ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / opcodes / aarch64-dis.c
1 /* aarch64-dis.c -- AArch64 disassembler.
2 Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of the GNU opcodes library.
6
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 #include "sysdep.h"
22 #include "bfd_stdint.h"
23 #include "dis-asm.h"
24 #include "libiberty.h"
25 #include "opintl.h"
26 #include "aarch64-dis.h"
27 #include "elf-bfd.h"
28
29 #define ERR_OK 0
30 #define ERR_UND -1
31 #define ERR_UNP -3
32 #define ERR_NYI -5
33
34 #define INSNLEN 4
35
36 /* Cached mapping symbol state. */
37 enum map_type
38 {
39 MAP_INSN,
40 MAP_DATA
41 };
42
43 static enum map_type last_type;
44 static int last_mapping_sym = -1;
45 static bfd_vma last_mapping_addr = 0;
46
47 /* Other options */
48 static int no_aliases = 0; /* If set disassemble as most general inst. */
49 \f
50
51 static void
52 set_default_aarch64_dis_options (struct disassemble_info *info ATTRIBUTE_UNUSED)
53 {
54 }
55
56 static void
57 parse_aarch64_dis_option (const char *option, unsigned int len ATTRIBUTE_UNUSED)
58 {
59 /* Try to match options that are simple flags */
60 if (CONST_STRNEQ (option, "no-aliases"))
61 {
62 no_aliases = 1;
63 return;
64 }
65
66 if (CONST_STRNEQ (option, "aliases"))
67 {
68 no_aliases = 0;
69 return;
70 }
71
72 #ifdef DEBUG_AARCH64
73 if (CONST_STRNEQ (option, "debug_dump"))
74 {
75 debug_dump = 1;
76 return;
77 }
78 #endif /* DEBUG_AARCH64 */
79
80 /* Invalid option. */
81 fprintf (stderr, _("Unrecognised disassembler option: %s\n"), option);
82 }
83
84 static void
85 parse_aarch64_dis_options (const char *options)
86 {
87 const char *option_end;
88
89 if (options == NULL)
90 return;
91
92 while (*options != '\0')
93 {
94 /* Skip empty options. */
95 if (*options == ',')
96 {
97 options++;
98 continue;
99 }
100
101 /* We know that *options is neither NUL or a comma. */
102 option_end = options + 1;
103 while (*option_end != ',' && *option_end != '\0')
104 option_end++;
105
106 parse_aarch64_dis_option (options, option_end - options);
107
108 /* Go on to the next one. If option_end points to a comma, it
109 will be skipped above. */
110 options = option_end;
111 }
112 }
113 \f
114 /* Functions doing the instruction disassembling. */
115
116 /* The unnamed arguments consist of the number of fields and information about
117 these fields where the VALUE will be extracted from CODE and returned.
118 MASK can be zero or the base mask of the opcode.
119
120 N.B. the fields are required to be in such an order than the most signficant
121 field for VALUE comes the first, e.g. the <index> in
122 SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
123 is encoded in H:L:M in some cases, the fields H:L:M should be passed in
124 the order of H, L, M. */
125
126 static inline aarch64_insn
127 extract_fields (aarch64_insn code, aarch64_insn mask, ...)
128 {
129 uint32_t num;
130 const aarch64_field *field;
131 enum aarch64_field_kind kind;
132 va_list va;
133
134 va_start (va, mask);
135 num = va_arg (va, uint32_t);
136 assert (num <= 5);
137 aarch64_insn value = 0x0;
138 while (num--)
139 {
140 kind = va_arg (va, enum aarch64_field_kind);
141 field = &fields[kind];
142 value <<= field->width;
143 value |= extract_field (kind, code, mask);
144 }
145 return value;
146 }
147
148 /* Sign-extend bit I of VALUE. */
149 static inline int32_t
150 sign_extend (aarch64_insn value, unsigned i)
151 {
152 uint32_t ret = value;
153
154 assert (i < 32);
155 if ((value >> i) & 0x1)
156 {
157 uint32_t val = (uint32_t)(-1) << i;
158 ret = ret | val;
159 }
160 return (int32_t) ret;
161 }
162
163 /* N.B. the following inline helpfer functions create a dependency on the
164 order of operand qualifier enumerators. */
165
166 /* Given VALUE, return qualifier for a general purpose register. */
167 static inline enum aarch64_opnd_qualifier
168 get_greg_qualifier_from_value (aarch64_insn value)
169 {
170 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_W + value;
171 assert (value <= 0x1
172 && aarch64_get_qualifier_standard_value (qualifier) == value);
173 return qualifier;
174 }
175
176 /* Given VALUE, return qualifier for a vector register. */
177 static inline enum aarch64_opnd_qualifier
178 get_vreg_qualifier_from_value (aarch64_insn value)
179 {
180 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_V_8B + value;
181
182 assert (value <= 0x8
183 && aarch64_get_qualifier_standard_value (qualifier) == value);
184 return qualifier;
185 }
186
187 /* Given VALUE, return qualifier for an FP or AdvSIMD scalar register. */
188 static inline enum aarch64_opnd_qualifier
189 get_sreg_qualifier_from_value (aarch64_insn value)
190 {
191 enum aarch64_opnd_qualifier qualifier = AARCH64_OPND_QLF_S_B + value;
192
193 assert (value <= 0x4
194 && aarch64_get_qualifier_standard_value (qualifier) == value);
195 return qualifier;
196 }
197
198 /* Given the instruction in *INST which is probably half way through the
199 decoding and our caller wants to know the expected qualifier for operand
200 I. Return such a qualifier if we can establish it; otherwise return
201 AARCH64_OPND_QLF_NIL. */
202
203 static aarch64_opnd_qualifier_t
204 get_expected_qualifier (const aarch64_inst *inst, int i)
205 {
206 aarch64_opnd_qualifier_seq_t qualifiers;
207 /* Should not be called if the qualifier is known. */
208 assert (inst->operands[i].qualifier == AARCH64_OPND_QLF_NIL);
209 if (aarch64_find_best_match (inst, inst->opcode->qualifiers_list,
210 i, qualifiers))
211 return qualifiers[i];
212 else
213 return AARCH64_OPND_QLF_NIL;
214 }
215
216 /* Operand extractors. */
217
218 int
219 aarch64_ext_regno (const aarch64_operand *self, aarch64_opnd_info *info,
220 const aarch64_insn code,
221 const aarch64_inst *inst ATTRIBUTE_UNUSED)
222 {
223 info->reg.regno = extract_field (self->fields[0], code, 0);
224 return 1;
225 }
226
227 int
228 aarch64_ext_regno_pair (const aarch64_operand *self ATTRIBUTE_UNUSED, aarch64_opnd_info *info,
229 const aarch64_insn code ATTRIBUTE_UNUSED,
230 const aarch64_inst *inst ATTRIBUTE_UNUSED)
231 {
232 assert (info->idx == 1
233 || info->idx ==3);
234 info->reg.regno = inst->operands[info->idx - 1].reg.regno + 1;
235 return 1;
236 }
237
238 /* e.g. IC <ic_op>{, <Xt>}. */
239 int
240 aarch64_ext_regrt_sysins (const aarch64_operand *self, aarch64_opnd_info *info,
241 const aarch64_insn code,
242 const aarch64_inst *inst ATTRIBUTE_UNUSED)
243 {
244 info->reg.regno = extract_field (self->fields[0], code, 0);
245 assert (info->idx == 1
246 && (aarch64_get_operand_class (inst->operands[0].type)
247 == AARCH64_OPND_CLASS_SYSTEM));
248 /* This will make the constraint checking happy and more importantly will
249 help the disassembler determine whether this operand is optional or
250 not. */
251 info->present = inst->operands[0].sysins_op->has_xt;
252
253 return 1;
254 }
255
256 /* e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
257 int
258 aarch64_ext_reglane (const aarch64_operand *self, aarch64_opnd_info *info,
259 const aarch64_insn code,
260 const aarch64_inst *inst ATTRIBUTE_UNUSED)
261 {
262 /* regno */
263 info->reglane.regno = extract_field (self->fields[0], code,
264 inst->opcode->mask);
265
266 /* Index and/or type. */
267 if (inst->opcode->iclass == asisdone
268 || inst->opcode->iclass == asimdins)
269 {
270 if (info->type == AARCH64_OPND_En
271 && inst->opcode->operands[0] == AARCH64_OPND_Ed)
272 {
273 unsigned shift;
274 /* index2 for e.g. INS <Vd>.<Ts>[<index1>], <Vn>.<Ts>[<index2>]. */
275 assert (info->idx == 1); /* Vn */
276 aarch64_insn value = extract_field (FLD_imm4, code, 0);
277 /* Depend on AARCH64_OPND_Ed to determine the qualifier. */
278 info->qualifier = get_expected_qualifier (inst, info->idx);
279 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
280 info->reglane.index = value >> shift;
281 }
282 else
283 {
284 /* index and type for e.g. DUP <V><d>, <Vn>.<T>[<index>].
