BFD_ELF_VERSION_C_TYPE:
8109 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8110 {
8111 e.pattern = cxx_sym;
8112 expr = (struct bfd_elf_version_expr *)
8113 htab_find ((htab_t) head->htab, &e);
8114 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8115 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8116 goto out_ret;
8117 else
8118 expr = expr->next;
8119 }
8120 /* Fallthrough */
8121 case BFD_ELF_VERSION_CXX_TYPE:
8122 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8123 {
8124 e.pattern = java_sym;
8125 expr = (struct bfd_elf_version_expr *)
8126 htab_find ((htab_t) head->htab, &e);
8127 while (expr && strcmp (expr->pattern, java_sym) == 0)
8128 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8129 goto out_ret;
8130 else
8131 expr = expr->next;
8132 }
8133 /* Fallthrough */
8134 default:
8135 break;
8136 }
8137 }
8138
8139 /* Finally, try the wildcards. */
8140 if (prev == NULL || prev->literal)
8141 expr = head->remaining;
8142 else
8143 expr = prev->next;
8144 for (; expr; expr = expr->next)
8145 {
8146 const char *s;
8147
8148 if (!expr->pattern)
8149 continue;
8150
8151 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8152 break;
8153
8154 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8155 s = java_sym;
8156 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8157 s = cxx_sym;
8158 else
8159 s = c_sym;
8160 if (fnmatch (expr->pattern, s, 0) == 0)
8161 break;
8162 }
8163
8164 out_ret:
8165 if (c_sym != sym)
8166 free ((char *) c_sym);
8167 if (cxx_sym != sym)
8168 free ((char *) cxx_sym);
8169 if (java_sym != sym)
8170 free ((char *) java_sym);
8171 return expr;
8172 }
8173
8174 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8175 return a pointer to the symbol name with any backslash quotes removed. */
8176
8177 static const char *
8178 realsymbol (const char *pattern)
8179 {
8180 const char *p;
8181 bfd_boolean changed = FALSE, backslash = FALSE;
8182 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8183
8184 for (p = pattern, s = symbol; *p != '\0'; ++p)
8185 {
8186 /* It is a glob pattern only if there is no preceding
8187 backslash. */
8188 if (backslash)
8189 {
8190 /* Remove the preceding backslash. */
8191 *(s - 1) = *p;
8192 backslash = FALSE;
8193 changed = TRUE;
8194 }
8195 else
8196 {
8197 if (*p == '?' || *p == '*' || *p == '[')
8198 {
8199 free (symbol);
8200 return NULL;
8201 }
8202
8203 *s++ = *p;
8204 backslash = *p == '\\';
8205 }
8206 }
8207
8208 if (changed)
8209 {
8210 *s = '\0';
8211 return symbol;
8212 }
8213 else
8214 {
8215 free (symbol);
8216 return pattern;
8217 }
8218 }
8219
8220 /* This is called for each variable name or match expression. NEW_NAME is
8221 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8222 pattern to be matched against symbol names. */
8223
8224 struct bfd_elf_version_expr *
8225 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8226 const char *new_name,
8227 const char *lang,
8228 bfd_boolean literal_p)
8229 {
8230 struct bfd_elf_version_expr *ret;
8231
8232 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8233 ret->next = orig;
8234 ret->symver = 0;
8235 ret->script = 0;
8236 ret->literal = TRUE;
8237 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8238 if (ret->pattern == NULL)
8239 {
8240 ret->pattern = new_name;
8241 ret->literal = FALSE;
8242 }
8243
8244 if (lang == NULL || strcasecmp (lang, "C") == 0)
8245 ret->mask = BFD_ELF_VERSION_C_TYPE;
8246 else if (strcasecmp (lang, "C++") == 0)
8247 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8248 else if (strcasecmp (lang, "Java") == 0)
8249 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8250 else
8251 {
8252 einfo (_("%X%P: unknown language `%s' in version information\n"),
8253 lang);
8254 ret->mask = BFD_ELF_VERSION_C_TYPE;
8255 }
8256
8257 return ldemul_new_vers_pattern (ret);
8258 }
8259
8260 /* This is called for each set of variable names and match
8261 expressions. */
8262
8263 struct bfd_elf_version_tree *
