61547b403df47a3d23361019799b00e285290969
[deliverable/binutils-gdb.git] / opcodes / aarch64-opc.c
1 /* aarch64-opc.c -- AArch64 opcode support.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
4
5 This file is part of the GNU opcodes library.
6
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21 #include "sysdep.h"
22 #include <assert.h>
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include "bfd_stdint.h"
26 #include <stdarg.h>
27 #include <inttypes.h>
28
29 #include "opintl.h"
30 #include "libiberty.h"
31
32 #include "aarch64-opc.h"
33
34 #ifdef DEBUG_AARCH64
35 int debug_dump = FALSE;
36 #endif /* DEBUG_AARCH64 */
37
38 /* The enumeration strings associated with each value of a 5-bit SVE
39 pattern operand. A null entry indicates a reserved meaning. */
40 const char *const aarch64_sve_pattern_array[32] = {
41 /* 0-7. */
42 "pow2",
43 "vl1",
44 "vl2",
45 "vl3",
46 "vl4",
47 "vl5",
48 "vl6",
49 "vl7",
50 /* 8-15. */
51 "vl8",
52 "vl16",
53 "vl32",
54 "vl64",
55 "vl128",
56 "vl256",
57 0,
58 0,
59 /* 16-23. */
60 0,
61 0,
62 0,
63 0,
64 0,
65 0,
66 0,
67 0,
68 /* 24-31. */
69 0,
70 0,
71 0,
72 0,
73 0,
74 "mul4",
75 "mul3",
76 "all"
77 };
78
79 /* The enumeration strings associated with each value of a 4-bit SVE
80 prefetch operand. A null entry indicates a reserved meaning. */
81 const char *const aarch64_sve_prfop_array[16] = {
82 /* 0-7. */
83 "pldl1keep",
84 "pldl1strm",
85 "pldl2keep",
86 "pldl2strm",
87 "pldl3keep",
88 "pldl3strm",
89 0,
90 0,
91 /* 8-15. */
92 "pstl1keep",
93 "pstl1strm",
94 "pstl2keep",
95 "pstl2strm",
96 "pstl3keep",
97 "pstl3strm",
98 0,
99 0
100 };
101
102 /* Helper functions to determine which operand to be used to encode/decode
103 the size:Q fields for AdvSIMD instructions. */
104
105 static inline bfd_boolean
106 vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
107 {
108 return ((qualifier >= AARCH64_OPND_QLF_V_8B
109 && qualifier <= AARCH64_OPND_QLF_V_1Q) ? TRUE
110 : FALSE);
111 }
112
113 static inline bfd_boolean
114 fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
115 {
116 return ((qualifier >= AARCH64_OPND_QLF_S_B
117 && qualifier <= AARCH64_OPND_QLF_S_Q) ? TRUE
118 : FALSE);
119 }
120
121 enum data_pattern
122 {
123 DP_UNKNOWN,
124 DP_VECTOR_3SAME,
125 DP_VECTOR_LONG,
126 DP_VECTOR_WIDE,
127 DP_VECTOR_ACROSS_LANES,
128 };
129
130 static const char significant_operand_index [] =
131 {
132 0, /* DP_UNKNOWN, by default using operand 0. */
133 0, /* DP_VECTOR_3SAME */
134 1, /* DP_VECTOR_LONG */
135 2, /* DP_VECTOR_WIDE */
136 1, /* DP_VECTOR_ACROSS_LANES */
137 };
138
139 /* Given a sequence of qualifiers in QUALIFIERS, determine and return
140 the data pattern.
141 N.B. QUALIFIERS is a possible sequence of qualifiers each of which
142 corresponds to one of a sequence of operands. */
143
144 static enum data_pattern
145 get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
146 {
147 if (vector_qualifier_p (qualifiers[0]) == TRUE)
148 {
149 /* e.g. v.4s, v.4s, v.4s
150 or v.4h, v.4h, v.h[3]. */
151 if (qualifiers[0] == qualifiers[1]
152 && vector_qualifier_p (qualifiers[2]) == TRUE
153 && (aarch64_get_qualifier_esize (qualifiers[0])
154 == aarch64_get_qualifier_esize (qualifiers[1]))
155 && (aarch64_get_qualifier_esize (qualifiers[0])
156 == aarch64_get_qualifier_esize (qualifiers[2])))
157 return DP_VECTOR_3SAME;
158 /* e.g. v.8h, v.8b, v.8b.
159 or v.4s, v.4h, v.h[2].
160 or v.8h, v.16b. */
161 if (vector_qualifier_p (qualifiers[1]) == TRUE
162 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
163 && (aarch64_get_qualifier_esize (qualifiers[0])
164 == aarch64_get_qualifier_esize (qualifiers[1]) << 1))
165 return DP_VECTOR_LONG;
166 /* e.g. v.8h, v.8h, v.8b. */
167 if (qualifiers[0] == qualifiers[1]
168 && vector_qualifier_p (qualifiers[2]) == TRUE
169 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
170 && (aarch64_get_qualifier_esize (qualifiers[0])
171 == aarch64_get_qualifier_esize (qualifiers[2]) << 1)
172 && (aarch64_get_qualifier_esize (qualifiers[0])
173 == aarch64_get_qualifier_esize (qualifiers[1])))
174 return DP_VECTOR_WIDE;
175 }
176 else if (fp_qualifier_p (qualifiers[0]) == TRUE)
177 {
178 /* e.g. SADDLV <V><d>, <Vn>.<T>. */
179 if (vector_qualifier_p (qualifiers[1]) == TRUE
180 && qualifiers[2] == AARCH64_OPND_QLF_NIL)
181 return DP_VECTOR_ACROSS_LANES;
182 }
183
184 return DP_UNKNOWN;
185 }
186
187 /* Select the operand to do the encoding/decoding of the 'size:Q' fields in
188 the AdvSIMD instructions. */
189 /* N.B. it is possible to do some optimization that doesn't call
190 get_data_pattern each time when we need to select an operand. We can
191 either buffer the caculated the result or statically generate the data,
192 however, it is not obvious that the optimization will bring significant
193 benefit. */
194
195 int
196 aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
197 {
198 return
199 significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
200 }
201 \f
202 const aarch64_field fields[] =
203 {
204 { 0, 0 }, /* NIL. */
205 { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
206 { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
207 { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
208 { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
209 { 5, 19 }, /* imm19: e.g. in CBZ. */
210 { 5, 19 }, /* immhi: e.g. in ADRP. */
211 { 29, 2 }, /* immlo: e.g. in ADRP. */
212 { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
213 { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
214 { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
215 { 30, 1 }, /* Q: in most AdvSIMD instructions. */
216 { 0, 5 }, /* Rt: in load/store instructions. */
217 { 0, 5 }, /* Rd: in many integer instructions. */
218 { 5, 5 }, /* Rn: in many integer instructions. */
219 { 10, 5 }, /* Rt2: in load/store pair instructions. */
220 { 10, 5 }, /* Ra: in fp instructions. */
221 { 5, 3 }, /* op2: in the system instructions. */
222 { 8, 4 }, /* CRm: in the system instructions. */
223 { 12, 4 }, /* CRn: in the system instructions. */
224 { 16, 3 }, /* op1: in the system instructions. */
225 { 19, 2 }, /* op0: in the system instructions. */
226 { 10, 3 }, /* imm3: in add/sub extended reg instructions. */
227 { 12, 4 }, /* cond: condition flags as a source operand. */
228 { 12, 4 }, /* opcode: in advsimd load/store instructions. */
229 { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
230 { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
231 { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
232 { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
233 { 16, 5 }, /* Rs: in load/store exclusive instructions. */
234 { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
235 { 12, 1 }, /* S: in load/store reg offset instructions. */
236 { 21, 2 }, /* hw: in move wide constant instructions. */
237 { 22, 2 }, /* opc: in load/store reg offset instructions. */
238 { 23, 1 }, /* opc1: in load/store reg offset instructions. */
239 { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
240 { 22, 2 }, /* type: floating point type field in fp data inst. */
241 { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
242 { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */
243 { 15, 6 }, /* imm6_2: in rmif instructions. */
244 { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */
245 { 0, 4 }, /* imm4_2: in rmif instructions. */
246 { 10, 4 }, /* imm4_3: in adddg/subg instructions. */
247 { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
248 { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
249 { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
250 { 12, 9 }, /* imm9: in load/store pre/post index instructions. */
251 { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
252 { 5, 14 }, /* imm14: in test bit and branch instructions. */
253 { 5, 16 }, /* imm16: in exception instructions. */
254 { 0, 26 }, /* imm26: in unconditional branch instructions. */
255 { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
256 { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
257 { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
258 { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
259 { 22, 1 }, /* S: in LDRAA and LDRAB instructions. */
260 { 22, 1 }, /* N: in logical (immediate) instructions. */
261 { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
262 { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
263 { 31, 1 }, /* sf: in integer data processing instructions. */
264 { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */
265 { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
266 { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
267 { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
268 { 31, 1 }, /* b5: in the test bit and branch instructions. */
269 { 19, 5 }, /* b40: in the test bit and branch instructions. */
270 { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
271 { 4, 1 }, /* SVE_M_4: Merge/zero select, bit 4. */
272 { 14, 1 }, /* SVE_M_14: Merge/zero select, bit 14. */
273 { 16, 1 }, /* SVE_M_16: Merge/zero select, bit 16. */
274 { 17, 1 }, /* SVE_N: SVE equivalent of N. */
275 { 0, 4 }, /* SVE_Pd: p0-p15, bits [3,0]. */
276 { 10, 3 }, /* SVE_Pg3: p0-p7, bits [12,10]. */
277 { 5, 4 }, /* SVE_Pg4_5: p0-p15, bits [8,5]. */
278 { 10, 4 }, /* SVE_Pg4_10: p0-p15, bits [13,10]. */
279 { 16, 4 }, /* SVE_Pg4_16: p0-p15, bits [19,16]. */
280 { 16, 4 }, /* SVE_Pm: p0-p15, bits [19,16]. */
281 { 5, 4 }, /* SVE_Pn: p0-p15, bits [8,5]. */
282 { 0, 4 }, /* SVE_Pt: p0-p15, bits [3,0]. */
283 { 5, 5 }, /* SVE_Rm: SVE alternative position for Rm. */
284 { 16, 5 }, /* SVE_Rn: SVE alternative position for Rn. */
285 { 0, 5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0]. */
286 { 5, 5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5]. */
287 { 5, 5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5]. */
288 { 5, 5 }, /* SVE_Za_5: SVE vector register, bits [9,5]. */
289 { 16, 5 }, /* SVE_Za_16: SVE vector register, bits [20,16]. */
290 { 0, 5 }, /* SVE_Zd: SVE vector register. bits [4,0]. */
291 { 5, 5 }, /* SVE_Zm_5: SVE vector register, bits [9,5]. */
292 { 16, 5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */
293 { 5, 5 }, /* SVE_Zn: SVE vector register, bits [9,5]. */
294 { 0, 5 }, /* SVE_Zt: SVE vector register, bits [4,0]. */
295 { 5, 1 }, /* SVE_i1: single-bit immediate. */
296 { 22, 1 }, /* SVE_i3h: high bit of 3-bit immediate. */
297 { 11, 1 }, /* SVE_i3l: low bit of 3-bit immediate. */
298 { 19, 2 }, /* SVE_i3h2: two high bits of 3bit immediate, bits [20,19]. */
299 { 20, 1 }, /* SVE_i2h: high bit of 2bit immediate, bits. */
300 { 16, 3 }, /* SVE_imm3: 3-bit immediate field. */
301 { 16, 4 }, /* SVE_imm4: 4-bit immediate field. */
302 { 5, 5 }, /* SVE_imm5: 5-bit immediate field. */
303 { 16, 5 }, /* SVE_imm5b: secondary 5-bit immediate field. */
304 { 16, 6 }, /* SVE_imm6: 6-bit immediate field. */
305 { 14, 7 }, /* SVE_imm7: 7-bit immediate field. */
306 { 5, 8 }, /* SVE_imm8: 8-bit immediate field. */
307 { 5, 9 }, /* SVE_imm9: 9-bit immediate field. */
308 { 11, 6 }, /* SVE_immr: SVE equivalent of immr. */
309 { 5, 6 }, /* SVE_imms: SVE equivalent of imms. */
310 { 10, 2 }, /* SVE_msz: 2-bit shift amount for ADR. */
311 { 5, 5 }, /* SVE_pattern: vector pattern enumeration. */
312 { 0, 4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD]. */
313 { 16, 1 }, /* SVE_rot1: 1-bit rotation amount. */
314 { 10, 2 }, /* SVE_rot2: 2-bit rotation amount. */
315 { 10, 1 }, /* SVE_rot3: 1-bit rotation amount at bit 10. */
316 { 22, 1 }, /* SVE_sz: 1-bit element size select. */
317 { 17, 2 }, /* SVE_size: 2-bit element size, bits [18,17]. */
318 { 30, 1 }, /* SVE_sz2: 1-bit element size select. */
319 { 16, 4 }, /* SVE_tsz: triangular size select. */
320 { 22, 2 }, /* SVE_tszh: triangular size select high, bits [23,22]. */
321 { 8, 2 }, /* SVE_tszl_8: triangular size select low, bits [9,8]. */
322 { 19, 2 }, /* SVE_tszl_19: triangular size select low, bits [20,19]. */
323 { 14, 1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14). */
324 { 22, 1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22). */
325 { 11, 2 }, /* rotate1: FCMLA immediate rotate. */
326 { 13, 2 }, /* rotate2: Indexed element FCMLA immediate rotate. */
327 { 12, 1 }, /* rotate3: FCADD immediate rotate. */
328 { 12, 2 }, /* SM3: Indexed element SM3 2 bits index immediate. */
329 { 22, 1 }, /* sz: 1-bit element size select. */
330 };
331
332 enum aarch64_operand_class
333 aarch64_get_operand_class (enum aarch64_opnd type)
334 {
335 return aarch64_operands[type].op_class;
336 }
337
338 const char *
339 aarch64_get_operand_name (enum aarch64_opnd type)
340 {
341 return aarch64_operands[type].name;
342 }
343
344 /* Get operand description string.
345 This is usually for the diagnosis purpose. */
346 const char *
347 aarch64_get_operand_desc (enum aarch64_opnd type)
348 {
349 return aarch64_operands[type].desc;
350 }
351
352 /* Table of all conditional affixes. */
353 const aarch64_cond aarch64_conds[16] =
354 {
355 {{"eq", "none"}, 0x0},
356 {{"ne", "any"}, 0x1},
357 {{"cs", "hs", "nlast"}, 0x2},
358 {{"cc", "lo", "ul", "last"}, 0x3},
359 {{"mi", "first"}, 0x4},
360 {{"pl", "nfrst"}, 0x5},
361 {{"vs"}, 0x6},
362 {{"vc"}, 0x7},
363 {{"hi", "pmore"}, 0x8},
364 {{"ls", "plast"}, 0x9},
365 {{"ge", "tcont"}, 0xa},
366 {{"lt", "tstop"}, 0xb},
367 {{"gt"}, 0xc},
368 {{"le"}, 0xd},
369 {{"al"}, 0xe},
370 {{"nv"}, 0xf},
371 };
372
373 const aarch64_cond *
374 get_cond_from_value (aarch64_insn value)
375 {
376 assert (value < 16);
377 return &aarch64_conds[(unsigned int) value];
378 }
379
380 const aarch64_cond *
381 get_inverted_cond (const aarch64_cond *cond)
382 {
383 return &aarch64_conds[cond->value ^ 0x1];
384 }
385
386 /* Table describing the operand extension/shifting operators; indexed by
387 enum aarch64_modifier_kind.
388
389 The value column provides the most common values for encoding modifiers,
390 which enables table-driven encoding/decoding for the modifiers. */
391 const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
392 {
393 {"none", 0x0},
394 {"msl", 0x0},
395 {"ror", 0x3},
396 {"asr", 0x2},
397 {"lsr", 0x1},
398 {"lsl", 0x0},
399 {"uxtb", 0x0},
400 {"uxth", 0x1},
401 {"uxtw", 0x2},
402 {"uxtx", 0x3},
403 {"sxtb", 0x4},
404 {"sxth", 0x5},
405 {"sxtw", 0x6},
406 {"sxtx", 0x7},
407 {"mul", 0x0},
408 {"mul vl", 0x0},
409 {NULL, 0},
410 };
411
412 enum aarch64_modifier_kind
413 aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
414 {
415 return desc - aarch64_operand_modifiers;
416 }
417
418 aarch64_insn
419 aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
420 {
421 return aarch64_operand_modifiers[kind].value;
422 }
423
424 enum aarch64_modifier_kind
425 aarch64_get_operand_modifier_from_value (aarch64_insn value,
426 bfd_boolean extend_p)
427 {
428 if (extend_p == TRUE)
429 return AARCH64_MOD_UXTB + value;
430 else
431 return AARCH64_MOD_LSL - value;
432 }
433
434 bfd_boolean
435 aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
436 {
437 return (kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX)
438 ? TRUE : FALSE;
439 }
440
441 static inline bfd_boolean
442 aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
443 {
444 return (kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL)
445 ? TRUE : FALSE;
446 }
447
448 const struct aarch64_name_value_pair aarch64_barrier_options[16] =
449 {
450 { "#0x00", 0x0 },
451 { "oshld", 0x1 },
452 { "oshst", 0x2 },
453 { "osh", 0x3 },
454 { "#0x04", 0x4 },
455 { "nshld", 0x5 },
456 { "nshst", 0x6 },
457 { "nsh", 0x7 },
458 { "#0x08", 0x8 },
459 { "ishld", 0x9 },
460 { "ishst", 0xa },
461 { "ish", 0xb },
462 { "#0x0c", 0xc },
463 { "ld", 0xd },
464 { "st", 0xe },
465 { "sy", 0xf },
466 };
467
468 /* Table describing the operands supported by the aliases of the HINT
469 instruction.
470
471 The name column is the operand that is accepted for the alias. The value
472 column is the hint number of the alias. The list of operands is terminated
473 by NULL in the name column. */
474
475 const struct aarch64_name_value_pair aarch64_hint_options[] =
476 {
477 /* BTI. This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET. */
478 { " ", HINT_ENCODE (HINT_OPD_F_NOPRINT, 0x20) },
479 { "csync", HINT_OPD_CSYNC }, /* PSB CSYNC. */
480 { "c", HINT_OPD_C }, /* BTI C. */
481 { "j", HINT_OPD_J }, /* BTI J. */
482 { "jc", HINT_OPD_JC }, /* BTI JC. */
483 { NULL, HINT_OPD_NULL },
484 };
485
486 /* op -> op: load = 0 instruction = 1 store = 2
487 l -> level: 1-3
488 t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
489 #define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
490 const struct aarch64_name_value_pair aarch64_prfops[32] =
491 {
492 { "pldl1keep", B(0, 1, 0) },
493 { "pldl1strm", B(0, 1, 1) },
494 { "pldl2keep", B(0, 2, 0) },
495 { "pldl2strm", B(0, 2, 1) },
496 { "pldl3keep", B(0, 3, 0) },
497 { "pldl3strm", B(0, 3, 1) },
498 { NULL, 0x06 },
499 { NULL, 0x07 },
500 { "plil1keep", B(1, 1, 0) },
501 { "plil1strm", B(1, 1, 1) },
502 { "plil2keep", B(1, 2, 0) },
503 { "plil2strm", B(1, 2, 1) },
504 { "plil3keep", B(1, 3, 0) },
505 { "plil3strm", B(1, 3, 1) },
506 { NULL, 0x0e },
507 { NULL, 0x0f },
508 { "pstl1keep", B(2, 1, 0) },
509 { "pstl1strm", B(2, 1, 1) },
510 { "pstl2keep", B(2, 2, 0) },
511 { "pstl2strm", B(2, 2, 1) },
512 { "pstl3keep", B(2, 3, 0) },
513 { "pstl3strm", B(2, 3, 1) },
514 { NULL, 0x16 },
515 { NULL, 0x17 },
516 { NULL, 0x18 },
517 { NULL, 0x19 },
518 { NULL, 0x1a },
519 { NULL, 0x1b },
520 { NULL, 0x1c },
521 { NULL, 0x1d },
522 { NULL, 0x1e },
523 { NULL, 0x1f },
524 };
525 #undef B
526 \f
527 /* Utilities on value constraint. */
528
529 static inline int
530 value_in_range_p (int64_t value, int low, int high)
531 {
532 return (value >= low && value <= high) ? 1 : 0;
533 }
534
535 /* Return true if VALUE is a multiple of ALIGN. */
536 static inline int
537 value_aligned_p (int64_t value, int align)
538 {
539 return (value % align) == 0;
540 }
541
542 /* A signed value fits in a field. */
543 static inline int
544 value_fit_signed_field_p (int64_t value, unsigned width)
545 {
546 assert (width < 32);
547 if (width < sizeof (value) * 8)
548 {
549 int64_t lim = (int64_t)1 << (width - 1);
550 if (value >= -lim && value < lim)
551 return 1;
552 }
553 return 0;
554 }
555
556 /* An unsigned value fits in a field. */
557 static inline int
558 value_fit_unsigned_field_p (int64_t value, unsigned width)
559 {
560 assert (width < 32);
561 if (width < sizeof (value) * 8)
562 {
563 int64_t lim = (int64_t)1 << width;
564 if (value >= 0 && value < lim)
565 return 1;
566 }
567 return 0;
568 }
569
570 /* Return 1 if OPERAND is SP or WSP. */
571 int
572 aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
573 {
574 return ((aarch64_get_operand_class (operand->type)
575 == AARCH64_OPND_CLASS_INT_REG)
576 && operand_maybe_stack_pointer (aarch64_operands + operand->type)
577 && operand->reg.regno == 31);
578 }
579
580 /* Return 1 if OPERAND is XZR or WZP. */
581 int
582 aarch64_zero_register_p (const aarch64_opnd_info *operand)
583 {
584 return ((aarch64_get_operand_class (operand->type)
585 == AARCH64_OPND_CLASS_INT_REG)
586 && !operand_maybe_stack_pointer (aarch64_operands + operand->type)
587 && operand->reg.regno == 31);
588 }
589
590 /* Return true if the operand *OPERAND that has the operand code
591 OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
592 qualified by the qualifier TARGET. */
593
594 static inline int
595 operand_also_qualified_p (const struct aarch64_opnd_info *operand,
596 aarch64_opnd_qualifier_t target)
597 {
598 switch (operand->qualifier)
599 {
600 case AARCH64_OPND_QLF_W:
601 if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
602 return 1;
603 break;
604 case AARCH64_OPND_QLF_X:
605 if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
606 return 1;
607 break;
608 case AARCH64_OPND_QLF_WSP:
609 if (target == AARCH64_OPND_QLF_W
610 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
611 return 1;
612 break;
613 case AARCH64_OPND_QLF_SP:
614 if (target == AARCH64_OPND_QLF_X
615 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
616 return 1;
617 break;
618 default:
619 break;
620 }
621
622 return 0;
623 }
624
625 /* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
626 for operand KNOWN_IDX, return the expected qualifier for operand IDX.