285 imm5<3:0> <V>
286 0000 RESERVED
287 xxx1 B
288 xx10 H
289 x100 S
290 1000 D */
291 int pos = -1;
292 aarch64_insn value = extract_field (FLD_imm5, code, 0);
293 while (++pos <= 3 && (value & 0x1) == 0)
294 value >>= 1;
295 if (pos > 3)
296 return 0;
297 info->qualifier = get_sreg_qualifier_from_value (pos);
298 info->reglane.index = (unsigned) (value >> 1);
299 }
300 }
301 else
302 {
303 /* Index only for e.g. SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]
304 or SQDMLAL <Va><d>, <Vb><n>, <Vm>.<Ts>[<index>]. */
305
306 /* Need information in other operand(s) to help decoding. */
307 info->qualifier = get_expected_qualifier (inst, info->idx);
308 switch (info->qualifier)
309 {
310 case AARCH64_OPND_QLF_S_H:
311 /* h:l:m */
312 info->reglane.index = extract_fields (code, 0, 3, FLD_H, FLD_L,
313 FLD_M);
314 info->reglane.regno &= 0xf;
315 break;
316 case AARCH64_OPND_QLF_S_S:
317 /* h:l */
318 info->reglane.index = extract_fields (code, 0, 2, FLD_H, FLD_L);
319 break;
320 case AARCH64_OPND_QLF_S_D:
321 /* H */
322 info->reglane.index = extract_field (FLD_H, code, 0);
323 break;
324 default:
325 return 0;
326 }
327 }
328
329 return 1;
330 }
331
332 int
333 aarch64_ext_reglist (const aarch64_operand *self, aarch64_opnd_info *info,
334 const aarch64_insn code,
335 const aarch64_inst *inst ATTRIBUTE_UNUSED)
336 {
337 /* R */
338 info->reglist.first_regno = extract_field (self->fields[0], code, 0);
339 /* len */
340 info->reglist.num_regs = extract_field (FLD_len, code, 0) + 1;
341 return 1;
342 }
343
344 /* Decode Rt and opcode fields of Vt in AdvSIMD load/store instructions. */
345 int
346 aarch64_ext_ldst_reglist (const aarch64_operand *self ATTRIBUTE_UNUSED,
347 aarch64_opnd_info *info, const aarch64_insn code,
348 const aarch64_inst *inst)
349 {
350 aarch64_insn value;
351 /* Number of elements in each structure to be loaded/stored. */
352 unsigned expected_num = get_opcode_dependent_value (inst->opcode);
353
354 struct
355 {
356 unsigned is_reserved;
357 unsigned num_regs;
358 unsigned num_elements;
359 } data [] =
360 { {0, 4, 4},
361 {1, 4, 4},
362 {0, 4, 1},
363 {0, 4, 2},
364 {0, 3, 3},
365 {1, 3, 3},
366 {0, 3, 1},
367 {0, 1, 1},
368 {0, 2, 2},
369 {1, 2, 2},
370 {0, 2, 1},
371 };
372
373 /* Rt */
374 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
375 /* opcode */
376 value = extract_field (FLD_opcode, code, 0);
377 if (expected_num != data[value].num_elements || data[value].is_reserved)
378 return 0;
379 info->reglist.num_regs = data[value].num_regs;
380
381 return 1;
382 }
383
384 /* Decode Rt and S fields of Vt in AdvSIMD load single structure to all
385 lanes instructions. */
386 int
387 aarch64_ext_ldst_reglist_r (const aarch64_operand *self ATTRIBUTE_UNUSED,
388 aarch64_opnd_info *info, const aarch64_insn code,
389 const aarch64_inst *inst)
390 {
391 aarch64_insn value;
392
393 /* Rt */
394 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
395 /* S */
396 value = extract_field (FLD_S, code, 0);
397
398 /* Number of registers is equal to the number of elements in
399 each structure to be loaded/stored. */
400 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
401 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
402
403 /* Except when it is LD1R. */
404 if (info->reglist.num_regs == 1 && value == (aarch64_insn) 1)
405 info->reglist.num_regs = 2;
406
407 return 1;
408 }
409
410 /* Decode Q, opcode<2:1>, S, size and Rt fields of Vt in AdvSIMD
411 load/store single element instructions. */
412 int
413 aarch64_ext_ldst_elemlist (const aarch64_operand *self ATTRIBUTE_UNUSED,
414 aarch64_opnd_info *info, const aarch64_insn code,
415 const aarch64_inst *inst ATTRIBUTE_UNUSED)
416 {
417 aarch64_field field = {0, 0};
418 aarch64_insn QSsize; /* fields Q:S:size. */
419 aarch64_insn opcodeh2; /* opcode<2:1> */
420
421 /* Rt */
422 info->reglist.first_regno = extract_field (FLD_Rt, code, 0);
423
424 /* Decode the index, opcode<2:1> and size. */
425 gen_sub_field (FLD_asisdlso_opcode, 1, 2, &field);
426 opcodeh2 = extract_field_2 (&field, code, 0);
427 QSsize = extract_fields (code, 0, 3, FLD_Q, FLD_S, FLD_vldst_size);
428 switch (opcodeh2)
429 {
430 case 0x0:
431 info->qualifier = AARCH64_OPND_QLF_S_B;
432 /* Index encoded in "Q:S:size". */
433 info->reglist.index = QSsize;
434 break;
435 case 0x1:
436 if (QSsize & 0x1)
437 /* UND. */
438 return 0;
439 info->qualifier = AARCH64_OPND_QLF_S_H;
440 /* Index encoded in "Q:S:size<1>". */
441 info->reglist.index = QSsize >> 1;
442 break;
443 case 0x2:
444 if ((QSsize >> 1) & 0x1)
445 /* UND. */
446 return 0;
447 if ((QSsize & 0x1) == 0)
448 {
449 info->qualifier = AARCH64_OPND_QLF_S_S;
450 /* Index encoded in "Q:S". */
451 info->reglist.index = QSsize >> 2;
452 }
453 else
454 {
455 if (extract_field (FLD_S, code, 0))
456 /* UND */
457 return 0;
458 info->qualifier = AARCH64_OPND_QLF_S_D;
459 /* Index encoded in "Q". */
460 info->reglist.index = QSsize >> 3;
461 }
462 break;
463 default:
464 return 0;
465 }
466
467 info->reglist.has_index = 1;
468 info->reglist.num_regs = 0;
469 /* Number of registers is equal to the number of elements in
470 each structure to be loaded/stored. */
471 info->reglist.num_regs = get_opcode_dependent_value (inst->opcode);
472 assert (info->reglist.num_regs >= 1 && info->reglist.num_regs <= 4);
473
474 return 1;
475 }
476
477 /* Decode fields immh:immb and/or Q for e.g.
478 SSHR <Vd>.<T>, <Vn>.<T>, #<shift>
479 or SSHR <V><d>, <V><n>, #<shift>. */
480
481 int
482 aarch64_ext_advsimd_imm_shift (const aarch64_operand *self ATTRIBUTE_UNUSED,
483 aarch64_opnd_info *info, const aarch64_insn code,
484 const aarch64_inst *inst)
485 {
486 int pos;
487 aarch64_insn Q, imm, immh;
488 enum aarch64_insn_class iclass = inst->opcode->iclass;
489
490 immh = extract_field (FLD_immh, code, 0);
491 if (immh == 0)
492 return 0;
493 imm = extract_fields (code, 0, 2, FLD_immh, FLD_immb);
494 pos = 4;
495 /* Get highest set bit in immh. */
496 while (--pos >= 0 && (immh & 0x8) == 0)
497 immh <<= 1;
498
499 assert ((iclass == asimdshf || iclass == asisdshf)
500 && (info->type == AARCH64_OPND_IMM_VLSR
501 || info->type == AARCH64_OPND_IMM_VLSL));
502
503 if (iclass == asimdshf)
504 {
505 Q = extract_field (FLD_Q, code, 0);
506 /* immh Q <T>
507 0000 x SEE AdvSIMD modified immediate
508 0001 0 8B
509 0001 1 16B
510 001x 0 4H
511 001x 1 8H
512 01xx 0 2S
513 01xx 1 4S
514 1xxx 0 RESERVED
515 1xxx 1 2D */
516 info->qualifier =
517 get_vreg_qualifier_from_value ((pos << 1) | (int) Q);
518 }
519 else
520 info->qualifier = get_sreg_qualifier_from_value (pos);
521
522 if (info->type == AARCH64_OPND_IMM_VLSR)
523 /* immh <shift>
524 0000 SEE AdvSIMD modified immediate
525 0001 (16-UInt(immh:immb))
526 001x (32-UInt(immh:immb))
527 01xx (64-UInt(immh:immb))
528 1xxx (128-UInt(immh:immb)) */
529 info->imm.value = (16 << pos) - imm;
530 else
531 /* immh:immb
532 immh <shift>
533 0000 SEE AdvSIMD modified immediate
534 0001 (UInt(immh:immb)-8)
535 001x (UInt(immh:immb)-16)
536 01xx (UInt(immh:immb)-32)
537 1xxx (UInt(immh:immb)-64) */
538 info->imm.value = imm - (8 << pos);
539
540 return 1;
541 }
542
543 /* Decode shift immediate for e.g. sshr (imm). */
544 int
545 aarch64_ext_shll_imm (const aarch64_operand *self ATTRIBUTE_UNUSED,
546 aarch64_opnd_info *info, const aarch64_insn code,
547 const aarch64_inst *inst ATTRIBUTE_UNUSED)
548 {
549 int64_t imm;
550 aarch64_insn val;
551 val = extract_field (FLD_size, code, 0);
552 switch (val)
553 {
554 case 0: imm = 8; break;
555 case 1: imm = 16; break;
556 case 2: imm = 32; break;
557 default: return 0;
558 }
559 info->imm.value = imm;
560 return 1;
561 }
562
563 /* Decode imm for e.g. BFM <Wd>, <Wn>, #<immr>, #<imms>.
564 value in the field(s) will be extracted as unsigned immediate value. */
565 int
566 aarch64_ext_imm (const aarch64_operand *self, aarch64_opnd_info *info,
567 const aarch64_insn code,
568 const aarch64_inst *inst ATTRIBUTE_UNUSED)
569 {
570 int64_t imm;
571 /* Maximum of two fields to extract. */
572 assert (self->fields[2] == FLD_NIL);
573
574 if (self->fields[1] == FLD_NIL)
575 imm = extract_field (self->fields[0], code, 0);
576 else
577 /* e.g. TBZ b5:b40. */
578 imm = extract_fields (code, 0, 2, self->fields[0], self->fields[1]);
579
580 if (info->type == AARCH64_OPND_FPIMM)
581 info->imm.is_fp = 1;
582
583 if (operand_need_sign_extension (self))
584 imm = sign_extend (imm, get_operand_fields_width (self) - 1);
585
586 if (operand_need_shift_by_two (self))
587 imm <<= 2;
588
589 if (info->type == AARCH64_OPND_ADDR_ADRP)
590 imm <<= 12;
591
592 info->imm.value = imm;
593 return 1;
594 }
595
596 /* Decode imm and its shifter for e.g. MOVZ <Wd>, #<imm16>{, LSL #<shift>}. */
597 int
598 aarch64_ext_imm_half (const aarch64_operand *self, aarch64_opnd_info *info,
599 const aarch64_insn code,
600 const aarch64_inst *inst ATTRIBUTE_UNUSED)
601 {
602 aarch64_ext_imm (self, info, code, inst);
603 info->shifter.kind = AARCH64_MOD_LSL;
604 info->shifter.amount = extract_field (FLD_hw, code, 0) << 4;
605 return 1;
606 }
607
608 /* Decode cmode and "a:b:c:d:e:f:g:h" for e.g.
609 MOVI <Vd>.<T>, #<imm8> {, LSL #<amount>}. */
610 int
611 aarch64_ext_advsimd_imm_modified (const aarch64_operand *self ATTRIBUTE_UNUSED,
612 aarch64_opnd_info *info,
613 const aarch64_insn code,
614 const aarch64_inst *inst ATTRIBUTE_UNUSED)
615 {
616 uint64_t imm;
617 enum aarch64_opnd_qualifier opnd0_qualifier = inst->operands[0].qualifier;
618 aarch64_field field = {0, 0};
619
620 assert (info->idx == 1);
621
622 if (info->type == AARCH64_OPND_SIMD_FPIMM)
623 info->imm.is_fp = 1;
624
625 /* a:b:c:d:e:f:g:h */
626 imm = extract_fields (code, 0, 2, FLD_abc, FLD_defgh);
627 if (!info->imm.is_fp && aarch64_get_qualifier_esize (opnd0_qualifier) == 8)
628 {
629 /* Either MOVI <Dd>, #<imm>
630 or MOVI <Vd>.2D, #<imm>.
