gdb: fix vfork with multiple threads
[deliverable/binutils-gdb.git] / libctf / ctf-types.c
1 /* Type handling functions.
2 Copyright (C) 2019-2021 Free Software Foundation, Inc.
3
4 This file is part of libctf.
5
6 libctf is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
14 See the GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; see the file COPYING. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <ctf-impl.h>
21 #include <assert.h>
22 #include <string.h>
23
24 /* Determine whether a type is a parent or a child. */
25
26 int
27 ctf_type_isparent (ctf_dict_t *fp, ctf_id_t id)
28 {
29 return (LCTF_TYPE_ISPARENT (fp, id));
30 }
31
32 int
33 ctf_type_ischild (ctf_dict_t * fp, ctf_id_t id)
34 {
35 return (LCTF_TYPE_ISCHILD (fp, id));
36 }
37
38 /* Expand a structure element into the passed-in ctf_lmember_t. */
39
40 static int
41 ctf_struct_member (ctf_dict_t *fp, ctf_lmember_t *dst, const ctf_type_t *tp,
42 unsigned char *vlen, size_t vbytes, size_t n)
43 {
44 if (!ctf_assert (fp, n < LCTF_INFO_VLEN (fp, tp->ctt_info)))
45 return -1; /* errno is set for us. */
46
47 /* Already large. */
48 if (tp->ctt_size == CTF_LSIZE_SENT)
49 {
50 ctf_lmember_t *lmp = (ctf_lmember_t *) vlen;
51
52 if (!ctf_assert (fp, (n + 1) * sizeof (ctf_lmember_t) <= vbytes))
53 return -1; /* errno is set for us. */
54
55 memcpy (dst, &lmp[n], sizeof (ctf_lmember_t));
56 }
57 else
58 {
59 ctf_member_t *mp = (ctf_member_t *) vlen;
60 dst->ctlm_name = mp[n].ctm_name;
61 dst->ctlm_type = mp[n].ctm_type;
62 dst->ctlm_offsetlo = mp[n].ctm_offset;
63 dst->ctlm_offsethi = 0;
64 }
65 return 0;
66 }
67
68 /* Iterate over the members of a STRUCT or UNION. We pass the name, member
69 type, and offset of each member to the specified callback function. */
70
71 int
72 ctf_member_iter (ctf_dict_t *fp, ctf_id_t type, ctf_member_f *func, void *arg)
73 {
74 ctf_next_t *i = NULL;
75 ssize_t offset;
76 const char *name;
77 ctf_id_t membtype;
78
79 while ((offset = ctf_member_next (fp, type, &i, &name, &membtype, 0)) >= 0)
80 {
81 int rc;
82 if ((rc = func (name, membtype, offset, arg)) != 0)
83 {
84 ctf_next_destroy (i);
85 return rc;
86 }
87 }
88 if (ctf_errno (fp) != ECTF_NEXT_END)
89 return -1; /* errno is set for us. */
90
91 return 0;
92 }
93
94 /* Iterate over the members of a STRUCT or UNION, returning each member's
95 offset and optionally name and member type in turn. On end-of-iteration,
96 returns -1. If FLAGS is CTF_MN_RECURSE, recurse into unnamed members. */
97
98 ssize_t
99 ctf_member_next (ctf_dict_t *fp, ctf_id_t type, ctf_next_t **it,
100 const char **name, ctf_id_t *membtype, int flags)
101 {
102 ctf_dict_t *ofp = fp;
103 uint32_t kind;
104 ssize_t offset;
105 uint32_t max_vlen;
106 ctf_next_t *i = *it;
107
108 if (!i)
109 {
110 const ctf_type_t *tp;
111 ctf_dtdef_t *dtd;
112 ssize_t size;
113 ssize_t increment;
114
115 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
116 return -1; /* errno is set for us. */
117
118 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
119 return -1; /* errno is set for us. */
120
121 if ((i = ctf_next_create ()) == NULL)
122 return ctf_set_errno (ofp, ENOMEM);
123 i->cu.ctn_fp = ofp;
124 i->ctn_tp = tp;
125
126 ctf_get_ctt_size (fp, tp, &size, &increment);
127 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
128
129 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
130 {
131 ctf_next_destroy (i);
132 return (ctf_set_errno (ofp, ECTF_NOTSOU));
133 }
134
135 if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
136 {
137 i->u.ctn_vlen = dtd->dtd_vlen;
138 i->ctn_size = dtd->dtd_vlen_alloc;
139 }
140 else
141 {
142 unsigned long vlen = LCTF_INFO_VLEN (fp, tp->ctt_info);
143
144 i->u.ctn_vlen = (unsigned char *) tp + increment;
145 i->ctn_size = LCTF_VBYTES (fp, kind, size, vlen);;
146 }
147 i->ctn_iter_fun = (void (*) (void)) ctf_member_next;
148 i->ctn_n = 0;
149 *it = i;
150 }
151
152 if ((void (*) (void)) ctf_member_next != i->ctn_iter_fun)
153 return (ctf_set_errno (ofp, ECTF_NEXT_WRONGFUN));
154
155 if (ofp != i->cu.ctn_fp)
156 return (ctf_set_errno (ofp, ECTF_NEXT_WRONGFP));
157
158 /* Resolve to the native dict of this type. */
159 if ((fp = ctf_get_dict (ofp, type)) == NULL)
160 return (ctf_set_errno (ofp, ECTF_NOPARENT));
161
162 max_vlen = LCTF_INFO_VLEN (fp, i->ctn_tp->ctt_info);
163
164 /* When we hit an unnamed struct/union member, we set ctn_type to indicate
165 that we are inside one, then return the unnamed member: on the next call,
166 we must skip over top-level member iteration in favour of iteration within
167 the sub-struct until it later turns out that that iteration has ended. */
168
169 retry:
170 if (!i->ctn_type)
171 {
172 ctf_lmember_t memb;
173 const char *membname;
174
175 if (i->ctn_n == max_vlen)
176 goto end_iter;
177
178 if (ctf_struct_member (fp, &memb, i->ctn_tp, i->u.ctn_vlen, i->ctn_size,
179 i->ctn_n) < 0)
180 return -1; /* errno is set for us. */
181
182 membname = ctf_strptr (fp, memb.ctlm_name);
183
184 if (name)
185 *name = membname;
186 if (membtype)
187 *membtype = memb.ctlm_type;
188 offset = (unsigned long) CTF_LMEM_OFFSET (&memb);
189
190 if (membname[0] == 0
191 && (ctf_type_kind (fp, memb.ctlm_type) == CTF_K_STRUCT
192 || ctf_type_kind (fp, memb.ctlm_type) == CTF_K_UNION))
193 i->ctn_type = memb.ctlm_type;
194 i->ctn_n++;
195
196 /* The callers might want automatic recursive sub-struct traversal. */
197 if (!(flags & CTF_MN_RECURSE))
198 i->ctn_type = 0;
199
200 /* Sub-struct traversal starting? Take note of the offset of this member,
201 for later boosting of sub-struct members' offsets. */
202 if (i->ctn_type)
203 i->ctn_increment = offset;
204 }
205 /* Traversing a sub-struct? Just return it, with the offset adjusted. */
206 else
207 {
208 ssize_t ret = ctf_member_next (fp, i->ctn_type, &i->ctn_next, name,
209 membtype, flags);
210
211 if (ret >= 0)
212 return ret + i->ctn_increment;
213
214 if (ctf_errno (fp) != ECTF_NEXT_END)
215 {
216 ctf_next_destroy (i);
217 *it = NULL;
218 i->ctn_type = 0;
219 return ret; /* errno is set for us. */
220 }
221
222 if (!ctf_assert (fp, (i->ctn_next == NULL)))