627
628 Return NIL if more than one expected qualifiers are found. */
629
630 aarch64_opnd_qualifier_t
631 aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
632 int idx,
633 const aarch64_opnd_qualifier_t known_qlf,
634 int known_idx)
635 {
636 int i, saved_i;
637
638 /* Special case.
639
640 When the known qualifier is NIL, we have to assume that there is only
641 one qualifier sequence in the *QSEQ_LIST and return the corresponding
642 qualifier directly. One scenario is that for instruction
643 PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
644 which has only one possible valid qualifier sequence
645 NIL, S_D
646 the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
647 determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
648
649 Because the qualifier NIL has dual roles in the qualifier sequence:
650 it can mean no qualifier for the operand, or the qualifer sequence is
651 not in use (when all qualifiers in the sequence are NILs), we have to
652 handle this special case here. */
653 if (known_qlf == AARCH64_OPND_NIL)
654 {
655 assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
656 return qseq_list[0][idx];
657 }
658
659 for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
660 {
661 if (qseq_list[i][known_idx] == known_qlf)
662 {
663 if (saved_i != -1)
664 /* More than one sequences are found to have KNOWN_QLF at
665 KNOWN_IDX. */
666 return AARCH64_OPND_NIL;
667 saved_i = i;
668 }
669 }
670
671 return qseq_list[saved_i][idx];
672 }
673
674 enum operand_qualifier_kind
675 {
676 OQK_NIL,
677 OQK_OPD_VARIANT,
678 OQK_VALUE_IN_RANGE,
679 OQK_MISC,
680 };
681
682 /* Operand qualifier description. */
683 struct operand_qualifier_data
684 {
685 /* The usage of the three data fields depends on the qualifier kind. */
686 int data0;
687 int data1;
688 int data2;
689 /* Description. */
690 const char *desc;
691 /* Kind. */
692 enum operand_qualifier_kind kind;
693 };
694
695 /* Indexed by the operand qualifier enumerators. */
696 struct operand_qualifier_data aarch64_opnd_qualifiers[] =
697 {
698 {0, 0, 0, "NIL", OQK_NIL},
699
700 /* Operand variant qualifiers.
701 First 3 fields:
702 element size, number of elements and common value for encoding. */
703
704 {4, 1, 0x0, "w", OQK_OPD_VARIANT},
705 {8, 1, 0x1, "x", OQK_OPD_VARIANT},
706 {4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
707 {8, 1, 0x1, "sp", OQK_OPD_VARIANT},
708
709 {1, 1, 0x0, "b", OQK_OPD_VARIANT},
710 {2, 1, 0x1, "h", OQK_OPD_VARIANT},
711 {4, 1, 0x2, "s", OQK_OPD_VARIANT},
712 {8, 1, 0x3, "d", OQK_OPD_VARIANT},
713 {16, 1, 0x4, "q", OQK_OPD_VARIANT},
714 {4, 1, 0x0, "4b", OQK_OPD_VARIANT},
715 {4, 1, 0x0, "2h", OQK_OPD_VARIANT},
716
717 {1, 4, 0x0, "4b", OQK_OPD_VARIANT},
718 {1, 8, 0x0, "8b", OQK_OPD_VARIANT},
719 {1, 16, 0x1, "16b", OQK_OPD_VARIANT},
720 {2, 2, 0x0, "2h", OQK_OPD_VARIANT},
721 {2, 4, 0x2, "4h", OQK_OPD_VARIANT},
722 {2, 8, 0x3, "8h", OQK_OPD_VARIANT},
723 {4, 2, 0x4, "2s", OQK_OPD_VARIANT},
724 {4, 4, 0x5, "4s", OQK_OPD_VARIANT},
725 {8, 1, 0x6, "1d", OQK_OPD_VARIANT},
726 {8, 2, 0x7, "2d", OQK_OPD_VARIANT},
727 {16, 1, 0x8, "1q", OQK_OPD_VARIANT},
728
729 {0, 0, 0, "z", OQK_OPD_VARIANT},
730 {0, 0, 0, "m", OQK_OPD_VARIANT},
731
732 /* Qualifier for scaled immediate for Tag granule (stg,st2g,etc). */
733 {16, 0, 0, "tag", OQK_OPD_VARIANT},
734
735 /* Qualifiers constraining the value range.
736 First 3 fields:
737 Lower bound, higher bound, unused. */
738
739 {0, 15, 0, "CR", OQK_VALUE_IN_RANGE},
740 {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
741 {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
742 {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
743 {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
744 {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
745 {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},
746
747 /* Qualifiers for miscellaneous purpose.
748 First 3 fields:
749 unused, unused and unused. */
750
751 {0, 0, 0, "lsl", 0},
752 {0, 0, 0, "msl", 0},
753
754 {0, 0, 0, "retrieving", 0},
755 };
756
757 static inline bfd_boolean
758 operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
759 {
760 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT)
761 ? TRUE : FALSE;
762 }
763
764 static inline bfd_boolean
765 qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
766 {
767 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE)
768 ? TRUE : FALSE;
769 }
770
771 const char*
772 aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
773 {
774 return aarch64_opnd_qualifiers[qualifier].desc;
775 }
776
777 /* Given an operand qualifier, return the expected data element size
778 of a qualified operand. */
779 unsigned char
780 aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
781 {
782 assert (operand_variant_qualifier_p (qualifier) == TRUE);
783 return aarch64_opnd_qualifiers[qualifier].data0;
784 }
785
786 unsigned char
787 aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
788 {
789 assert (operand_variant_qualifier_p (qualifier) == TRUE);
790 return aarch64_opnd_qualifiers[qualifier].data1;
791 }
792
793 aarch64_insn
794 aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
795 {
796 assert (operand_variant_qualifier_p (qualifier) == TRUE);
797 return aarch64_opnd_qualifiers[qualifier].data2;
798 }
799
800 static int
801 get_lower_bound (aarch64_opnd_qualifier_t qualifier)
802 {
803 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
804 return aarch64_opnd_qualifiers[qualifier].data0;
805 }
806
807 static int
808 get_upper_bound (aarch64_opnd_qualifier_t qualifier)
809 {
810 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
811 return aarch64_opnd_qualifiers[qualifier].data1;
812 }
813
814 #ifdef DEBUG_AARCH64
815 void
816 aarch64_verbose (const char *str, ...)
817 {
818 va_list ap;
819 va_start (ap, str);
820 printf ("#### ");
821 vprintf (str, ap);
822 printf ("\n");
823 va_end (ap);
824 }
825
826 static inline void
827 dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
828 {
829 int i;
830 printf ("#### \t");
831 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
832 printf ("%s,", aarch64_get_qualifier_name (*qualifier));
833 printf ("\n");
834 }
835
836 static void
837 dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
838 const aarch64_opnd_qualifier_t *qualifier)
839 {
840 int i;
841 aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];
842
843 aarch64_verbose ("dump_match_qualifiers:");
844 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
845 curr[i] = opnd[i].qualifier;
846 dump_qualifier_sequence (curr);
847 aarch64_verbose ("against");
848 dump_qualifier_sequence (qualifier);
849 }
850 #endif /* DEBUG_AARCH64 */
851
852 /* This function checks if the given instruction INSN is a destructive
853 instruction based on the usage of the registers. It does not recognize
854 unary destructive instructions. */
855 bfd_boolean
856 aarch64_is_destructive_by_operands (const aarch64_opcode *opcode)
857 {
858 int i = 0;
859 const enum aarch64_opnd *opnds = opcode->operands;
860
861 if (opnds[0] == AARCH64_OPND_NIL)
862 return FALSE;
863
864 while (opnds[++i] != AARCH64_OPND_NIL)
865 if (opnds[i] == opnds[0])
866 return TRUE;
867
868 return FALSE;
869 }
870
871 /* TODO improve this, we can have an extra field at the runtime to
872 store the number of operands rather than calculating it every time. */
873
874 int
875 aarch64_num_of_operands (const aarch64_opcode *opcode)
876 {
877 int i = 0;
878 const enum aarch64_opnd *opnds = opcode->operands;
879 while (opnds[i++] != AARCH64_OPND_NIL)
880 ;
881 --i;
882 assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
883 return i;
884 }
885
886 /* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
887 If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
888
889 N.B. on the entry, it is very likely that only some operands in *INST
890 have had their qualifiers been established.
891
892 If STOP_AT is not -1, the function will only try to match
893 the qualifier sequence for operands before and including the operand
894 of index STOP_AT; and on success *RET will only be filled with the first
895 (STOP_AT+1) qualifiers.
896
897 A couple examples of the matching algorithm:
898
899 X,W,NIL should match
900 X,W,NIL
901
902 NIL,NIL should match
903 X ,NIL
904
905 Apart from serving the main encoding routine, this can also be called
906 during or after the operand decoding. */
907
908 int
909 aarch64_find_best_match (const aarch64_inst *inst,
910 const aarch64_opnd_qualifier_seq_t *qualifiers_list,
911 int stop_at, aarch64_opnd_qualifier_t *ret)
912 {
913 int found = 0;
914 int i, num_opnds;
915 const aarch64_opnd_qualifier_t *qualifiers;
916
917 num_opnds = aarch64_num_of_operands (inst->opcode);
918 if (num_opnds == 0)
919 {
920 DEBUG_TRACE ("SUCCEED: no operand");
921 return 1;
922 }
923
924 if (stop_at < 0 || stop_at >= num_opnds)
925 stop_at = num_opnds - 1;
926
927 /* For each pattern. */
928 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
929 {
930 int j;
931 qualifiers = *qualifiers_list;
932
933 /* Start as positive. */
934 found = 1;
935
936 DEBUG_TRACE ("%d", i);
937 #ifdef DEBUG_AARCH64
938 if (debug_dump)
939 dump_match_qualifiers (inst->operands, qualifiers);
940 #endif
941
942 /* Most opcodes has much fewer patterns in the list.
943 First NIL qualifier indicates the end in the list. */
944 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
945 {
946 DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list");
947 if (i)
948 found = 0;
949 break;
950 }
951
952 for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
953 {
954 if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL)
955 {
956 /* Either the operand does not have qualifier, or the qualifier
957 for the operand needs to be deduced from the qualifier
958 sequence.
959 In the latter case, any constraint checking related with
960 the obtained qualifier should be done later in
961 operand_general_constraint_met_p. */
962 continue;
963 }
964 else if (*qualifiers != inst->operands[j].qualifier)
965 {
966 /* Unless the target qualifier can also qualify the operand
967 (which has already had a non-nil qualifier), non-equal
968 qualifiers are generally un-matched. */
969 if (operand_also_qualified_p (inst->operands + j, *qualifiers))
970 continue;
971 else
972 {
973 found = 0;
974 break;
975 }
976 }
977 else
978 continue; /* Equal qualifiers are certainly matched. */
979 }
980
981 /* Qualifiers established. */
982 if (found == 1)
983 break;
984 }
985
986 if (found == 1)
987 {
988 /* Fill the result in *RET. */
989 int j;
990 qualifiers = *qualifiers_list;
991
992 DEBUG_TRACE ("complete qualifiers using list %d", i);
993 #ifdef DEBUG_AARCH64
994 if (debug_dump)
995 dump_qualifier_sequence (qualifiers);
996 #endif
997
998 for (j = 0; j <= stop_at; ++j, ++qualifiers)
999 ret[j] = *qualifiers;
1000 for (; j < AARCH64_MAX_OPND_NUM; ++j)
1001 ret[j] = AARCH64_OPND_QLF_NIL;
1002
1003 DEBUG_TRACE ("SUCCESS");
1004 return 1;
1005 }
1006
1007 DEBUG_TRACE ("FAIL");
1008 return 0;
1009 }
1010
1011 /* Operand qualifier matching and resolving.
1012
1013 Return 1 if the operand qualifier(s) in *INST match one of the qualifier
1014 sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
1015
1016 if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
1017 succeeds. */
1018
1019 static int
1020 match_operands_qualifier (aarch64_inst *inst, bfd_boolean update_p)
1021 {
1022 int i, nops;
1023 aarch64_opnd_qualifier_seq_t qualifiers;
1024
1025 if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
1026 qualifiers))
1027 {
1028 DEBUG_TRACE ("matching FAIL");
1029 return 0;
1030 }
1031
1032 if (inst->opcode->flags & F_STRICT)
1033 {
1034 /* Require an exact qualifier match, even for NIL qualifiers. */
1035 nops = aarch64_num_of_operands (inst->opcode);
1036 for (i = 0; i < nops; ++i)
1037 if (inst->operands[i].qualifier != qualifiers[i])
1038 return FALSE;
1039 }
1040
1041 /* Update the qualifiers. */
1042 if (update_p == TRUE)
1043 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
1044 {
1045 if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
1046 break;
1047 DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
1048 "update %s with %s for operand %d",
1049 aarch64_get_qualifier_name (inst->operands[i].qualifier),
1050 aarch64_get_qualifier_name (qualifiers[i]), i);
1051 inst->operands[i].qualifier = qualifiers[i];
1052 }
1053
1054 DEBUG_TRACE ("matching SUCCESS");
1055 return 1;
1056 }
1057
1058 /* Return TRUE if VALUE is a wide constant that can be moved into a general
1059 register by MOVZ.
1060
1061 IS32 indicates whether value is a 32-bit immediate or not.
1062 If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
1063 amount will be returned in *SHIFT_AMOUNT. */
1064
1065 bfd_boolean
1066 aarch64_wide_constant_p (int64_t value, int is32, unsigned int *shift_amount)
1067 {
1068 int amount;
1069
1070 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
1071
1072 if (is32)
1073 {
1074 /* Allow all zeros or all ones in top 32-bits, so that
1075 32-bit constant expressions like ~0x80000000 are
1076 permitted. */
1077 uint64_t ext = value;
1078 if (ext >> 32 != 0 && ext >> 32 != (uint64_t) 0xffffffff)
1079 /* Immediate out of range. */
1080 return FALSE;
1081 value &= (int64_t) 0xffffffff;
1082 }
1083
1084 /* first, try movz then movn */
1085 amount = -1;
1086 if ((value & ((int64_t) 0xffff << 0)) == value)
1087 amount = 0;
1088 else if ((value & ((int64_t) 0xffff << 16)) == value)
1089 amount = 16;
1090 else if (!is32 && (value & ((int64_t) 0xffff << 32)) == value)
1091 amount = 32;
1092 else if (!is32 && (value & ((int64_t) 0xffff << 48)) == value)
1093 amount = 48;
1094
1095 if (amount == -1)
1096 {
1097 DEBUG_TRACE ("exit FALSE with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
1098 return FALSE;
1099 }
1100
1101 if (shift_amount != NULL)
1102 *shift_amount = amount;
1103
1104 DEBUG_TRACE ("exit TRUE with amount %d", amount);
1105
1106 return TRUE;
1107 }
1108
1109 /* Build the accepted values for immediate logical SIMD instructions.
1110
1111 The standard encodings of the immediate value are:
1112 N imms immr SIMD size R S
1113 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
1114 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
1115 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
1116 0 110sss 000rrr 8 UInt(rrr) UInt(sss)
1117 0 1110ss 0000rr 4 UInt(rr) UInt(ss)
1118 0 11110s 00000r 2 UInt(r) UInt(s)
1119 where all-ones value of S is reserved.
1120
1121 Let's call E the SIMD size.
1122
1123 The immediate value is: S+1 bits '1' rotated to the right by R.
1124
1125 The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
1126 (remember S != E - 1). */
1127
1128 #define TOTAL_IMM_NB 5334
1129
1130 typedef struct
1131 {
1132 uint64_t imm;
1133 aarch64_insn encoding;
1134 } simd_imm_encoding;
1135
1136 static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];
1137
1138 static int
1139 simd_imm_encoding_cmp(const void *i1, const void *i2)
1140 {
1141 const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
1142 const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;
1143
1144 if (imm1->imm < imm2->imm)
1145 return -1;
1146 if (imm1->imm > imm2->imm)
1147 return +1;
1148 return 0;
1149 }
1150
1151 /* immediate bitfield standard encoding
1152 imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
1153 1 ssssss rrrrrr 64 rrrrrr ssssss
1154 0 0sssss 0rrrrr 32 rrrrr sssss
1155 0 10ssss 00rrrr 16 rrrr ssss
1156 0 110sss 000rrr 8 rrr sss
1157 0 1110ss 0000rr 4 rr ss
1158 0 11110s 00000r 2 r s */
1159 static inline int
1160 encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
1161 {
1162 return (is64 << 12) | (r << 6) | s;
1163 }
1164
1165 static void
1166 build_immediate_table (void)
1167 {
1168 uint32_t log_e, e, s, r, s_mask;
1169 uint64_t mask, imm;
1170 int nb_imms;
1171 int is64;
1172
1173 nb_imms = 0;
1174 for (log_e = 1; log_e <= 6; log_e++)
1175 {
1176 /* Get element size. */
1177 e = 1u << log_e;
1178 if (log_e == 6)
1179 {
1180 is64 = 1;
1181 mask = 0xffffffffffffffffull;
1182 s_mask = 0;
1183 }
1184 else
1185 {
1186 is64 = 0;
1187 mask = (1ull << e) - 1;
1188 /* log_e s_mask
1189 1 ((1 << 4) - 1) << 2 = 111100
1190 2 ((1 << 3) - 1) << 3 = 111000
1191 3 ((1 << 2) - 1) << 4 = 110000
1192 4 ((1 << 1) - 1) << 5 = 100000
1193 5 ((1 << 0) - 1) << 6 = 000000 */
1194 s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
1195 }
1196 for (s = 0; s < e - 1; s++)
1197 for (r = 0; r < e; r++)
1198 {
1199 /* s+1 consecutive bits to 1 (s < 63) */
1200 imm = (1ull << (s + 1)) - 1;
1201 /* rotate right by r */
1202 if (r != 0)
1203 imm = (imm >> r) | ((imm << (e - r)) & mask);
1204 /* replicate the constant depending on SIMD size */
1205 switch (log_e)
1206 {
1207 case 1: imm = (imm << 2) | imm;
1208 /* Fall through. */
1209 case 2: imm = (imm << 4) | imm;
1210 /* Fall through. */
1211 case 3: imm = (imm << 8) | imm;
1212 /* Fall through. */
1213 case 4: imm = (imm << 16) | imm;
1214 /* Fall through. */
1215 case 5: imm = (imm << 32) | imm;
1216 /* Fall through. */
1217 case 6: break;
1218 default: abort ();
1219 }
1220 simd_immediates[nb_imms].imm = imm;
1221 simd_immediates[nb_imms].encoding =
1222 encode_immediate_bitfield(is64, s | s_mask, r);
1223 nb_imms++;
1224 }
1225 }
1226 assert (nb_imms == TOTAL_IMM_NB);
1227 qsort(simd_immediates, nb_imms,
1228 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1229 }
1230
1231 /* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
1232 be accepted by logical (immediate) instructions
1233 e.g. ORR <Xd|SP>, <Xn>, #<imm>.
1234
1235 ESIZE is the number of bytes in the decoded immediate value.
1236 If ENCODING is not NULL, on the return of TRUE, the standard encoding for
1237 VALUE will be returned in *ENCODING. */
1238
1239 bfd_boolean
1240 aarch64_logical_immediate_p (uint64_t value, int esize, aarch64_insn *encoding)
1241 {
1242 simd_imm_encoding imm_enc;
1243 const simd_imm_encoding *imm_encoding;
1244 static bfd_boolean initialized = FALSE;
1245 uint64_t upper;
1246 int i;
1247
1248 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), esize: %d", value,
1249 value, esize);
1250
1251 if (!initialized)
1252 {
1253 build_immediate_table ();
1254 initialized = TRUE;
1255 }
1256
1257 /* Allow all zeros or all ones in top bits, so that
1258 constant expressions like ~1 are permitted. */
1259 upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
1260 if ((value & ~upper) != value && (value | upper) != value)
1261 return FALSE;
1262
1263 /* Replicate to a full 64-bit value. */
1264 value &= ~upper;
1265 for (i = esize * 8; i < 64; i *= 2)
1266 value |= (value << i);
1267
1268 imm_enc.imm = value;
1269 imm_encoding = (const simd_imm_encoding *)
1270 bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
1271 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1272 if (imm_encoding == NULL)
1273 {
1274 DEBUG_TRACE ("exit with FALSE");
1275 return FALSE;
1276 }
1277 if (encoding != NULL)
1278 *encoding = imm_encoding->encoding;
1279 DEBUG_TRACE ("exit with TRUE");
1280 return TRUE;
1281 }
1282
1283 /* If 64-bit immediate IMM is in the format of
1284 "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
1285 where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
1286 of value "abcdefgh". Otherwise return -1. */
1287 int
1288 aarch64_shrink_expanded_imm8 (uint64_t imm)
1289 {
1290 int i, ret;
1291 uint32_t byte;
1292
1293 ret = 0;
1294 for (i = 0; i < 8; i++)
1295 {
1296 byte = (imm >> (8 * i)) & 0xff;
1297 if (byte == 0xff)
1298 ret |= 1 << i;
1299 else if (byte != 0x00)
1300 return -1;
1301 }
1302 return ret;
1303 }
1304
1305 /* Utility inline functions for operand_general_constraint_met_p. */
1306
1307 static inline void
1308 set_error (aarch64_operand_error *mismatch_detail,
1309 enum aarch64_operand_error_kind kind, int idx,
1310 const char* error)
1311 {
1312 if (mismatch_detail == NULL)
1313 return;
1314 mismatch_detail->kind = kind;
1315 mismatch_detail->index = idx;
1316 mismatch_detail->error = error;
1317 }
1318
1319 static inline void
1320 set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
1321 const char* error)
1322 {
1323 if (mismatch_detail == NULL)
1324 return;
1325 set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
1326 }
1327
1328 static inline void
1329 set_out_of_range_error (aarch64_operand_error *mismatch_detail,
1330 int idx, int lower_bound, int upper_bound,
1331 const char* error)
1332 {
1333 if (mismatch_detail == NULL)
1334 return;
1335 set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
1336 mismatch_detail->data[0] = lower_bound;
1337 mismatch_detail->data[1] = upper_bound;
1338 }
1339
1340 static inline void
1341 set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
1342 int idx, int lower_bound, int upper_bound)
1343 {
1344 if (mismatch_detail == NULL)
1345 return;
1346 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1347 _("immediate value"));
1348 }
1349
1350 static inline void
1351 set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
1352 int idx, int lower_bound, int upper_bound)
1353 {
1354 if (mismatch_detail == NULL)
1355 return;
1356 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1357 _("immediate offset"));
1358 }
1359
1360 static inline void
1361 set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
1362 int idx, int lower_bound, int upper_bound)
1363 {
1364 if (mismatch_detail == NULL)
1365 return;
1366 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1367 _("register number"));
1368 }
1369
1370 static inline void
1371 set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
1372 int idx, int lower_bound, int upper_bound)
1373 {
1374 if (mismatch_detail == NULL)
1375 return;
1376 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1377 _("register element index"));
1378 }
1379
1380 static inline void
1381 set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
1382 int idx, int lower_bound, int upper_bound)
1383 {
1384 if (mismatch_detail == NULL)
1385 return;
1386 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1387 _("shift amount"));
1388 }
1389
1390 /* Report that the MUL modifier in operand IDX should be in the range
1391 [LOWER_BOUND, UPPER_BOUND]. */
1392 static inline void
1393 set_multiplier_out_of_range_error (aarch64_operand_error *mismatch_detail,
1394 int idx, int lower_bound, int upper_bound)
1395 {
1396 if (mismatch_detail == NULL)
1397 return;
1398 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1399 _("multiplier"));
1400 }
1401
1402 static inline void
1403 set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
1404 int alignment)
1405 {
1406 if (mismatch_detail == NULL)
1407 return;
1408 set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
1409 mismatch_detail->data[0] = alignment;
1410 }
1411
1412 static inline void
1413 set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx,
1414 int expected_num)
1415 {
1416 if (mismatch_detail == NULL)
1417 return;
1418 set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL);
1419 mismatch_detail->data[0] = expected_num;
1420 }
1421
1422 static inline void
1423 set_other_error (aarch64_operand_error *mismatch_detail, int idx,
1424 const char* error)
1425 {
1426 if (mismatch_detail == NULL)
1427 return;
1428 set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
1429 }
1430
1431 /* General constraint checking based on operand code.