631 <imm> is a 64-bit immediate
632 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh',
633 encoded in "a:b:c:d:e:f:g:h". */
634 int i;
635 unsigned abcdefgh = imm;
636 for (imm = 0ull, i = 0; i < 8; i++)
637 if (((abcdefgh >> i) & 0x1) != 0)
638 imm |= 0xffull << (8 * i);
639 }
640 info->imm.value = imm;
641
642 /* cmode */
643 info->qualifier = get_expected_qualifier (inst, info->idx);
644 switch (info->qualifier)
645 {
646 case AARCH64_OPND_QLF_NIL:
647 /* no shift */
648 info->shifter.kind = AARCH64_MOD_NONE;
649 return 1;
650 case AARCH64_OPND_QLF_LSL:
651 /* shift zeros */
652 info->shifter.kind = AARCH64_MOD_LSL;
653 switch (aarch64_get_qualifier_esize (opnd0_qualifier))
654 {
655 case 4: gen_sub_field (FLD_cmode, 1, 2, &field); break; /* per word */
656 case 2: gen_sub_field (FLD_cmode, 1, 1, &field); break; /* per half */
657 case 1: gen_sub_field (FLD_cmode, 1, 0, &field); break; /* per byte */
658 default: assert (0); return 0;
659 }
660 /* 00: 0; 01: 8; 10:16; 11:24. */
661 info->shifter.amount = extract_field_2 (&field, code, 0) << 3;
662 break;
663 case AARCH64_OPND_QLF_MSL:
664 /* shift ones */
665 info->shifter.kind = AARCH64_MOD_MSL;
666 gen_sub_field (FLD_cmode, 0, 1, &field); /* per word */
667 info->shifter.amount = extract_field_2 (&field, code, 0) ? 16 : 8;
668 break;
669 default:
670 assert (0);
671 return 0;
672 }
673
674 return 1;
675 }
676
677 /* Decode scale for e.g. SCVTF <Dd>, <Wn>, #<fbits>. */
678 int
679 aarch64_ext_fbits (const aarch64_operand *self ATTRIBUTE_UNUSED,
680 aarch64_opnd_info *info, const aarch64_insn code,
681 const aarch64_inst *inst ATTRIBUTE_UNUSED)
682 {
683 info->imm.value = 64- extract_field (FLD_scale, code, 0);
684 return 1;
685 }
686
687 /* Decode arithmetic immediate for e.g.
688 SUBS <Wd>, <Wn|WSP>, #<imm> {, <shift>}. */
689 int
690 aarch64_ext_aimm (const aarch64_operand *self ATTRIBUTE_UNUSED,
691 aarch64_opnd_info *info, const aarch64_insn code,
692 const aarch64_inst *inst ATTRIBUTE_UNUSED)
693 {
694 aarch64_insn value;
695
696 info->shifter.kind = AARCH64_MOD_LSL;
697 /* shift */
698 value = extract_field (FLD_shift, code, 0);
699 if (value >= 2)
700 return 0;
701 info->shifter.amount = value ? 12 : 0;
702 /* imm12 (unsigned) */
703 info->imm.value = extract_field (FLD_imm12, code, 0);
704
705 return 1;
706 }
707
708 /* Decode logical immediate for e.g. ORR <Wd|WSP>, <Wn>, #<imm>. */
709
710 int
711 aarch64_ext_limm (const aarch64_operand *self ATTRIBUTE_UNUSED,
712 aarch64_opnd_info *info, const aarch64_insn code,
713 const aarch64_inst *inst ATTRIBUTE_UNUSED)
714 {
715 uint64_t imm, mask;
716 uint32_t sf;
717 uint32_t N, R, S;
718 unsigned simd_size;
719 aarch64_insn value;
720
721 value = extract_fields (code, 0, 3, FLD_N, FLD_immr, FLD_imms);
722 assert (inst->operands[0].qualifier == AARCH64_OPND_QLF_W
723 || inst->operands[0].qualifier == AARCH64_OPND_QLF_X);
724 sf = aarch64_get_qualifier_esize (inst->operands[0].qualifier) != 4;
725
726 /* value is N:immr:imms. */
727 S = value & 0x3f;
728 R = (value >> 6) & 0x3f;
729 N = (value >> 12) & 0x1;
730
731 if (sf == 0 && N == 1)
732 return 0;
733
734 /* The immediate value is S+1 bits to 1, left rotated by SIMDsize - R
735 (in other words, right rotated by R), then replicated. */
736 if (N != 0)
737 {
738 simd_size = 64;
739 mask = 0xffffffffffffffffull;
740 }
741 else
742 {
743 switch (S)
744 {
745 case 0x00 ... 0x1f: /* 0xxxxx */ simd_size = 32; break;
746 case 0x20 ... 0x2f: /* 10xxxx */ simd_size = 16; S &= 0xf; break;
747 case 0x30 ... 0x37: /* 110xxx */ simd_size = 8; S &= 0x7; break;
748 case 0x38 ... 0x3b: /* 1110xx */ simd_size = 4; S &= 0x3; break;
749 case 0x3c ... 0x3d: /* 11110x */ simd_size = 2; S &= 0x1; break;
750 default: return 0;
751 }
752 mask = (1ull << simd_size) - 1;
753 /* Top bits are IGNORED. */
754 R &= simd_size - 1;
755 }
756 /* NOTE: if S = simd_size - 1 we get 0xf..f which is rejected. */
757 if (S == simd_size - 1)
758 return 0;
759 /* S+1 consecutive bits to 1. */
760 /* NOTE: S can't be 63 due to detection above. */
761 imm = (1ull << (S + 1)) - 1;
762 /* Rotate to the left by simd_size - R. */
763 if (R != 0)
764 imm = ((imm << (simd_size - R)) & mask) | (imm >> R);
765 /* Replicate the value according to SIMD size. */
766 switch (simd_size)
767 {
768 case 2: imm = (imm << 2) | imm;
769 case 4: imm = (imm << 4) | imm;
770 case 8: imm = (imm << 8) | imm;
771 case 16: imm = (imm << 16) | imm;
772 case 32: imm = (imm << 32) | imm;
773 case 64: break;
774 default: assert (0); return 0;
775 }
776
777 info->imm.value = sf ? imm : imm & 0xffffffff;
778
779 return 1;
780 }
781
782 /* Decode Ft for e.g. STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]
783 or LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm>. */
784 int
785 aarch64_ext_ft (const aarch64_operand *self ATTRIBUTE_UNUSED,
786 aarch64_opnd_info *info,
787 const aarch64_insn code, const aarch64_inst *inst)
788 {
789 aarch64_insn value;
790
791 /* Rt */
792 info->reg.regno = extract_field (FLD_Rt, code, 0);
793
794 /* size */
795 value = extract_field (FLD_ldst_size, code, 0);
796 if (inst->opcode->iclass == ldstpair_indexed
797 || inst->opcode->iclass == ldstnapair_offs
798 || inst->opcode->iclass == ldstpair_off
799 || inst->opcode->iclass == loadlit)
800 {
801 enum aarch64_opnd_qualifier qualifier;
802 switch (value)
803 {
804 case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
805 case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
806 case 2: qualifier = AARCH64_OPND_QLF_S_Q; break;
807 default: return 0;
808 }
809 info->qualifier = qualifier;
810 }
811 else
812 {
813 /* opc1:size */
814 value = extract_fields (code, 0, 2, FLD_opc1, FLD_ldst_size);
815 if (value > 0x4)
816 return 0;
817 info->qualifier = get_sreg_qualifier_from_value (value);
818 }
819
820 return 1;
821 }
822
823 /* Decode the address operand for e.g. STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}]. */
824 int
825 aarch64_ext_addr_simple (const aarch64_operand *self ATTRIBUTE_UNUSED,
826 aarch64_opnd_info *info,
827 aarch64_insn code,
828 const aarch64_inst *inst ATTRIBUTE_UNUSED)
829 {
830 /* Rn */
831 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
832 return 1;
833 }
834
835 /* Decode the address operand for e.g.
836 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
837 int
838 aarch64_ext_addr_regoff (const aarch64_operand *self ATTRIBUTE_UNUSED,
839 aarch64_opnd_info *info,
840 aarch64_insn code, const aarch64_inst *inst)
841 {
842 aarch64_insn S, value;
843
844 /* Rn */
845 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
846 /* Rm */
847 info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
848 /* option */
849 value = extract_field (FLD_option, code, 0);
850 info->shifter.kind =
851 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
852 /* Fix-up the shifter kind; although the table-driven approach is
853 efficient, it is slightly inflexible, thus needing this fix-up. */
854 if (info->shifter.kind == AARCH64_MOD_UXTX)
855 info->shifter.kind = AARCH64_MOD_LSL;
856 /* S */
857 S = extract_field (FLD_S, code, 0);
858 if (S == 0)
859 {
860 info->shifter.amount = 0;
861 info->shifter.amount_present = 0;
862 }
863 else
864 {
865 int size;
866 /* Need information in other operand(s) to help achieve the decoding
867 from 'S' field. */
868 info->qualifier = get_expected_qualifier (inst, info->idx);
869 /* Get the size of the data element that is accessed, which may be
870 different from that of the source register size, e.g. in strb/ldrb. */
871 size = aarch64_get_qualifier_esize (info->qualifier);
872 info->shifter.amount = get_logsz (size);
873 info->shifter.amount_present = 1;
874 }
875
876 return 1;
877 }
878
879 /* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>], #<simm>. */
880 int
881 aarch64_ext_addr_simm (const aarch64_operand *self, aarch64_opnd_info *info,
882 aarch64_insn code, const aarch64_inst *inst)
883 {
884 aarch64_insn imm;
885 info->qualifier = get_expected_qualifier (inst, info->idx);
886
887 /* Rn */
888 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
889 /* simm (imm9 or imm7) */
890 imm = extract_field (self->fields[0], code, 0);
891 info->addr.offset.imm = sign_extend (imm, fields[self->fields[0]].width - 1);
892 if (self->fields[0] == FLD_imm7)
893 /* scaled immediate in ld/st pair instructions. */
894 info->addr.offset.imm *= aarch64_get_qualifier_esize (info->qualifier);
895 /* qualifier */
896 if (inst->opcode->iclass == ldst_unscaled
897 || inst->opcode->iclass == ldstnapair_offs
898 || inst->opcode->iclass == ldstpair_off
899 || inst->opcode->iclass == ldst_unpriv)
900 info->addr.writeback = 0;
901 else
902 {
903 /* pre/post- index */
904 info->addr.writeback = 1;
905 if (extract_field (self->fields[1], code, 0) == 1)
906 info->addr.preind = 1;
907 else
908 info->addr.postind = 1;
909 }
910
911 return 1;
912 }
913
914 /* Decode the address operand for e.g. LDRSW <Xt>, [<Xn|SP>{, #<simm>}]. */
915 int
916 aarch64_ext_addr_uimm12 (const aarch64_operand *self, aarch64_opnd_info *info,
917 aarch64_insn code,
918 const aarch64_inst *inst ATTRIBUTE_UNUSED)
919 {
920 int shift;
921 info->qualifier = get_expected_qualifier (inst, info->idx);
922 shift = get_logsz (aarch64_get_qualifier_esize (info->qualifier));
923 /* Rn */
924 info->addr.base_regno = extract_field (self->fields[0], code, 0);
925 /* uimm12 */
926 info->addr.offset.imm = extract_field (self->fields[1], code, 0) << shift;
927 return 1;
928 }
929
930 /* Decode the address operand for e.g.