223 return -1; /* errno is set for us. */
224
225 i->ctn_type = 0;
226 /* This sub-struct has ended: on to the next real member. */
227 goto retry;
228 }
229
230 return offset;
231
232 end_iter:
233 ctf_next_destroy (i);
234 *it = NULL;
235 return ctf_set_errno (ofp, ECTF_NEXT_END);
236 }
237
238 /* Iterate over the members of an ENUM. We pass the string name and associated
239 integer value of each enum element to the specified callback function. */
240
241 int
242 ctf_enum_iter (ctf_dict_t *fp, ctf_id_t type, ctf_enum_f *func, void *arg)
243 {
244 ctf_next_t *i = NULL;
245 const char *name;
246 int val;
247
248 while ((name = ctf_enum_next (fp, type, &i, &val)) != NULL)
249 {
250 int rc;
251 if ((rc = func (name, val, arg)) != 0)
252 {
253 ctf_next_destroy (i);
254 return rc;
255 }
256 }
257 if (ctf_errno (fp) != ECTF_NEXT_END)
258 return -1; /* errno is set for us. */
259
260 return 0;
261 }
262
263 /* Iterate over the members of an enum TYPE, returning each enumerand's NAME or
264 NULL at end of iteration or error, and optionally passing back the
265 enumerand's integer VALue. */
266
267 const char *
268 ctf_enum_next (ctf_dict_t *fp, ctf_id_t type, ctf_next_t **it,
269 int *val)
270 {
271 ctf_dict_t *ofp = fp;
272 uint32_t kind;
273 const char *name;
274 ctf_next_t *i = *it;
275
276 if (!i)
277 {
278 const ctf_type_t *tp;
279 ctf_dtdef_t *dtd;
280
281 if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
282 return NULL; /* errno is set for us. */
283
284 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
285 return NULL; /* errno is set for us. */
286
287 if ((i = ctf_next_create ()) == NULL)
288 {
289 ctf_set_errno (ofp, ENOMEM);
290 return NULL;
291 }
292 i->cu.ctn_fp = ofp;
293
294 (void) ctf_get_ctt_size (fp, tp, NULL,
295 &i->ctn_increment);
296 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
297
298 if (kind != CTF_K_ENUM)
299 {
300 ctf_next_destroy (i);
301 ctf_set_errno (ofp, ECTF_NOTENUM);
302 return NULL;
303 }
304
305 dtd = ctf_dynamic_type (fp, type);
306 i->ctn_iter_fun = (void (*) (void)) ctf_enum_next;
307 i->ctn_n = LCTF_INFO_VLEN (fp, tp->ctt_info);
308
309 if (dtd == NULL)
310 i->u.ctn_en = (const ctf_enum_t *) ((uintptr_t) tp +
311 i->ctn_increment);
312 else
313 i->u.ctn_en = (const ctf_enum_t *) dtd->dtd_vlen;
314
315 *it = i;
316 }
317
318 if ((void (*) (void)) ctf_enum_next != i->ctn_iter_fun)
319 {
320 ctf_set_errno (ofp, ECTF_NEXT_WRONGFUN);
321 return NULL;
322 }
323
324 if (ofp != i->cu.ctn_fp)
325 {
326 ctf_set_errno (ofp, ECTF_NEXT_WRONGFP);
327 return NULL;
328 }
329
330 /* Resolve to the native dict of this type. */
331 if ((fp = ctf_get_dict (ofp, type)) == NULL)
332 {
333 ctf_set_errno (ofp, ECTF_NOPARENT);
334 return NULL;
335 }
336
337 if (i->ctn_n == 0)
338 goto end_iter;
339
340 name = ctf_strptr (fp, i->u.ctn_en->cte_name);
341 if (val)
342 *val = i->u.ctn_en->cte_value;
343 i->u.ctn_en++;
344 i->ctn_n--;
345
346 return name;
347
348 end_iter:
349 ctf_next_destroy (i);
350 *it = NULL;
351 ctf_set_errno (ofp, ECTF_NEXT_END);
352 return NULL;
353 }
354
355 /* Iterate over every root (user-visible) type in the given CTF dict.
356 We pass the type ID of each type to the specified callback function.
357
358 Does not traverse parent types: you have to do that explicitly. This is by
359 design, to avoid traversing them more than once if traversing many children
360 of a single parent. */
361
362 int
363 ctf_type_iter (ctf_dict_t *fp, ctf_type_f *func, void *arg)
364 {
365 ctf_next_t *i = NULL;
366 ctf_id_t type;
367
368 while ((type = ctf_type_next (fp, &i, NULL, 0)) != CTF_ERR)
369 {
370 int rc;
371 if ((rc = func (type, arg)) != 0)
372 {
373 ctf_next_destroy (i);
374 return rc;
375 }
376 }
377 if (ctf_errno (fp) != ECTF_NEXT_END)
378 return -1; /* errno is set for us. */
379
380 return 0;
381 }
382
383 /* Iterate over every type in the given CTF dict, user-visible or not.
384 We pass the type ID of each type to the specified callback function.
385
386 Does not traverse parent types: you have to do that explicitly. This is by
387 design, to avoid traversing them more than once if traversing many children
388 of a single parent. */
389
390 int
391 ctf_type_iter_all (ctf_dict_t *fp, ctf_type_all_f *func, void *arg)
392 {
393 ctf_next_t *i = NULL;
394 ctf_id_t type;
395 int flag;
396
397 while ((type = ctf_type_next (fp, &i, &flag, 1)) != CTF_ERR)
398 {
399 int rc;
400 if ((rc = func (type, flag, arg)) != 0)
401 {
402 ctf_next_destroy (i);
403 return rc;
404 }
405 }
406 if (ctf_errno (fp) != ECTF_NEXT_END)
407 return -1; /* errno is set for us. */
408
409 return 0;
410 }
411
412 /* Iterate over every type in the given CTF dict, optionally including
413 non-user-visible types, returning each type ID and hidden flag in turn.
414 Returns CTF_ERR on end of iteration or error.
415
416 Does not traverse parent types: you have to do that explicitly. This is by
417 design, to avoid traversing them more than once if traversing many children
418 of a single parent. */
419
420 ctf_id_t
421 ctf_type_next (ctf_dict_t *fp, ctf_next_t **it, int *flag, int want_hidden)
422 {
423 ctf_next_t *i = *it;
424
425 if (!i)
426 {
427 if ((i = ctf_next_create ()) == NULL)
428 return ctf_set_errno (fp, ENOMEM);
429
430 i->cu.ctn_fp = fp;
431 i->ctn_type = 1;
432 i->ctn_iter_fun = (void (*) (void)) ctf_type_next;
433 *it = i;
434 }
435
436 if ((void (*) (void)) ctf_type_next != i->ctn_iter_fun)
437 return (ctf_set_errno (fp, ECTF_NEXT_WRONGFUN));
438
439 if (fp != i->cu.ctn_fp)
440 return (ctf_set_errno (fp, ECTF_NEXT_WRONGFP));
441
442 while (i->ctn_type <= fp->ctf_typemax)
443 {
444 const ctf_type_t *tp = LCTF_INDEX_TO_TYPEPTR (fp, i->ctn_type);
445
446 if ((!want_hidden) && (!LCTF_INFO_ISROOT (fp, tp->ctt_info)))
447 {
448 i->ctn_type++;
449 continue;
450 }
451
452 if (flag)
453 *flag = LCTF_INFO_ISROOT (fp, tp->ctt_info);
454 return LCTF_INDEX_TO_TYPE (fp, i->ctn_type++, fp->ctf_flags & LCTF_CHILD);
455 }
456 ctf_next_destroy (i);
457 *it = NULL;
458 return ctf_set_errno (fp, ECTF_NEXT_END);
459 }
460
461 /* Iterate over every variable in the given CTF dict, in arbitrary order.