8264 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8265 struct bfd_elf_version_expr *locals)
8266 {
8267 struct bfd_elf_version_tree *ret;
8268
8269 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
8270 ret->globals.list = globals;
8271 ret->locals.list = locals;
8272 ret->match = lang_vers_match;
8273 ret->name_indx = (unsigned int) -1;
8274 return ret;
8275 }
8276
8277 /* This static variable keeps track of version indices. */
8278
8279 static int version_index;
8280
8281 static hashval_t
8282 version_expr_head_hash (const void *p)
8283 {
8284 const struct bfd_elf_version_expr *e =
8285 (const struct bfd_elf_version_expr *) p;
8286
8287 return htab_hash_string (e->pattern);
8288 }
8289
8290 static int
8291 version_expr_head_eq (const void *p1, const void *p2)
8292 {
8293 const struct bfd_elf_version_expr *e1 =
8294 (const struct bfd_elf_version_expr *) p1;
8295 const struct bfd_elf_version_expr *e2 =
8296 (const struct bfd_elf_version_expr *) p2;
8297
8298 return strcmp (e1->pattern, e2->pattern) == 0;
8299 }
8300
8301 static void
8302 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8303 {
8304 size_t count = 0;
8305 struct bfd_elf_version_expr *e, *next;
8306 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8307
8308 for (e = head->list; e; e = e->next)
8309 {
8310 if (e->literal)
8311 count++;
8312 head->mask |= e->mask;
8313 }
8314
8315 if (count)
8316 {
8317 head->htab = htab_create (count * 2, version_expr_head_hash,
8318 version_expr_head_eq, NULL);
8319 list_loc = &head->list;
8320 remaining_loc = &head->remaining;
8321 for (e = head->list; e; e = next)
8322 {
8323 next = e->next;
8324 if (!e->literal)
8325 {
8326 *remaining_loc = e;
8327 remaining_loc = &e->next;
8328 }
8329 else
8330 {
8331 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8332
8333 if (*loc)
8334 {
8335 struct bfd_elf_version_expr *e1, *last;
8336
8337 e1 = (struct bfd_elf_version_expr *) *loc;
8338 last = NULL;
8339 do
8340 {
8341 if (e1->mask == e->mask)
8342 {
8343 last = NULL;
8344 break;
8345 }
8346 last = e1;
8347 e1 = e1->next;
8348 }
8349 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8350
8351 if (last == NULL)
8352 {
8353 /* This is a duplicate. */
8354 /* FIXME: Memory leak. Sometimes pattern is not
8355 xmalloced alone, but in larger chunk of memory. */
8356 /* free (e->pattern); */
8357 free (e);
8358 }
8359 else
8360 {
8361 e->next = last->next;
8362 last->next = e;
8363 }
8364 }
8365 else
8366 {
8367 *loc = e;
8368 *list_loc = e;
8369 list_loc = &e->next;
8370 }
8371 }
8372 }
8373 *remaining_loc = NULL;
8374 *list_loc = head->remaining;
8375 }
8376 else
8377 head->remaining = head->list;
8378 }
8379
8380 /* This is called when we know the name and dependencies of the
8381 version. */
8382
8383 void
8384 lang_register_vers_node (const char *name,
8385 struct bfd_elf_version_tree *version,
8386 struct bfd_elf_version_deps *deps)
8387 {
8388 struct bfd_elf_version_tree *t, **pp;
8389 struct bfd_elf_version_expr *e1;
8390
8391 if (name == NULL)
8392 name = "";
8393
8394 if (link_info.version_info != NULL
8395 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8396 {
8397 einfo (_("%X%P: anonymous version tag cannot be combined"
8398 " with other version tags\n"));
8399 free (version);
8400 return;
8401 }
8402
8403 /* Make sure this node has a unique name. */
8404 for (t = link_info.version_info; t != NULL; t = t->next)
8405 if (strcmp (t->name, name) == 0)
8406 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8407
8408 lang_finalize_version_expr_head (&version->globals);
8409 lang_finalize_version_expr_head (&version->locals);
8410
8411 /* Check the global and local match names, and make sure there
8412 aren't any duplicates. */
8413
8414 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8415 {
8416 for (t = link_info.version_info; t != NULL; t = t->next)
8417 {
8418 struct bfd_elf_version_expr *e2;
8419
8420 if (t->locals.htab && e1->literal)
8421 {