931 LD1 {<Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm|#<amount>>. */
932 int
933 aarch64_ext_simd_addr_post (const aarch64_operand *self ATTRIBUTE_UNUSED,
934 aarch64_opnd_info *info,
935 aarch64_insn code, const aarch64_inst *inst)
936 {
937 /* The opcode dependent area stores the number of elements in
938 each structure to be loaded/stored. */
939 int is_ld1r = get_opcode_dependent_value (inst->opcode) == 1;
940
941 /* Rn */
942 info->addr.base_regno = extract_field (FLD_Rn, code, 0);
943 /* Rm | #<amount> */
944 info->addr.offset.regno = extract_field (FLD_Rm, code, 0);
945 if (info->addr.offset.regno == 31)
946 {
947 if (inst->opcode->operands[0] == AARCH64_OPND_LVt_AL)
948 /* Special handling of loading single structure to all lane. */
949 info->addr.offset.imm = (is_ld1r ? 1
950 : inst->operands[0].reglist.num_regs)
951 * aarch64_get_qualifier_esize (inst->operands[0].qualifier);
952 else
953 info->addr.offset.imm = inst->operands[0].reglist.num_regs
954 * aarch64_get_qualifier_esize (inst->operands[0].qualifier)
955 * aarch64_get_qualifier_nelem (inst->operands[0].qualifier);
956 }
957 else
958 info->addr.offset.is_reg = 1;
959 info->addr.writeback = 1;
960
961 return 1;
962 }
963
964 /* Decode the condition operand for e.g. CSEL <Xd>, <Xn>, <Xm>, <cond>. */
965 int
966 aarch64_ext_cond (const aarch64_operand *self ATTRIBUTE_UNUSED,
967 aarch64_opnd_info *info,
968 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
969 {
970 aarch64_insn value;
971 /* cond */
972 value = extract_field (FLD_cond, code, 0);
973 info->cond = get_cond_from_value (value);
974 return 1;
975 }
976
977 /* Decode the system register operand for e.g. MRS <Xt>, <systemreg>. */
978 int
979 aarch64_ext_sysreg (const aarch64_operand *self ATTRIBUTE_UNUSED,
980 aarch64_opnd_info *info,
981 aarch64_insn code,
982 const aarch64_inst *inst ATTRIBUTE_UNUSED)
983 {
984 /* op0:op1:CRn:CRm:op2 */
985 info->sysreg = extract_fields (code, 0, 5, FLD_op0, FLD_op1, FLD_CRn,
986 FLD_CRm, FLD_op2);
987 return 1;
988 }
989
990 /* Decode the PSTATE field operand for e.g. MSR <pstatefield>, #<imm>. */
991 int
992 aarch64_ext_pstatefield (const aarch64_operand *self ATTRIBUTE_UNUSED,
993 aarch64_opnd_info *info, aarch64_insn code,
994 const aarch64_inst *inst ATTRIBUTE_UNUSED)
995 {
996 int i;
997 /* op1:op2 */
998 info->pstatefield = extract_fields (code, 0, 2, FLD_op1, FLD_op2);
999 for (i = 0; aarch64_pstatefields[i].name != NULL; ++i)
1000 if (aarch64_pstatefields[i].value == (aarch64_insn)info->pstatefield)
1001 return 1;
1002 /* Reserved value in <pstatefield>. */
1003 return 0;
1004 }
1005
1006 /* Decode the system instruction op operand for e.g. AT <at_op>, <Xt>. */
1007 int
1008 aarch64_ext_sysins_op (const aarch64_operand *self ATTRIBUTE_UNUSED,
1009 aarch64_opnd_info *info,
1010 aarch64_insn code,
1011 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1012 {
1013 int i;
1014 aarch64_insn value;
1015 const aarch64_sys_ins_reg *sysins_ops;
1016 /* op0:op1:CRn:CRm:op2 */
1017 value = extract_fields (code, 0, 5,
1018 FLD_op0, FLD_op1, FLD_CRn,
1019 FLD_CRm, FLD_op2);
1020
1021 switch (info->type)
1022 {
1023 case AARCH64_OPND_SYSREG_AT: sysins_ops = aarch64_sys_regs_at; break;
1024 case AARCH64_OPND_SYSREG_DC: sysins_ops = aarch64_sys_regs_dc; break;
1025 case AARCH64_OPND_SYSREG_IC: sysins_ops = aarch64_sys_regs_ic; break;
1026 case AARCH64_OPND_SYSREG_TLBI: sysins_ops = aarch64_sys_regs_tlbi; break;
1027 default: assert (0); return 0;
1028 }
1029
1030 for (i = 0; sysins_ops[i].template != NULL; ++i)
1031 if (sysins_ops[i].value == value)
1032 {
1033 info->sysins_op = sysins_ops + i;
1034 DEBUG_TRACE ("%s found value: %x, has_xt: %d, i: %d.",
1035 info->sysins_op->template,
1036 (unsigned)info->sysins_op->value,
1037 info->sysins_op->has_xt, i);
1038 return 1;
1039 }
1040
1041 return 0;
1042 }
1043
1044 /* Decode the memory barrier option operand for e.g. DMB <option>|#<imm>. */
1045
1046 int
1047 aarch64_ext_barrier (const aarch64_operand *self ATTRIBUTE_UNUSED,
1048 aarch64_opnd_info *info,
1049 aarch64_insn code,
1050 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1051 {
1052 /* CRm */
1053 info->barrier = aarch64_barrier_options + extract_field (FLD_CRm, code, 0);
1054 return 1;
1055 }
1056
1057 /* Decode the prefetch operation option operand for e.g.
1058 PRFM <prfop>, [<Xn|SP>{, #<pimm>}]. */
1059
1060 int
1061 aarch64_ext_prfop (const aarch64_operand *self ATTRIBUTE_UNUSED,
1062 aarch64_opnd_info *info,
1063 aarch64_insn code, const aarch64_inst *inst ATTRIBUTE_UNUSED)
1064 {
1065 /* prfop in Rt */
1066 info->prfop = aarch64_prfops + extract_field (FLD_Rt, code, 0);
1067 return 1;
1068 }
1069
1070 /* Decode the extended register operand for e.g.
1071 STR <Qt>, [<Xn|SP>, <R><m>{, <extend> {<amount>}}]. */
1072 int
1073 aarch64_ext_reg_extended (const aarch64_operand *self ATTRIBUTE_UNUSED,
1074 aarch64_opnd_info *info,
1075 aarch64_insn code,
1076 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1077 {
1078 aarch64_insn value;
1079
1080 /* Rm */
1081 info->reg.regno = extract_field (FLD_Rm, code, 0);
1082 /* option */
1083 value = extract_field (FLD_option, code, 0);
1084 info->shifter.kind =
1085 aarch64_get_operand_modifier_from_value (value, TRUE /* extend_p */);
1086 /* imm3 */
1087 info->shifter.amount = extract_field (FLD_imm3, code, 0);
1088
1089 /* This makes the constraint checking happy. */
1090 info->shifter.operator_present = 1;
1091
1092 /* Assume inst->operands[0].qualifier has been resolved. */
1093 assert (inst->operands[0].qualifier != AARCH64_OPND_QLF_NIL);
1094 info->qualifier = AARCH64_OPND_QLF_W;
1095 if (inst->operands[0].qualifier == AARCH64_OPND_QLF_X
1096 && (info->shifter.kind == AARCH64_MOD_UXTX
1097 || info->shifter.kind == AARCH64_MOD_SXTX))
1098 info->qualifier = AARCH64_OPND_QLF_X;
1099
1100 return 1;
1101 }
1102
1103 /* Decode the shifted register operand for e.g.
1104 SUBS <Xd>, <Xn>, <Xm> {, <shift> #<amount>}. */
1105 int
1106 aarch64_ext_reg_shifted (const aarch64_operand *self ATTRIBUTE_UNUSED,
1107 aarch64_opnd_info *info,
1108 aarch64_insn code,
1109 const aarch64_inst *inst ATTRIBUTE_UNUSED)
1110 {
1111 aarch64_insn value;
1112
1113 /* Rm */
1114 info->reg.regno = extract_field (FLD_Rm, code, 0);
1115 /* shift */
1116 value = extract_field (FLD_shift, code, 0);
1117 info->shifter.kind =
1118 aarch64_get_operand_modifier_from_value (value, FALSE /* extend_p */);
1119 if (info->shifter.kind == AARCH64_MOD_ROR
1120 && inst->opcode->iclass != log_shift)
1121 /* ROR is not available for the shifted register operand in arithmetic
1122 instructions. */
1123 return 0;
1124 /* imm6 */
1125 info->shifter.amount = extract_field (FLD_imm6, code, 0);
1126
1127 /* This makes the constraint checking happy. */
1128 info->shifter.operator_present = 1;
1129
1130 return 1;
1131 }
1132 \f
1133 /* Bitfields that are commonly used to encode certain operands' information
1134 may be partially used as part of the base opcode in some instructions.
1135 For example, the bit 1 of the field 'size' in
1136 FCVTXN <Vb><d>, <Va><n>
1137 is actually part of the base opcode, while only size<0> is available
1138 for encoding the register type. Another example is the AdvSIMD
1139 instruction ORR (register), in which the field 'size' is also used for
1140 the base opcode, leaving only the field 'Q' available to encode the
1141 vector register arrangement specifier '8B' or '16B'.
1142
1143 This function tries to deduce the qualifier from the value of partially
1144 constrained field(s). Given the VALUE of such a field or fields, the
1145 qualifiers CANDIDATES and the MASK (indicating which bits are valid for
1146 operand encoding), the function returns the matching qualifier or
1147 AARCH64_OPND_QLF_NIL if nothing matches.
1148
1149 N.B. CANDIDATES is a group of possible qualifiers that are valid for
1150 one operand; it has a maximum of AARCH64_MAX_QLF_SEQ_NUM qualifiers and
1151 may end with AARCH64_OPND_QLF_NIL. */
1152
1153 static enum aarch64_opnd_qualifier
1154 get_qualifier_from_partial_encoding (aarch64_insn value,
1155 const enum aarch64_opnd_qualifier* \
1156 candidates,
1157 aarch64_insn mask)
1158 {
1159 int i;
1160 DEBUG_TRACE ("enter with value: %d, mask: %d", (int)value, (int)mask);
1161 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1162 {
1163 aarch64_insn standard_value;
1164 if (candidates[i] == AARCH64_OPND_QLF_NIL)
1165 break;
1166 standard_value = aarch64_get_qualifier_standard_value (candidates[i]);
1167 if ((standard_value & mask) == (value & mask))
1168 return candidates[i];
1169 }
1170 return AARCH64_OPND_QLF_NIL;
1171 }
1172
1173 /* Given a list of qualifier sequences, return all possible valid qualifiers
1174 for operand IDX in QUALIFIERS.
1175 Assume QUALIFIERS is an array whose length is large enough. */
1176
1177 static void
1178 get_operand_possible_qualifiers (int idx,
1179 const aarch64_opnd_qualifier_seq_t *list,
1180 enum aarch64_opnd_qualifier *qualifiers)
1181 {
1182 int i;
1183 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1184 if ((qualifiers[i] = list[i][idx]) == AARCH64_OPND_QLF_NIL)
1185 break;
1186 }
1187
1188 /* Decode the size Q field for e.g. SHADD.