462 We pass the name of each variable to the specified callback function. */
463
464 int
465 ctf_variable_iter (ctf_dict_t *fp, ctf_variable_f *func, void *arg)
466 {
467 ctf_next_t *i = NULL;
468 ctf_id_t type;
469 const char *name;
470
471 while ((type = ctf_variable_next (fp, &i, &name)) != CTF_ERR)
472 {
473 int rc;
474 if ((rc = func (name, type, arg)) != 0)
475 {
476 ctf_next_destroy (i);
477 return rc;
478 }
479 }
480 if (ctf_errno (fp) != ECTF_NEXT_END)
481 return -1; /* errno is set for us. */
482
483 return 0;
484 }
485
486 /* Iterate over every variable in the given CTF dict, in arbitrary order,
487 returning the name and type of each variable in turn. The name argument is
488 not optional. Returns CTF_ERR on end of iteration or error. */
489
490 ctf_id_t
491 ctf_variable_next (ctf_dict_t *fp, ctf_next_t **it, const char **name)
492 {
493 ctf_next_t *i = *it;
494
495 if ((fp->ctf_flags & LCTF_CHILD) && (fp->ctf_parent == NULL))
496 return (ctf_set_errno (fp, ECTF_NOPARENT));
497
498 if (!i)
499 {
500 if ((i = ctf_next_create ()) == NULL)
501 return ctf_set_errno (fp, ENOMEM);
502
503 i->cu.ctn_fp = fp;
504 i->ctn_iter_fun = (void (*) (void)) ctf_variable_next;
505 if (fp->ctf_flags & LCTF_RDWR)
506 i->u.ctn_dvd = ctf_list_next (&fp->ctf_dvdefs);
507 *it = i;
508 }
509
510 if ((void (*) (void)) ctf_variable_next != i->ctn_iter_fun)
511 return (ctf_set_errno (fp, ECTF_NEXT_WRONGFUN));
512
513 if (fp != i->cu.ctn_fp)
514 return (ctf_set_errno (fp, ECTF_NEXT_WRONGFP));
515
516 if (!(fp->ctf_flags & LCTF_RDWR))
517 {
518 if (i->ctn_n >= fp->ctf_nvars)
519 goto end_iter;
520
521 *name = ctf_strptr (fp, fp->ctf_vars[i->ctn_n].ctv_name);
522 return fp->ctf_vars[i->ctn_n++].ctv_type;
523 }
524 else
525 {
526 ctf_id_t id;
527
528 if (i->u.ctn_dvd == NULL)
529 goto end_iter;
530
531 *name = i->u.ctn_dvd->dvd_name;
532 id = i->u.ctn_dvd->dvd_type;
533 i->u.ctn_dvd = ctf_list_next (i->u.ctn_dvd);
534 return id;
535 }
536
537 end_iter:
538 ctf_next_destroy (i);
539 *it = NULL;
540 return ctf_set_errno (fp, ECTF_NEXT_END);
541 }
542
543 /* Follow a given type through the graph for TYPEDEF, VOLATILE, CONST, and
544 RESTRICT nodes until we reach a "base" type node. This is useful when
545 we want to follow a type ID to a node that has members or a size. To guard
546 against infinite loops, we implement simplified cycle detection and check
547 each link against itself, the previous node, and the topmost node.
548
549 Does not drill down through slices to their contained type.
550
551 Callers of this function must not presume that a type it returns must have a
552 valid ctt_size: forwards do not, and must be separately handled. */
553
554 ctf_id_t
555 ctf_type_resolve (ctf_dict_t *fp, ctf_id_t type)
556 {
557 ctf_id_t prev = type, otype = type;
558 ctf_dict_t *ofp = fp;
559 const ctf_type_t *tp;
560
561 if (type == 0)
562 return (ctf_set_errno (ofp, ECTF_NONREPRESENTABLE));
563
564 while ((tp = ctf_lookup_by_id (&fp, type)) != NULL)
565 {
566 switch (LCTF_INFO_KIND (fp, tp->ctt_info))
567 {
568 case CTF_K_TYPEDEF:
569 case CTF_K_VOLATILE:
570 case CTF_K_CONST:
571 case CTF_K_RESTRICT:
572 if (tp->ctt_type == type || tp->ctt_type == otype
573 || tp->ctt_type == prev)
574 {
575 ctf_err_warn (ofp, 0, ECTF_CORRUPT, _("type %lx cycle detected"),
576 otype);
577 return (ctf_set_errno (ofp, ECTF_CORRUPT));
578 }
579 prev = type;
580 type = tp->ctt_type;
581 break;
582 case CTF_K_UNKNOWN:
583 return (ctf_set_errno (ofp, ECTF_NONREPRESENTABLE));
584 default:
585 return type;
586 }
587 if (type == 0)
588 return (ctf_set_errno (ofp, ECTF_NONREPRESENTABLE));
589 }
590
591 return CTF_ERR; /* errno is set for us. */
592 }
593
594 /* Like ctf_type_resolve(), but traverse down through slices to their contained
595 type. */
596
597 ctf_id_t
598 ctf_type_resolve_unsliced (ctf_dict_t *fp, ctf_id_t type)
599 {
600 const ctf_type_t *tp;
601
602 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
603 return -1;
604
605 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
606 return CTF_ERR; /* errno is set for us. */
607
608 if ((LCTF_INFO_KIND (fp, tp->ctt_info)) == CTF_K_SLICE)
609 return ctf_type_reference (fp, type);
610 return type;
611 }
612
613 /* Return the native dict of a given type: if called on a child and the
614 type is in the parent, return the parent. Needed if you plan to access
615 the type directly, without using the API. */
616 ctf_dict_t *
617 ctf_get_dict (ctf_dict_t *fp, ctf_id_t type)
618 {
619 if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type))
620 return fp->ctf_parent;
621
622 return fp;
623 }
624
625 /* Look up a name in the given name table, in the appropriate hash given the
626 kind of the identifier. The name is a raw, undecorated identifier. */
627
628 ctf_id_t ctf_lookup_by_rawname (ctf_dict_t *fp, int kind, const char *name)
629 {
630 return ctf_lookup_by_rawhash (fp, ctf_name_table (fp, kind), name);
631 }
632
633 /* Look up a name in the given name table, in the appropriate hash given the
634 readability state of the dictionary. The name is a raw, undecorated
635 identifier. */
636
637 ctf_id_t ctf_lookup_by_rawhash (ctf_dict_t *fp, ctf_names_t *np, const char *name)
638 {
639 ctf_id_t id;
640
641 if (fp->ctf_flags & LCTF_RDWR)
642 id = (ctf_id_t) (uintptr_t) ctf_dynhash_lookup (np->ctn_writable, name);
643 else
644 id = ctf_hash_lookup_type (np->ctn_readonly, fp, name);
645 return id;
646 }
647
648 /* Lookup the given type ID and return its name as a new dynamically-allocated
649 string. */
650
651 char *