1432
1433 Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
1434 as the IDXth operand of opcode OPCODE. Otherwise return 0.
1435
1436 This function has to be called after the qualifiers for all operands
1437 have been resolved.
1438
1439 Mismatching error message is returned in *MISMATCH_DETAIL upon request,
1440 i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
1441 of error message during the disassembling where error message is not
1442 wanted. We avoid the dynamic construction of strings of error messages
1443 here (i.e. in libopcodes), as it is costly and complicated; instead, we
1444 use a combination of error code, static string and some integer data to
1445 represent an error. */
1446
1447 static int
1448 operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
1449 enum aarch64_opnd type,
1450 const aarch64_opcode *opcode,
1451 aarch64_operand_error *mismatch_detail)
1452 {
1453 unsigned num, modifiers, shift;
1454 unsigned char size;
1455 int64_t imm, min_value, max_value;
1456 uint64_t uvalue, mask;
1457 const aarch64_opnd_info *opnd = opnds + idx;
1458 aarch64_opnd_qualifier_t qualifier = opnd->qualifier;
1459
1460 assert (opcode->operands[idx] == opnd->type && opnd->type == type);
1461
1462 switch (aarch64_operands[type].op_class)
1463 {
1464 case AARCH64_OPND_CLASS_INT_REG:
1465 /* Check pair reg constraints for cas* instructions. */
1466 if (type == AARCH64_OPND_PAIRREG)
1467 {
1468 assert (idx == 1 || idx == 3);
1469 if (opnds[idx - 1].reg.regno % 2 != 0)
1470 {
1471 set_syntax_error (mismatch_detail, idx - 1,
1472 _("reg pair must start from even reg"));
1473 return 0;
1474 }
1475 if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
1476 {
1477 set_syntax_error (mismatch_detail, idx,
1478 _("reg pair must be contiguous"));
1479 return 0;
1480 }
1481 break;
1482 }
1483
1484 /* <Xt> may be optional in some IC and TLBI instructions. */
1485 if (type == AARCH64_OPND_Rt_SYS)
1486 {
1487 assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
1488 == AARCH64_OPND_CLASS_SYSTEM));
1489 if (opnds[1].present
1490 && !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
1491 {
1492 set_other_error (mismatch_detail, idx, _("extraneous register"));
1493 return 0;
1494 }
1495 if (!opnds[1].present
1496 && aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
1497 {
1498 set_other_error (mismatch_detail, idx, _("missing register"));
1499 return 0;
1500 }
1501 }
1502 switch (qualifier)
1503 {
1504 case AARCH64_OPND_QLF_WSP:
1505 case AARCH64_OPND_QLF_SP:
1506 if (!aarch64_stack_pointer_p (opnd))
1507 {
1508 set_other_error (mismatch_detail, idx,
1509 _("stack pointer register expected"));
1510 return 0;
1511 }
1512 break;
1513 default:
1514 break;
1515 }
1516 break;
1517
1518 case AARCH64_OPND_CLASS_SVE_REG:
1519 switch (type)
1520 {
1521 case AARCH64_OPND_SVE_Zm3_INDEX:
1522 case AARCH64_OPND_SVE_Zm3_22_INDEX:
1523 case AARCH64_OPND_SVE_Zm3_11_INDEX:
1524 case AARCH64_OPND_SVE_Zm4_11_INDEX:
1525 case AARCH64_OPND_SVE_Zm4_INDEX:
1526 size = get_operand_fields_width (get_operand_from_code (type));
1527 shift = get_operand_specific_data (&aarch64_operands[type]);
1528 mask = (1 << shift) - 1;
1529 if (opnd->reg.regno > mask)
1530 {
1531 assert (mask == 7 || mask == 15);
1532 set_other_error (mismatch_detail, idx,
1533 mask == 15
1534 ? _("z0-z15 expected")
1535 : _("z0-z7 expected"));
1536 return 0;
1537 }
1538 mask = (1 << (size - shift)) - 1;
1539 if (!value_in_range_p (opnd->reglane.index, 0, mask))
1540 {
1541 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, mask);
1542 return 0;
1543 }
1544 break;
1545
1546 case AARCH64_OPND_SVE_Zn_INDEX:
1547 size = aarch64_get_qualifier_esize (opnd->qualifier);
1548 if (!value_in_range_p (opnd->reglane.index, 0, 64 / size - 1))
1549 {
1550 set_elem_idx_out_of_range_error (mismatch_detail, idx,
1551 0, 64 / size - 1);
1552 return 0;
1553 }
1554 break;
1555
1556 case AARCH64_OPND_SVE_ZnxN:
1557 case AARCH64_OPND_SVE_ZtxN:
1558 if (opnd->reglist.num_regs != get_opcode_dependent_value (opcode))
1559 {
1560 set_other_error (mismatch_detail, idx,
1561 _("invalid register list"));
1562 return 0;
1563 }
1564 break;
1565
1566 default:
1567 break;
1568 }
1569 break;
1570
1571 case AARCH64_OPND_CLASS_PRED_REG:
1572 if (opnd->reg.regno >= 8
1573 && get_operand_fields_width (get_operand_from_code (type)) == 3)
1574 {
1575 set_other_error (mismatch_detail, idx, _("p0-p7 expected"));
1576 return 0;
1577 }
1578 break;
1579
1580 case AARCH64_OPND_CLASS_COND:
1581 if (type == AARCH64_OPND_COND1
1582 && (opnds[idx].cond->value & 0xe) == 0xe)
1583 {
1584 /* Not allow AL or NV. */
1585 set_syntax_error (mismatch_detail, idx, NULL);
1586 }
1587 break;
1588
1589 case AARCH64_OPND_CLASS_ADDRESS:
1590 /* Check writeback. */
1591 switch (opcode->iclass)
1592 {
1593 case ldst_pos:
1594 case ldst_unscaled:
1595 case ldstnapair_offs:
1596 case ldstpair_off:
1597 case ldst_unpriv:
1598 if (opnd->addr.writeback == 1)
1599 {
1600 set_syntax_error (mismatch_detail, idx,
1601 _("unexpected address writeback"));
1602 return 0;
1603 }
1604 break;
1605 case ldst_imm10:
1606 if (opnd->addr.writeback == 1 && opnd->addr.preind != 1)
1607 {
1608 set_syntax_error (mismatch_detail, idx,
1609 _("unexpected address writeback"));
1610 return 0;
1611 }
1612 break;
1613 case ldst_imm9:
1614 case ldstpair_indexed:
1615 case asisdlsep:
1616 case asisdlsop:
1617 if (opnd->addr.writeback == 0)
1618 {
1619 set_syntax_error (mismatch_detail, idx,
1620 _("address writeback expected"));
1621 return 0;
1622 }
1623 break;
1624 default:
1625 assert (opnd->addr.writeback == 0);
1626 break;
1627 }
1628 switch (type)
1629 {
1630 case AARCH64_OPND_ADDR_SIMM7:
1631 /* Scaled signed 7 bits immediate offset. */
1632 /* Get the size of the data element that is accessed, which may be
1633 different from that of the source register size,
1634 e.g. in strb/ldrb. */
1635 size = aarch64_get_qualifier_esize (opnd->qualifier);
1636 if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
1637 {
1638 set_offset_out_of_range_error (mismatch_detail, idx,
1639 -64 * size, 63 * size);
1640 return 0;
1641 }
1642 if (!value_aligned_p (opnd->addr.offset.imm, size))
1643 {
1644 set_unaligned_error (mismatch_detail, idx, size);
1645 return 0;
1646 }
1647 break;
1648 case AARCH64_OPND_ADDR_OFFSET:
1649 case AARCH64_OPND_ADDR_SIMM9:
1650 /* Unscaled signed 9 bits immediate offset. */
1651 if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
1652 {
1653 set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
1654 return 0;
1655 }
1656 break;
1657
1658 case AARCH64_OPND_ADDR_SIMM9_2:
1659 /* Unscaled signed 9 bits immediate offset, which has to be negative
1660 or unaligned. */
1661 size = aarch64_get_qualifier_esize (qualifier);
1662 if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
1663 && !value_aligned_p (opnd->addr.offset.imm, size))
1664 || value_in_range_p (opnd->addr.offset.imm, -256, -1))
1665 return 1;
1666 set_other_error (mismatch_detail, idx,
1667 _("negative or unaligned offset expected"));
1668 return 0;
1669
1670 case AARCH64_OPND_ADDR_SIMM10:
1671 /* Scaled signed 10 bits immediate offset. */
1672 if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4088))
1673 {
1674 set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4088);
1675 return 0;
1676 }
1677 if (!value_aligned_p (opnd->addr.offset.imm, 8))
1678 {
1679 set_unaligned_error (mismatch_detail, idx, 8);
1680 return 0;
1681 }
1682 break;
1683
1684 case AARCH64_OPND_ADDR_SIMM11:
1685 /* Signed 11 bits immediate offset (multiple of 16). */
1686 if (!value_in_range_p (opnd->addr.offset.imm, -1024, 1008))
1687 {
1688 set_offset_out_of_range_error (mismatch_detail, idx, -1024, 1008);
1689 return 0;
1690 }
1691
1692 if (!value_aligned_p (opnd->addr.offset.imm, 16))
1693 {
1694 set_unaligned_error (mismatch_detail, idx, 16);
1695 return 0;
1696 }
1697 break;
1698
1699 case AARCH64_OPND_ADDR_SIMM13:
1700 /* Signed 13 bits immediate offset (multiple of 16). */
1701 if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4080))
1702 {
1703 set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4080);
1704 return 0;
1705 }
1706
1707 if (!value_aligned_p (opnd->addr.offset.imm, 16))
1708 {
1709 set_unaligned_error (mismatch_detail, idx, 16);
1710 return 0;
1711 }
1712 break;
1713
1714 case AARCH64_OPND_SIMD_ADDR_POST:
1715 /* AdvSIMD load/store multiple structures, post-index. */
1716 assert (idx == 1);
1717 if (opnd->addr.offset.is_reg)
1718 {
1719 if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
1720 return 1;
1721 else
1722 {
1723 set_other_error (mismatch_detail, idx,
1724 _("invalid register offset"));
1725 return 0;
1726 }
1727 }
1728 else
1729 {
1730 const aarch64_opnd_info *prev = &opnds[idx-1];
1731 unsigned num_bytes; /* total number of bytes transferred. */
1732 /* The opcode dependent area stores the number of elements in
1733 each structure to be loaded/stored. */
1734 int is_ld1r = get_opcode_dependent_value (opcode) == 1;
1735 if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
1736 /* Special handling of loading single structure to all lane. */
1737 num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
1738 * aarch64_get_qualifier_esize (prev->qualifier);
1739 else
1740 num_bytes = prev->reglist.num_regs
1741 * aarch64_get_qualifier_esize (prev->qualifier)
1742 * aarch64_get_qualifier_nelem (prev->qualifier);
1743 if ((int) num_bytes != opnd->addr.offset.imm)
1744 {
1745 set_other_error (mismatch_detail, idx,
1746 _("invalid post-increment amount"));
1747 return 0;
1748 }
1749 }
1750 break;
1751
1752 case AARCH64_OPND_ADDR_REGOFF:
1753 /* Get the size of the data element that is accessed, which may be
1754 different from that of the source register size,
1755 e.g. in strb/ldrb. */
1756 size = aarch64_get_qualifier_esize (opnd->qualifier);
1757 /* It is either no shift or shift by the binary logarithm of SIZE. */
1758 if (opnd->shifter.amount != 0
1759 && opnd->shifter.amount != (int)get_logsz (size))
1760 {
1761 set_other_error (mismatch_detail, idx,
1762 _("invalid shift amount"));
1763 return 0;
1764 }
1765 /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
1766 operators. */
1767 switch (opnd->shifter.kind)
1768 {
1769 case AARCH64_MOD_UXTW:
1770 case AARCH64_MOD_LSL:
1771 case AARCH64_MOD_SXTW:
1772 case AARCH64_MOD_SXTX: break;
1773 default:
1774 set_other_error (mismatch_detail, idx,
1775 _("invalid extend/shift operator"));
1776 return 0;
1777 }
1778 break;
1779
1780 case AARCH64_OPND_ADDR_UIMM12:
1781 imm = opnd->addr.offset.imm;
1782 /* Get the size of the data element that is accessed, which may be
1783 different from that of the source register size,
1784 e.g. in strb/ldrb. */
1785 size = aarch64_get_qualifier_esize (qualifier);
1786 if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
1787 {
1788 set_offset_out_of_range_error (mismatch_detail, idx,
1789 0, 4095 * size);
1790 return 0;
1791 }
1792 if (!value_aligned_p (opnd->addr.offset.imm, size))
1793 {
1794 set_unaligned_error (mismatch_detail, idx, size);
1795 return 0;
1796 }
1797 break;
1798
1799 case AARCH64_OPND_ADDR_PCREL14:
1800 case AARCH64_OPND_ADDR_PCREL19:
1801 case AARCH64_OPND_ADDR_PCREL21:
1802 case AARCH64_OPND_ADDR_PCREL26:
1803 imm = opnd->imm.value;
1804 if (operand_need_shift_by_two (get_operand_from_code (type)))
1805 {
1806 /* The offset value in a PC-relative branch instruction is alway
1807 4-byte aligned and is encoded without the lowest 2 bits. */
1808 if (!value_aligned_p (imm, 4))
1809 {
1810 set_unaligned_error (mismatch_detail, idx, 4);
1811 return 0;
1812 }
1813 /* Right shift by 2 so that we can carry out the following check
1814 canonically. */
1815 imm >>= 2;
1816 }
1817 size = get_operand_fields_width (get_operand_from_code (type));
1818 if (!value_fit_signed_field_p (imm, size))
1819 {
1820 set_other_error (mismatch_detail, idx,
1821 _("immediate out of range"));
1822 return 0;
1823 }
1824 break;
1825
1826 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
1827 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
1828 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
1829 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
1830 min_value = -8;
1831 max_value = 7;
1832 sve_imm_offset_vl:
1833 assert (!opnd->addr.offset.is_reg);
1834 assert (opnd->addr.preind);
1835 num = 1 + get_operand_specific_data (&aarch64_operands[type]);
1836 min_value *= num;
1837 max_value *= num;
1838 if ((opnd->addr.offset.imm != 0 && !opnd->shifter.operator_present)
1839 || (opnd->shifter.operator_present
1840 && opnd->shifter.kind != AARCH64_MOD_MUL_VL))
1841 {
1842 set_other_error (mismatch_detail, idx,
1843 _("invalid addressing mode"));
1844 return 0;
1845 }
1846 if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
1847 {
1848 set_offset_out_of_range_error (mismatch_detail, idx,
1849 min_value, max_value);
1850 return 0;
1851 }
1852 if (!value_aligned_p (opnd->addr.offset.imm, num))
1853 {
1854 set_unaligned_error (mismatch_detail, idx, num);
1855 return 0;
1856 }
1857 break;
1858
1859 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
1860 min_value = -32;
1861 max_value = 31;
1862 goto sve_imm_offset_vl;
1863
1864 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
1865 min_value = -256;
1866 max_value = 255;
1867 goto sve_imm_offset_vl;
1868
1869 case AARCH64_OPND_SVE_ADDR_RI_U6:
1870 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
1871 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
1872 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
1873 min_value = 0;
1874 max_value = 63;
1875 sve_imm_offset:
1876 assert (!opnd->addr.offset.is_reg);
1877 assert (opnd->addr.preind);
1878 num = 1 << get_operand_specific_data (&aarch64_operands[type]);
1879 min_value *= num;
1880 max_value *= num;
1881 if (opnd->shifter.operator_present
1882 || opnd->shifter.amount_present)
1883 {
1884 set_other_error (mismatch_detail, idx,
1885 _("invalid addressing mode"));
1886 return 0;
1887 }
1888 if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value))
1889 {
1890 set_offset_out_of_range_error (mismatch_detail, idx,
1891 min_value, max_value);
1892 return 0;
1893 }
1894 if (!value_aligned_p (opnd->addr.offset.imm, num))
1895 {
1896 set_unaligned_error (mismatch_detail, idx, num);
1897 return 0;
1898 }
1899 break;
1900
1901 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
1902 case AARCH64_OPND_SVE_ADDR_RI_S4x32:
1903 min_value = -8;
1904 max_value = 7;
1905 goto sve_imm_offset;
1906
1907 case AARCH64_OPND_SVE_ADDR_ZX:
1908 /* Everything is already ensured by parse_operands or
1909 aarch64_ext_sve_addr_rr_lsl (because this is a very specific
1910 argument type). */
1911 assert (opnd->addr.offset.is_reg);
1912 assert (opnd->addr.preind);
1913 assert ((aarch64_operands[type].flags & OPD_F_NO_ZR) == 0);
1914 assert (opnd->shifter.kind == AARCH64_MOD_LSL);
1915 assert (opnd->shifter.operator_present == 0);
1916 break;
1917
1918 case AARCH64_OPND_SVE_ADDR_R:
1919 case AARCH64_OPND_SVE_ADDR_RR:
1920 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
1921 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
1922 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
1923 case AARCH64_OPND_SVE_ADDR_RX:
1924 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
1925 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
1926 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
1927 case AARCH64_OPND_SVE_ADDR_RZ:
1928 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
1929 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
1930 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
1931 modifiers = 1 << AARCH64_MOD_LSL;
1932 sve_rr_operand:
1933 assert (opnd->addr.offset.is_reg);
1934 assert (opnd->addr.preind);
1935 if ((aarch64_operands[type].flags & OPD_F_NO_ZR) != 0
1936 && opnd->addr.offset.regno == 31)
1937 {
1938 set_other_error (mismatch_detail, idx,
1939 _("index register xzr is not allowed"));
1940 return 0;
1941 }
1942 if (((1 << opnd->shifter.kind) & modifiers) == 0
1943 || (opnd->shifter.amount
1944 != get_operand_specific_data (&aarch64_operands[type])))
1945 {
1946 set_other_error (mismatch_detail, idx,
1947 _("invalid addressing mode"));
1948 return 0;
1949 }
1950 break;
1951
1952 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
1953 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
1954 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
1955 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
1956 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
1957 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
1958 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
1959 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
1960 modifiers = (1 << AARCH64_MOD_SXTW) | (1 << AARCH64_MOD_UXTW);
1961 goto sve_rr_operand;
1962
1963 case AARCH64_OPND_SVE_ADDR_ZI_U5:
1964 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
1965 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
1966 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
1967 min_value = 0;
1968 max_value = 31;
1969 goto sve_imm_offset;
1970
1971 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
1972 modifiers = 1 << AARCH64_MOD_LSL;
1973 sve_zz_operand:
1974 assert (opnd->addr.offset.is_reg);
1975 assert (opnd->addr.preind);
1976 if (((1 << opnd->shifter.kind) & modifiers) == 0
1977 || opnd->shifter.amount < 0
1978 || opnd->shifter.amount > 3)
1979 {
1980 set_other_error (mismatch_detail, idx,
1981 _("invalid addressing mode"));
1982 return 0;
1983 }
1984 break;
1985
1986 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
1987 modifiers = (1 << AARCH64_MOD_SXTW);
1988 goto sve_zz_operand;
1989
1990 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
1991 modifiers = 1 << AARCH64_MOD_UXTW;
1992 goto sve_zz_operand;
1993
1994 default:
1995 break;
1996 }
1997 break;
1998
1999 case AARCH64_OPND_CLASS_SIMD_REGLIST:
2000 if (type == AARCH64_OPND_LEt)
2001 {
2002 /* Get the upper bound for the element index. */
2003 num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
2004 if (!value_in_range_p (opnd->reglist.index, 0, num))
2005 {
2006 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
2007 return 0;
2008 }
2009 }
2010 /* The opcode dependent area stores the number of elements in
2011 each structure to be loaded/stored. */
2012 num = get_opcode_dependent_value (opcode);
2013 switch (type)
2014 {
2015 case AARCH64_OPND_LVt:
2016 assert (num >= 1 && num <= 4);
2017 /* Unless LD1/ST1, the number of registers should be equal to that
2018 of the structure elements. */
2019 if (num != 1 && opnd->reglist.num_regs != num)
2020 {
2021 set_reg_list_error (mismatch_detail, idx, num);
2022 return 0;
2023 }
2024 break;
2025 case AARCH64_OPND_LVt_AL:
2026 case AARCH64_OPND_LEt:
2027 assert (num >= 1 && num <= 4);
2028 /* The number of registers should be equal to that of the structure
2029 elements. */
2030 if (opnd->reglist.num_regs != num)
2031 {
2032 set_reg_list_error (mismatch_detail, idx, num);
2033 return 0;
2034 }
2035 break;
2036 default:
2037 break;
2038 }
2039 break;
2040
2041 case AARCH64_OPND_CLASS_IMMEDIATE:
2042 /* Constraint check on immediate operand. */
2043 imm = opnd->imm.value;
2044 /* E.g. imm_0_31 constrains value to be 0..31. */
2045 if (qualifier_value_in_range_constraint_p (qualifier)
2046 && !value_in_range_p (imm, get_lower_bound (qualifier),
2047 get_upper_bound (qualifier)))
2048 {
2049 set_imm_out_of_range_error (mismatch_detail, idx,
2050 get_lower_bound (qualifier),
2051 get_upper_bound (qualifier));
2052 return 0;
2053 }
2054
2055 switch (type)
2056 {
2057 case AARCH64_OPND_AIMM:
2058 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2059 {
2060 set_other_error (mismatch_detail, idx,
2061 _("invalid shift operator"));
2062 return 0;
2063 }
2064 if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
2065 {
2066 set_other_error (mismatch_detail, idx,
2067 _("shift amount must be 0 or 12"));
2068 return 0;
2069 }