1189 We tag one operand with the qualifer according to the code;
1190 whether the qualifier is valid for this opcode or not, it is the
1191 duty of the semantic checking. */
1192
1193 static int
1194 decode_sizeq (aarch64_inst *inst)
1195 {
1196 int idx;
1197 enum aarch64_opnd_qualifier qualifier;
1198 aarch64_insn code;
1199 aarch64_insn value, mask;
1200 enum aarch64_field_kind fld_sz;
1201 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
1202
1203 if (inst->opcode->iclass == asisdlse
1204 || inst->opcode->iclass == asisdlsep
1205 || inst->opcode->iclass == asisdlso
1206 || inst->opcode->iclass == asisdlsop)
1207 fld_sz = FLD_vldst_size;
1208 else
1209 fld_sz = FLD_size;
1210
1211 code = inst->value;
1212 value = extract_fields (code, inst->opcode->mask, 2, fld_sz, FLD_Q);
1213 /* Obtain the info that which bits of fields Q and size are actually
1214 available for operand encoding. Opcodes like FMAXNM and FMLA have
1215 size[1] unavailable. */
1216 mask = extract_fields (~inst->opcode->mask, 0, 2, fld_sz, FLD_Q);
1217
1218 /* The index of the operand we are going to tag a qualifier and the qualifer
1219 itself are reasoned from the value of the size and Q fields and the
1220 possible valid qualifier lists. */
1221 idx = aarch64_select_operand_for_sizeq_field_coding (inst->opcode);
1222 DEBUG_TRACE ("key idx: %d", idx);
1223
1224 /* For most related instruciton, size:Q are fully available for operand
1225 encoding. */
1226 if (mask == 0x7)
1227 {
1228 inst->operands[idx].qualifier = get_vreg_qualifier_from_value (value);
1229 return 1;
1230 }
1231
1232 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
1233 candidates);
1234 #ifdef DEBUG_AARCH64
1235 if (debug_dump)
1236 {
1237 int i;
1238 for (i = 0; candidates[i] != AARCH64_OPND_QLF_NIL
1239 && i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
1240 DEBUG_TRACE ("qualifier %d: %s", i,
1241 aarch64_get_qualifier_name(candidates[i]));
1242 DEBUG_TRACE ("%d, %d", (int)value, (int)mask);
1243 }
1244 #endif /* DEBUG_AARCH64 */
1245
1246 qualifier = get_qualifier_from_partial_encoding (value, candidates, mask);
1247
1248 if (qualifier == AARCH64_OPND_QLF_NIL)
1249 return 0;
1250
1251 inst->operands[idx].qualifier = qualifier;
1252 return 1;
1253 }
1254
1255 /* Decode size[0]:Q, i.e. bit 22 and bit 30, for
1256 e.g. FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
1257
1258 static int
1259 decode_asimd_fcvt (aarch64_inst *inst)
1260 {
1261 aarch64_field field = {0, 0};
1262 aarch64_insn value;
1263 enum aarch64_opnd_qualifier qualifier;
1264
1265 gen_sub_field (FLD_size, 0, 1, &field);
1266 value = extract_field_2 (&field, inst->value, 0);
1267 qualifier = value == 0 ? AARCH64_OPND_QLF_V_4S
1268 : AARCH64_OPND_QLF_V_2D;
1269 switch (inst->opcode->op)
1270 {
1271 case OP_FCVTN:
1272 case OP_FCVTN2:
1273 /* FCVTN<Q> <Vd>.<Tb>, <Vn>.<Ta>. */
1274 inst->operands[1].qualifier = qualifier;
1275 break;
1276 case OP_FCVTL:
1277 case OP_FCVTL2:
1278 /* FCVTL<Q> <Vd>.<Ta>, <Vn>.<Tb>. */
1279 inst->operands[0].qualifier = qualifier;
1280 break;
1281 default:
1282 assert (0);
1283 return 0;
1284 }
1285
1286 return 1;
1287 }
1288
1289 /* Decode size[0], i.e. bit 22, for
1290 e.g. FCVTXN <Vb><d>, <Va><n>. */
1291
1292 static int
1293 decode_asisd_fcvtxn (aarch64_inst *inst)
1294 {
1295 aarch64_field field = {0, 0};
1296 gen_sub_field (FLD_size, 0, 1, &field);
1297 if (!extract_field_2 (&field, inst->value, 0))
1298 return 0;
1299 inst->operands[0].qualifier = AARCH64_OPND_QLF_S_S;
1300 return 1;
1301 }
1302
1303 /* Decode the 'opc' field for e.g. FCVT <Dd>, <Sn>. */
1304 static int
1305 decode_fcvt (aarch64_inst *inst)
1306 {
1307 enum aarch64_opnd_qualifier qualifier;
1308 aarch64_insn value;
1309 const aarch64_field field = {15, 2};
1310
1311 /* opc dstsize */
1312 value = extract_field_2 (&field, inst->value, 0);
1313 switch (value)
1314 {
1315 case 0: qualifier = AARCH64_OPND_QLF_S_S; break;
1316 case 1: qualifier = AARCH64_OPND_QLF_S_D; break;
1317 case 3: qualifier = AARCH64_OPND_QLF_S_H; break;
1318 default: return 0;
1319 }
1320 inst->operands[0].qualifier = qualifier;
1321
1322 return 1;
1323 }
1324
1325 /* Do miscellaneous decodings that are not common enough to be driven by
1326 flags. */
1327
1328 static int
1329 do_misc_decoding (aarch64_inst *inst)
1330 {
1331 switch (inst->opcode->op)
1332 {
1333 case OP_FCVT:
1334 return decode_fcvt (inst);
1335 case OP_FCVTN:
1336 case OP_FCVTN2:
1337 case OP_FCVTL:
1338 case OP_FCVTL2:
1339 return decode_asimd_fcvt (inst);
1340 case OP_FCVTXN_S:
1341 return decode_asisd_fcvtxn (inst);
1342 default:
1343 return 0;
1344 }
1345 }
1346
1347 /* Opcodes that have fields shared by multiple operands are usually flagged
1348 with flags. In this function, we detect such flags, decode the related
1349 field(s) and store the information in one of the related operands. The
1350 'one' operand is not any operand but one of the operands that can
1351 accommadate all the information that has been decoded. */
1352
1353 static int
1354 do_special_decoding (aarch64_inst *inst)
1355 {
1356 int idx;
1357 aarch64_insn value;
1358 /* Condition for truly conditional executed instructions, e.g. b.cond. */
1359 if (inst->opcode->flags & F_COND)
1360 {
1361 value = extract_field (FLD_cond2, inst->value, 0);
1362 inst->cond = get_cond_from_value (value);
1363 }
1364 /* 'sf' field. */
1365 if (inst->opcode->flags & F_SF)
1366 {
1367 idx = select_operand_for_sf_field_coding (inst->opcode);
1368 value = extract_field (FLD_sf, inst->value, 0);
1369 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1370 if ((inst->opcode->flags & F_N)
1371 && extract_field (FLD_N, inst->value, 0) != value)
1372 return 0;
1373 }
1374 /* 'sf' field. */
1375 if (inst->opcode->flags & F_LSE_SZ)
1376 {
1377 idx = select_operand_for_sf_field_coding (inst->opcode);
1378 value = extract_field (FLD_lse_sz, inst->value, 0);
1379 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1380 }
1381 /* size:Q fields. */
1382 if (inst->opcode->flags & F_SIZEQ)
1383 return decode_sizeq (inst);
1384
1385 if (inst->opcode->flags & F_FPTYPE)
1386 {
1387 idx = select_operand_for_fptype_field_coding (inst->opcode);
1388 value = extract_field (FLD_type, inst->value, 0);
1389 switch (value)
1390 {
1391 case 0: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_S; break;
1392 case 1: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_D; break;
1393 case 3: inst->operands[idx].qualifier = AARCH64_OPND_QLF_S_H; break;
1394 default: return 0;
1395 }
1396 }
1397
1398 if (inst->opcode->flags & F_SSIZE)
1399 {
1400 /* N.B. some opcodes like FCMGT <V><d>, <V><n>, #0 have the size[1] as part
1401 of the base opcode. */
1402 aarch64_insn mask;
1403 enum aarch64_opnd_qualifier candidates[AARCH64_MAX_QLF_SEQ_NUM];
1404 idx = select_operand_for_scalar_size_field_coding (inst->opcode);
1405 value = extract_field (FLD_size, inst->value, inst->opcode->mask);
1406 mask = extract_field (FLD_size, ~inst->opcode->mask, 0);
1407 /* For most related instruciton, the 'size' field is fully available for
1408 operand encoding. */
1409 if (mask == 0x3)
1410 inst->operands[idx].qualifier = get_sreg_qualifier_from_value (value);
1411 else
1412 {
1413 get_operand_possible_qualifiers (idx, inst->opcode->qualifiers_list,
1414 candidates);
1415 inst->operands[idx].qualifier
1416 = get_qualifier_from_partial_encoding (value, candidates, mask);
1417 }
1418 }
1419
1420 if (inst->opcode->flags & F_T)
1421 {
1422 /* Num of consecutive '0's on the right side of imm5<3:0>. */
1423 int num = 0;
1424 unsigned val, Q;
1425 assert (aarch64_get_operand_class (inst->opcode->operands[0])
1426 == AARCH64_OPND_CLASS_SIMD_REG);
1427 /* imm5<3:0> q <t>
1428 0000 x reserved
1429 xxx1 0 8b
1430 xxx1 1 16b
1431 xx10 0 4h
1432 xx10 1 8h
1433 x100 0 2s
1434 x100 1 4s
1435 1000 0 reserved
1436 1000 1 2d */
1437 val = extract_field (FLD_imm5, inst->value, 0);
1438 while ((val & 0x1) == 0 && ++num <= 3)
1439 val >>= 1;
1440 if (num > 3)
1441 return 0;
1442 Q = (unsigned) extract_field (FLD_Q, inst->value, inst->opcode->mask);
1443 inst->operands[0].qualifier =
1444 get_vreg_qualifier_from_value ((num << 1) | Q);
1445 }
1446
1447 if (inst->opcode->flags & F_GPRSIZE_IN_Q)
1448 {
1449 /* Use Rt to encode in the case of e.g.
1450 STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}]. */
1451 idx = aarch64_operand_index (inst->opcode->operands, AARCH64_OPND_Rt);
1452 if (idx == -1)
1453 {
1454 /* Otherwise use the result operand, which has to be a integer
1455 register. */
1456 assert (aarch64_get_operand_class (inst->opcode->operands[0])
1457 == AARCH64_OPND_CLASS_INT_REG);
1458 idx = 0;
1459 }
1460 assert (idx == 0 || idx == 1);
1461 value = extract_field (FLD_Q, inst->value, 0);
1462 inst->operands[idx].qualifier = get_greg_qualifier_from_value (value);
1463 }
1464
1465 if (inst->opcode->flags & F_LDS_SIZE)
1466 {
1467 aarch64_field field = {0, 0};
1468 assert (aarch64_get_operand_class (inst->opcode->operands[0])
1469 == AARCH64_OPND_CLASS_INT_REG);
1470 gen_sub_field (FLD_opc, 0, 1, &field);
1471 value = extract_field_2 (&field, inst->value, 0);
1472 inst->operands[0].qualifier
1473 = value ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X;
1474 }
1475
1476 /* Miscellaneous decoding; done as the last step. */
1477 if (inst->opcode->flags & F_MISC)
1478 return do_misc_decoding (inst);
1479
1480 return 1;
1481 }
1482
1483 /* Converters converting a real opcode instruction to its alias form. */
1484
1485 /* ROR <Wd>, <Ws>, #<shift>
1486 is equivalent to:
1487 EXTR <Wd>, <Ws>, <Ws>, #<shift>. */
1488 static int
1489 convert_extr_to_ror (aarch64_inst *inst)
1490 {
1491 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
1492 {
1493 copy_operand_info (inst, 2, 3);
1494 inst->operands[3].type = AARCH64_OPND_NIL;
1495 return 1;
1496 }
1497 return 0;
1498 }
1499
1500 /* UXTL<Q> <Vd>.<Ta>, <Vn>.<Tb>
1501 is equivalent to:
1502 USHLL<Q> <Vd>.<Ta>, <Vn>.<Tb>, #0. */
1503 static int
1504 convert_shll_to_xtl (aarch64_inst *inst)
1505 {
1506 if (inst->operands[2].imm.value == 0)
1507 {
1508 inst->operands[2].type = AARCH64_OPND_NIL;
1509 return 1;
1510 }
1511 return 0;