652 ctf_type_aname (ctf_dict_t *fp, ctf_id_t type)
653 {
654 ctf_decl_t cd;
655 ctf_decl_node_t *cdp;
656 ctf_decl_prec_t prec, lp, rp;
657 int ptr, arr;
658 uint32_t k;
659 char *buf;
660
661 if (fp == NULL && type == CTF_ERR)
662 return NULL; /* Simplify caller code by permitting CTF_ERR. */
663
664 ctf_decl_init (&cd);
665 ctf_decl_push (&cd, fp, type);
666
667 if (cd.cd_err != 0)
668 {
669 ctf_decl_fini (&cd);
670 ctf_set_errno (fp, cd.cd_err);
671 return NULL;
672 }
673
674 /* If the type graph's order conflicts with lexical precedence order
675 for pointers or arrays, then we need to surround the declarations at
676 the corresponding lexical precedence with parentheses. This can
677 result in either a parenthesized pointer (*) as in int (*)() or
678 int (*)[], or in a parenthesized pointer and array as in int (*[])(). */
679
680 ptr = cd.cd_order[CTF_PREC_POINTER] > CTF_PREC_POINTER;
681 arr = cd.cd_order[CTF_PREC_ARRAY] > CTF_PREC_ARRAY;
682
683 rp = arr ? CTF_PREC_ARRAY : ptr ? CTF_PREC_POINTER : -1;
684 lp = ptr ? CTF_PREC_POINTER : arr ? CTF_PREC_ARRAY : -1;
685
686 k = CTF_K_POINTER; /* Avoid leading whitespace (see below). */
687
688 for (prec = CTF_PREC_BASE; prec < CTF_PREC_MAX; prec++)
689 {
690 for (cdp = ctf_list_next (&cd.cd_nodes[prec]);
691 cdp != NULL; cdp = ctf_list_next (cdp))
692 {
693 ctf_dict_t *rfp = fp;
694 const ctf_type_t *tp = ctf_lookup_by_id (&rfp, cdp->cd_type);
695 const char *name = ctf_strptr (rfp, tp->ctt_name);
696
697 if (k != CTF_K_POINTER && k != CTF_K_ARRAY)
698 ctf_decl_sprintf (&cd, " ");
699
700 if (lp == prec)
701 {
702 ctf_decl_sprintf (&cd, "(");
703 lp = -1;
704 }
705
706 switch (cdp->cd_kind)
707 {
708 case CTF_K_INTEGER:
709 case CTF_K_FLOAT:
710 case CTF_K_TYPEDEF:
711 /* Integers, floats, and typedefs must always be named types. */
712
713 if (name[0] == '\0')
714 {
715 ctf_set_errno (fp, ECTF_CORRUPT);
716 ctf_decl_fini (&cd);
717 return NULL;
718 }
719
720 ctf_decl_sprintf (&cd, "%s", name);
721 break;
722 case CTF_K_POINTER:
723 ctf_decl_sprintf (&cd, "*");
724 break;
725 case CTF_K_ARRAY:
726 ctf_decl_sprintf (&cd, "[%u]", cdp->cd_n);
727 break;
728 case CTF_K_FUNCTION:
729 {
730 size_t i;
731 ctf_funcinfo_t fi;
732 ctf_id_t *argv = NULL;
733
734 if (ctf_func_type_info (rfp, cdp->cd_type, &fi) < 0)
735 goto err; /* errno is set for us. */
736
737 if ((argv = calloc (fi.ctc_argc, sizeof (ctf_id_t *))) == NULL)
738 {
739 ctf_set_errno (rfp, errno);
740 goto err;
741 }
742
743 if (ctf_func_type_args (rfp, cdp->cd_type,
744 fi.ctc_argc, argv) < 0)
745 goto err; /* errno is set for us. */
746
747 ctf_decl_sprintf (&cd, "(*) (");
748 for (i = 0; i < fi.ctc_argc; i++)
749 {
750 char *arg = ctf_type_aname (rfp, argv[i]);
751
752 if (arg == NULL)
753 goto err; /* errno is set for us. */
754 ctf_decl_sprintf (&cd, "%s", arg);
755 free (arg);
756
757 if ((i < fi.ctc_argc - 1)
758 || (fi.ctc_flags & CTF_FUNC_VARARG))
759 ctf_decl_sprintf (&cd, ", ");
760 }
761
762 if (fi.ctc_flags & CTF_FUNC_VARARG)
763 ctf_decl_sprintf (&cd, "...");
764 ctf_decl_sprintf (&cd, ")");
765
766 free (argv);
767 break;
768
769 err:
770 free (argv);
771 ctf_decl_fini (&cd);
772 return NULL;
773 }
774 break;
775 case CTF_K_STRUCT:
776 ctf_decl_sprintf (&cd, "struct %s", name);
777 break;
778 case CTF_K_UNION:
779 ctf_decl_sprintf (&cd, "union %s", name);
780 break;
781 case CTF_K_ENUM:
782 ctf_decl_sprintf (&cd, "enum %s", name);
783 break;
784 case CTF_K_FORWARD:
785 {
786 switch (ctf_type_kind_forwarded (fp, cdp->cd_type))
787 {
788 case CTF_K_STRUCT:
789 ctf_decl_sprintf (&cd, "struct %s", name);
790 break;
791 case CTF_K_UNION:
792 ctf_decl_sprintf (&cd, "union %s", name);
793 break;
794 case CTF_K_ENUM:
795 ctf_decl_sprintf (&cd, "enum %s", name);
796 break;
797 default:
798 ctf_set_errno (fp, ECTF_CORRUPT);
799 ctf_decl_fini (&cd);
800 return NULL;
801 }
802 break;
803 }
804 case CTF_K_VOLATILE:
805 ctf_decl_sprintf (&cd, "volatile");
806 break;
807 case CTF_K_CONST:
808 ctf_decl_sprintf (&cd, "const");
809 break;
810 case CTF_K_RESTRICT:
811 ctf_decl_sprintf (&cd, "restrict");
812 break;
813 case CTF_K_UNKNOWN:
814 if (name[0] == '\0')
815 ctf_decl_sprintf (&cd, _("(nonrepresentable type)"));
816 else
817 ctf_decl_sprintf (&cd, _("(nonrepresentable type %s)"),
818 name);
819 break;
820 }
821
822 k = cdp->cd_kind;
823 }
824
825 if (rp == prec)
826 ctf_decl_sprintf (&cd, ")");
827 }
828
829 if (cd.cd_enomem)
830 (void) ctf_set_errno (fp, ENOMEM);
831
832 buf = ctf_decl_buf (&cd);
833
834 ctf_decl_fini (&cd);
835 return buf;
836 }
837
838 /* Lookup the given type ID and print a string name for it into buf. Return
839 the actual number of bytes (not including \0) needed to format the name. */
840
841 ssize_t
842 ctf_type_lname (ctf_dict_t *fp, ctf_id_t type, char *buf, size_t len)
843 {
844 char *str = ctf_type_aname (fp, type);
845 size_t slen;
846
847 if (str == NULL)
848 return CTF_ERR; /* errno is set for us. */
849
850 slen = strlen (str);
851 snprintf (buf, len, "%s", str);
852 free (str);
853
854 if (slen >= len)
855 (void) ctf_set_errno (fp, ECTF_NAMELEN);
856
857 return slen;
858 }
859
860 /* Lookup the given type ID and print a string name for it into buf. If buf
861 is too small, return NULL: the ECTF_NAMELEN error is set on 'fp' for us. */
862
863 char *
864 ctf_type_name (ctf_dict_t *fp, ctf_id_t type, char *buf, size_t len)
865 {
866 ssize_t rv = ctf_type_lname (fp, type, buf, len);
867 return (rv >= 0 && (size_t) rv < len ? buf : NULL);
868 }
869
870 /* Lookup the given type ID and return its raw, unadorned, undecorated name.