2070 if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
2071 {
2072 set_other_error (mismatch_detail, idx,
2073 _("immediate out of range"));
2074 return 0;
2075 }
2076 break;
2077
2078 case AARCH64_OPND_HALF:
2079 assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
2080 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2081 {
2082 set_other_error (mismatch_detail, idx,
2083 _("invalid shift operator"));
2084 return 0;
2085 }
2086 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2087 if (!value_aligned_p (opnd->shifter.amount, 16))
2088 {
2089 set_other_error (mismatch_detail, idx,
2090 _("shift amount must be a multiple of 16"));
2091 return 0;
2092 }
2093 if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
2094 {
2095 set_sft_amount_out_of_range_error (mismatch_detail, idx,
2096 0, size * 8 - 16);
2097 return 0;
2098 }
2099 if (opnd->imm.value < 0)
2100 {
2101 set_other_error (mismatch_detail, idx,
2102 _("negative immediate value not allowed"));
2103 return 0;
2104 }
2105 if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
2106 {
2107 set_other_error (mismatch_detail, idx,
2108 _("immediate out of range"));
2109 return 0;
2110 }
2111 break;
2112
2113 case AARCH64_OPND_IMM_MOV:
2114 {
2115 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2116 imm = opnd->imm.value;
2117 assert (idx == 1);
2118 switch (opcode->op)
2119 {
2120 case OP_MOV_IMM_WIDEN:
2121 imm = ~imm;
2122 /* Fall through. */
2123 case OP_MOV_IMM_WIDE:
2124 if (!aarch64_wide_constant_p (imm, esize == 4, NULL))
2125 {
2126 set_other_error (mismatch_detail, idx,
2127 _("immediate out of range"));
2128 return 0;
2129 }
2130 break;
2131 case OP_MOV_IMM_LOG:
2132 if (!aarch64_logical_immediate_p (imm, esize, NULL))
2133 {
2134 set_other_error (mismatch_detail, idx,
2135 _("immediate out of range"));
2136 return 0;
2137 }
2138 break;
2139 default:
2140 assert (0);
2141 return 0;
2142 }
2143 }
2144 break;
2145
2146 case AARCH64_OPND_NZCV:
2147 case AARCH64_OPND_CCMP_IMM:
2148 case AARCH64_OPND_EXCEPTION:
2149 case AARCH64_OPND_TME_UIMM16:
2150 case AARCH64_OPND_UIMM4:
2151 case AARCH64_OPND_UIMM4_ADDG:
2152 case AARCH64_OPND_UIMM7:
2153 case AARCH64_OPND_UIMM3_OP1:
2154 case AARCH64_OPND_UIMM3_OP2:
2155 case AARCH64_OPND_SVE_UIMM3:
2156 case AARCH64_OPND_SVE_UIMM7:
2157 case AARCH64_OPND_SVE_UIMM8:
2158 case AARCH64_OPND_SVE_UIMM8_53:
2159 size = get_operand_fields_width (get_operand_from_code (type));
2160 assert (size < 32);
2161 if (!value_fit_unsigned_field_p (opnd->imm.value, size))
2162 {
2163 set_imm_out_of_range_error (mismatch_detail, idx, 0,
2164 (1 << size) - 1);
2165 return 0;
2166 }
2167 break;
2168
2169 case AARCH64_OPND_UIMM10:
2170 /* Scaled unsigned 10 bits immediate offset. */
2171 if (!value_in_range_p (opnd->imm.value, 0, 1008))
2172 {
2173 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1008);
2174 return 0;
2175 }
2176
2177 if (!value_aligned_p (opnd->imm.value, 16))
2178 {
2179 set_unaligned_error (mismatch_detail, idx, 16);
2180 return 0;
2181 }
2182 break;
2183
2184 case AARCH64_OPND_SIMM5:
2185 case AARCH64_OPND_SVE_SIMM5:
2186 case AARCH64_OPND_SVE_SIMM5B:
2187 case AARCH64_OPND_SVE_SIMM6:
2188 case AARCH64_OPND_SVE_SIMM8:
2189 size = get_operand_fields_width (get_operand_from_code (type));
2190 assert (size < 32);
2191 if (!value_fit_signed_field_p (opnd->imm.value, size))
2192 {
2193 set_imm_out_of_range_error (mismatch_detail, idx,
2194 -(1 << (size - 1)),
2195 (1 << (size - 1)) - 1);
2196 return 0;
2197 }
2198 break;
2199
2200 case AARCH64_OPND_WIDTH:
2201 assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM
2202 && opnds[0].type == AARCH64_OPND_Rd);
2203 size = get_upper_bound (qualifier);
2204 if (opnd->imm.value + opnds[idx-1].imm.value > size)
2205 /* lsb+width <= reg.size */
2206 {
2207 set_imm_out_of_range_error (mismatch_detail, idx, 1,
2208 size - opnds[idx-1].imm.value);
2209 return 0;
2210 }
2211 break;
2212
2213 case AARCH64_OPND_LIMM:
2214 case AARCH64_OPND_SVE_LIMM:
2215 {
2216 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2217 uint64_t uimm = opnd->imm.value;
2218 if (opcode->op == OP_BIC)
2219 uimm = ~uimm;
2220 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2221 {
2222 set_other_error (mismatch_detail, idx,
2223 _("immediate out of range"));
2224 return 0;
2225 }
2226 }
2227 break;
2228
2229 case AARCH64_OPND_IMM0:
2230 case AARCH64_OPND_FPIMM0:
2231 if (opnd->imm.value != 0)
2232 {
2233 set_other_error (mismatch_detail, idx,
2234 _("immediate zero expected"));
2235 return 0;
2236 }
2237 break;
2238
2239 case AARCH64_OPND_IMM_ROT1:
2240 case AARCH64_OPND_IMM_ROT2:
2241 case AARCH64_OPND_SVE_IMM_ROT2:
2242 if (opnd->imm.value != 0
2243 && opnd->imm.value != 90
2244 && opnd->imm.value != 180
2245 && opnd->imm.value != 270)
2246 {
2247 set_other_error (mismatch_detail, idx,
2248 _("rotate expected to be 0, 90, 180 or 270"));
2249 return 0;
2250 }
2251 break;
2252
2253 case AARCH64_OPND_IMM_ROT3:
2254 case AARCH64_OPND_SVE_IMM_ROT1:
2255 case AARCH64_OPND_SVE_IMM_ROT3:
2256 if (opnd->imm.value != 90 && opnd->imm.value != 270)
2257 {
2258 set_other_error (mismatch_detail, idx,
2259 _("rotate expected to be 90 or 270"));
2260 return 0;
2261 }
2262 break;
2263
2264 case AARCH64_OPND_SHLL_IMM:
2265 assert (idx == 2);
2266 size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2267 if (opnd->imm.value != size)
2268 {
2269 set_other_error (mismatch_detail, idx,
2270 _("invalid shift amount"));
2271 return 0;
2272 }
2273 break;
2274
2275 case AARCH64_OPND_IMM_VLSL:
2276 size = aarch64_get_qualifier_esize (qualifier);
2277 if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
2278 {
2279 set_imm_out_of_range_error (mismatch_detail, idx, 0,
2280 size * 8 - 1);
2281 return 0;
2282 }
2283 break;
2284
2285 case AARCH64_OPND_IMM_VLSR:
2286 size = aarch64_get_qualifier_esize (qualifier);
2287 if (!value_in_range_p (opnd->imm.value, 1, size * 8))
2288 {
2289 set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
2290 return 0;
2291 }
2292 break;
2293
2294 case AARCH64_OPND_SIMD_IMM:
2295 case AARCH64_OPND_SIMD_IMM_SFT:
2296 /* Qualifier check. */
2297 switch (qualifier)
2298 {
2299 case AARCH64_OPND_QLF_LSL:
2300 if (opnd->shifter.kind != AARCH64_MOD_LSL)
2301 {
2302 set_other_error (mismatch_detail, idx,
2303 _("invalid shift operator"));
2304 return 0;
2305 }
2306 break;
2307 case AARCH64_OPND_QLF_MSL:
2308 if (opnd->shifter.kind != AARCH64_MOD_MSL)
2309 {
2310 set_other_error (mismatch_detail, idx,
2311 _("invalid shift operator"));
2312 return 0;
2313 }
2314 break;
2315 case AARCH64_OPND_QLF_NIL:
2316 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2317 {
2318 set_other_error (mismatch_detail, idx,
2319 _("shift is not permitted"));
2320 return 0;
2321 }
2322 break;
2323 default:
2324 assert (0);
2325 return 0;
2326 }
2327 /* Is the immediate valid? */
2328 assert (idx == 1);
2329 if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
2330 {
2331 /* uimm8 or simm8 */
2332 if (!value_in_range_p (opnd->imm.value, -128, 255))
2333 {
2334 set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
2335 return 0;
2336 }
2337 }
2338 else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
2339 {
2340 /* uimm64 is not
2341 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
2342 ffffffffgggggggghhhhhhhh'. */
2343 set_other_error (mismatch_detail, idx,
2344 _("invalid value for immediate"));
2345 return 0;
2346 }
2347 /* Is the shift amount valid? */
2348 switch (opnd->shifter.kind)
2349 {
2350 case AARCH64_MOD_LSL:
2351 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2352 if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
2353 {
2354 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
2355 (size - 1) * 8);
2356 return 0;
2357 }
2358 if (!value_aligned_p (opnd->shifter.amount, 8))
2359 {
2360 set_unaligned_error (mismatch_detail, idx, 8);
2361 return 0;
2362 }
2363 break;
2364 case AARCH64_MOD_MSL:
2365 /* Only 8 and 16 are valid shift amount. */
2366 if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
2367 {
2368 set_other_error (mismatch_detail, idx,
2369 _("shift amount must be 0 or 16"));
2370 return 0;
2371 }
2372 break;
2373 default:
2374 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2375 {
2376 set_other_error (mismatch_detail, idx,
2377 _("invalid shift operator"));
2378 return 0;
2379 }
2380 break;
2381 }
2382 break;
2383
2384 case AARCH64_OPND_FPIMM:
2385 case AARCH64_OPND_SIMD_FPIMM:
2386 case AARCH64_OPND_SVE_FPIMM8:
2387 if (opnd->imm.is_fp == 0)
2388 {
2389 set_other_error (mismatch_detail, idx,
2390 _("floating-point immediate expected"));
2391 return 0;
2392 }
2393 /* The value is expected to be an 8-bit floating-point constant with
2394 sign, 3-bit exponent and normalized 4 bits of precision, encoded
2395 in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
2396 instruction). */
2397 if (!value_in_range_p (opnd->imm.value, 0, 255))
2398 {
2399 set_other_error (mismatch_detail, idx,
2400 _("immediate out of range"));
2401 return 0;
2402 }
2403 if (opnd->shifter.kind != AARCH64_MOD_NONE)
2404 {
2405 set_other_error (mismatch_detail, idx,
2406 _("invalid shift operator"));
2407 return 0;
2408 }
2409 break;
2410
2411 case AARCH64_OPND_SVE_AIMM:
2412 min_value = 0;
2413 sve_aimm:
2414 assert (opnd->shifter.kind == AARCH64_MOD_LSL);
2415 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
2416 mask = ~((uint64_t) -1 << (size * 4) << (size * 4));
2417 uvalue = opnd->imm.value;
2418 shift = opnd->shifter.amount;
2419 if (size == 1)
2420 {
2421 if (shift != 0)
2422 {
2423 set_other_error (mismatch_detail, idx,
2424 _("no shift amount allowed for"
2425 " 8-bit constants"));
2426 return 0;
2427 }
2428 }
2429 else
2430 {
2431 if (shift != 0 && shift != 8)
2432 {
2433 set_other_error (mismatch_detail, idx,
2434 _("shift amount must be 0 or 8"));
2435 return 0;
2436 }
2437 if (shift == 0 && (uvalue & 0xff) == 0)
2438 {
2439 shift = 8;
2440 uvalue = (int64_t) uvalue / 256;
2441 }
2442 }
2443 mask >>= shift;
2444 if ((uvalue & mask) != uvalue && (uvalue | ~mask) != uvalue)
2445 {
2446 set_other_error (mismatch_detail, idx,
2447 _("immediate too big for element size"));
2448 return 0;
2449 }
2450 uvalue = (uvalue - min_value) & mask;
2451 if (uvalue > 0xff)
2452 {
2453 set_other_error (mismatch_detail, idx,
2454 _("invalid arithmetic immediate"));
2455 return 0;
2456 }
2457 break;
2458
2459 case AARCH64_OPND_SVE_ASIMM:
2460 min_value = -128;
2461 goto sve_aimm;
2462
2463 case AARCH64_OPND_SVE_I1_HALF_ONE:
2464 assert (opnd->imm.is_fp);
2465 if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x3f800000)
2466 {
2467 set_other_error (mismatch_detail, idx,
2468 _("floating-point value must be 0.5 or 1.0"));
2469 return 0;
2470 }
2471 break;
2472
2473 case AARCH64_OPND_SVE_I1_HALF_TWO:
2474 assert (opnd->imm.is_fp);
2475 if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x40000000)
2476 {
2477 set_other_error (mismatch_detail, idx,
2478 _("floating-point value must be 0.5 or 2.0"));
2479 return 0;
2480 }
2481 break;
2482
2483 case AARCH64_OPND_SVE_I1_ZERO_ONE:
2484 assert (opnd->imm.is_fp);
2485 if (opnd->imm.value != 0 && opnd->imm.value != 0x3f800000)
2486 {
2487 set_other_error (mismatch_detail, idx,
2488 _("floating-point value must be 0.0 or 1.0"));
2489 return 0;
2490 }
2491 break;
2492
2493 case AARCH64_OPND_SVE_INV_LIMM:
2494 {
2495 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2496 uint64_t uimm = ~opnd->imm.value;
2497 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2498 {
2499 set_other_error (mismatch_detail, idx,
2500 _("immediate out of range"));
2501 return 0;
2502 }
2503 }
2504 break;
2505
2506 case AARCH64_OPND_SVE_LIMM_MOV:
2507 {
2508 int esize = aarch64_get_qualifier_esize (opnds[0].qualifier);
2509 uint64_t uimm = opnd->imm.value;
2510 if (!aarch64_logical_immediate_p (uimm, esize, NULL))
2511 {
2512 set_other_error (mismatch_detail, idx,
2513 _("immediate out of range"));
2514 return 0;
2515 }
2516 if (!aarch64_sve_dupm_mov_immediate_p (uimm, esize))
2517 {
2518 set_other_error (mismatch_detail, idx,
2519 _("invalid replicated MOV immediate"));
2520 return 0;
2521 }
2522 }
2523 break;
2524
2525 case AARCH64_OPND_SVE_PATTERN_SCALED:
2526 assert (opnd->shifter.kind == AARCH64_MOD_MUL);
2527 if (!value_in_range_p (opnd->shifter.amount, 1, 16))
2528 {
2529 set_multiplier_out_of_range_error (mismatch_detail, idx, 1, 16);
2530 return 0;
2531 }
2532 break;
2533
2534 case AARCH64_OPND_SVE_SHLIMM_PRED:
2535 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
2536 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
2537 size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
2538 if (!value_in_range_p (opnd->imm.value, 0, 8 * size - 1))
2539 {
2540 set_imm_out_of_range_error (mismatch_detail, idx,
2541 0, 8 * size - 1);
2542 return 0;
2543 }
2544 break;
2545
2546 case AARCH64_OPND_SVE_SHRIMM_PRED:
2547 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
2548 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
2549 num = (type == AARCH64_OPND_SVE_SHRIMM_UNPRED_22) ? 2 : 1;
2550 size = aarch64_get_qualifier_esize (opnds[idx - num].qualifier);
2551 if (!value_in_range_p (opnd->imm.value, 1, 8 * size))
2552 {
2553 set_imm_out_of_range_error (mismatch_detail, idx, 1, 8*size);
2554 return 0;
2555 }
2556 break;
2557
2558 default:
2559 break;
2560 }
2561 break;
2562
2563 case AARCH64_OPND_CLASS_SYSTEM:
2564 switch (type)
2565 {
2566 case AARCH64_OPND_PSTATEFIELD:
2567 assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
2568 /* MSR UAO, #uimm4
2569 MSR PAN, #uimm4
2570 MSR SSBS,#uimm4
2571 The immediate must be #0 or #1. */
2572 if ((opnd->pstatefield == 0x03 /* UAO. */
2573 || opnd->pstatefield == 0x04 /* PAN. */
2574 || opnd->pstatefield == 0x19 /* SSBS. */
2575 || opnd->pstatefield == 0x1a) /* DIT. */
2576 && opnds[1].imm.value > 1)
2577 {
2578 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
2579 return 0;
2580 }
2581 /* MSR SPSel, #uimm4
2582 Uses uimm4 as a control value to select the stack pointer: if
2583 bit 0 is set it selects the current exception level's stack
2584 pointer, if bit 0 is clear it selects shared EL0 stack pointer.
2585 Bits 1 to 3 of uimm4 are reserved and should be zero. */
2586 if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1)
2587 {
2588 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
2589 return 0;
2590 }
2591 break;
2592 default:
2593 break;
2594 }
2595 break;
2596
2597 case AARCH64_OPND_CLASS_SIMD_ELEMENT:
2598 /* Get the upper bound for the element index. */
2599 if (opcode->op == OP_FCMLA_ELEM)
2600 /* FCMLA index range depends on the vector size of other operands
2601 and is halfed because complex numbers take two elements. */
2602 num = aarch64_get_qualifier_nelem (opnds[0].qualifier)
2603 * aarch64_get_qualifier_esize (opnds[0].qualifier) / 2;
2604 else
2605 num = 16;
2606 num = num / aarch64_get_qualifier_esize (qualifier) - 1;
2607 assert (aarch64_get_qualifier_nelem (qualifier) == 1);
2608
2609 /* Index out-of-range. */
2610 if (!value_in_range_p (opnd->reglane.index, 0, num))
2611 {
2612 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
2613 return 0;
2614 }
2615 /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
2616 <Vm> Is the vector register (V0-V31) or (V0-V15), whose
2617 number is encoded in "size:M:Rm":
2618 size <Vm>
2619 00 RESERVED
2620 01 0:Rm
2621 10 M:Rm
2622 11 RESERVED */
2623 if (type == AARCH64_OPND_Em16 && qualifier == AARCH64_OPND_QLF_S_H
2624 && !value_in_range_p (opnd->reglane.regno, 0, 15))
2625 {
2626 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
2627 return 0;
2628 }
2629 break;
2630
2631 case AARCH64_OPND_CLASS_MODIFIED_REG:
2632 assert (idx == 1 || idx == 2);
2633 switch (type)
2634 {
2635 case AARCH64_OPND_Rm_EXT:
2636 if (!aarch64_extend_operator_p (opnd->shifter.kind)
2637 && opnd->shifter.kind != AARCH64_MOD_LSL)
2638 {
2639 set_other_error (mismatch_detail, idx,
2640 _("extend operator expected"));
2641 return 0;
2642 }
2643 /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
2644 (i.e. SP), in which case it defaults to LSL. The LSL alias is
2645 only valid when "Rd" or "Rn" is '11111', and is preferred in that
2646 case. */
2647 if (!aarch64_stack_pointer_p (opnds + 0)
2648 && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
2649 {
2650 if (!opnd->shifter.operator_present)
2651 {
2652 set_other_error (mismatch_detail, idx,
2653 _("missing extend operator"));
2654 return 0;
2655 }
2656 else if (opnd->shifter.kind == AARCH64_MOD_LSL)
2657 {
2658 set_other_error (mismatch_detail, idx,
2659 _("'LSL' operator not allowed"));
2660 return 0;
2661 }
2662 }
2663 assert (opnd->shifter.operator_present /* Default to LSL. */
2664 || opnd->shifter.kind == AARCH64_MOD_LSL);
2665 if (!value_in_range_p (opnd->shifter.amount, 0, 4))
2666 {
2667 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
2668 return 0;
2669 }
2670 /* In the 64-bit form, the final register operand is written as Wm
2671 for all but the (possibly omitted) UXTX/LSL and SXTX
2672 operators.
2673 N.B. GAS allows X register to be used with any operator as a
2674 programming convenience. */
2675 if (qualifier == AARCH64_OPND_QLF_X
2676 && opnd->shifter.kind != AARCH64_MOD_LSL
2677 && opnd->shifter.kind != AARCH64_MOD_UXTX
2678 && opnd->shifter.kind != AARCH64_MOD_SXTX)
2679 {
2680 set_other_error (mismatch_detail, idx, _("W register expected"));
2681 return 0;
2682 }
2683 break;
2684
2685 case AARCH64_OPND_Rm_SFT:
2686 /* ROR is not available to the shifted register operand in
2687 arithmetic instructions. */
2688 if (!aarch64_shift_operator_p (opnd->shifter.kind))
2689 {
2690 set_other_error (mismatch_detail, idx,
2691 _("shift operator expected"));
2692 return 0;
2693 }
2694 if (opnd->shifter.kind == AARCH64_MOD_ROR
2695 && opcode->iclass != log_shift)
2696 {
2697 set_other_error (mismatch_detail, idx,
2698 _("'ROR' operator not allowed"));
2699 return 0;
2700 }
2701 num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
2702 if (!value_in_range_p (opnd->shifter.amount, 0, num))
2703 {
2704 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
2705 return 0;
2706 }
2707 break;
2708
2709 default:
2710 break;
2711 }
2712 break;
2713
2714 default:
2715 break;
2716 }
2717
2718 return 1;
2719 }
2720
2721 /* Main entrypoint for the operand constraint checking.
2722
2723 Return 1 if operands of *INST meet the constraint applied by the operand
2724 codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
2725 not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
2726 adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
2727 with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
2728 error kind when it is notified that an instruction does not pass the check).
2729
2730 Un-determined operand qualifiers may get established during the process. */
2731
2732 int
2733 aarch64_match_operands_constraint (aarch64_inst *inst,
2734 aarch64_operand_error *mismatch_detail)
2735 {
2736 int i;
2737
2738 DEBUG_TRACE ("enter");
2739
2740 /* Check for cases where a source register needs to be the same as the
2741 destination register. Do this before matching qualifiers since if
2742 an instruction has both invalid tying and invalid qualifiers,
2743 the error about qualifiers would suggest several alternative
2744 instructions that also have invalid tying. */
2745 i = inst->opcode->tied_operand;
2746 if (i > 0 && (inst->operands[0].reg.regno != inst->operands[i].reg.regno))
2747 {
2748 if (mismatch_detail)
2749 {
2750 mismatch_detail->kind = AARCH64_OPDE_UNTIED_OPERAND;
2751 mismatch_detail->index = i;
2752 mismatch_detail->error = NULL;
2753 }
2754 return 0;
2755 }
2756
2757 /* Match operands' qualifier.
2758 *INST has already had qualifier establish for some, if not all, of
2759 its operands; we need to find out whether these established
2760 qualifiers match one of the qualifier sequence in
2761 INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
2762 with the corresponding qualifier in such a sequence.