1512 }
1513
1514 /* Convert
1515 UBFM <Xd>, <Xn>, #<shift>, #63.
1516 to
1517 LSR <Xd>, <Xn>, #<shift>. */
1518 static int
1519 convert_bfm_to_sr (aarch64_inst *inst)
1520 {
1521 int64_t imms, val;
1522
1523 imms = inst->operands[3].imm.value;
1524 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
1525 if (imms == val)
1526 {
1527 inst->operands[3].type = AARCH64_OPND_NIL;
1528 return 1;
1529 }
1530
1531 return 0;
1532 }
1533
1534 /* Convert MOV to ORR. */
1535 static int
1536 convert_orr_to_mov (aarch64_inst *inst)
1537 {
1538 /* MOV <Vd>.<T>, <Vn>.<T>
1539 is equivalent to:
1540 ORR <Vd>.<T>, <Vn>.<T>, <Vn>.<T>. */
1541 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno)
1542 {
1543 inst->operands[2].type = AARCH64_OPND_NIL;
1544 return 1;
1545 }
1546 return 0;
1547 }
1548
1549 /* When <imms> >= <immr>, the instruction written:
1550 SBFX <Xd>, <Xn>, #<lsb>, #<width>
1551 is equivalent to:
1552 SBFM <Xd>, <Xn>, #<lsb>, #(<lsb>+<width>-1). */
1553
1554 static int
1555 convert_bfm_to_bfx (aarch64_inst *inst)
1556 {
1557 int64_t immr, imms;
1558
1559 immr = inst->operands[2].imm.value;
1560 imms = inst->operands[3].imm.value;
1561 if (imms >= immr)
1562 {
1563 int64_t lsb = immr;
1564 inst->operands[2].imm.value = lsb;
1565 inst->operands[3].imm.value = imms + 1 - lsb;
1566 /* The two opcodes have different qualifiers for
1567 the immediate operands; reset to help the checking. */
1568 reset_operand_qualifier (inst, 2);
1569 reset_operand_qualifier (inst, 3);
1570 return 1;
1571 }
1572
1573 return 0;
1574 }
1575
1576 /* When <imms> < <immr>, the instruction written:
1577 SBFIZ <Xd>, <Xn>, #<lsb>, #<width>
1578 is equivalent to:
1579 SBFM <Xd>, <Xn>, #((64-<lsb>)&0x3f), #(<width>-1). */
1580
1581 static int
1582 convert_bfm_to_bfi (aarch64_inst *inst)
1583 {
1584 int64_t immr, imms, val;
1585
1586 immr = inst->operands[2].imm.value;
1587 imms = inst->operands[3].imm.value;
1588 val = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 32 : 64;
1589 if (imms < immr)
1590 {
1591 inst->operands[2].imm.value = (val - immr) & (val - 1);
1592 inst->operands[3].imm.value = imms + 1;
1593 /* The two opcodes have different qualifiers for
1594 the immediate operands; reset to help the checking. */
1595 reset_operand_qualifier (inst, 2);
1596 reset_operand_qualifier (inst, 3);
1597 return 1;
1598 }
1599
1600 return 0;
1601 }
1602
1603 /* The instruction written:
1604 LSL <Xd>, <Xn>, #<shift>
1605 is equivalent to:
1606 UBFM <Xd>, <Xn>, #((64-<shift>)&0x3f), #(63-<shift>). */
1607
1608 static int
1609 convert_ubfm_to_lsl (aarch64_inst *inst)
1610 {
1611 int64_t immr = inst->operands[2].imm.value;
1612 int64_t imms = inst->operands[3].imm.value;
1613 int64_t val
1614 = inst->operands[2].qualifier == AARCH64_OPND_QLF_imm_0_31 ? 31 : 63;
1615
1616 if ((immr == 0 && imms == val) || immr == imms + 1)
1617 {
1618 inst->operands[3].type = AARCH64_OPND_NIL;
1619 inst->operands[2].imm.value = val - imms;
1620 return 1;
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* CINC <Wd>, <Wn>, <cond>
1627 is equivalent to:
1628 CSINC <Wd>, <Wn>, <Wn>, invert(<cond>)
1629 where <cond> is not AL or NV. */
1630
1631 static int
1632 convert_from_csel (aarch64_inst *inst)
1633 {
1634 if (inst->operands[1].reg.regno == inst->operands[2].reg.regno
1635 && (inst->operands[3].cond->value & 0xe) != 0xe)
1636 {
1637 copy_operand_info (inst, 2, 3);
1638 inst->operands[2].cond = get_inverted_cond (inst->operands[3].cond);
1639 inst->operands[3].type = AARCH64_OPND_NIL;
1640 return 1;
1641 }
1642 return 0;
1643 }
1644
1645 /* CSET <Wd>, <cond>
1646 is equivalent to:
1647 CSINC <Wd>, WZR, WZR, invert(<cond>)
1648 where <cond> is not AL or NV. */
1649
1650 static int
1651 convert_csinc_to_cset (aarch64_inst *inst)
1652 {
1653 if (inst->operands[1].reg.regno == 0x1f
1654 && inst->operands[2].reg.regno == 0x1f
1655 && (inst->operands[3].cond->value & 0xe) != 0xe)
1656 {
1657 copy_operand_info (inst, 1, 3);
1658 inst->operands[1].cond = get_inverted_cond (inst->operands[3].cond);
1659 inst->operands[3].type = AARCH64_OPND_NIL;
1660 inst->operands[2].type = AARCH64_OPND_NIL;
1661 return 1;
1662 }
1663 return 0;
1664 }
1665
1666 /* MOV <Wd>, #<imm>
1667 is equivalent to:
1668 MOVZ <Wd>, #<imm16>, LSL #<shift>.
1669
1670 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
1671 ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
1672 or where a MOVN has an immediate that could be encoded by MOVZ, or where
1673 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
1674 machine-instruction mnemonic must be used. */
1675
1676 static int
1677 convert_movewide_to_mov (aarch64_inst *inst)
1678 {
1679 uint64_t value = inst->operands[1].imm.value;
1680 /* MOVZ/MOVN #0 have a shift amount other than LSL #0. */
1681 if (value == 0 && inst->operands[1].shifter.amount != 0)
1682 return 0;
1683 inst->operands[1].type = AARCH64_OPND_IMM_MOV;
1684 inst->operands[1].shifter.kind = AARCH64_MOD_NONE;
1685 value <<= inst->operands[1].shifter.amount;
1686 /* As an alias convertor, it has to be clear that the INST->OPCODE
1687 is the opcode of the real instruction. */
1688 if (inst->opcode->op == OP_MOVN)
1689 {
1690 int is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
1691 value = ~value;
1692 /* A MOVN has an immediate that could be encoded by MOVZ. */
1693 if (aarch64_wide_constant_p (value, is32, NULL) == TRUE)
1694 return 0;
1695 }
1696 inst->operands[1].imm.value = value;
1697 inst->operands[1].shifter.amount = 0;
1698 return 1;
1699 }
1700
1701 /* MOV <Wd>, #<imm>
1702 is equivalent to:
1703 ORR <Wd>, WZR, #<imm>.
1704
1705 A disassembler may output ORR, MOVZ and MOVN as a MOV mnemonic, except when
1706 ORR has an immediate that could be generated by a MOVZ or MOVN instruction,
1707 or where a MOVN has an immediate that could be encoded by MOVZ, or where
1708 MOVZ/MOVN #0 have a shift amount other than LSL #0, in which case the
1709 machine-instruction mnemonic must be used. */
1710
1711 static int
1712 convert_movebitmask_to_mov (aarch64_inst *inst)
1713 {
1714 int is32;
1715 uint64_t value;
1716
1717 /* Should have been assured by the base opcode value. */
1718 assert (inst->operands[1].reg.regno == 0x1f);
1719 copy_operand_info (inst, 1, 2);
1720 is32 = inst->operands[0].qualifier == AARCH64_OPND_QLF_W;
1721 inst->operands[1].type = AARCH64_OPND_IMM_MOV;
1722 value = inst->operands[1].imm.value;
1723 /* ORR has an immediate that could be generated by a MOVZ or MOVN
1724 instruction. */
1725 if (inst->operands[0].reg.regno != 0x1f
1726 && (aarch64_wide_constant_p (value, is32, NULL) == TRUE
1727 || aarch64_wide_constant_p (~value, is32, NULL) == TRUE))
1728 return 0;
1729
1730 inst->operands[2].type = AARCH64_OPND_NIL;
1731 return 1;
1732 }
1733
1734 /* Some alias opcodes are disassembled by being converted from their real-form.
1735 N.B. INST->OPCODE is the real opcode rather than the alias. */
1736
1737 static int
1738 convert_to_alias (aarch64_inst *inst, const aarch64_opcode *alias)
1739 {
1740 switch (alias->op)
1741 {
1742 case OP_ASR_IMM:
1743 case OP_LSR_IMM:
1744 return convert_bfm_to_sr (inst);
1745 case OP_LSL_IMM:
1746 return convert_ubfm_to_lsl (inst);
1747 case OP_CINC:
1748 case OP_CINV:
1749 case OP_CNEG:
1750 return convert_from_csel (inst);
1751 case OP_CSET:
1752 case OP_CSETM:
1753 return convert_csinc_to_cset (inst);
1754 case OP_UBFX:
1755 case OP_BFXIL:
1756 case OP_SBFX:
1757 return convert_bfm_to_bfx (inst);
1758 case OP_SBFIZ:
1759 case OP_BFI:
1760 case OP_UBFIZ:
1761 return convert_bfm_to_bfi (inst);
1762 case OP_MOV_V:
1763 return convert_orr_to_mov (inst);
1764 case OP_MOV_IMM_WIDE:
1765 case OP_MOV_IMM_WIDEN:
1766 return convert_movewide_to_mov (inst);
1767 case OP_MOV_IMM_LOG:
1768 return convert_movebitmask_to_mov (inst);
1769 case OP_ROR_IMM:
1770 return convert_extr_to_ror (inst);
1771 case OP_SXTL:
1772 case OP_SXTL2:
1773 case OP_UXTL:
1774 case OP_UXTL2:
1775 return convert_shll_to_xtl (inst);
1776 default:
1777 return 0;
1778 }
1779 }
1780
1781 static int aarch64_opcode_decode (const aarch64_opcode *, const aarch64_insn,
1782 aarch64_inst *, int);
1783
1784 /* Given the instruction information in *INST, check if the instruction has
1785 any alias form that can be used to represent *INST. If the answer is yes,
1786 update *INST to be in the form of the determined alias. */
1787
1788 /* In the opcode description table, the following flags are used in opcode
1789 entries to help establish the relations between the real and alias opcodes:
1790
1791 F_ALIAS: opcode is an alias
1792 F_HAS_ALIAS: opcode has alias(es)
1793 F_P1
1794 F_P2
1795 F_P3: Disassembly preference priority 1-3 (the larger the
1796 higher). If nothing is specified, it is the priority
1797 0 by default, i.e. the lowest priority.
1798
1799 Although the relation between the machine and the alias instructions are not
1800 explicitly described, it can be easily determined from the base opcode
1801 values, masks and the flags F_ALIAS and F_HAS_ALIAS in their opcode
1802 description entries:
1803
1804 The mask of an alias opcode must be equal to or a super-set (i.e. more
1805 constrained) of that of the aliased opcode; so is the base opcode value.