871 The name will live as long as its ctf_dict_t does.
872
873 The only decoration is that a NULL return always means an error: nameless
874 types return a null string. */
875
876 const char *
877 ctf_type_name_raw (ctf_dict_t *fp, ctf_id_t type)
878 {
879 const ctf_type_t *tp;
880
881 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
882 return NULL; /* errno is set for us. */
883
884 if (tp->ctt_name == 0)
885 return "";
886
887 return ctf_strraw (fp, tp->ctt_name);
888 }
889
890 /* Lookup the given type ID and return its raw, unadorned, undecorated name as a
891 new dynamically-allocated string. */
892
893 char *
894 ctf_type_aname_raw (ctf_dict_t *fp, ctf_id_t type)
895 {
896 const char *name = ctf_type_name_raw (fp, type);
897
898 if (name != NULL)
899 return strdup (name);
900
901 return NULL;
902 }
903
904 /* Resolve the type down to a base type node, and then return the size
905 of the type storage in bytes. */
906
907 ssize_t
908 ctf_type_size (ctf_dict_t *fp, ctf_id_t type)
909 {
910 ctf_dict_t *ofp = fp;
911 const ctf_type_t *tp;
912 ssize_t size;
913 ctf_arinfo_t ar;
914
915 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
916 return -1; /* errno is set for us. */
917
918 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
919 return -1; /* errno is set for us. */
920
921 switch (LCTF_INFO_KIND (fp, tp->ctt_info))
922 {
923 case CTF_K_POINTER:
924 return fp->ctf_dmodel->ctd_pointer;
925
926 case CTF_K_FUNCTION:
927 return 0; /* Function size is only known by symtab. */
928
929 case CTF_K_ENUM:
930 return fp->ctf_dmodel->ctd_int;
931
932 case CTF_K_ARRAY:
933 /* ctf_add_array() does not directly encode the element size, but
934 requires the user to multiply to determine the element size.
935
936 If ctf_get_ctt_size() returns nonzero, then use the recorded
937 size instead. */
938
939 if ((size = ctf_get_ctt_size (fp, tp, NULL, NULL)) > 0)
940 return size;
941
942 if (ctf_array_info (ofp, type, &ar) < 0
943 || (size = ctf_type_size (ofp, ar.ctr_contents)) < 0)
944 return -1; /* errno is set for us. */
945
946 return size * ar.ctr_nelems;
947
948 case CTF_K_FORWARD:
949 /* Forwards do not have a meaningful size. */
950 return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
951
952 default: /* including slices of enums, etc */
953 return (ctf_get_ctt_size (fp, tp, NULL, NULL));
954 }
955 }
956
957 /* Resolve the type down to a base type node, and then return the alignment
958 needed for the type storage in bytes.
959
960 XXX may need arch-dependent attention. */
961
962 ssize_t
963 ctf_type_align (ctf_dict_t *fp, ctf_id_t type)
964 {
965 const ctf_type_t *tp;
966 ctf_dict_t *ofp = fp;
967 int kind;
968
969 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
970 return -1; /* errno is set for us. */
971
972 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
973 return -1; /* errno is set for us. */
974
975 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
976 switch (kind)
977 {
978 case CTF_K_POINTER:
979 case CTF_K_FUNCTION:
980 return fp->ctf_dmodel->ctd_pointer;
981
982 case CTF_K_ARRAY:
983 {
984 ctf_arinfo_t r;
985 if (ctf_array_info (ofp, type, &r) < 0)
986 return -1; /* errno is set for us. */
987 return (ctf_type_align (ofp, r.ctr_contents));
988 }
989
990 case CTF_K_STRUCT:
991 case CTF_K_UNION:
992 {
993 size_t align = 0;
994 ctf_dtdef_t *dtd;
995 unsigned char *vlen;
996 uint32_t i = 0, n = LCTF_INFO_VLEN (fp, tp->ctt_info);
997 ssize_t size, increment, vbytes;
998
999 ctf_get_ctt_size (fp, tp, &size, &increment);
1000
1001 if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
1002 {
1003 vlen = dtd->dtd_vlen;
1004 vbytes = dtd->dtd_vlen_alloc;
1005 }
1006 else
1007 {
1008 vlen = (unsigned char *) tp + increment;
1009 vbytes = LCTF_VBYTES (fp, kind, size, n);
1010 }
1011
1012 if (kind == CTF_K_STRUCT)
1013 n = MIN (n, 1); /* Only use first member for structs. */
1014
1015 for (; n != 0; n--, i++)
1016 {
1017 ctf_lmember_t memb;
1018
1019 if (ctf_struct_member (fp, &memb, tp, vlen, vbytes, i) < 0)
1020 return -1; /* errno is set for us. */
1021
1022 ssize_t am = ctf_type_align (ofp, memb.ctlm_type);
1023 align = MAX (align, (size_t) am);
1024 }
1025 return align;
1026 }
1027
1028 case CTF_K_ENUM:
1029 return fp->ctf_dmodel->ctd_int;
1030
1031 case CTF_K_FORWARD:
1032 /* Forwards do not have a meaningful alignment. */
1033 return (ctf_set_errno (ofp, ECTF_INCOMPLETE));
1034
1035 default: /* including slices of enums, etc */
1036 return (ctf_get_ctt_size (fp, tp, NULL, NULL));
1037 }
1038 }
1039
1040 /* Return the kind (CTF_K_* constant) for the specified type ID. */
1041
1042 int
1043 ctf_type_kind_unsliced (ctf_dict_t *fp, ctf_id_t type)
1044 {
1045 const ctf_type_t *tp;
1046
1047 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1048 return -1; /* errno is set for us. */
1049
1050 return (LCTF_INFO_KIND (fp, tp->ctt_info));
1051 }
1052
1053 /* Return the kind (CTF_K_* constant) for the specified type ID.
1054 Slices are considered to be of the same kind as the type sliced. */
1055
1056 int
1057 ctf_type_kind (ctf_dict_t *fp, ctf_id_t type)
1058 {
1059 int kind;
1060
1061 if ((kind = ctf_type_kind_unsliced (fp, type)) < 0)
1062 return -1;
1063
1064 if (kind == CTF_K_SLICE)
1065 {
1066 if ((type = ctf_type_reference (fp, type)) == CTF_ERR)
1067 return -1;
1068 kind = ctf_type_kind_unsliced (fp, type);
1069 }
1070
1071 return kind;
1072 }
1073
1074 /* Return the kind of this type, except, for forwards, return the kind of thing
1075 this is a forward to. */
1076 int
1077 ctf_type_kind_forwarded (ctf_dict_t *fp, ctf_id_t type)
1078 {
1079 int kind;
1080 const ctf_type_t *tp;
1081
1082 if ((kind = ctf_type_kind (fp, type)) < 0)
1083 return -1; /* errno is set for us. */
1084
1085 if (kind != CTF_K_FORWARD)
1086 return kind;
1087
1088 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1089 return -1; /* errno is set for us. */
1090
1091 return tp->ctt_type;
1092 }
1093
1094 /* If the type is one that directly references another type (such as POINTER),
1095 then return the ID of the type to which it refers. */
1096
1097 ctf_id_t
1098 ctf_type_reference (ctf_dict_t *fp, ctf_id_t type)
1099 {
1100 ctf_dict_t *ofp = fp;
1101 const ctf_type_t *tp;
1102
1103 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1104 return CTF_ERR; /* errno is set for us. */
1105
1106 switch (LCTF_INFO_KIND (fp, tp->ctt_info))
1107 {
1108 case CTF_K_POINTER:
1109 case CTF_K_TYPEDEF:
1110 case CTF_K_VOLATILE:
1111 case CTF_K_CONST:
1112 case CTF_K_RESTRICT:
1113 return tp->ctt_type;
1114 /* Slices store their type in an unusual place. */
1115 case CTF_K_SLICE:
1116 {
1117 ctf_dtdef_t *dtd;
1118 const ctf_slice_t *sp;
1119
1120 if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
1121 {
1122 ssize_t increment;
1123
1124 (void) ctf_get_ctt_size (fp, tp, NULL, &increment);
1125 sp = (const ctf_slice_t *) ((uintptr_t) tp + increment);
1126 }
1127 else
1128 sp = (const ctf_slice_t *) dtd->dtd_vlen;
1129
1130 return sp->cts_type;
1131 }
1132 default:
1133 return (ctf_set_errno (ofp, ECTF_NOTREF));
1134 }
1135 }
1136
1137 /* Find a pointer to type by looking in fp->ctf_ptrtab. If we can't find a
1138 pointer to the given type, see if we can compute a pointer to the type
1139 resulting from resolving the type down to its base type and use that
1140 instead. This helps with cases where the CTF data includes "struct foo *"
1141 but not "foo_t *" and the user accesses "foo_t *" in the debugger.