2763 Only basic operand constraint checking is done here; the more thorough
2764 constraint checking will carried out by operand_general_constraint_met_p,
2765 which has be to called after this in order to get all of the operands'
2766 qualifiers established. */
2767 if (match_operands_qualifier (inst, TRUE /* update_p */) == 0)
2768 {
2769 DEBUG_TRACE ("FAIL on operand qualifier matching");
2770 if (mismatch_detail)
2771 {
2772 /* Return an error type to indicate that it is the qualifier
2773 matching failure; we don't care about which operand as there
2774 are enough information in the opcode table to reproduce it. */
2775 mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
2776 mismatch_detail->index = -1;
2777 mismatch_detail->error = NULL;
2778 }
2779 return 0;
2780 }
2781
2782 /* Match operands' constraint. */
2783 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2784 {
2785 enum aarch64_opnd type = inst->opcode->operands[i];
2786 if (type == AARCH64_OPND_NIL)
2787 break;
2788 if (inst->operands[i].skip)
2789 {
2790 DEBUG_TRACE ("skip the incomplete operand %d", i);
2791 continue;
2792 }
2793 if (operand_general_constraint_met_p (inst->operands, i, type,
2794 inst->opcode, mismatch_detail) == 0)
2795 {
2796 DEBUG_TRACE ("FAIL on operand %d", i);
2797 return 0;
2798 }
2799 }
2800
2801 DEBUG_TRACE ("PASS");
2802
2803 return 1;
2804 }
2805
2806 /* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
2807 Also updates the TYPE of each INST->OPERANDS with the corresponding
2808 value of OPCODE->OPERANDS.
2809
2810 Note that some operand qualifiers may need to be manually cleared by
2811 the caller before it further calls the aarch64_opcode_encode; by
2812 doing this, it helps the qualifier matching facilities work
2813 properly. */
2814
2815 const aarch64_opcode*
2816 aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
2817 {
2818 int i;
2819 const aarch64_opcode *old = inst->opcode;
2820
2821 inst->opcode = opcode;
2822
2823 /* Update the operand types. */
2824 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2825 {
2826 inst->operands[i].type = opcode->operands[i];
2827 if (opcode->operands[i] == AARCH64_OPND_NIL)
2828 break;
2829 }
2830
2831 DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);
2832
2833 return old;
2834 }
2835
2836 int
2837 aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
2838 {
2839 int i;
2840 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2841 if (operands[i] == operand)
2842 return i;
2843 else if (operands[i] == AARCH64_OPND_NIL)
2844 break;
2845 return -1;
2846 }
2847 \f
2848 /* R0...R30, followed by FOR31. */
2849 #define BANK(R, FOR31) \
2850 { R (0), R (1), R (2), R (3), R (4), R (5), R (6), R (7), \
2851 R (8), R (9), R (10), R (11), R (12), R (13), R (14), R (15), \
2852 R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \
2853 R (24), R (25), R (26), R (27), R (28), R (29), R (30), FOR31 }
2854 /* [0][0] 32-bit integer regs with sp Wn
2855 [0][1] 64-bit integer regs with sp Xn sf=1
2856 [1][0] 32-bit integer regs with #0 Wn
2857 [1][1] 64-bit integer regs with #0 Xn sf=1 */
2858 static const char *int_reg[2][2][32] = {
2859 #define R32(X) "w" #X
2860 #define R64(X) "x" #X
2861 { BANK (R32, "wsp"), BANK (R64, "sp") },
2862 { BANK (R32, "wzr"), BANK (R64, "xzr") }
2863 #undef R64
2864 #undef R32
2865 };
2866
2867 /* Names of the SVE vector registers, first with .S suffixes,
2868 then with .D suffixes. */
2869
2870 static const char *sve_reg[2][32] = {
2871 #define ZS(X) "z" #X ".s"
2872 #define ZD(X) "z" #X ".d"
2873 BANK (ZS, ZS (31)), BANK (ZD, ZD (31))
2874 #undef ZD
2875 #undef ZS
2876 };
2877 #undef BANK
2878
2879 /* Return the integer register name.
2880 if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
2881
2882 static inline const char *
2883 get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
2884 {
2885 const int has_zr = sp_reg_p ? 0 : 1;
2886 const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
2887 return int_reg[has_zr][is_64][regno];
2888 }
2889
2890 /* Like get_int_reg_name, but IS_64 is always 1. */
2891
2892 static inline const char *
2893 get_64bit_int_reg_name (int regno, int sp_reg_p)
2894 {
2895 const int has_zr = sp_reg_p ? 0 : 1;
2896 return int_reg[has_zr][1][regno];
2897 }
2898
2899 /* Get the name of the integer offset register in OPND, using the shift type
2900 to decide whether it's a word or doubleword. */
2901
2902 static inline const char *
2903 get_offset_int_reg_name (const aarch64_opnd_info *opnd)
2904 {
2905 switch (opnd->shifter.kind)
2906 {
2907 case AARCH64_MOD_UXTW:
2908 case AARCH64_MOD_SXTW:
2909 return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_W, 0);
2910
2911 case AARCH64_MOD_LSL:
2912 case AARCH64_MOD_SXTX:
2913 return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_X, 0);
2914
2915 default:
2916 abort ();
2917 }
2918 }
2919
2920 /* Get the name of the SVE vector offset register in OPND, using the operand
2921 qualifier to decide whether the suffix should be .S or .D. */
2922
2923 static inline const char *
2924 get_addr_sve_reg_name (int regno, aarch64_opnd_qualifier_t qualifier)
2925 {
2926 assert (qualifier == AARCH64_OPND_QLF_S_S
2927 || qualifier == AARCH64_OPND_QLF_S_D);
2928 return sve_reg[qualifier == AARCH64_OPND_QLF_S_D][regno];
2929 }
2930
2931 /* Types for expanding an encoded 8-bit value to a floating-point value. */
2932
2933 typedef union
2934 {
2935 uint64_t i;
2936 double d;
2937 } double_conv_t;
2938
2939 typedef union
2940 {
2941 uint32_t i;
2942 float f;
2943 } single_conv_t;
2944
2945 typedef union
2946 {
2947 uint32_t i;
2948 float f;
2949 } half_conv_t;
2950
2951 /* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
2952 normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
2953 (depending on the type of the instruction). IMM8 will be expanded to a
2954 single-precision floating-point value (SIZE == 4) or a double-precision
2955 floating-point value (SIZE == 8). A half-precision floating-point value
2956 (SIZE == 2) is expanded to a single-precision floating-point value. The
2957 expanded value is returned. */
2958
2959 static uint64_t
2960 expand_fp_imm (int size, uint32_t imm8)
2961 {
2962 uint64_t imm = 0;
2963 uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;
2964
2965 imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */
2966 imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */
2967 imm8_6 = imm8_6_0 >> 6; /* imm8<6> */
2968 imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
2969 | (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */
2970 if (size == 8)
2971 {
2972 imm = (imm8_7 << (63-32)) /* imm8<7> */
2973 | ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */
2974 | (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
2975 | (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
2976 | (imm8_6_0 << (48-32)); /* imm8<6>:imm8<5:0> */
2977 imm <<= 32;
2978 }
2979 else if (size == 4 || size == 2)
2980 {
2981 imm = (imm8_7 << 31) /* imm8<7> */
2982 | ((imm8_6 ^ 1) << 30) /* NOT(imm8<6>) */
2983 | (imm8_6_repl4 << 26) /* Replicate(imm8<6>,4) */
2984 | (imm8_6_0 << 19); /* imm8<6>:imm8<5:0> */
2985 }
2986 else
2987 {
2988 /* An unsupported size. */
2989 assert (0);
2990 }
2991
2992 return imm;
2993 }
2994
2995 /* Produce the string representation of the register list operand *OPND
2996 in the buffer pointed by BUF of size SIZE. PREFIX is the part of
2997 the register name that comes before the register number, such as "v". */
2998 static void
2999 print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd,
3000 const char *prefix)
3001 {
3002 const int num_regs = opnd->reglist.num_regs;
3003 const int first_reg = opnd->reglist.first_regno;
3004 const int last_reg = (first_reg + num_regs - 1) & 0x1f;
3005 const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
3006 char tb[8]; /* Temporary buffer. */
3007
3008 assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
3009 assert (num_regs >= 1 && num_regs <= 4);
3010
3011 /* Prepare the index if any. */
3012 if (opnd->reglist.has_index)
3013 /* PR 21096: The %100 is to silence a warning about possible truncation. */
3014 snprintf (tb, 8, "[%" PRIi64 "]", (opnd->reglist.index % 100));
3015 else
3016 tb[0] = '\0';
3017
3018 /* The hyphenated form is preferred for disassembly if there are
3019 more than two registers in the list, and the register numbers
3020 are monotonically increasing in increments of one. */
3021 if (num_regs > 2 && last_reg > first_reg)
3022 snprintf (buf, size, "{%s%d.%s-%s%d.%s}%s", prefix, first_reg, qlf_name,
3023 prefix, last_reg, qlf_name, tb);
3024 else
3025 {
3026 const int reg0 = first_reg;
3027 const int reg1 = (first_reg + 1) & 0x1f;
3028 const int reg2 = (first_reg + 2) & 0x1f;
3029 const int reg3 = (first_reg + 3) & 0x1f;
3030
3031 switch (num_regs)
3032 {
3033 case 1:
3034 snprintf (buf, size, "{%s%d.%s}%s", prefix, reg0, qlf_name, tb);
3035 break;
3036 case 2:
3037 snprintf (buf, size, "{%s%d.%s, %s%d.%s}%s", prefix, reg0, qlf_name,
3038 prefix, reg1, qlf_name, tb);
3039 break;
3040 case 3:
3041 snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s}%s",
3042 prefix, reg0, qlf_name, prefix, reg1, qlf_name,
3043 prefix, reg2, qlf_name, tb);
3044 break;
3045 case 4:
3046 snprintf (buf, size, "{%s%d.%s, %s%d.%s, %s%d.%s, %s%d.%s}%s",
3047 prefix, reg0, qlf_name, prefix, reg1, qlf_name,
3048 prefix, reg2, qlf_name, prefix, reg3, qlf_name, tb);
3049 break;
3050 }
3051 }
3052 }
3053
3054 /* Print the register+immediate address in OPND to BUF, which has SIZE
3055 characters. BASE is the name of the base register. */
3056
3057 static void
3058 print_immediate_offset_address (char *buf, size_t size,
3059 const aarch64_opnd_info *opnd,
3060 const char *base)
3061 {
3062 if (opnd->addr.writeback)
3063 {
3064 if (opnd->addr.preind)
3065 {
3066 if (opnd->type == AARCH64_OPND_ADDR_SIMM10 && !opnd->addr.offset.imm)
3067 snprintf (buf, size, "[%s]!", base);
3068 else
3069 snprintf (buf, size, "[%s, #%d]!", base, opnd->addr.offset.imm);
3070 }
3071 else
3072 snprintf (buf, size, "[%s], #%d", base, opnd->addr.offset.imm);
3073 }
3074 else
3075 {
3076 if (opnd->shifter.operator_present)
3077 {
3078 assert (opnd->shifter.kind == AARCH64_MOD_MUL_VL);
3079 snprintf (buf, size, "[%s, #%d, mul vl]",
3080 base, opnd->addr.offset.imm);
3081 }
3082 else if (opnd->addr.offset.imm)
3083 snprintf (buf, size, "[%s, #%d]", base, opnd->addr.offset.imm);
3084 else
3085 snprintf (buf, size, "[%s]", base);
3086 }
3087 }
3088
3089 /* Produce the string representation of the register offset address operand
3090 *OPND in the buffer pointed by BUF of size SIZE. BASE and OFFSET are
3091 the names of the base and offset registers. */
3092 static void
3093 print_register_offset_address (char *buf, size_t size,
3094 const aarch64_opnd_info *opnd,
3095 const char *base, const char *offset)
3096 {
3097 char tb[16]; /* Temporary buffer. */
3098 bfd_boolean print_extend_p = TRUE;
3099 bfd_boolean print_amount_p = TRUE;
3100 const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;
3101
3102 if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
3103 || !opnd->shifter.amount_present))
3104 {
3105 /* Not print the shift/extend amount when the amount is zero and
3106 when it is not the special case of 8-bit load/store instruction. */
3107 print_amount_p = FALSE;
3108 /* Likewise, no need to print the shift operator LSL in such a
3109 situation. */
3110 if (opnd->shifter.kind == AARCH64_MOD_LSL)
3111 print_extend_p = FALSE;
3112 }
3113
3114 /* Prepare for the extend/shift. */
3115 if (print_extend_p)
3116 {
3117 if (print_amount_p)
3118 snprintf (tb, sizeof (tb), ", %s #%" PRIi64, shift_name,
3119 /* PR 21096: The %100 is to silence a warning about possible truncation. */
3120 (opnd->shifter.amount % 100));
3121 else
3122 snprintf (tb, sizeof (tb), ", %s", shift_name);
3123 }
3124 else
3125 tb[0] = '\0';
3126
3127 snprintf (buf, size, "[%s, %s%s]", base, offset, tb);
3128 }
3129
3130 /* Generate the string representation of the operand OPNDS[IDX] for OPCODE
3131 in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
3132 PC, PCREL_P and ADDRESS are used to pass in and return information about
3133 the PC-relative address calculation, where the PC value is passed in
3134 PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
3135 will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
3136 calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
3137
3138 The function serves both the disassembler and the assembler diagnostics
3139 issuer, which is the reason why it lives in this file. */
3140
3141 void
3142 aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
3143 const aarch64_opcode *opcode,
3144 const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
3145 bfd_vma *address, char** notes)
3146 {
3147 unsigned int i, num_conds;
3148 const char *name = NULL;
3149 const aarch64_opnd_info *opnd = opnds + idx;
3150 enum aarch64_modifier_kind kind;
3151 uint64_t addr, enum_value;
3152
3153 buf[0] = '\0';
3154 if (pcrel_p)
3155 *pcrel_p = 0;
3156
3157 switch (opnd->type)
3158 {
3159 case AARCH64_OPND_Rd:
3160 case AARCH64_OPND_Rn:
3161 case AARCH64_OPND_Rm:
3162 case AARCH64_OPND_Rt:
3163 case AARCH64_OPND_Rt2:
3164 case AARCH64_OPND_Rs:
3165 case AARCH64_OPND_Ra:
3166 case AARCH64_OPND_Rt_SYS:
3167 case AARCH64_OPND_PAIRREG:
3168 case AARCH64_OPND_SVE_Rm:
3169 /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
3170 the <ic_op>, therefore we use opnd->present to override the
3171 generic optional-ness information. */
3172 if (opnd->type == AARCH64_OPND_Rt_SYS)
3173 {
3174 if (!opnd->present)
3175 break;
3176 }
3177 /* Omit the operand, e.g. RET. */
3178 else if (optional_operand_p (opcode, idx)
3179 && (opnd->reg.regno
3180 == get_optional_operand_default_value (opcode)))
3181 break;
3182 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3183 || opnd->qualifier == AARCH64_OPND_QLF_X);
3184 snprintf (buf, size, "%s",
3185 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3186 break;
3187
3188 case AARCH64_OPND_Rd_SP:
3189 case AARCH64_OPND_Rn_SP:
3190 case AARCH64_OPND_Rt_SP:
3191 case AARCH64_OPND_SVE_Rn_SP:
3192 case AARCH64_OPND_Rm_SP:
3193 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3194 || opnd->qualifier == AARCH64_OPND_QLF_WSP
3195 || opnd->qualifier == AARCH64_OPND_QLF_X
3196 || opnd->qualifier == AARCH64_OPND_QLF_SP);
3197 snprintf (buf, size, "%s",
3198 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 1));
3199 break;
3200
3201 case AARCH64_OPND_Rm_EXT:
3202 kind = opnd->shifter.kind;
3203 assert (idx == 1 || idx == 2);
3204 if ((aarch64_stack_pointer_p (opnds)
3205 || (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
3206 && ((opnd->qualifier == AARCH64_OPND_QLF_W
3207 && opnds[0].qualifier == AARCH64_OPND_QLF_W
3208 && kind == AARCH64_MOD_UXTW)
3209 || (opnd->qualifier == AARCH64_OPND_QLF_X
3210 && kind == AARCH64_MOD_UXTX)))
3211 {
3212 /* 'LSL' is the preferred form in this case. */
3213 kind = AARCH64_MOD_LSL;
3214 if (opnd->shifter.amount == 0)
3215 {
3216 /* Shifter omitted. */
3217 snprintf (buf, size, "%s",
3218 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3219 break;
3220 }
3221 }
3222 if (opnd->shifter.amount)
3223 snprintf (buf, size, "%s, %s #%" PRIi64,
3224 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3225 aarch64_operand_modifiers[kind].name,
3226 opnd->shifter.amount);
3227 else
3228 snprintf (buf, size, "%s, %s",
3229 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3230 aarch64_operand_modifiers[kind].name);
3231 break;
3232
3233 case AARCH64_OPND_Rm_SFT:
3234 assert (opnd->qualifier == AARCH64_OPND_QLF_W
3235 || opnd->qualifier == AARCH64_OPND_QLF_X);
3236 if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
3237 snprintf (buf, size, "%s",
3238 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
3239 else
3240 snprintf (buf, size, "%s, %s #%" PRIi64,
3241 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
3242 aarch64_operand_modifiers[opnd->shifter.kind].name,
3243 opnd->shifter.amount);
3244 break;
3245
3246 case AARCH64_OPND_Fd:
3247 case AARCH64_OPND_Fn:
3248 case AARCH64_OPND_Fm:
3249 case AARCH64_OPND_Fa:
3250 case AARCH64_OPND_Ft:
3251 case AARCH64_OPND_Ft2:
3252 case AARCH64_OPND_Sd:
3253 case AARCH64_OPND_Sn:
3254 case AARCH64_OPND_Sm:
3255 case AARCH64_OPND_SVE_VZn:
3256 case AARCH64_OPND_SVE_Vd:
3257 case AARCH64_OPND_SVE_Vm:
3258 case AARCH64_OPND_SVE_Vn:
3259 snprintf (buf, size, "%s%d", aarch64_get_qualifier_name (opnd->qualifier),
3260 opnd->reg.regno);
3261 break;
3262
3263 case AARCH64_OPND_Va:
3264 case AARCH64_OPND_Vd:
3265 case AARCH64_OPND_Vn:
3266 case AARCH64_OPND_Vm:
3267 snprintf (buf, size, "v%d.%s", opnd->reg.regno,
3268 aarch64_get_qualifier_name (opnd->qualifier));
3269 break;
3270
3271 case AARCH64_OPND_Ed:
3272 case AARCH64_OPND_En:
3273 case AARCH64_OPND_Em:
3274 case AARCH64_OPND_Em16:
3275 case AARCH64_OPND_SM3_IMM2:
3276 snprintf (buf, size, "v%d.%s[%" PRIi64 "]", opnd->reglane.regno,
3277 aarch64_get_qualifier_name (opnd->qualifier),
3278 opnd->reglane.index);
3279 break;
3280
3281 case AARCH64_OPND_VdD1:
3282 case AARCH64_OPND_VnD1:
3283 snprintf (buf, size, "v%d.d[1]", opnd->reg.regno);
3284 break;
3285
3286 case AARCH64_OPND_LVn:
3287 case AARCH64_OPND_LVt:
3288 case AARCH64_OPND_LVt_AL:
3289 case AARCH64_OPND_LEt:
3290 print_register_list (buf, size, opnd, "v");
3291 break;
3292
3293 case AARCH64_OPND_SVE_Pd:
3294 case AARCH64_OPND_SVE_Pg3:
3295 case AARCH64_OPND_SVE_Pg4_5:
3296 case AARCH64_OPND_SVE_Pg4_10:
3297 case AARCH64_OPND_SVE_Pg4_16:
3298 case AARCH64_OPND_SVE_Pm:
3299 case AARCH64_OPND_SVE_Pn:
3300 case AARCH64_OPND_SVE_Pt:
3301 if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
3302 snprintf (buf, size, "p%d", opnd->reg.regno);
3303 else if (opnd->qualifier == AARCH64_OPND_QLF_P_Z
3304 || opnd->qualifier == AARCH64_OPND_QLF_P_M)
3305 snprintf (buf, size, "p%d/%s", opnd->reg.regno,
3306 aarch64_get_qualifier_name (opnd->qualifier));
3307 else
3308 snprintf (buf, size, "p%d.%s", opnd->reg.regno,
3309 aarch64_get_qualifier_name (opnd->qualifier));
3310 break;
3311
3312 case AARCH64_OPND_SVE_Za_5:
3313 case AARCH64_OPND_SVE_Za_16:
3314 case AARCH64_OPND_SVE_Zd:
3315 case AARCH64_OPND_SVE_Zm_5:
3316 case AARCH64_OPND_SVE_Zm_16:
3317 case AARCH64_OPND_SVE_Zn:
3318 case AARCH64_OPND_SVE_Zt:
3319 if (opnd->qualifier == AARCH64_OPND_QLF_NIL)
3320 snprintf (buf, size, "z%d", opnd->reg.regno);
3321 else
3322 snprintf (buf, size, "z%d.%s", opnd->reg.regno,
3323 aarch64_get_qualifier_name (opnd->qualifier));
3324 break;
3325
3326 case AARCH64_OPND_SVE_ZnxN:
3327 case AARCH64_OPND_SVE_ZtxN:
3328 print_register_list (buf, size, opnd, "z");
3329 break;
3330
3331 case AARCH64_OPND_SVE_Zm3_INDEX:
3332 case AARCH64_OPND_SVE_Zm3_22_INDEX:
3333 case AARCH64_OPND_SVE_Zm3_11_INDEX:
3334 case AARCH64_OPND_SVE_Zm4_11_INDEX:
3335 case AARCH64_OPND_SVE_Zm4_INDEX:
3336 case AARCH64_OPND_SVE_Zn_INDEX:
3337 snprintf (buf, size, "z%d.%s[%" PRIi64 "]", opnd->reglane.regno,
3338 aarch64_get_qualifier_name (opnd->qualifier),
3339 opnd->reglane.index);
3340 break;
3341
3342 case AARCH64_OPND_CRn:
3343 case AARCH64_OPND_CRm:
3344 snprintf (buf, size, "C%" PRIi64, opnd->imm.value);
3345 break;
3346
3347 case AARCH64_OPND_IDX:
3348 case AARCH64_OPND_MASK:
3349 case AARCH64_OPND_IMM:
3350 case AARCH64_OPND_IMM_2:
3351 case AARCH64_OPND_WIDTH:
3352 case AARCH64_OPND_UIMM3_OP1:
3353 case AARCH64_OPND_UIMM3_OP2:
3354 case AARCH64_OPND_BIT_NUM:
3355 case AARCH64_OPND_IMM_VLSL:
3356 case AARCH64_OPND_IMM_VLSR:
3357 case AARCH64_OPND_SHLL_IMM:
3358 case AARCH64_OPND_IMM0:
3359 case AARCH64_OPND_IMMR:
3360 case AARCH64_OPND_IMMS:
3361 case AARCH64_OPND_FBITS:
3362 case AARCH64_OPND_TME_UIMM16:
3363 case AARCH64_OPND_SIMM5:
3364 case AARCH64_OPND_SVE_SHLIMM_PRED:
3365 case AARCH64_OPND_SVE_SHLIMM_UNPRED:
3366 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22:
3367 case AARCH64_OPND_SVE_SHRIMM_PRED:
3368 case AARCH64_OPND_SVE_SHRIMM_UNPRED:
3369 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22:
3370 case AARCH64_OPND_SVE_SIMM5:
3371 case AARCH64_OPND_SVE_SIMM5B:
3372 case AARCH64_OPND_SVE_SIMM6:
3373 case AARCH64_OPND_SVE_SIMM8:
3374 case AARCH64_OPND_SVE_UIMM3:
3375 case AARCH64_OPND_SVE_UIMM7:
3376 case AARCH64_OPND_SVE_UIMM8:
3377 case AARCH64_OPND_SVE_UIMM8_53:
3378 case AARCH64_OPND_IMM_ROT1:
3379 case AARCH64_OPND_IMM_ROT2:
3380 case AARCH64_OPND_IMM_ROT3:
3381 case AARCH64_OPND_SVE_IMM_ROT1:
3382 case AARCH64_OPND_SVE_IMM_ROT2:
3383 case AARCH64_OPND_SVE_IMM_ROT3:
3384 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3385 break;
3386
3387 case AARCH64_OPND_SVE_I1_HALF_ONE:
3388 case AARCH64_OPND_SVE_I1_HALF_TWO:
3389 case AARCH64_OPND_SVE_I1_ZERO_ONE:
3390 {
3391 single_conv_t c;
3392 c.i = opnd->imm.value;
3393 snprintf (buf, size, "#%.1f", c.f);
3394 break;
3395 }
3396
3397 case AARCH64_OPND_SVE_PATTERN:
3398 if (optional_operand_p (opcode, idx)
3399 && opnd->imm.value == get_optional_operand_default_value (opcode))
3400 break;
3401 enum_value = opnd->imm.value;
3402 assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
3403 if (aarch64_sve_pattern_array[enum_value])
3404 snprintf (buf, size, "%s", aarch64_sve_pattern_array[enum_value]);
3405 else
3406 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3407 break;
3408
3409 case AARCH64_OPND_SVE_PATTERN_SCALED:
3410 if (optional_operand_p (opcode, idx)
3411 && !opnd->shifter.operator_present
3412 && opnd->imm.value == get_optional_operand_default_value (opcode))
3413 break;
3414 enum_value = opnd->imm.value;
3415 assert (enum_value < ARRAY_SIZE (aarch64_sve_pattern_array));
3416 if (aarch64_sve_pattern_array[opnd->imm.value])
3417 snprintf (buf, size, "%s", aarch64_sve_pattern_array[opnd->imm.value]);
3418 else
3419 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3420 if (opnd->shifter.operator_present)
3421 {
3422 size_t len = strlen (buf);
3423 snprintf (buf + len, size - len, ", %s #%" PRIi64,
3424 aarch64_operand_modifiers[opnd->shifter.kind].name,
3425 opnd->shifter.amount);
3426 }
3427 break;
3428
3429 case AARCH64_OPND_SVE_PRFOP:
3430 enum_value = opnd->imm.value;
3431 assert (enum_value < ARRAY_SIZE (aarch64_sve_prfop_array));
3432 if (aarch64_sve_prfop_array[enum_value])
3433 snprintf (buf, size, "%s", aarch64_sve_prfop_array[enum_value]);
3434 else
3435 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3436 break;
3437
3438 case AARCH64_OPND_IMM_MOV:
3439 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
3440 {
3441 case 4: /* e.g. MOV Wd, #<imm32>. */
3442 {
3443 int imm32 = opnd->imm.value;
3444 snprintf (buf, size, "#0x%-20x\t// #%d", imm32, imm32);
3445 }
3446 break;
3447 case 8: /* e.g. MOV Xd, #<imm64>. */
3448 snprintf (buf, size, "#0x%-20" PRIx64 "\t// #%" PRIi64,
3449 opnd->imm.value, opnd->imm.value);
3450 break;
3451 default: assert (0);
3452 }
3453 break;
3454
3455 case AARCH64_OPND_FPIMM0:
3456 snprintf (buf, size, "#0.0");
3457 break;
3458
3459 case AARCH64_OPND_LIMM:
3460 case AARCH64_OPND_AIMM:
3461 case AARCH64_OPND_HALF:
3462 case AARCH64_OPND_SVE_INV_LIMM:
3463 case AARCH64_OPND_SVE_LIMM:
3464 case AARCH64_OPND_SVE_LIMM_MOV:
3465 if (opnd->shifter.amount)
3466 snprintf (buf, size, "#0x%" PRIx64 ", lsl #%" PRIi64, opnd->imm.value,
3467 opnd->shifter.amount);
3468 else
3469 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
3470 break;
3471
3472 case AARCH64_OPND_SIMD_IMM:
3473 case AARCH64_OPND_SIMD_IMM_SFT:
3474 if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
3475 || opnd->shifter.kind == AARCH64_MOD_NONE)
3476 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
3477 else
3478 snprintf (buf, size, "#0x%" PRIx64 ", %s #%" PRIi64, opnd->imm.value,
3479 aarch64_operand_modifiers[opnd->shifter.kind].name,
3480 opnd->shifter.amount);
3481 break;
3482
3483 case AARCH64_OPND_SVE_AIMM:
3484 case AARCH64_OPND_SVE_ASIMM:
3485 if (opnd->shifter.amount)
3486 snprintf (buf, size, "#%" PRIi64 ", lsl #%" PRIi64, opnd->imm.value,
3487 opnd->shifter.amount);
3488 else
3489 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
3490 break;
3491
3492 case AARCH64_OPND_FPIMM:
3493 case AARCH64_OPND_SIMD_FPIMM:
3494 case AARCH64_OPND_SVE_FPIMM8:
3495 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
3496 {
3497 case 2: /* e.g. FMOV <Hd>, #<imm>. */
3498 {
3499 half_conv_t c;
3500 c.i = expand_fp_imm (2, opnd->imm.value);
3501 snprintf (buf, size, "#%.18e", c.f);
3502 }
3503 break;
3504 case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
3505 {
3506 single_conv_t c;
3507 c.i = expand_fp_imm (4, opnd->imm.value);
3508 snprintf (buf, size, "#%.18e", c.f);
3509 }
3510 break;
3511 case 8: /* e.g. FMOV <Sd>, #<imm>. */
3512 {
3513 double_conv_t c;
3514 c.i = expand_fp_imm (8, opnd->imm.value);
3515 snprintf (buf, size, "#%.18e", c.d);
3516 }
3517 break;
3518 default: assert (0);
3519 }
3520 break;
3521
3522 case AARCH64_OPND_CCMP_IMM:
3523 case AARCH64_OPND_NZCV:
3524 case AARCH64_OPND_EXCEPTION:
3525 case AARCH64_OPND_UIMM4:
3526 case AARCH64_OPND_UIMM4_ADDG:
3527 case AARCH64_OPND_UIMM7:
3528 case AARCH64_OPND_UIMM10:
3529 if (optional_operand_p (opcode, idx) == TRUE
3530 && (opnd->imm.value ==
3531 (int64_t) get_optional_operand_default_value (opcode)))
3532 /* Omit the operand, e.g. DCPS1. */
3533 break;
3534 snprintf (buf, size, "#0x%x", (unsigned int)opnd->imm.value);
3535 break;
3536
3537 case AARCH64_OPND_COND:
3538 case AARCH64_OPND_COND1:
3539 snprintf (buf, size, "%s", opnd->cond->names[0]);
3540 num_conds = ARRAY_SIZE (opnd->cond->names);
3541 for (i = 1; i < num_conds && opnd->cond->names[i]; ++i)
3542 {
3543 size_t len = strlen (buf);
3544 if (i == 1)
3545 snprintf (buf + len, size - len, " // %s = %s",
3546 opnd->cond->names[0], opnd->cond->names[i]);
3547 else
3548 snprintf (buf + len, size - len, ", %s",
3549 opnd->cond->names[i]);
3550 }
3551 break;
3552
3553 case AARCH64_OPND_ADDR_ADRP:
3554 addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
3555 + opnd->imm.value;
3556 if (pcrel_p)
3557 *pcrel_p = 1;
3558 if (address)
3559 *address = addr;
3560 /* This is not necessary during the disassembling, as print_address_func
3561 in the disassemble_info will take care of the printing. But some
3562 other callers may be still interested in getting the string in *STR,
3563 so here we do snprintf regardless. */
3564 snprintf (buf, size, "#0x%" PRIx64, addr);
3565 break;
3566
3567 case AARCH64_OPND_ADDR_PCREL14:
3568 case AARCH64_OPND_ADDR_PCREL19:
3569 case AARCH64_OPND_ADDR_PCREL21:
3570 case AARCH64_OPND_ADDR_PCREL26:
3571 addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
3572 if (pcrel_p)
3573 *pcrel_p = 1;
3574 if (address)
3575 *address = addr;
3576 /* This is not necessary during the disassembling, as print_address_func
3577 in the disassemble_info will take care of the printing. But some
3578 other callers may be still interested in getting the string in *STR,
3579 so here we do snprintf regardless. */
3580 snprintf (buf, size, "#0x%" PRIx64, addr);
3581 break;
3582
3583 case AARCH64_OPND_ADDR_SIMPLE:
3584 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
3585 case AARCH64_OPND_SIMD_ADDR_POST:
3586 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3587 if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
3588 {
3589 if (opnd->addr.offset.is_reg)
3590 snprintf (buf, size, "[%s], x%d", name, opnd->addr.offset.regno);
3591 else
3592 snprintf (buf, size, "[%s], #%d", name, opnd->addr.offset.imm);
3593 }
3594 else
3595 snprintf (buf, size, "[%s]", name);
3596 break;
3597
3598 case AARCH64_OPND_ADDR_REGOFF:
3599 case AARCH64_OPND_SVE_ADDR_R:
3600 case AARCH64_OPND_SVE_ADDR_RR:
3601 case AARCH64_OPND_SVE_ADDR_RR_LSL1:
3602 case AARCH64_OPND_SVE_ADDR_RR_LSL2:
3603 case AARCH64_OPND_SVE_ADDR_RR_LSL3:
3604 case AARCH64_OPND_SVE_ADDR_RX:
3605 case AARCH64_OPND_SVE_ADDR_RX_LSL1:
3606 case AARCH64_OPND_SVE_ADDR_RX_LSL2:
3607 case AARCH64_OPND_SVE_ADDR_RX_LSL3:
3608 print_register_offset_address
3609 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
3610 get_offset_int_reg_name (opnd));
3611 break;
3612
3613 case AARCH64_OPND_SVE_ADDR_ZX:
3614 print_register_offset_address
3615 (buf, size, opnd,
3616 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
3617 get_64bit_int_reg_name (opnd->addr.offset.regno, 0));
3618 break;
3619
3620 case AARCH64_OPND_SVE_ADDR_RZ:
3621 case AARCH64_OPND_SVE_ADDR_RZ_LSL1:
3622 case AARCH64_OPND_SVE_ADDR_RZ_LSL2:
3623 case AARCH64_OPND_SVE_ADDR_RZ_LSL3:
3624 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14:
3625 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22:
3626 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14:
3627 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22:
3628 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14:
3629 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22:
3630 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14:
3631 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22:
3632 print_register_offset_address
3633 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1),
3634 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
3635 break;
3636
3637 case AARCH64_OPND_ADDR_SIMM7:
3638 case AARCH64_OPND_ADDR_SIMM9:
3639 case AARCH64_OPND_ADDR_SIMM9_2:
3640 case AARCH64_OPND_ADDR_SIMM10:
3641 case AARCH64_OPND_ADDR_SIMM11:
3642 case AARCH64_OPND_ADDR_SIMM13:
3643 case AARCH64_OPND_ADDR_OFFSET:
3644 case AARCH64_OPND_SVE_ADDR_RI_S4x16:
3645 case AARCH64_OPND_SVE_ADDR_RI_S4x32:
3646 case AARCH64_OPND_SVE_ADDR_RI_S4xVL:
3647 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL:
3648 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL:
3649 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL:
3650 case AARCH64_OPND_SVE_ADDR_RI_S6xVL:
3651 case AARCH64_OPND_SVE_ADDR_RI_S9xVL:
3652 case AARCH64_OPND_SVE_ADDR_RI_U6:
3653 case AARCH64_OPND_SVE_ADDR_RI_U6x2:
3654 case AARCH64_OPND_SVE_ADDR_RI_U6x4:
3655 case AARCH64_OPND_SVE_ADDR_RI_U6x8:
3656 print_immediate_offset_address
3657 (buf, size, opnd, get_64bit_int_reg_name (opnd->addr.base_regno, 1));
3658 break;
3659
3660 case AARCH64_OPND_SVE_ADDR_ZI_U5:
3661 case AARCH64_OPND_SVE_ADDR_ZI_U5x2:
3662 case AARCH64_OPND_SVE_ADDR_ZI_U5x4:
3663 case AARCH64_OPND_SVE_ADDR_ZI_U5x8:
3664 print_immediate_offset_address
3665 (buf, size, opnd,
3666 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier));
3667 break;
3668
3669 case AARCH64_OPND_SVE_ADDR_ZZ_LSL:
3670 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW:
3671 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW:
3672 print_register_offset_address
3673 (buf, size, opnd,
3674 get_addr_sve_reg_name (opnd->addr.base_regno, opnd->qualifier),
3675 get_addr_sve_reg_name (opnd->addr.offset.regno, opnd->qualifier));
3676 break;
3677
3678 case AARCH64_OPND_ADDR_UIMM12:
3679 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
3680 if (opnd->addr.offset.imm)
3681 snprintf (buf, size, "[%s, #%d]", name, opnd->addr.offset.imm);
3682 else
3683 snprintf (buf, size, "[%s]", name);
3684 break;
3685
3686 case AARCH64_OPND_SYSREG:
3687 for (i = 0; aarch64_sys_regs[i].name; ++i)
3688 {
3689 bfd_boolean exact_match
3690 = (aarch64_sys_regs[i].flags & opnd->sysreg.flags)
3691 == opnd->sysreg.flags;
3692
3693 /* Try and find an exact match, But if that fails, return the first
3694 partial match that was found. */
3695 if (aarch64_sys_regs[i].value == opnd->sysreg.value
3696 && ! aarch64_sys_reg_deprecated_p (&aarch64_sys_regs[i])
3697 && (name == NULL || exact_match))
3698 {
3699 name = aarch64_sys_regs[i].name;
3700 if (exact_match)
3701 {
3702 if (notes)
3703 *notes = NULL;
3704 break;
3705 }
3706
3707 /* If we didn't match exactly, that means the presense of a flag
3708 indicates what we didn't want for this instruction. e.g. If
3709 F_REG_READ is there, that means we were looking for a write
3710 register. See aarch64_ext_sysreg. */
3711 if (aarch64_sys_regs[i].flags & F_REG_WRITE)
3712 *notes = _("reading from a write-only register");
3713 else if (aarch64_sys_regs[i].flags & F_REG_READ)
3714 *notes = _("writing to a read-only register");
3715 }
3716 }
3717
3718 if (name)
3719 snprintf (buf, size, "%s", name);
3720 else
3721 {
3722 /* Implementation defined system register. */
3723 unsigned int value = opnd->sysreg.value;
3724 snprintf (buf, size, "s%u_%u_c%u_c%u_%u", (value >> 14) & 0x3,
3725 (value >> 11) & 0x7, (value >> 7) & 0xf, (value >> 3) & 0xf,