1806
1807 if (opcode_has_alias (real) && alias_opcode_p (opcode)
1808 && (opcode->mask & real->mask) == real->mask
1809 && (real->mask & opcode->opcode) == (real->mask & real->opcode))
1810 then OPCODE is an alias of, and only of, the REAL instruction
1811
1812 The alias relationship is forced flat-structured to keep related algorithm
1813 simple; an opcode entry cannot be flagged with both F_ALIAS and F_HAS_ALIAS.
1814
1815 During the disassembling, the decoding decision tree (in
1816 opcodes/aarch64-dis-2.c) always returns an machine instruction opcode entry;
1817 if the decoding of such a machine instruction succeeds (and -Mno-aliases is
1818 not specified), the disassembler will check whether there is any alias
1819 instruction exists for this real instruction. If there is, the disassembler
1820 will try to disassemble the 32-bit binary again using the alias's rule, or
1821 try to convert the IR to the form of the alias. In the case of the multiple
1822 aliases, the aliases are tried one by one from the highest priority
1823 (currently the flag F_P3) to the lowest priority (no priority flag), and the
1824 first succeeds first adopted.
1825
1826 You may ask why there is a need for the conversion of IR from one form to
1827 another in handling certain aliases. This is because on one hand it avoids
1828 adding more operand code to handle unusual encoding/decoding; on other
1829 hand, during the disassembling, the conversion is an effective approach to
1830 check the condition of an alias (as an alias may be adopted only if certain
1831 conditions are met).
1832
1833 In order to speed up the alias opcode lookup, aarch64-gen has preprocessed
1834 aarch64_opcode_table and generated aarch64_find_alias_opcode and
1835 aarch64_find_next_alias_opcode (in opcodes/aarch64-dis-2.c) to help. */
1836
1837 static void
1838 determine_disassembling_preference (struct aarch64_inst *inst)
1839 {
1840 const aarch64_opcode *opcode;
1841 const aarch64_opcode *alias;
1842
1843 opcode = inst->opcode;
1844
1845 /* This opcode does not have an alias, so use itself. */
1846 if (opcode_has_alias (opcode) == FALSE)
1847 return;
1848
1849 alias = aarch64_find_alias_opcode (opcode);
1850 assert (alias);
1851
1852 #ifdef DEBUG_AARCH64
1853 if (debug_dump)
1854 {
1855 const aarch64_opcode *tmp = alias;
1856 printf ("#### LIST orderd: ");
1857 while (tmp)
1858 {
1859 printf ("%s, ", tmp->name);
1860 tmp = aarch64_find_next_alias_opcode (tmp);
1861 }
1862 printf ("\n");
1863 }
1864 #endif /* DEBUG_AARCH64 */
1865
1866 for (; alias; alias = aarch64_find_next_alias_opcode (alias))
1867 {
1868 DEBUG_TRACE ("try %s", alias->name);
1869 assert (alias_opcode_p (alias));
1870
1871 /* An alias can be a pseudo opcode which will never be used in the
1872 disassembly, e.g. BIC logical immediate is such a pseudo opcode
1873 aliasing AND. */
1874 if (pseudo_opcode_p (alias))
1875 {
1876 DEBUG_TRACE ("skip pseudo %s", alias->name);
1877 continue;
1878 }
1879
1880 if ((inst->value & alias->mask) != alias->opcode)
1881 {
1882 DEBUG_TRACE ("skip %s as base opcode not match", alias->name);
1883 continue;
1884 }
1885 /* No need to do any complicated transformation on operands, if the alias
1886 opcode does not have any operand. */
1887 if (aarch64_num_of_operands (alias) == 0 && alias->opcode == inst->value)
1888 {
1889 DEBUG_TRACE ("succeed with 0-operand opcode %s", alias->name);
1890 aarch64_replace_opcode (inst, alias);
1891 return;
1892 }
1893 if (alias->flags & F_CONV)
1894 {
1895 aarch64_inst copy;
1896 memcpy (&copy, inst, sizeof (aarch64_inst));
1897 /* ALIAS is the preference as long as the instruction can be
1898 successfully converted to the form of ALIAS. */
1899 if (convert_to_alias (&copy, alias) == 1)
1900 {
1901 aarch64_replace_opcode (&copy, alias);
1902 assert (aarch64_match_operands_constraint (&copy, NULL));
1903 DEBUG_TRACE ("succeed with %s via conversion", alias->name);
1904 memcpy (inst, &copy, sizeof (aarch64_inst));
1905 return;
1906 }
1907 }
1908 else
1909 {
1910 /* Directly decode the alias opcode. */
1911 aarch64_inst temp;
1912 memset (&temp, '\0', sizeof (aarch64_inst));
1913 if (aarch64_opcode_decode (alias, inst->value, &temp, 1) == 1)
1914 {
1915 DEBUG_TRACE ("succeed with %s via direct decoding", alias->name);
1916 memcpy (inst, &temp, sizeof (aarch64_inst));
1917 return;
1918 }
1919 }
1920 }
1921 }
1922
1923 /* Decode the CODE according to OPCODE; fill INST. Return 0 if the decoding
1924 fails, which meanes that CODE is not an instruction of OPCODE; otherwise
1925 return 1.
1926
1927 If OPCODE has alias(es) and NOALIASES_P is 0, an alias opcode may be
1928 determined and used to disassemble CODE; this is done just before the
1929 return. */
1930
1931 static int
1932 aarch64_opcode_decode (const aarch64_opcode *opcode, const aarch64_insn code,
1933 aarch64_inst *inst, int noaliases_p)
1934 {
1935 int i;
1936
1937 DEBUG_TRACE ("enter with %s", opcode->name);
1938
1939 assert (opcode && inst);
1940
1941 /* Check the base opcode. */
1942 if ((code & opcode->mask) != (opcode->opcode & opcode->mask))
1943 {
1944 DEBUG_TRACE ("base opcode match FAIL");
1945 goto decode_fail;
1946 }
1947
1948 /* Clear inst. */
1949 memset (inst, '\0', sizeof (aarch64_inst));
1950
1951 inst->opcode = opcode;
1952 inst->value = code;
1953
1954 /* Assign operand codes and indexes. */
1955 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1956 {
1957 if (opcode->operands[i] == AARCH64_OPND_NIL)
1958 break;
1959 inst->operands[i].type = opcode->operands[i];
1960 inst->operands[i].idx = i;
1961 }
1962
1963 /* Call the opcode decoder indicated by flags. */
1964 if (opcode_has_special_coder (opcode) && do_special_decoding (inst) == 0)
1965 {
1966 DEBUG_TRACE ("opcode flag-based decoder FAIL");
1967 goto decode_fail;
1968 }
1969
1970 /* Call operand decoders. */
1971 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1972 {
1973 const aarch64_operand *opnd;
1974 enum aarch64_opnd type;
1975 type = opcode->operands[i];
1976 if (type == AARCH64_OPND_NIL)
1977 break;
1978 opnd = &aarch64_operands[type];
1979 if (operand_has_extractor (opnd)
1980 && (! aarch64_extract_operand (opnd, &inst->operands[i], code, inst)))
1981 {
1982 DEBUG_TRACE ("operand decoder FAIL at operand %d", i);
1983 goto decode_fail;
1984 }
1985 }
1986
1987 /* Match the qualifiers. */
1988 if (aarch64_match_operands_constraint (inst, NULL) == 1)
1989 {
1990 /* Arriving here, the CODE has been determined as a valid instruction
1991 of OPCODE and *INST has been filled with information of this OPCODE
1992 instruction. Before the return, check if the instruction has any
1993 alias and should be disassembled in the form of its alias instead.
1994 If the answer is yes, *INST will be updated. */
1995 if (!noaliases_p)
1996 determine_disassembling_preference (inst);
1997 DEBUG_TRACE ("SUCCESS");
1998 return 1;
1999 }
2000 else
2001 {
2002 DEBUG_TRACE ("constraint matching FAIL");
2003 }
2004
2005 decode_fail:
2006 return 0;
2007 }
2008 \f
2009 /* This does some user-friendly fix-up to *INST. It is currently focus on
2010 the adjustment of qualifiers to help the printed instruction
2011 recognized/understood more easily. */
2012
2013 static void
2014 user_friendly_fixup (aarch64_inst *inst)
2015 {
2016 switch (inst->opcode->iclass)
2017 {
2018 case testbranch:
2019 /* TBNZ Xn|Wn, #uimm6, label
2020 Test and Branch Not Zero: conditionally jumps to label if bit number
2021 uimm6 in register Xn is not zero. The bit number implies the width of
2022 the register, which may be written and should be disassembled as Wn if
2023 uimm is less than 32. Limited to a branch offset range of +/- 32KiB.
2024 */
2025 if (inst->operands[1].imm.value < 32)
2026 inst->operands[0].qualifier = AARCH64_OPND_QLF_W;
2027 break;
2028 default: break;
2029 }
2030 }
2031
2032 /* Decode INSN and fill in *INST the instruction information. */
2033
2034 static int
2035 disas_aarch64_insn (uint64_t pc ATTRIBUTE_UNUSED, uint32_t insn,
2036 aarch64_inst *inst)
2037 {
2038 const aarch64_opcode *opcode = aarch64_opcode_lookup (insn);
2039
2040 #ifdef DEBUG_AARCH64
2041 if (debug_dump)
2042 {
2043 const aarch64_opcode *tmp = opcode;
2044 printf ("\n");
2045 DEBUG_TRACE ("opcode lookup:");
2046 while (tmp != NULL)
2047 {
2048 aarch64_verbose (" %s", tmp->name);
2049 tmp = aarch64_find_next_opcode (tmp);
2050 }
2051 }
2052 #endif /* DEBUG_AARCH64 */
2053
2054 /* A list of opcodes may have been found, as aarch64_opcode_lookup cannot
2055 distinguish some opcodes, e.g. SSHR and MOVI, which almost share the same
2056 opcode field and value, apart from the difference that one of them has an
2057 extra field as part of the opcode, but such a field is used for operand
2058 encoding in other opcode(s) ('immh' in the case of the example). */
2059 while (opcode != NULL)
2060 {
2061 /* But only one opcode can be decoded successfully for, as the
2062 decoding routine will check the constraint carefully. */
2063 if (aarch64_opcode_decode (opcode, insn, inst, no_aliases) == 1)
2064 return ERR_OK;
2065 opcode = aarch64_find_next_opcode (opcode);
2066 }
2067
2068 return ERR_UND;
2069 }
2070
2071 /* Print operands. */
2072
2073 static void
2074 print_operands (bfd_vma pc, const aarch64_opcode *opcode,
2075 const aarch64_opnd_info *opnds, struct disassemble_info *info)
2076 {
2077 int i, pcrel_p, num_printed;
2078 for (i = 0, num_printed = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2079 {
2080 const size_t size = 128;
2081 char str[size];
2082 /* We regard the opcode operand info more, however we also look into
2083 the inst->operands to support the disassembling of the optional
2084 operand.