1142
1143 XXX what about parent dicts? */
1144
1145 ctf_id_t
1146 ctf_type_pointer (ctf_dict_t *fp, ctf_id_t type)
1147 {
1148 ctf_dict_t *ofp = fp;
1149 ctf_id_t ntype;
1150
1151 if (ctf_lookup_by_id (&fp, type) == NULL)
1152 return CTF_ERR; /* errno is set for us. */
1153
1154 if ((ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)]) != 0)
1155 return (LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)));
1156
1157 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
1158 return (ctf_set_errno (ofp, ECTF_NOTYPE));
1159
1160 if (ctf_lookup_by_id (&fp, type) == NULL)
1161 return (ctf_set_errno (ofp, ECTF_NOTYPE));
1162
1163 if ((ntype = fp->ctf_ptrtab[LCTF_TYPE_TO_INDEX (fp, type)]) != 0)
1164 return (LCTF_INDEX_TO_TYPE (fp, ntype, (fp->ctf_flags & LCTF_CHILD)));
1165
1166 return (ctf_set_errno (ofp, ECTF_NOTYPE));
1167 }
1168
1169 /* Return the encoding for the specified INTEGER, FLOAT, or ENUM. */
1170
1171 int
1172 ctf_type_encoding (ctf_dict_t *fp, ctf_id_t type, ctf_encoding_t *ep)
1173 {
1174 ctf_dict_t *ofp = fp;
1175 ctf_dtdef_t *dtd;
1176 const ctf_type_t *tp;
1177 ssize_t increment;
1178 const unsigned char *vlen;
1179 uint32_t data;
1180
1181 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1182 return -1; /* errno is set for us. */
1183
1184 if ((dtd = ctf_dynamic_type (ofp, type)) != NULL)
1185 vlen = dtd->dtd_vlen;
1186 else
1187 {
1188 ctf_get_ctt_size (fp, tp, NULL, &increment);
1189 vlen = (const unsigned char *) ((uintptr_t) tp + increment);
1190 }
1191
1192 switch (LCTF_INFO_KIND (fp, tp->ctt_info))
1193 {
1194 case CTF_K_INTEGER:
1195 data = *(const uint32_t *) vlen;
1196 ep->cte_format = CTF_INT_ENCODING (data);
1197 ep->cte_offset = CTF_INT_OFFSET (data);
1198 ep->cte_bits = CTF_INT_BITS (data);
1199 break;
1200 case CTF_K_FLOAT:
1201 data = *(const uint32_t *) vlen;
1202 ep->cte_format = CTF_FP_ENCODING (data);
1203 ep->cte_offset = CTF_FP_OFFSET (data);
1204 ep->cte_bits = CTF_FP_BITS (data);
1205 break;
1206 case CTF_K_ENUM:
1207 /* v3 only: we must guess at the underlying integral format. */
1208 ep->cte_format = CTF_INT_SIGNED;
1209 ep->cte_offset = 0;
1210 ep->cte_bits = 0;
1211 break;
1212 case CTF_K_SLICE:
1213 {
1214 const ctf_slice_t *slice;
1215 ctf_encoding_t underlying_en;
1216 ctf_id_t underlying;
1217
1218 slice = (ctf_slice_t *) vlen;
1219 underlying = ctf_type_resolve (fp, slice->cts_type);
1220 if (ctf_type_encoding (fp, underlying, &underlying_en) < 0)
1221 return -1; /* errno is set for us. */
1222
1223 ep->cte_format = underlying_en.cte_format;
1224 ep->cte_offset = slice->cts_offset;
1225 ep->cte_bits = slice->cts_bits;
1226 break;
1227 }
1228 default:
1229 return (ctf_set_errno (ofp, ECTF_NOTINTFP));
1230 }
1231
1232 return 0;
1233 }
1234
1235 int
1236 ctf_type_cmp (ctf_dict_t *lfp, ctf_id_t ltype, ctf_dict_t *rfp,
1237 ctf_id_t rtype)
1238 {
1239 int rval;
1240
1241 if (ltype < rtype)
1242 rval = -1;
1243 else if (ltype > rtype)
1244 rval = 1;
1245 else
1246 rval = 0;
1247
1248 if (lfp == rfp)
1249 return rval;
1250
1251 if (LCTF_TYPE_ISPARENT (lfp, ltype) && lfp->ctf_parent != NULL)
1252 lfp = lfp->ctf_parent;
1253
1254 if (LCTF_TYPE_ISPARENT (rfp, rtype) && rfp->ctf_parent != NULL)
1255 rfp = rfp->ctf_parent;
1256
1257 if (lfp < rfp)
1258 return -1;
1259
1260 if (lfp > rfp)
1261 return 1;
1262
1263 return rval;
1264 }
1265
1266 /* Return a boolean value indicating if two types are compatible. This function
1267 returns true if the two types are the same, or if they (or their ultimate
1268 base type) have the same encoding properties, or (for structs / unions /
1269 enums / forward declarations) if they have the same name and (for structs /
1270 unions) member count. */
1271
1272 int
1273 ctf_type_compat (ctf_dict_t *lfp, ctf_id_t ltype,
1274 ctf_dict_t *rfp, ctf_id_t rtype)
1275 {
1276 const ctf_type_t *ltp, *rtp;
1277 ctf_encoding_t le, re;
1278 ctf_arinfo_t la, ra;
1279 uint32_t lkind, rkind;
1280 int same_names = 0;
1281
1282 if (ctf_type_cmp (lfp, ltype, rfp, rtype) == 0)
1283 return 1;
1284
1285 ltype = ctf_type_resolve (lfp, ltype);
1286 lkind = ctf_type_kind (lfp, ltype);
1287
1288 rtype = ctf_type_resolve (rfp, rtype);
1289 rkind = ctf_type_kind (rfp, rtype);
1290
1291 ltp = ctf_lookup_by_id (&lfp, ltype);
1292 rtp = ctf_lookup_by_id (&rfp, rtype);
1293
1294 if (ltp != NULL && rtp != NULL)
1295 same_names = (strcmp (ctf_strptr (lfp, ltp->ctt_name),
1296 ctf_strptr (rfp, rtp->ctt_name)) == 0);
1297
1298 if (((lkind == CTF_K_ENUM) && (rkind == CTF_K_INTEGER)) ||
1299 ((rkind == CTF_K_ENUM) && (lkind == CTF_K_INTEGER)))
1300 return 1;
1301
1302 if (lkind != rkind)
1303 return 0;
1304
1305 switch (lkind)
1306 {
1307 case CTF_K_INTEGER:
1308 case CTF_K_FLOAT:
1309 memset (&le, 0, sizeof (le));
1310 memset (&re, 0, sizeof (re));
1311 return (ctf_type_encoding (lfp, ltype, &le) == 0
1312 && ctf_type_encoding (rfp, rtype, &re) == 0
1313 && memcmp (&le, &re, sizeof (ctf_encoding_t)) == 0);
1314 case CTF_K_POINTER:
1315 return (ctf_type_compat (lfp, ctf_type_reference (lfp, ltype),
1316 rfp, ctf_type_reference (rfp, rtype)));
1317 case CTF_K_ARRAY:
1318 return (ctf_array_info (lfp, ltype, &la) == 0
1319 && ctf_array_info (rfp, rtype, &ra) == 0
1320 && la.ctr_nelems == ra.ctr_nelems
1321 && ctf_type_compat (lfp, la.ctr_contents, rfp, ra.ctr_contents)
1322 && ctf_type_compat (lfp, la.ctr_index, rfp, ra.ctr_index));
1323 case CTF_K_STRUCT:
1324 case CTF_K_UNION:
1325 return (same_names && (ctf_type_size (lfp, ltype)
1326 == ctf_type_size (rfp, rtype)));
1327 case CTF_K_ENUM:
1328 {
1329 int lencoded, rencoded;