3726 value & 0x7);
3727 }
3728 break;
3729
3730 case AARCH64_OPND_PSTATEFIELD:
3731 for (i = 0; aarch64_pstatefields[i].name; ++i)
3732 if (aarch64_pstatefields[i].value == opnd->pstatefield)
3733 break;
3734 assert (aarch64_pstatefields[i].name);
3735 snprintf (buf, size, "%s", aarch64_pstatefields[i].name);
3736 break;
3737
3738 case AARCH64_OPND_SYSREG_AT:
3739 case AARCH64_OPND_SYSREG_DC:
3740 case AARCH64_OPND_SYSREG_IC:
3741 case AARCH64_OPND_SYSREG_TLBI:
3742 case AARCH64_OPND_SYSREG_SR:
3743 snprintf (buf, size, "%s", opnd->sysins_op->name);
3744 break;
3745
3746 case AARCH64_OPND_BARRIER:
3747 snprintf (buf, size, "%s", opnd->barrier->name);
3748 break;
3749
3750 case AARCH64_OPND_BARRIER_ISB:
3751 /* Operand can be omitted, e.g. in DCPS1. */
3752 if (! optional_operand_p (opcode, idx)
3753 || (opnd->barrier->value
3754 != get_optional_operand_default_value (opcode)))
3755 snprintf (buf, size, "#0x%x", opnd->barrier->value);
3756 break;
3757
3758 case AARCH64_OPND_PRFOP:
3759 if (opnd->prfop->name != NULL)
3760 snprintf (buf, size, "%s", opnd->prfop->name);
3761 else
3762 snprintf (buf, size, "#0x%02x", opnd->prfop->value);
3763 break;
3764
3765 case AARCH64_OPND_BARRIER_PSB:
3766 case AARCH64_OPND_BTI_TARGET:
3767 if ((HINT_FLAG (opnd->hint_option->value) & HINT_OPD_F_NOPRINT) == 0)
3768 snprintf (buf, size, "%s", opnd->hint_option->name);
3769 break;
3770
3771 default:
3772 assert (0);
3773 }
3774 }
3775 \f
3776 #define CPENC(op0,op1,crn,crm,op2) \
3777 ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
3778 /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
3779 #define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
3780 /* for 3.9.10 System Instructions */
3781 #define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
3782
3783 #define C0 0
3784 #define C1 1
3785 #define C2 2
3786 #define C3 3
3787 #define C4 4
3788 #define C5 5
3789 #define C6 6
3790 #define C7 7
3791 #define C8 8
3792 #define C9 9
3793 #define C10 10
3794 #define C11 11
3795 #define C12 12
3796 #define C13 13
3797 #define C14 14
3798 #define C15 15
3799
3800 /* TODO there is one more issues need to be resolved
3801 1. handle cpu-implementation-defined system registers. */
3802 const aarch64_sys_reg aarch64_sys_regs [] =
3803 {
3804 { "spsr_el1", CPEN_(0,C0,0), 0 }, /* = spsr_svc */
3805 { "spsr_el12", CPEN_ (5, C0, 0), F_ARCHEXT },
3806 { "elr_el1", CPEN_(0,C0,1), 0 },
3807 { "elr_el12", CPEN_ (5, C0, 1), F_ARCHEXT },
3808 { "sp_el0", CPEN_(0,C1,0), 0 },
3809 { "spsel", CPEN_(0,C2,0), 0 },
3810 { "daif", CPEN_(3,C2,1), 0 },
3811 { "currentel", CPEN_(0,C2,2), F_REG_READ }, /* RO */
3812 { "pan", CPEN_(0,C2,3), F_ARCHEXT },
3813 { "uao", CPEN_ (0, C2, 4), F_ARCHEXT },
3814 { "nzcv", CPEN_(3,C2,0), 0 },
3815 { "ssbs", CPEN_(3,C2,6), F_ARCHEXT },
3816 { "fpcr", CPEN_(3,C4,0), 0 },
3817 { "fpsr", CPEN_(3,C4,1), 0 },
3818 { "dspsr_el0", CPEN_(3,C5,0), 0 },
3819 { "dlr_el0", CPEN_(3,C5,1), 0 },
3820 { "spsr_el2", CPEN_(4,C0,0), 0 }, /* = spsr_hyp */
3821 { "elr_el2", CPEN_(4,C0,1), 0 },
3822 { "sp_el1", CPEN_(4,C1,0), 0 },
3823 { "spsr_irq", CPEN_(4,C3,0), 0 },
3824 { "spsr_abt", CPEN_(4,C3,1), 0 },
3825 { "spsr_und", CPEN_(4,C3,2), 0 },
3826 { "spsr_fiq", CPEN_(4,C3,3), 0 },
3827 { "spsr_el3", CPEN_(6,C0,0), 0 },
3828 { "elr_el3", CPEN_(6,C0,1), 0 },
3829 { "sp_el2", CPEN_(6,C1,0), 0 },
3830 { "spsr_svc", CPEN_(0,C0,0), F_DEPRECATED }, /* = spsr_el1 */
3831 { "spsr_hyp", CPEN_(4,C0,0), F_DEPRECATED }, /* = spsr_el2 */
3832 { "midr_el1", CPENC(3,0,C0,C0,0), F_REG_READ }, /* RO */
3833 { "ctr_el0", CPENC(3,3,C0,C0,1), F_REG_READ }, /* RO */
3834 { "mpidr_el1", CPENC(3,0,C0,C0,5), F_REG_READ }, /* RO */
3835 { "revidr_el1", CPENC(3,0,C0,C0,6), F_REG_READ }, /* RO */
3836 { "aidr_el1", CPENC(3,1,C0,C0,7), F_REG_READ }, /* RO */
3837 { "dczid_el0", CPENC(3,3,C0,C0,7), F_REG_READ }, /* RO */
3838 { "id_dfr0_el1", CPENC(3,0,C0,C1,2), F_REG_READ }, /* RO */
3839 { "id_pfr0_el1", CPENC(3,0,C0,C1,0), F_REG_READ }, /* RO */
3840 { "id_pfr1_el1", CPENC(3,0,C0,C1,1), F_REG_READ }, /* RO */
3841 { "id_pfr2_el1", CPENC(3,0,C0,C3,4), F_ARCHEXT | F_REG_READ}, /* RO */
3842 { "id_afr0_el1", CPENC(3,0,C0,C1,3), F_REG_READ }, /* RO */
3843 { "id_mmfr0_el1", CPENC(3,0,C0,C1,4), F_REG_READ }, /* RO */
3844 { "id_mmfr1_el1", CPENC(3,0,C0,C1,5), F_REG_READ }, /* RO */
3845 { "id_mmfr2_el1", CPENC(3,0,C0,C1,6), F_REG_READ }, /* RO */
3846 { "id_mmfr3_el1", CPENC(3,0,C0,C1,7), F_REG_READ }, /* RO */
3847 { "id_mmfr4_el1", CPENC(3,0,C0,C2,6), F_REG_READ }, /* RO */
3848 { "id_isar0_el1", CPENC(3,0,C0,C2,0), F_REG_READ }, /* RO */
3849 { "id_isar1_el1", CPENC(3,0,C0,C2,1), F_REG_READ }, /* RO */
3850 { "id_isar2_el1", CPENC(3,0,C0,C2,2), F_REG_READ }, /* RO */
3851 { "id_isar3_el1", CPENC(3,0,C0,C2,3), F_REG_READ }, /* RO */
3852 { "id_isar4_el1", CPENC(3,0,C0,C2,4), F_REG_READ }, /* RO */
3853 { "id_isar5_el1", CPENC(3,0,C0,C2,5), F_REG_READ }, /* RO */
3854 { "mvfr0_el1", CPENC(3,0,C0,C3,0), F_REG_READ }, /* RO */
3855 { "mvfr1_el1", CPENC(3,0,C0,C3,1), F_REG_READ }, /* RO */
3856 { "mvfr2_el1", CPENC(3,0,C0,C3,2), F_REG_READ }, /* RO */
3857 { "ccsidr_el1", CPENC(3,1,C0,C0,0), F_REG_READ }, /* RO */
3858 { "id_aa64pfr0_el1", CPENC(3,0,C0,C4,0), F_REG_READ }, /* RO */
3859 { "id_aa64pfr1_el1", CPENC(3,0,C0,C4,1), F_REG_READ }, /* RO */
3860 { "id_aa64dfr0_el1", CPENC(3,0,C0,C5,0), F_REG_READ }, /* RO */
3861 { "id_aa64dfr1_el1", CPENC(3,0,C0,C5,1), F_REG_READ }, /* RO */
3862 { "id_aa64isar0_el1", CPENC(3,0,C0,C6,0), F_REG_READ }, /* RO */
3863 { "id_aa64isar1_el1", CPENC(3,0,C0,C6,1), F_REG_READ }, /* RO */
3864 { "id_aa64mmfr0_el1", CPENC(3,0,C0,C7,0), F_REG_READ }, /* RO */
3865 { "id_aa64mmfr1_el1", CPENC(3,0,C0,C7,1), F_REG_READ }, /* RO */
3866 { "id_aa64mmfr2_el1", CPENC (3, 0, C0, C7, 2), F_ARCHEXT | F_REG_READ }, /* RO */
3867 { "id_aa64afr0_el1", CPENC(3,0,C0,C5,4), F_REG_READ }, /* RO */
3868 { "id_aa64afr1_el1", CPENC(3,0,C0,C5,5), F_REG_READ }, /* RO */
3869 { "id_aa64zfr0_el1", CPENC (3, 0, C0, C4, 4), F_ARCHEXT | F_REG_READ }, /* RO */
3870 { "clidr_el1", CPENC(3,1,C0,C0,1), F_REG_READ }, /* RO */
3871 { "csselr_el1", CPENC(3,2,C0,C0,0), 0 },
3872 { "vpidr_el2", CPENC(3,4,C0,C0,0), 0 },
3873 { "vmpidr_el2", CPENC(3,4,C0,C0,5), 0 },
3874 { "sctlr_el1", CPENC(3,0,C1,C0,0), 0 },
3875 { "sctlr_el2", CPENC(3,4,C1,C0,0), 0 },
3876 { "sctlr_el3", CPENC(3,6,C1,C0,0), 0 },
3877 { "sctlr_el12", CPENC (3, 5, C1, C0, 0), F_ARCHEXT },
3878 { "actlr_el1", CPENC(3,0,C1,C0,1), 0 },
3879 { "actlr_el2", CPENC(3,4,C1,C0,1), 0 },
3880 { "actlr_el3", CPENC(3,6,C1,C0,1), 0 },
3881 { "cpacr_el1", CPENC(3,0,C1,C0,2), 0 },
3882 { "cpacr_el12", CPENC (3, 5, C1, C0, 2), F_ARCHEXT },
3883 { "cptr_el2", CPENC(3,4,C1,C1,2), 0 },
3884 { "cptr_el3", CPENC(3,6,C1,C1,2), 0 },
3885 { "scr_el3", CPENC(3,6,C1,C1,0), 0 },
3886 { "hcr_el2", CPENC(3,4,C1,C1,0), 0 },
3887 { "mdcr_el2", CPENC(3,4,C1,C1,1), 0 },
3888 { "mdcr_el3", CPENC(3,6,C1,C3,1), 0 },
3889 { "hstr_el2", CPENC(3,4,C1,C1,3), 0 },
3890 { "hacr_el2", CPENC(3,4,C1,C1,7), 0 },
3891 { "zcr_el1", CPENC (3, 0, C1, C2, 0), F_ARCHEXT },
3892 { "zcr_el12", CPENC (3, 5, C1, C2, 0), F_ARCHEXT },
3893 { "zcr_el2", CPENC (3, 4, C1, C2, 0), F_ARCHEXT },
3894 { "zcr_el3", CPENC (3, 6, C1, C2, 0), F_ARCHEXT },
3895 { "zidr_el1", CPENC (3, 0, C0, C0, 7), F_ARCHEXT },
3896 { "ttbr0_el1", CPENC(3,0,C2,C0,0), 0 },
3897 { "ttbr1_el1", CPENC(3,0,C2,C0,1), 0 },
3898 { "ttbr0_el2", CPENC(3,4,C2,C0,0), 0 },
3899 { "ttbr1_el2", CPENC (3, 4, C2, C0, 1), F_ARCHEXT },
3900 { "ttbr0_el3", CPENC(3,6,C2,C0,0), 0 },
3901 { "ttbr0_el12", CPENC (3, 5, C2, C0, 0), F_ARCHEXT },
3902 { "ttbr1_el12", CPENC (3, 5, C2, C0, 1), F_ARCHEXT },
3903 { "vttbr_el2", CPENC(3,4,C2,C1,0), 0 },
3904 { "tcr_el1", CPENC(3,0,C2,C0,2), 0 },
3905 { "tcr_el2", CPENC(3,4,C2,C0,2), 0 },
3906 { "tcr_el3", CPENC(3,6,C2,C0,2), 0 },
3907 { "tcr_el12", CPENC (3, 5, C2, C0, 2), F_ARCHEXT },
3908 { "vtcr_el2", CPENC(3,4,C2,C1,2), 0 },
3909 { "apiakeylo_el1", CPENC (3, 0, C2, C1, 0), F_ARCHEXT },
3910 { "apiakeyhi_el1", CPENC (3, 0, C2, C1, 1), F_ARCHEXT },
3911 { "apibkeylo_el1", CPENC (3, 0, C2, C1, 2), F_ARCHEXT },
3912 { "apibkeyhi_el1", CPENC (3, 0, C2, C1, 3), F_ARCHEXT },
3913 { "apdakeylo_el1", CPENC (3, 0, C2, C2, 0), F_ARCHEXT },
3914 { "apdakeyhi_el1", CPENC (3, 0, C2, C2, 1), F_ARCHEXT },
3915 { "apdbkeylo_el1", CPENC (3, 0, C2, C2, 2), F_ARCHEXT },
3916 { "apdbkeyhi_el1", CPENC (3, 0, C2, C2, 3), F_ARCHEXT },
3917 { "apgakeylo_el1", CPENC (3, 0, C2, C3, 0), F_ARCHEXT },
3918 { "apgakeyhi_el1", CPENC (3, 0, C2, C3, 1), F_ARCHEXT },
3919 { "afsr0_el1", CPENC(3,0,C5,C1,0), 0 },
3920 { "afsr1_el1", CPENC(3,0,C5,C1,1), 0 },
3921 { "afsr0_el2", CPENC(3,4,C5,C1,0), 0 },
3922 { "afsr1_el2", CPENC(3,4,C5,C1,1), 0 },
3923 { "afsr0_el3", CPENC(3,6,C5,C1,0), 0 },
3924 { "afsr0_el12", CPENC (3, 5, C5, C1, 0), F_ARCHEXT },
3925 { "afsr1_el3", CPENC(3,6,C5,C1,1), 0 },
3926 { "afsr1_el12", CPENC (3, 5, C5, C1, 1), F_ARCHEXT },
3927 { "esr_el1", CPENC(3,0,C5,C2,0), 0 },
3928 { "esr_el2", CPENC(3,4,C5,C2,0), 0 },
3929 { "esr_el3", CPENC(3,6,C5,C2,0), 0 },
3930 { "esr_el12", CPENC (3, 5, C5, C2, 0), F_ARCHEXT },
3931 { "vsesr_el2", CPENC (3, 4, C5, C2, 3), F_ARCHEXT },
3932 { "fpexc32_el2", CPENC(3,4,C5,C3,0), 0 },
3933 { "erridr_el1", CPENC (3, 0, C5, C3, 0), F_ARCHEXT | F_REG_READ }, /* RO */
3934 { "errselr_el1", CPENC (3, 0, C5, C3, 1), F_ARCHEXT },
3935 { "erxfr_el1", CPENC (3, 0, C5, C4, 0), F_ARCHEXT | F_REG_READ }, /* RO */
3936 { "erxctlr_el1", CPENC (3, 0, C5, C4, 1), F_ARCHEXT },
3937 { "erxstatus_el1", CPENC (3, 0, C5, C4, 2), F_ARCHEXT },
3938 { "erxaddr_el1", CPENC (3, 0, C5, C4, 3), F_ARCHEXT },
3939 { "erxmisc0_el1", CPENC (3, 0, C5, C5, 0), F_ARCHEXT },
3940 { "erxmisc1_el1", CPENC (3, 0, C5, C5, 1), F_ARCHEXT },
3941 { "far_el1", CPENC(3,0,C6,C0,0), 0 },
3942 { "far_el2", CPENC(3,4,C6,C0,0), 0 },
3943 { "far_el3", CPENC(3,6,C6,C0,0), 0 },
3944 { "far_el12", CPENC (3, 5, C6, C0, 0), F_ARCHEXT },
3945 { "hpfar_el2", CPENC(3,4,C6,C0,4), 0 },
3946 { "par_el1", CPENC(3,0,C7,C4,0), 0 },
3947 { "mair_el1", CPENC(3,0,C10,C2,0), 0 },
3948 { "mair_el2", CPENC(3,4,C10,C2,0), 0 },
3949 { "mair_el3", CPENC(3,6,C10,C2,0), 0 },
3950 { "mair_el12", CPENC (3, 5, C10, C2, 0), F_ARCHEXT },
3951 { "amair_el1", CPENC(3,0,C10,C3,0), 0 },
3952 { "amair_el2", CPENC(3,4,C10,C3,0), 0 },
3953 { "amair_el3", CPENC(3,6,C10,C3,0), 0 },
3954 { "amair_el12", CPENC (3, 5, C10, C3, 0), F_ARCHEXT },
3955 { "vbar_el1", CPENC(3,0,C12,C0,0), 0 },
3956 { "vbar_el2", CPENC(3,4,C12,C0,0), 0 },
3957 { "vbar_el3", CPENC(3,6,C12,C0,0), 0 },
3958 { "vbar_el12", CPENC (3, 5, C12, C0, 0), F_ARCHEXT },
3959 { "rvbar_el1", CPENC(3,0,C12,C0,1), F_REG_READ }, /* RO */
3960 { "rvbar_el2", CPENC(3,4,C12,C0,1), F_REG_READ }, /* RO */
3961 { "rvbar_el3", CPENC(3,6,C12,C0,1), F_REG_READ }, /* RO */
3962 { "rmr_el1", CPENC(3,0,C12,C0,2), 0 },
3963 { "rmr_el2", CPENC(3,4,C12,C0,2), 0 },
3964 { "rmr_el3", CPENC(3,6,C12,C0,2), 0 },
3965 { "isr_el1", CPENC(3,0,C12,C1,0), F_REG_READ }, /* RO */
3966 { "disr_el1", CPENC (3, 0, C12, C1, 1), F_ARCHEXT },
3967 { "vdisr_el2", CPENC (3, 4, C12, C1, 1), F_ARCHEXT },
3968 { "contextidr_el1", CPENC(3,0,C13,C0,1), 0 },
3969 { "contextidr_el2", CPENC (3, 4, C13, C0, 1), F_ARCHEXT },
3970 { "contextidr_el12", CPENC (3, 5, C13, C0, 1), F_ARCHEXT },
3971 { "rndr", CPENC(3,3,C2,C4,0), F_ARCHEXT | F_REG_READ }, /* RO */
3972 { "rndrrs", CPENC(3,3,C2,C4,1), F_ARCHEXT | F_REG_READ }, /* RO */
3973 { "tco", CPENC(3,3,C4,C2,7), F_ARCHEXT },
3974 { "tfsre0_el1", CPENC(3,0,C5,C6,1), F_ARCHEXT },
3975 { "tfsr_el1", CPENC(3,0,C5,C6,0), F_ARCHEXT },
3976 { "tfsr_el2", CPENC(3,4,C5,C6,0), F_ARCHEXT },
3977 { "tfsr_el3", CPENC(3,6,C5,C6,0), F_ARCHEXT },
3978 { "tfsr_el12", CPENC(3,5,C5,C6,0), F_ARCHEXT },
3979 { "rgsr_el1", CPENC(3,0,C1,C0,5), F_ARCHEXT },
3980 { "gcr_el1", CPENC(3,0,C1,C0,6), F_ARCHEXT },
3981 { "gmid_el1", CPENC(3,1,C0,C0,4), F_ARCHEXT | F_REG_READ }, /* RO */
3982 { "tpidr_el0", CPENC(3,3,C13,C0,2), 0 },
3983 { "tpidrro_el0", CPENC(3,3,C13,C0,3), 0 }, /* RW */
3984 { "tpidr_el1", CPENC(3,0,C13,C0,4), 0 },
3985 { "tpidr_el2", CPENC(3,4,C13,C0,2), 0 },
3986 { "tpidr_el3", CPENC(3,6,C13,C0,2), 0 },
3987 { "scxtnum_el0", CPENC(3,3,C13,C0,7), F_ARCHEXT },
3988 { "scxtnum_el1", CPENC(3,0,C13,C0,7), F_ARCHEXT },
3989 { "scxtnum_el2", CPENC(3,4,C13,C0,7), F_ARCHEXT },
3990 { "scxtnum_el12", CPENC(3,5,C13,C0,7), F_ARCHEXT },
3991 { "scxtnum_el3", CPENC(3,6,C13,C0,7), F_ARCHEXT },
3992 { "teecr32_el1", CPENC(2,2,C0, C0,0), 0 }, /* See section 3.9.7.1 */
3993 { "cntfrq_el0", CPENC(3,3,C14,C0,0), 0 }, /* RW */
3994 { "cntpct_el0", CPENC(3,3,C14,C0,1), F_REG_READ }, /* RO */
3995 { "cntvct_el0", CPENC(3,3,C14,C0,2), F_REG_READ }, /* RO */
3996 { "cntvoff_el2", CPENC(3,4,C14,C0,3), 0 },
3997 { "cntkctl_el1", CPENC(3,0,C14,C1,0), 0 },
3998 { "cntkctl_el12", CPENC (3, 5, C14, C1, 0), F_ARCHEXT },
3999 { "cnthctl_el2", CPENC(3,4,C14,C1,0), 0 },
4000 { "cntp_tval_el0", CPENC(3,3,C14,C2,0), 0 },
4001 { "cntp_tval_el02", CPENC (3, 5, C14, C2, 0), F_ARCHEXT },
4002 { "cntp_ctl_el0", CPENC(3,3,C14,C2,1), 0 },
4003 { "cntp_ctl_el02", CPENC (3, 5, C14, C2, 1), F_ARCHEXT },
4004 { "cntp_cval_el0", CPENC(3,3,C14,C2,2), 0 },
4005 { "cntp_cval_el02", CPENC (3, 5, C14, C2, 2), F_ARCHEXT },
4006 { "cntv_tval_el0", CPENC(3,3,C14,C3,0), 0 },
4007 { "cntv_tval_el02", CPENC (3, 5, C14, C3, 0), F_ARCHEXT },
4008 { "cntv_ctl_el0", CPENC(3,3,C14,C3,1), 0 },
4009 { "cntv_ctl_el02", CPENC (3, 5, C14, C3, 1), F_ARCHEXT },
4010 { "cntv_cval_el0", CPENC(3,3,C14,C3,2), 0 },
4011 { "cntv_cval_el02", CPENC (3, 5, C14, C3, 2), F_ARCHEXT },
4012 { "cnthp_tval_el2", CPENC(3,4,C14,C2,0), 0 },
4013 { "cnthp_ctl_el2", CPENC(3,4,C14,C2,1), 0 },
4014 { "cnthp_cval_el2", CPENC(3,4,C14,C2,2), 0 },
4015 { "cntps_tval_el1", CPENC(3,7,C14,C2,0), 0 },
4016 { "cntps_ctl_el1", CPENC(3,7,C14,C2,1), 0 },
4017 { "cntps_cval_el1", CPENC(3,7,C14,C2,2), 0 },
4018 { "cnthv_tval_el2", CPENC (3, 4, C14, C3, 0), F_ARCHEXT },
4019 { "cnthv_ctl_el2", CPENC (3, 4, C14, C3, 1), F_ARCHEXT },
4020 { "cnthv_cval_el2", CPENC (3, 4, C14, C3, 2), F_ARCHEXT },
4021 { "dacr32_el2", CPENC(3,4,C3,C0,0), 0 },
4022 { "ifsr32_el2", CPENC(3,4,C5,C0,1), 0 },
4023 { "teehbr32_el1", CPENC(2,2,C1,C0,0), 0 },
4024 { "sder32_el3", CPENC(3,6,C1,C1,1), 0 },
4025 { "mdscr_el1", CPENC(2,0,C0, C2, 2), 0 },
4026 { "mdccsr_el0", CPENC(2,3,C0, C1, 0), F_REG_READ }, /* r */
4027 { "mdccint_el1", CPENC(2,0,C0, C2, 0), 0 },
4028 { "dbgdtr_el0", CPENC(2,3,C0, C4, 0), 0 },
4029 { "dbgdtrrx_el0", CPENC(2,3,C0, C5, 0), F_REG_READ }, /* r */
4030 { "dbgdtrtx_el0", CPENC(2,3,C0, C5, 0), F_REG_WRITE }, /* w */
4031 { "osdtrrx_el1", CPENC(2,0,C0, C0, 2), 0 },
4032 { "osdtrtx_el1", CPENC(2,0,C0, C3, 2), 0 },
4033 { "oseccr_el1", CPENC(2,0,C0, C6, 2), 0 },
4034 { "dbgvcr32_el2", CPENC(2,4,C0, C7, 0), 0 },
4035 { "dbgbvr0_el1", CPENC(2,0,C0, C0, 4), 0 },
4036 { "dbgbvr1_el1", CPENC(2,0,C0, C1, 4), 0 },
4037 { "dbgbvr2_el1", CPENC(2,0,C0, C2, 4), 0 },
4038 { "dbgbvr3_el1", CPENC(2,0,C0, C3, 4), 0 },
4039 { "dbgbvr4_el1", CPENC(2,0,C0, C4, 4), 0 },
4040 { "dbgbvr5_el1", CPENC(2,0,C0, C5, 4), 0 },
4041 { "dbgbvr6_el1", CPENC(2,0,C0, C6, 4), 0 },
4042 { "dbgbvr7_el1", CPENC(2,0,C0, C7, 4), 0 },
4043 { "dbgbvr8_el1", CPENC(2,0,C0, C8, 4), 0 },
4044 { "dbgbvr9_el1", CPENC(2,0,C0, C9, 4), 0 },
4045 { "dbgbvr10_el1", CPENC(2,0,C0, C10,4), 0 },
4046 { "dbgbvr11_el1", CPENC(2,0,C0, C11,4), 0 },
4047 { "dbgbvr12_el1", CPENC(2,0,C0, C12,4), 0 },
4048 { "dbgbvr13_el1", CPENC(2,0,C0, C13,4), 0 },
4049 { "dbgbvr14_el1", CPENC(2,0,C0, C14,4), 0 },
4050 { "dbgbvr15_el1", CPENC(2,0,C0, C15,4), 0 },
4051 { "dbgbcr0_el1", CPENC(2,0,C0, C0, 5), 0 },
4052 { "dbgbcr1_el1", CPENC(2,0,C0, C1, 5), 0 },
4053 { "dbgbcr2_el1", CPENC(2,0,C0, C2, 5), 0 },
4054 { "dbgbcr3_el1", CPENC(2,0,C0, C3, 5), 0 },
4055 { "dbgbcr4_el1", CPENC(2,0,C0, C4, 5), 0 },
4056 { "dbgbcr5_el1", CPENC(2,0,C0, C5, 5), 0 },
4057 { "dbgbcr6_el1", CPENC(2,0,C0, C6, 5), 0 },
4058 { "dbgbcr7_el1", CPENC(2,0,C0, C7, 5), 0 },
4059 { "dbgbcr8_el1", CPENC(2,0,C0, C8, 5), 0 },
4060 { "dbgbcr9_el1", CPENC(2,0,C0, C9, 5), 0 },
4061 { "dbgbcr10_el1", CPENC(2,0,C0, C10,5), 0 },
4062 { "dbgbcr11_el1", CPENC(2,0,C0, C11,5), 0 },