8422 e2 = (struct bfd_elf_version_expr *)
8423 htab_find ((htab_t) t->locals.htab, e1);
8424 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8425 {
8426 if (e1->mask == e2->mask)
8427 einfo (_("%X%P: duplicate expression `%s'"
8428 " in version information\n"), e1->pattern);
8429 e2 = e2->next;
8430 }
8431 }
8432 else if (!e1->literal)
8433 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8434 if (strcmp (e1->pattern, e2->pattern) == 0
8435 && e1->mask == e2->mask)
8436 einfo (_("%X%P: duplicate expression `%s'"
8437 " in version information\n"), e1->pattern);
8438 }
8439 }
8440
8441 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8442 {
8443 for (t = link_info.version_info; t != NULL; t = t->next)
8444 {
8445 struct bfd_elf_version_expr *e2;
8446
8447 if (t->globals.htab && e1->literal)
8448 {
8449 e2 = (struct bfd_elf_version_expr *)
8450 htab_find ((htab_t) t->globals.htab, e1);
8451 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8452 {
8453 if (e1->mask == e2->mask)
8454 einfo (_("%X%P: duplicate expression `%s'"
8455 " in version information\n"),
8456 e1->pattern);
8457 e2 = e2->next;
8458 }
8459 }
8460 else if (!e1->literal)
8461 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8462 if (strcmp (e1->pattern, e2->pattern) == 0
8463 && e1->mask == e2->mask)
8464 einfo (_("%X%P: duplicate expression `%s'"
8465 " in version information\n"), e1->pattern);
8466 }
8467 }
8468
8469 version->deps = deps;
8470 version->name = name;
8471 if (name[0] != '\0')
8472 {
8473 ++version_index;
8474 version->vernum = version_index;
8475 }
8476 else
8477 version->vernum = 0;
8478
8479 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8480 ;
8481 *pp = version;
8482 }
8483
8484 /* This is called when we see a version dependency. */
8485
8486 struct bfd_elf_version_deps *
8487 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8488 {
8489 struct bfd_elf_version_deps *ret;
8490 struct bfd_elf_version_tree *t;
8491
8492 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8493 ret->next = list;
8494
8495 for (t = link_info.version_info; t != NULL; t = t->next)
8496 {
8497 if (strcmp (t->name, name) == 0)
8498 {
8499 ret->version_needed = t;
8500 return ret;
8501 }
8502 }
8503
8504 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8505
8506 ret->version_needed = NULL;
8507 return ret;
8508 }
8509
8510 static void
8511 lang_do_version_exports_section (void)
8512 {
8513 struct bfd_elf_version_expr *greg = NULL, *lreg;
8514
8515 LANG_FOR_EACH_INPUT_STATEMENT (is)
8516 {
8517 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8518 char *contents, *p;
8519 bfd_size_type len;
8520
8521 if (sec == NULL)
8522 continue;
8523
8524 len = sec->size;
8525 contents = (char *) xmalloc (len);
8526 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8527 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8528
8529 p = contents;
8530 while (p < contents + len)
8531 {
8532 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8533 p = strchr (p, '\0') + 1;
8534 }
8535
8536 /* Do not free the contents, as we used them creating the regex. */
8537
8538 /* Do not include this section in the link. */
8539 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8540 }
8541
8542 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8543 lang_register_vers_node (command_line.version_exports_section,
8544 lang_new_vers_node (greg, lreg), NULL);
8545 }
8546
8547 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8548
8549 static void
8550 lang_do_memory_regions (void)
8551 {
8552 lang_memory_region_type *r = lang_memory_region_list;
8553
8554 for (; r != NULL; r = r->next)
8555 {
8556 if (r->origin_exp)
8557 {
8558 exp_fold_tree_no_dot (r->origin_exp);
8559 if (expld.result.valid_p)
8560 {
8561 r->origin = expld.result.value;
8562 r->current = r->origin;
8563 }
8564 else
8565 einfo (_("%F%P: invalid origin for memory region %s\n"),
8566 r->name_list.name);
8567 }
8568 if (r->length_exp)
8569 {