1330 lencoded = ctf_type_encoding (lfp, ltype, &le);
1331 rencoded = ctf_type_encoding (rfp, rtype, &re);
1332
1333 if ((lencoded != rencoded) ||
1334 ((lencoded == 0) && memcmp (&le, &re, sizeof (ctf_encoding_t)) != 0))
1335 return 0;
1336 }
1337 /* FALLTHRU */
1338 case CTF_K_FORWARD:
1339 return same_names; /* No other checks required for these type kinds. */
1340 default:
1341 return 0; /* Should not get here since we did a resolve. */
1342 }
1343 }
1344
1345 /* Return the number of members in a STRUCT or UNION, or the number of
1346 enumerators in an ENUM. The count does not include unnamed sub-members. */
1347
1348 int
1349 ctf_member_count (ctf_dict_t *fp, ctf_id_t type)
1350 {
1351 ctf_dict_t *ofp = fp;
1352 const ctf_type_t *tp;
1353 uint32_t kind;
1354
1355 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
1356 return -1; /* errno is set for us. */
1357
1358 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1359 return -1; /* errno is set for us. */
1360
1361 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
1362
1363 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION && kind != CTF_K_ENUM)
1364 return (ctf_set_errno (ofp, ECTF_NOTSUE));
1365
1366 return LCTF_INFO_VLEN (fp, tp->ctt_info);
1367 }
1368
1369 /* Return the type and offset for a given member of a STRUCT or UNION. */
1370
1371 int
1372 ctf_member_info (ctf_dict_t *fp, ctf_id_t type, const char *name,
1373 ctf_membinfo_t *mip)
1374 {
1375 ctf_dict_t *ofp = fp;
1376 const ctf_type_t *tp;
1377 ctf_dtdef_t *dtd;
1378 unsigned char *vlen;
1379 ssize_t size, increment, vbytes;
1380 uint32_t kind, n, i = 0;
1381
1382 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
1383 return -1; /* errno is set for us. */
1384
1385 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1386 return -1; /* errno is set for us. */
1387
1388 ctf_get_ctt_size (fp, tp, &size, &increment);
1389 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
1390
1391 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
1392 return (ctf_set_errno (ofp, ECTF_NOTSOU));
1393
1394 n = LCTF_INFO_VLEN (fp, tp->ctt_info);
1395 if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
1396 {
1397 vlen = dtd->dtd_vlen;
1398 vbytes = dtd->dtd_vlen_alloc;
1399 }
1400 else
1401 {
1402 vlen = (unsigned char *) tp + increment;
1403 vbytes = LCTF_VBYTES (fp, kind, size, n);
1404 }
1405
1406 for (; n != 0; n--, i++)
1407 {
1408 ctf_lmember_t memb;
1409 const char *membname;
1410
1411 if (ctf_struct_member (fp, &memb, tp, vlen, vbytes, i) < 0)
1412 return -1; /* errno is set for us. */
1413
1414 membname = ctf_strptr (fp, memb.ctlm_name);
1415
1416 if (membname[0] == 0
1417 && (ctf_type_kind (fp, memb.ctlm_type) == CTF_K_STRUCT
1418 || ctf_type_kind (fp, memb.ctlm_type) == CTF_K_UNION)
1419 && (ctf_member_info (fp, memb.ctlm_type, name, mip) == 0))
1420 return 0;
1421
1422 if (strcmp (membname, name) == 0)
1423 {
1424 mip->ctm_type = memb.ctlm_type;
1425 mip->ctm_offset = (unsigned long) CTF_LMEM_OFFSET (&memb);
1426 return 0;
1427 }
1428 }
1429
1430 return (ctf_set_errno (ofp, ECTF_NOMEMBNAM));
1431 }
1432
1433 /* Return the array type, index, and size information for the specified ARRAY. */
1434
1435 int
1436 ctf_array_info (ctf_dict_t *fp, ctf_id_t type, ctf_arinfo_t *arp)
1437 {
1438 ctf_dict_t *ofp = fp;
1439 const ctf_type_t *tp;
1440 const ctf_array_t *ap;
1441 const ctf_dtdef_t *dtd;
1442 ssize_t increment;
1443
1444 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1445 return -1; /* errno is set for us. */
1446
1447 if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ARRAY)
1448 return (ctf_set_errno (ofp, ECTF_NOTARRAY));
1449
1450 if ((dtd = ctf_dynamic_type (ofp, type)) != NULL)
1451 ap = (const ctf_array_t *) dtd->dtd_vlen;
1452 else
1453 {
1454 ctf_get_ctt_size (fp, tp, NULL, &increment);
1455 ap = (const ctf_array_t *) ((uintptr_t) tp + increment);
1456 }
1457 arp->ctr_contents = ap->cta_contents;
1458 arp->ctr_index = ap->cta_index;
1459 arp->ctr_nelems = ap->cta_nelems;
1460
1461 return 0;
1462 }
1463
1464 /* Convert the specified value to the corresponding enum tag name, if a
1465 matching name can be found. Otherwise NULL is returned. */
1466
1467 const char *
1468 ctf_enum_name (ctf_dict_t *fp, ctf_id_t type, int value)
1469 {
1470 ctf_dict_t *ofp = fp;
1471 const ctf_type_t *tp;
1472 const ctf_enum_t *ep;
1473 const ctf_dtdef_t *dtd;
1474 ssize_t increment;
1475 uint32_t n;
1476
1477 if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
1478 return NULL; /* errno is set for us. */
1479
1480 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1481 return NULL; /* errno is set for us. */
1482
1483 if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
1484 {
1485 ctf_set_errno (ofp, ECTF_NOTENUM);
1486 return NULL;
1487 }
1488
1489 ctf_get_ctt_size (fp, tp, NULL, &increment);
1490
1491 if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
1492 ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
1493 else
1494 ep = (const ctf_enum_t *) dtd->dtd_vlen;
1495
1496 for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
1497 {
1498 if (ep->cte_value == value)
1499 return (ctf_strptr (fp, ep->cte_name));
1500 }
1501
1502 ctf_set_errno (ofp, ECTF_NOENUMNAM);
1503 return NULL;
1504 }
1505
1506 /* Convert the specified enum tag name to the corresponding value, if a
1507 matching name can be found. Otherwise CTF_ERR is returned. */
1508
1509 int
1510 ctf_enum_value (ctf_dict_t *fp, ctf_id_t type, const char *name, int *valp)
1511 {
1512 ctf_dict_t *ofp = fp;
1513 const ctf_type_t *tp;