2085 The two operand code should be the same in all cases, apart from
2086 when the operand can be optional. */
2087 if (opcode->operands[i] == AARCH64_OPND_NIL
2088 || opnds[i].type == AARCH64_OPND_NIL)
2089 break;
2090
2091 /* Generate the operand string in STR. */
2092 aarch64_print_operand (str, size, pc, opcode, opnds, i, &pcrel_p,
2093 &info->target);
2094
2095 /* Print the delimiter (taking account of omitted operand(s)). */
2096 if (str[0] != '\0')
2097 (*info->fprintf_func) (info->stream, "%s",
2098 num_printed++ == 0 ? "\t" : ", ");
2099
2100 /* Print the operand. */
2101 if (pcrel_p)
2102 (*info->print_address_func) (info->target, info);
2103 else
2104 (*info->fprintf_func) (info->stream, "%s", str);
2105 }
2106 }
2107
2108 /* Print the instruction mnemonic name. */
2109
2110 static void
2111 print_mnemonic_name (const aarch64_inst *inst, struct disassemble_info *info)
2112 {
2113 if (inst->opcode->flags & F_COND)
2114 {
2115 /* For instructions that are truly conditionally executed, e.g. b.cond,
2116 prepare the full mnemonic name with the corresponding condition
2117 suffix. */
2118 char name[8], *ptr;
2119 size_t len;
2120
2121 ptr = strchr (inst->opcode->name, '.');
2122 assert (ptr && inst->cond);
2123 len = ptr - inst->opcode->name;
2124 assert (len < 8);
2125 strncpy (name, inst->opcode->name, len);
2126 name [len] = '\0';
2127 (*info->fprintf_func) (info->stream, "%s.%s", name, inst->cond->names[0]);
2128 }
2129 else
2130 (*info->fprintf_func) (info->stream, "%s", inst->opcode->name);
2131 }
2132
2133 /* Print the instruction according to *INST. */
2134
2135 static void
2136 print_aarch64_insn (bfd_vma pc, const aarch64_inst *inst,
2137 struct disassemble_info *info)
2138 {
2139 print_mnemonic_name (inst, info);
2140 print_operands (pc, inst->opcode, inst->operands, info);
2141 }
2142
2143 /* Entry-point of the instruction disassembler and printer. */
2144
2145 static void
2146 print_insn_aarch64_word (bfd_vma pc,
2147 uint32_t word,
2148 struct disassemble_info *info)
2149 {
2150 static const char *err_msg[6] =
2151 {
2152 [ERR_OK] = "_",
2153 [-ERR_UND] = "undefined",
2154 [-ERR_UNP] = "unpredictable",
2155 [-ERR_NYI] = "NYI"
2156 };
2157
2158 int ret;
2159 aarch64_inst inst;
2160
2161 info->insn_info_valid = 1;
2162 info->branch_delay_insns = 0;
2163 info->data_size = 0;
2164 info->target = 0;
2165 info->target2 = 0;
2166
2167 if (info->flags & INSN_HAS_RELOC)
2168 /* If the instruction has a reloc associated with it, then
2169 the offset field in the instruction will actually be the
2170 addend for the reloc. (If we are using REL type relocs).
2171 In such cases, we can ignore the pc when computing
2172 addresses, since the addend is not currently pc-relative. */
2173 pc = 0;
2174
2175 ret = disas_aarch64_insn (pc, word, &inst);
2176
2177 if (((word >> 21) & 0x3ff) == 1)
2178 {
2179 /* RESERVED for ALES. */
2180 assert (ret != ERR_OK);
2181 ret = ERR_NYI;
2182 }
2183
2184 switch (ret)
2185 {
2186 case ERR_UND:
2187 case ERR_UNP:
2188 case ERR_NYI:
2189 /* Handle undefined instructions. */
2190 info->insn_type = dis_noninsn;
2191 (*info->fprintf_func) (info->stream,".inst\t0x%08x ; %s",
2192 word, err_msg[-ret]);
2193 break;
2194 case ERR_OK:
2195 user_friendly_fixup (&inst);
2196 print_aarch64_insn (pc, &inst, info);
2197 break;
2198 default:
2199 abort ();
2200 }
2201 }
2202
2203 /* Disallow mapping symbols ($x, $d etc) from
2204 being displayed in symbol relative addresses. */
2205
2206 bfd_boolean
2207 aarch64_symbol_is_valid (asymbol * sym,
2208 struct disassemble_info * info ATTRIBUTE_UNUSED)
2209 {
2210 const char * name;
2211
2212 if (sym == NULL)
2213 return FALSE;
2214
2215 name = bfd_asymbol_name (sym);
2216
2217 return name
2218 && (name[0] != '$'
2219 || (name[1] != 'x' && name[1] != 'd')
2220 || (name[2] != '\0' && name[2] != '.'));
2221 }
2222
2223 /* Print data bytes on INFO->STREAM. */
2224
2225 static void
2226 print_insn_data (bfd_vma pc ATTRIBUTE_UNUSED,
2227 uint32_t word,
2228 struct disassemble_info *info)
2229 {
2230 switch (info->bytes_per_chunk)
2231 {
2232 case 1:
2233 info->fprintf_func (info->stream, ".byte\t0x%02x", word);
2234 break;
2235 case 2:
2236 info->fprintf_func (info->stream, ".short\t0x%04x", word);
2237 break;
2238 case 4:
2239 info->fprintf_func (info->stream, ".word\t0x%08x", word);
2240 break;
2241 default:
2242 abort ();
2243 }
2244 }
2245
2246 /* Try to infer the code or data type from a symbol.
2247 Returns nonzero if *MAP_TYPE was set. */
2248
2249 static int
2250 get_sym_code_type (struct disassemble_info *info, int n,
2251 enum map_type *map_type)
2252 {
2253 elf_symbol_type *es;
2254 unsigned int type;
2255 const char *name;
2256
2257 es = *(elf_symbol_type **)(info->symtab + n);
2258 type = ELF_ST_TYPE (es->internal_elf_sym.st_info);
2259
2260 /* If the symbol has function type then use that. */
2261 if (type == STT_FUNC)
2262 {
2263 *map_type = MAP_INSN;
2264 return TRUE;
2265 }
2266
2267 /* Check for mapping symbols. */
2268 name = bfd_asymbol_name(info->symtab[n]);
2269 if (name[0] == '$'
2270 && (name[1] == 'x' || name[1] == 'd')
2271 && (name[2] == '\0' || name[2] == '.'))
2272 {
2273 *map_type = (name[1] == 'x' ? MAP_INSN : MAP_DATA);
2274 return TRUE;
2275 }
2276
2277 return FALSE;
2278 }
2279
2280 /* Entry-point of the AArch64 disassembler. */
2281
2282 int
2283 print_insn_aarch64 (bfd_vma pc,
2284 struct disassemble_info *info)
2285 {
2286 bfd_byte buffer[INSNLEN];
2287 int status;
2288 void (*printer) (bfd_vma, uint32_t, struct disassemble_info *);
2289 bfd_boolean found = FALSE;
2290 unsigned int size = 4;
2291 unsigned long data;
2292
2293 if (info->disassembler_options)
2294 {
2295 set_default_aarch64_dis_options (info);
2296
2297 parse_aarch64_dis_options (info->disassembler_options);
2298
2299 /* To avoid repeated parsing of these options, we remove them here. */
2300 info->disassembler_options = NULL;
2301 }
2302
2303 /* Aarch64 instructions are always little-endian */
2304 info->endian_code = BFD_ENDIAN_LITTLE;
2305
2306 /* First check the full symtab for a mapping symbol, even if there
2307 are no usable non-mapping symbols for this address. */
2308 if (info->symtab_size != 0
2309 && bfd_asymbol_flavour (*info->symtab) == bfd_target_elf_flavour)
2310 {
2311 enum map_type type = MAP_INSN;
2312 int last_sym = -1;
2313 bfd_vma addr;
2314 int n;
2315
2316 if (pc <= last_mapping_addr)
2317 last_mapping_sym = -1;
2318
2319 /* Start scanning at the start of the function, or wherever
2320 we finished last time. */
2321 n = info->symtab_pos + 1;
2322 if (n < last_mapping_sym)
2323 n = last_mapping_sym;
2324
2325 /* Scan up to the location being disassembled. */
2326 for (; n < info->symtab_size; n++)
2327 {
2328 addr = bfd_asymbol_value (info->symtab[n]);
2329 if (addr > pc)
2330 break;
2331 if ((info->section == NULL
2332 || info->section == info->symtab[n]->section)
2333 && get_sym_code_type (info, n, &type))
2334 {
2335 last_sym = n;
2336 found = TRUE;
2337 }
2338 }
2339
2340 if (!found)
2341 {
2342 n = info->symtab_pos;
2343 if (n < last_mapping_sym)
2344 n = last_mapping_sym;
2345
2346 /* No mapping symbol found at this address. Look backwards
2347 for a preceeding one. */
2348 for (; n >= 0; n--)
2349 {
2350 if (get_sym_code_type (info, n, &type))
2351 {
2352 last_sym = n;
2353 found = TRUE;
2354 break;
2355 }
2356 }
2357 }
2358
2359 last_mapping_sym = last_sym;
2360 last_type = type;
2361
2362 /* Look a little bit ahead to see if we should print out
2363 less than four bytes of data. If there's a symbol,
2364 mapping or otherwise, after two bytes then don't
2365 print more. */
2366 if (last_type == MAP_DATA)
2367 {
2368 size = 4 - (pc & 3);
2369 for (n = last_sym + 1; n < info->symtab_size; n++)
2370 {
2371 addr = bfd_asymbol_value (info->symtab[n]);
2372 if (addr > pc)
2373 {
2374 if (addr - pc < size)
2375 size = addr - pc;
2376 break;
2377 }
2378 }
2379 /* If the next symbol is after three bytes, we need to
2380 print only part of the data, so that we can use either
2381 .byte or .short. */
2382 if (size == 3)
2383 size = (pc & 1) ? 1 : 2;
2384 }
2385 }
2386
2387 if (last_type == MAP_DATA)
2388 {
2389 /* size was set above. */
2390 info->bytes_per_chunk = size;
2391 info->display_endian = info->endian;
2392 printer = print_insn_data;
2393 }
2394 else
2395 {
2396 info->bytes_per_chunk = size = INSNLEN;
2397 info->display_endian = info->endian_code;
2398 printer = print_insn_aarch64_word;
2399 }
2400
2401 status = (*info->read_memory_func) (pc, buffer, size, info);
2402 if (status != 0)
2403 {
2404 (*info->memory_error_func) (status, pc, info);
2405 return -1;
2406 }
2407
2408 data = bfd_get_bits (buffer, size * 8,
2409 info->display_endian == BFD_ENDIAN_BIG);
2410
2411 (*printer) (pc, data, info);
2412
2413 return size;
2414 }
2415 \f
2416 void
2417 print_aarch64_disassembler_options (FILE *stream)
2418 {
2419 fprintf (stream, _("\n\
2420 The following AARCH64 specific disassembler options are supported for use\n\
2421 with the -M switch (multiple options should be separated by commas):\n"));
2422
2423 fprintf (stream, _("\n\
2424 no-aliases Don't print instruction aliases.\n"));
2425
2426 fprintf (stream, _("\n\
2427 aliases Do print instruction aliases.\n"));
2428
2429 #ifdef DEBUG_AARCH64
2430 fprintf (stream, _("\n\
2431 debug_dump Temp switch for debug trace.\n"));
2432 #endif /* DEBUG_AARCH64 */
2433
2434 fprintf (stream, _("\n"));
2435 }
This page took 0.079407 seconds and 4 git commands to generate.