8570 exp_fold_tree_no_dot (r->length_exp);
8571 if (expld.result.valid_p)
8572 r->length = expld.result.value;
8573 else
8574 einfo (_("%F%P: invalid length for memory region %s\n"),
8575 r->name_list.name);
8576 }
8577 }
8578 }
8579
8580 void
8581 lang_add_unique (const char *name)
8582 {
8583 struct unique_sections *ent;
8584
8585 for (ent = unique_section_list; ent; ent = ent->next)
8586 if (strcmp (ent->name, name) == 0)
8587 return;
8588
8589 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8590 ent->name = xstrdup (name);
8591 ent->next = unique_section_list;
8592 unique_section_list = ent;
8593 }
8594
8595 /* Append the list of dynamic symbols to the existing one. */
8596
8597 void
8598 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8599 {
8600 if (link_info.dynamic_list)
8601 {
8602 struct bfd_elf_version_expr *tail;
8603 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8604 ;
8605 tail->next = link_info.dynamic_list->head.list;
8606 link_info.dynamic_list->head.list = dynamic;
8607 }
8608 else
8609 {
8610 struct bfd_elf_dynamic_list *d;
8611
8612 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8613 d->head.list = dynamic;
8614 d->match = lang_vers_match;
8615 link_info.dynamic_list = d;
8616 }
8617 }
8618
8619 /* Append the list of C++ typeinfo dynamic symbols to the existing
8620 one. */
8621
8622 void
8623 lang_append_dynamic_list_cpp_typeinfo (void)
8624 {
8625 const char *symbols[] =
8626 {
8627 "typeinfo name for*",
8628 "typeinfo for*"
8629 };
8630 struct bfd_elf_version_expr *dynamic = NULL;
8631 unsigned int i;
8632
8633 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8634 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8635 FALSE);
8636
8637 lang_append_dynamic_list (dynamic);
8638 }
8639
8640 /* Append the list of C++ operator new and delete dynamic symbols to the
8641 existing one. */
8642
8643 void
8644 lang_append_dynamic_list_cpp_new (void)
8645 {
8646 const char *symbols[] =
8647 {
8648 "operator new*",
8649 "operator delete*"
8650 };
8651 struct bfd_elf_version_expr *dynamic = NULL;
8652 unsigned int i;
8653
8654 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8655 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8656 FALSE);
8657
8658 lang_append_dynamic_list (dynamic);
8659 }
8660
8661 /* Scan a space and/or comma separated string of features. */
8662
8663 void
8664 lang_ld_feature (char *str)
8665 {
8666 char *p, *q;
8667
8668 p = str;
8669 while (*p)
8670 {
8671 char sep;
8672 while (*p == ',' || ISSPACE (*p))
8673 ++p;
8674 if (!*p)
8675 break;
8676 q = p + 1;
8677 while (*q && *q != ',' && !ISSPACE (*q))
8678 ++q;
8679 sep = *q;
8680 *q = 0;
8681 if (strcasecmp (p, "SANE_EXPR") == 0)
8682 config.sane_expr = TRUE;
8683 else
8684 einfo (_("%X%P: unknown feature `%s'\n"), p);
8685 *q = sep;
8686 p = q;
8687 }
8688 }
8689
8690 /* Pretty print memory amount. */
8691
8692 static void
8693 lang_print_memory_size (bfd_vma sz)
8694 {
8695 if ((sz & 0x3fffffff) == 0)
8696 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8697 else if ((sz & 0xfffff) == 0)
8698 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8699 else if ((sz & 0x3ff) == 0)
8700 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8701 else
8702 printf (" %10" BFD_VMA_FMT "u B", sz);
8703 }
8704
8705 /* Implement --print-memory-usage: disply per region memory usage. */
8706
8707 void
8708 lang_print_memory_usage (void)
8709 {
8710 lang_memory_region_type *r;
8711
8712 printf ("Memory region Used Size Region Size %%age Used\n");
8713 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8714 {
8715 bfd_vma used_length = r->current - r->origin;
8716 double percent;
8717
8718 printf ("%16s: ",r->name_list.name);
8719 lang_print_memory_size (used_length);
8720 lang_print_memory_size ((bfd_vma) r->length);
8721
8722 percent = used_length * 100.0 / r->length;
8723
8724 printf (" %6.2f%%\n", percent);
8725 }
8726 }
This page took 0.205345 seconds and 5 git commands to generate.