1514 const ctf_enum_t *ep;
1515 const ctf_dtdef_t *dtd;
1516 ssize_t increment;
1517 uint32_t n;
1518
1519 if ((type = ctf_type_resolve_unsliced (fp, type)) == CTF_ERR)
1520 return -1; /* errno is set for us. */
1521
1522 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1523 return -1; /* errno is set for us. */
1524
1525 if (LCTF_INFO_KIND (fp, tp->ctt_info) != CTF_K_ENUM)
1526 {
1527 (void) ctf_set_errno (ofp, ECTF_NOTENUM);
1528 return -1;
1529 }
1530
1531 ctf_get_ctt_size (fp, tp, NULL, &increment);
1532
1533 if ((dtd = ctf_dynamic_type (ofp, type)) == NULL)
1534 ep = (const ctf_enum_t *) ((uintptr_t) tp + increment);
1535 else
1536 ep = (const ctf_enum_t *) dtd->dtd_vlen;
1537
1538 for (n = LCTF_INFO_VLEN (fp, tp->ctt_info); n != 0; n--, ep++)
1539 {
1540 if (strcmp (ctf_strptr (fp, ep->cte_name), name) == 0)
1541 {
1542 if (valp != NULL)
1543 *valp = ep->cte_value;
1544 return 0;
1545 }
1546 }
1547
1548 ctf_set_errno (ofp, ECTF_NOENUMNAM);
1549 return -1;
1550 }
1551
1552 /* Given a type ID relating to a function type, return info on return types and
1553 arg counts for that function. */
1554
1555 int
1556 ctf_func_type_info (ctf_dict_t *fp, ctf_id_t type, ctf_funcinfo_t *fip)
1557 {
1558 const ctf_type_t *tp;
1559 uint32_t kind;
1560 const uint32_t *args;
1561 const ctf_dtdef_t *dtd;
1562 ssize_t size, increment;
1563
1564 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
1565 return -1; /* errno is set for us. */
1566
1567 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1568 return -1; /* errno is set for us. */
1569
1570 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
1571 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
1572
1573 if (kind != CTF_K_FUNCTION)
1574 return (ctf_set_errno (fp, ECTF_NOTFUNC));
1575
1576 fip->ctc_return = tp->ctt_type;
1577 fip->ctc_flags = 0;
1578 fip->ctc_argc = LCTF_INFO_VLEN (fp, tp->ctt_info);
1579
1580 if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
1581 args = (uint32_t *) ((uintptr_t) tp + increment);
1582 else
1583 args = (uint32_t *) dtd->dtd_vlen;
1584
1585 if (fip->ctc_argc != 0 && args[fip->ctc_argc - 1] == 0)
1586 {
1587 fip->ctc_flags |= CTF_FUNC_VARARG;
1588 fip->ctc_argc--;
1589 }
1590
1591 return 0;
1592 }
1593
1594 /* Given a type ID relating to a function type, return the arguments for the
1595 function. */
1596
1597 int
1598 ctf_func_type_args (ctf_dict_t *fp, ctf_id_t type, uint32_t argc, ctf_id_t *argv)
1599 {
1600 const ctf_type_t *tp;
1601 const uint32_t *args;
1602 const ctf_dtdef_t *dtd;
1603 ssize_t size, increment;
1604 ctf_funcinfo_t f;
1605
1606 if (ctf_func_type_info (fp, type, &f) < 0)
1607 return -1; /* errno is set for us. */
1608
1609 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
1610 return -1; /* errno is set for us. */
1611
1612 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1613 return -1; /* errno is set for us. */
1614
1615 (void) ctf_get_ctt_size (fp, tp, &size, &increment);
1616
1617 if ((dtd = ctf_dynamic_type (fp, type)) == NULL)
1618 args = (uint32_t *) ((uintptr_t) tp + increment);
1619 else
1620 args = (uint32_t *) dtd->dtd_vlen;
1621
1622 for (argc = MIN (argc, f.ctc_argc); argc != 0; argc--)
1623 *argv++ = *args++;
1624
1625 return 0;
1626 }
1627
1628 /* Recursively visit the members of any type. This function is used as the
1629 engine for ctf_type_visit, below. We resolve the input type, recursively
1630 invoke ourself for each type member if the type is a struct or union, and
1631 then invoke the callback function on the current type. If any callback
1632 returns non-zero, we abort and percolate the error code back up to the top. */
1633
1634 static int
1635 ctf_type_rvisit (ctf_dict_t *fp, ctf_id_t type, ctf_visit_f *func,
1636 void *arg, const char *name, unsigned long offset, int depth)
1637 {
1638 ctf_id_t otype = type;
1639 const ctf_type_t *tp;
1640 const ctf_dtdef_t *dtd;
1641 unsigned char *vlen;
1642 ssize_t size, increment, vbytes;
1643 uint32_t kind, n, i = 0;
1644 int rc;
1645
1646 if ((type = ctf_type_resolve (fp, type)) == CTF_ERR)
1647 return -1; /* errno is set for us. */
1648
1649 if ((tp = ctf_lookup_by_id (&fp, type)) == NULL)
1650 return -1; /* errno is set for us. */
1651
1652 if ((rc = func (name, otype, offset, depth, arg)) != 0)
1653 return rc;
1654
1655 kind = LCTF_INFO_KIND (fp, tp->ctt_info);
1656
1657 if (kind != CTF_K_STRUCT && kind != CTF_K_UNION)
1658 return 0;
1659
1660 ctf_get_ctt_size (fp, tp, &size, &increment);
1661
1662 n = LCTF_INFO_VLEN (fp, tp->ctt_info);
1663 if ((dtd = ctf_dynamic_type (fp, type)) != NULL)
1664 {
1665 vlen = dtd->dtd_vlen;
1666 vbytes = dtd->dtd_vlen_alloc;
1667 }
1668 else
1669 {
1670 vlen = (unsigned char *) tp + increment;
1671 vbytes = LCTF_VBYTES (fp, kind, size, n);
1672 }
1673
1674 for (; n != 0; n--, i++)
1675 {
1676 ctf_lmember_t memb;
1677
1678 if (ctf_struct_member (fp, &memb, tp, vlen, vbytes, i) < 0)
1679 return -1; /* errno is set for us. */
1680
1681 if ((rc = ctf_type_rvisit (fp, memb.ctlm_type,
1682 func, arg, ctf_strptr (fp, memb.ctlm_name),
1683 offset + (unsigned long) CTF_LMEM_OFFSET (&memb),
1684 depth + 1)) != 0)
1685 return rc;
1686 }
1687
1688 return 0;
1689 }
1690
1691 /* Recursively visit the members of any type. We pass the name, member
1692 type, and offset of each member to the specified callback function. */
1693 int
1694 ctf_type_visit (ctf_dict_t *fp, ctf_id_t type, ctf_visit_f *func, void *arg)
1695 {
1696 return (ctf_type_rvisit (fp, type, func, arg, "", 0, 0));
1697 }
This page took 0.064491 seconds and 4 git commands to generate.