4063 { "dbgbcr12_el1", CPENC(2,0,C0, C12,5), 0 },
4064 { "dbgbcr13_el1", CPENC(2,0,C0, C13,5), 0 },
4065 { "dbgbcr14_el1", CPENC(2,0,C0, C14,5), 0 },
4066 { "dbgbcr15_el1", CPENC(2,0,C0, C15,5), 0 },
4067 { "dbgwvr0_el1", CPENC(2,0,C0, C0, 6), 0 },
4068 { "dbgwvr1_el1", CPENC(2,0,C0, C1, 6), 0 },
4069 { "dbgwvr2_el1", CPENC(2,0,C0, C2, 6), 0 },
4070 { "dbgwvr3_el1", CPENC(2,0,C0, C3, 6), 0 },
4071 { "dbgwvr4_el1", CPENC(2,0,C0, C4, 6), 0 },
4072 { "dbgwvr5_el1", CPENC(2,0,C0, C5, 6), 0 },
4073 { "dbgwvr6_el1", CPENC(2,0,C0, C6, 6), 0 },
4074 { "dbgwvr7_el1", CPENC(2,0,C0, C7, 6), 0 },
4075 { "dbgwvr8_el1", CPENC(2,0,C0, C8, 6), 0 },
4076 { "dbgwvr9_el1", CPENC(2,0,C0, C9, 6), 0 },
4077 { "dbgwvr10_el1", CPENC(2,0,C0, C10,6), 0 },
4078 { "dbgwvr11_el1", CPENC(2,0,C0, C11,6), 0 },
4079 { "dbgwvr12_el1", CPENC(2,0,C0, C12,6), 0 },
4080 { "dbgwvr13_el1", CPENC(2,0,C0, C13,6), 0 },
4081 { "dbgwvr14_el1", CPENC(2,0,C0, C14,6), 0 },
4082 { "dbgwvr15_el1", CPENC(2,0,C0, C15,6), 0 },
4083 { "dbgwcr0_el1", CPENC(2,0,C0, C0, 7), 0 },
4084 { "dbgwcr1_el1", CPENC(2,0,C0, C1, 7), 0 },
4085 { "dbgwcr2_el1", CPENC(2,0,C0, C2, 7), 0 },
4086 { "dbgwcr3_el1", CPENC(2,0,C0, C3, 7), 0 },
4087 { "dbgwcr4_el1", CPENC(2,0,C0, C4, 7), 0 },
4088 { "dbgwcr5_el1", CPENC(2,0,C0, C5, 7), 0 },
4089 { "dbgwcr6_el1", CPENC(2,0,C0, C6, 7), 0 },
4090 { "dbgwcr7_el1", CPENC(2,0,C0, C7, 7), 0 },
4091 { "dbgwcr8_el1", CPENC(2,0,C0, C8, 7), 0 },
4092 { "dbgwcr9_el1", CPENC(2,0,C0, C9, 7), 0 },
4093 { "dbgwcr10_el1", CPENC(2,0,C0, C10,7), 0 },
4094 { "dbgwcr11_el1", CPENC(2,0,C0, C11,7), 0 },
4095 { "dbgwcr12_el1", CPENC(2,0,C0, C12,7), 0 },
4096 { "dbgwcr13_el1", CPENC(2,0,C0, C13,7), 0 },
4097 { "dbgwcr14_el1", CPENC(2,0,C0, C14,7), 0 },
4098 { "dbgwcr15_el1", CPENC(2,0,C0, C15,7), 0 },
4099 { "mdrar_el1", CPENC(2,0,C1, C0, 0), F_REG_READ }, /* r */
4100 { "oslar_el1", CPENC(2,0,C1, C0, 4), F_REG_WRITE }, /* w */
4101 { "oslsr_el1", CPENC(2,0,C1, C1, 4), F_REG_READ }, /* r */
4102 { "osdlr_el1", CPENC(2,0,C1, C3, 4), 0 },
4103 { "dbgprcr_el1", CPENC(2,0,C1, C4, 4), 0 },
4104 { "dbgclaimset_el1", CPENC(2,0,C7, C8, 6), 0 },
4105 { "dbgclaimclr_el1", CPENC(2,0,C7, C9, 6), 0 },
4106 { "dbgauthstatus_el1", CPENC(2,0,C7, C14,6), F_REG_READ }, /* r */
4107 { "pmblimitr_el1", CPENC (3, 0, C9, C10, 0), F_ARCHEXT }, /* rw */
4108 { "pmbptr_el1", CPENC (3, 0, C9, C10, 1), F_ARCHEXT }, /* rw */
4109 { "pmbsr_el1", CPENC (3, 0, C9, C10, 3), F_ARCHEXT }, /* rw */
4110 { "pmbidr_el1", CPENC (3, 0, C9, C10, 7), F_ARCHEXT | F_REG_READ }, /* ro */
4111 { "pmscr_el1", CPENC (3, 0, C9, C9, 0), F_ARCHEXT }, /* rw */
4112 { "pmsicr_el1", CPENC (3, 0, C9, C9, 2), F_ARCHEXT }, /* rw */
4113 { "pmsirr_el1", CPENC (3, 0, C9, C9, 3), F_ARCHEXT }, /* rw */
4114 { "pmsfcr_el1", CPENC (3, 0, C9, C9, 4), F_ARCHEXT }, /* rw */
4115 { "pmsevfr_el1", CPENC (3, 0, C9, C9, 5), F_ARCHEXT }, /* rw */
4116 { "pmslatfr_el1", CPENC (3, 0, C9, C9, 6), F_ARCHEXT }, /* rw */
4117 { "pmsidr_el1", CPENC (3, 0, C9, C9, 7), F_ARCHEXT }, /* rw */
4118 { "pmscr_el2", CPENC (3, 4, C9, C9, 0), F_ARCHEXT }, /* rw */
4119 { "pmscr_el12", CPENC (3, 5, C9, C9, 0), F_ARCHEXT }, /* rw */
4120 { "pmcr_el0", CPENC(3,3,C9,C12, 0), 0 },
4121 { "pmcntenset_el0", CPENC(3,3,C9,C12, 1), 0 },
4122 { "pmcntenclr_el0", CPENC(3,3,C9,C12, 2), 0 },
4123 { "pmovsclr_el0", CPENC(3,3,C9,C12, 3), 0 },
4124 { "pmswinc_el0", CPENC(3,3,C9,C12, 4), F_REG_WRITE }, /* w */
4125 { "pmselr_el0", CPENC(3,3,C9,C12, 5), 0 },
4126 { "pmceid0_el0", CPENC(3,3,C9,C12, 6), F_REG_READ }, /* r */
4127 { "pmceid1_el0", CPENC(3,3,C9,C12, 7), F_REG_READ }, /* r */
4128 { "pmccntr_el0", CPENC(3,3,C9,C13, 0), 0 },
4129 { "pmxevtyper_el0", CPENC(3,3,C9,C13, 1), 0 },
4130 { "pmxevcntr_el0", CPENC(3,3,C9,C13, 2), 0 },
4131 { "pmuserenr_el0", CPENC(3,3,C9,C14, 0), 0 },
4132 { "pmintenset_el1", CPENC(3,0,C9,C14, 1), 0 },
4133 { "pmintenclr_el1", CPENC(3,0,C9,C14, 2), 0 },
4134 { "pmovsset_el0", CPENC(3,3,C9,C14, 3), 0 },
4135 { "pmevcntr0_el0", CPENC(3,3,C14,C8, 0), 0 },
4136 { "pmevcntr1_el0", CPENC(3,3,C14,C8, 1), 0 },
4137 { "pmevcntr2_el0", CPENC(3,3,C14,C8, 2), 0 },
4138 { "pmevcntr3_el0", CPENC(3,3,C14,C8, 3), 0 },
4139 { "pmevcntr4_el0", CPENC(3,3,C14,C8, 4), 0 },
4140 { "pmevcntr5_el0", CPENC(3,3,C14,C8, 5), 0 },
4141 { "pmevcntr6_el0", CPENC(3,3,C14,C8, 6), 0 },
4142 { "pmevcntr7_el0", CPENC(3,3,C14,C8, 7), 0 },
4143 { "pmevcntr8_el0", CPENC(3,3,C14,C9, 0), 0 },
4144 { "pmevcntr9_el0", CPENC(3,3,C14,C9, 1), 0 },
4145 { "pmevcntr10_el0", CPENC(3,3,C14,C9, 2), 0 },
4146 { "pmevcntr11_el0", CPENC(3,3,C14,C9, 3), 0 },
4147 { "pmevcntr12_el0", CPENC(3,3,C14,C9, 4), 0 },
4148 { "pmevcntr13_el0", CPENC(3,3,C14,C9, 5), 0 },
4149 { "pmevcntr14_el0", CPENC(3,3,C14,C9, 6), 0 },
4150 { "pmevcntr15_el0", CPENC(3,3,C14,C9, 7), 0 },
4151 { "pmevcntr16_el0", CPENC(3,3,C14,C10,0), 0 },
4152 { "pmevcntr17_el0", CPENC(3,3,C14,C10,1), 0 },
4153 { "pmevcntr18_el0", CPENC(3,3,C14,C10,2), 0 },
4154 { "pmevcntr19_el0", CPENC(3,3,C14,C10,3), 0 },
4155 { "pmevcntr20_el0", CPENC(3,3,C14,C10,4), 0 },
4156 { "pmevcntr21_el0", CPENC(3,3,C14,C10,5), 0 },
4157 { "pmevcntr22_el0", CPENC(3,3,C14,C10,6), 0 },
4158 { "pmevcntr23_el0", CPENC(3,3,C14,C10,7), 0 },
4159 { "pmevcntr24_el0", CPENC(3,3,C14,C11,0), 0 },
4160 { "pmevcntr25_el0", CPENC(3,3,C14,C11,1), 0 },
4161 { "pmevcntr26_el0", CPENC(3,3,C14,C11,2), 0 },
4162 { "pmevcntr27_el0", CPENC(3,3,C14,C11,3), 0 },
4163 { "pmevcntr28_el0", CPENC(3,3,C14,C11,4), 0 },
4164 { "pmevcntr29_el0", CPENC(3,3,C14,C11,5), 0 },
4165 { "pmevcntr30_el0", CPENC(3,3,C14,C11,6), 0 },
4166 { "pmevtyper0_el0", CPENC(3,3,C14,C12,0), 0 },
4167 { "pmevtyper1_el0", CPENC(3,3,C14,C12,1), 0 },
4168 { "pmevtyper2_el0", CPENC(3,3,C14,C12,2), 0 },
4169 { "pmevtyper3_el0", CPENC(3,3,C14,C12,3), 0 },
4170 { "pmevtyper4_el0", CPENC(3,3,C14,C12,4), 0 },
4171 { "pmevtyper5_el0", CPENC(3,3,C14,C12,5), 0 },
4172 { "pmevtyper6_el0", CPENC(3,3,C14,C12,6), 0 },
4173 { "pmevtyper7_el0", CPENC(3,3,C14,C12,7), 0 },
4174 { "pmevtyper8_el0", CPENC(3,3,C14,C13,0), 0 },
4175 { "pmevtyper9_el0", CPENC(3,3,C14,C13,1), 0 },
4176 { "pmevtyper10_el0", CPENC(3,3,C14,C13,2), 0 },
4177 { "pmevtyper11_el0", CPENC(3,3,C14,C13,3), 0 },
4178 { "pmevtyper12_el0", CPENC(3,3,C14,C13,4), 0 },
4179 { "pmevtyper13_el0", CPENC(3,3,C14,C13,5), 0 },
4180 { "pmevtyper14_el0", CPENC(3,3,C14,C13,6), 0 },
4181 { "pmevtyper15_el0", CPENC(3,3,C14,C13,7), 0 },
4182 { "pmevtyper16_el0", CPENC(3,3,C14,C14,0), 0 },
4183 { "pmevtyper17_el0", CPENC(3,3,C14,C14,1), 0 },
4184 { "pmevtyper18_el0", CPENC(3,3,C14,C14,2), 0 },
4185 { "pmevtyper19_el0", CPENC(3,3,C14,C14,3), 0 },
4186 { "pmevtyper20_el0", CPENC(3,3,C14,C14,4), 0 },
4187 { "pmevtyper21_el0", CPENC(3,3,C14,C14,5), 0 },
4188 { "pmevtyper22_el0", CPENC(3,3,C14,C14,6), 0 },
4189 { "pmevtyper23_el0", CPENC(3,3,C14,C14,7), 0 },
4190 { "pmevtyper24_el0", CPENC(3,3,C14,C15,0), 0 },
4191 { "pmevtyper25_el0", CPENC(3,3,C14,C15,1), 0 },
4192 { "pmevtyper26_el0", CPENC(3,3,C14,C15,2), 0 },
4193 { "pmevtyper27_el0", CPENC(3,3,C14,C15,3), 0 },
4194 { "pmevtyper28_el0", CPENC(3,3,C14,C15,4), 0 },
4195 { "pmevtyper29_el0", CPENC(3,3,C14,C15,5), 0 },
4196 { "pmevtyper30_el0", CPENC(3,3,C14,C15,6), 0 },
4197 { "pmccfiltr_el0", CPENC(3,3,C14,C15,7), 0 },
4198
4199 { "dit", CPEN_ (3, C2, 5), F_ARCHEXT },
4200 { "vstcr_el2", CPENC(3, 4, C2, C6, 2), F_ARCHEXT },
4201 { "vsttbr_el2", CPENC(3, 4, C2, C6, 0), F_ARCHEXT },
4202 { "cnthvs_tval_el2", CPENC(3, 4, C14, C4, 0), F_ARCHEXT },
4203 { "cnthvs_cval_el2", CPENC(3, 4, C14, C4, 2), F_ARCHEXT },
4204 { "cnthvs_ctl_el2", CPENC(3, 4, C14, C4, 1), F_ARCHEXT },
4205 { "cnthps_tval_el2", CPENC(3, 4, C14, C5, 0), F_ARCHEXT },
4206 { "cnthps_cval_el2", CPENC(3, 4, C14, C5, 2), F_ARCHEXT },
4207 { "cnthps_ctl_el2", CPENC(3, 4, C14, C5, 1), F_ARCHEXT },
4208 { "sder32_el2", CPENC(3, 4, C1, C3, 1), F_ARCHEXT },
4209 { "vncr_el2", CPENC(3, 4, C2, C2, 0), F_ARCHEXT },
4210 { 0, CPENC(0,0,0,0,0), 0 },
4211 };
4212
4213 bfd_boolean
4214 aarch64_sys_reg_deprecated_p (const aarch64_sys_reg *reg)
4215 {
4216 return (reg->flags & F_DEPRECATED) != 0;
4217 }
4218
4219 bfd_boolean
4220 aarch64_sys_reg_supported_p (const aarch64_feature_set features,
4221 const aarch64_sys_reg *reg)
4222 {
4223 if (!(reg->flags & F_ARCHEXT))
4224 return TRUE;
4225
4226 /* PAN. Values are from aarch64_sys_regs. */
4227 if (reg->value == CPEN_(0,C2,3)
4228 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
4229 return FALSE;
4230
4231 /* SCXTNUM_ELx registers. */
4232 if ((reg->value == CPENC (3, 3, C13, C0, 7)
4233 || reg->value == CPENC (3, 0, C13, C0, 7)
4234 || reg->value == CPENC (3, 4, C13, C0, 7)
4235 || reg->value == CPENC (3, 6, C13, C0, 7)
4236 || reg->value == CPENC (3, 5, C13, C0, 7))
4237 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SCXTNUM))
4238 return FALSE;
4239
4240 /* ID_PFR2_EL1 register. */
4241 if (reg->value == CPENC(3, 0, C0, C3, 4)
4242 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_ID_PFR2))
4243 return FALSE;
4244
4245 /* SSBS. Values are from aarch64_sys_regs. */
4246 if (reg->value == CPEN_(3,C2,6)
4247 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SSBS))
4248 return FALSE;
4249
4250 /* Virtualization host extensions: system registers. */
4251 if ((reg->value == CPENC (3, 4, C2, C0, 1)
4252 || reg->value == CPENC (3, 4, C13, C0, 1)
4253 || reg->value == CPENC (3, 4, C14, C3, 0)
4254 || reg->value == CPENC (3, 4, C14, C3, 1)
4255 || reg->value == CPENC (3, 4, C14, C3, 2))
4256 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4257 return FALSE;
4258
4259 /* Virtualization host extensions: *_el12 names of *_el1 registers. */
4260 if ((reg->value == CPEN_ (5, C0, 0)
4261 || reg->value == CPEN_ (5, C0, 1)
4262 || reg->value == CPENC (3, 5, C1, C0, 0)
4263 || reg->value == CPENC (3, 5, C1, C0, 2)
4264 || reg->value == CPENC (3, 5, C2, C0, 0)
4265 || reg->value == CPENC (3, 5, C2, C0, 1)
4266 || reg->value == CPENC (3, 5, C2, C0, 2)
4267 || reg->value == CPENC (3, 5, C5, C1, 0)
4268 || reg->value == CPENC (3, 5, C5, C1, 1)
4269 || reg->value == CPENC (3, 5, C5, C2, 0)
4270 || reg->value == CPENC (3, 5, C6, C0, 0)
4271 || reg->value == CPENC (3, 5, C10, C2, 0)
4272 || reg->value == CPENC (3, 5, C10, C3, 0)
4273 || reg->value == CPENC (3, 5, C12, C0, 0)
4274 || reg->value == CPENC (3, 5, C13, C0, 1)
4275 || reg->value == CPENC (3, 5, C14, C1, 0))
4276 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4277 return FALSE;
4278
4279 /* Virtualization host extensions: *_el02 names of *_el0 registers. */
4280 if ((reg->value == CPENC (3, 5, C14, C2, 0)
4281 || reg->value == CPENC (3, 5, C14, C2, 1)
4282 || reg->value == CPENC (3, 5, C14, C2, 2)
4283 || reg->value == CPENC (3, 5, C14, C3, 0)
4284 || reg->value == CPENC (3, 5, C14, C3, 1)
4285 || reg->value == CPENC (3, 5, C14, C3, 2))
4286 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
4287 return FALSE;
4288
4289 /* ARMv8.2 features. */
4290
4291 /* ID_AA64MMFR2_EL1. */
4292 if (reg->value == CPENC (3, 0, C0, C7, 2)
4293 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4294 return FALSE;
4295
4296 /* PSTATE.UAO. */
4297 if (reg->value == CPEN_ (0, C2, 4)
4298 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4299 return FALSE;
4300
4301 /* RAS extension. */
4302
4303 /* ERRIDR_EL1, ERRSELR_EL1, ERXFR_EL1, ERXCTLR_EL1, ERXSTATUS_EL, ERXADDR_EL1,
4304 ERXMISC0_EL1 AND ERXMISC1_EL1. */
4305 if ((reg->value == CPENC (3, 0, C5, C3, 0)
4306 || reg->value == CPENC (3, 0, C5, C3, 1)
4307 || reg->value == CPENC (3, 0, C5, C3, 2)
4308 || reg->value == CPENC (3, 0, C5, C3, 3)
4309 || reg->value == CPENC (3, 0, C5, C4, 0)
4310 || reg->value == CPENC (3, 0, C5, C4, 1)
4311 || reg->value == CPENC (3, 0, C5, C4, 2)
4312 || reg->value == CPENC (3, 0, C5, C4, 3)
4313 || reg->value == CPENC (3, 0, C5, C5, 0)
4314 || reg->value == CPENC (3, 0, C5, C5, 1))
4315 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
4316 return FALSE;
4317
4318 /* VSESR_EL2, DISR_EL1 and VDISR_EL2. */
4319 if ((reg->value == CPENC (3, 4, C5, C2, 3)
4320 || reg->value == CPENC (3, 0, C12, C1, 1)
4321 || reg->value == CPENC (3, 4, C12, C1, 1))
4322 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
4323 return FALSE;
4324
4325 /* Statistical Profiling extension. */
4326 if ((reg->value == CPENC (3, 0, C9, C10, 0)
4327 || reg->value == CPENC (3, 0, C9, C10, 1)
4328 || reg->value == CPENC (3, 0, C9, C10, 3)
4329 || reg->value == CPENC (3, 0, C9, C10, 7)
4330 || reg->value == CPENC (3, 0, C9, C9, 0)
4331 || reg->value == CPENC (3, 0, C9, C9, 2)
4332 || reg->value == CPENC (3, 0, C9, C9, 3)
4333 || reg->value == CPENC (3, 0, C9, C9, 4)
4334 || reg->value == CPENC (3, 0, C9, C9, 5)
4335 || reg->value == CPENC (3, 0, C9, C9, 6)
4336 || reg->value == CPENC (3, 0, C9, C9, 7)
4337 || reg->value == CPENC (3, 4, C9, C9, 0)
4338 || reg->value == CPENC (3, 5, C9, C9, 0))
4339 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PROFILE))
4340 return FALSE;
4341
4342 /* ARMv8.3 Pointer authentication keys. */
4343 if ((reg->value == CPENC (3, 0, C2, C1, 0)
4344 || reg->value == CPENC (3, 0, C2, C1, 1)
4345 || reg->value == CPENC (3, 0, C2, C1, 2)
4346 || reg->value == CPENC (3, 0, C2, C1, 3)
4347 || reg->value == CPENC (3, 0, C2, C2, 0)
4348 || reg->value == CPENC (3, 0, C2, C2, 1)
4349 || reg->value == CPENC (3, 0, C2, C2, 2)
4350 || reg->value == CPENC (3, 0, C2, C2, 3)
4351 || reg->value == CPENC (3, 0, C2, C3, 0)
4352 || reg->value == CPENC (3, 0, C2, C3, 1))
4353 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_3))
4354 return FALSE;
4355
4356 /* SVE. */
4357 if ((reg->value == CPENC (3, 0, C0, C4, 4)
4358 || reg->value == CPENC (3, 0, C1, C2, 0)
4359 || reg->value == CPENC (3, 4, C1, C2, 0)
4360 || reg->value == CPENC (3, 6, C1, C2, 0)
4361 || reg->value == CPENC (3, 5, C1, C2, 0)
4362 || reg->value == CPENC (3, 0, C0, C0, 7))
4363 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SVE))
4364 return FALSE;
4365
4366 /* ARMv8.4 features. */
4367
4368 /* PSTATE.DIT. */
4369 if (reg->value == CPEN_ (3, C2, 5)
4370 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4371 return FALSE;
4372
4373 /* Virtualization extensions. */
4374 if ((reg->value == CPENC(3, 4, C2, C6, 2)
4375 || reg->value == CPENC(3, 4, C2, C6, 0)
4376 || reg->value == CPENC(3, 4, C14, C4, 0)
4377 || reg->value == CPENC(3, 4, C14, C4, 2)
4378 || reg->value == CPENC(3, 4, C14, C4, 1)
4379 || reg->value == CPENC(3, 4, C14, C5, 0)
4380 || reg->value == CPENC(3, 4, C14, C5, 2)
4381 || reg->value == CPENC(3, 4, C14, C5, 1)
4382 || reg->value == CPENC(3, 4, C1, C3, 1)
4383 || reg->value == CPENC(3, 4, C2, C2, 0))
4384 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4385 return FALSE;
4386
4387 /* ARMv8.4 TLB instructions. */
4388 if ((reg->value == CPENS (0, C8, C1, 0)
4389 || reg->value == CPENS (0, C8, C1, 1)
4390 || reg->value == CPENS (0, C8, C1, 2)
4391 || reg->value == CPENS (0, C8, C1, 3)
4392 || reg->value == CPENS (0, C8, C1, 5)
4393 || reg->value == CPENS (0, C8, C1, 7)
4394 || reg->value == CPENS (4, C8, C4, 0)
4395 || reg->value == CPENS (4, C8, C4, 4)
4396 || reg->value == CPENS (4, C8, C1, 1)
4397 || reg->value == CPENS (4, C8, C1, 5)
4398 || reg->value == CPENS (4, C8, C1, 6)
4399 || reg->value == CPENS (6, C8, C1, 1)
4400 || reg->value == CPENS (6, C8, C1, 5)
4401 || reg->value == CPENS (4, C8, C1, 0)
4402 || reg->value == CPENS (4, C8, C1, 4)
4403 || reg->value == CPENS (6, C8, C1, 0)
4404 || reg->value == CPENS (0, C8, C6, 1)
4405 || reg->value == CPENS (0, C8, C6, 3)
4406 || reg->value == CPENS (0, C8, C6, 5)
4407 || reg->value == CPENS (0, C8, C6, 7)
4408 || reg->value == CPENS (0, C8, C2, 1)
4409 || reg->value == CPENS (0, C8, C2, 3)
4410 || reg->value == CPENS (0, C8, C2, 5)
4411 || reg->value == CPENS (0, C8, C2, 7)
4412 || reg->value == CPENS (0, C8, C5, 1)
4413 || reg->value == CPENS (0, C8, C5, 3)
4414 || reg->value == CPENS (0, C8, C5, 5)
4415 || reg->value == CPENS (0, C8, C5, 7)
4416 || reg->value == CPENS (4, C8, C0, 2)
4417 || reg->value == CPENS (4, C8, C0, 6)
4418 || reg->value == CPENS (4, C8, C4, 2)
4419 || reg->value == CPENS (4, C8, C4, 6)
4420 || reg->value == CPENS (4, C8, C4, 3)
4421 || reg->value == CPENS (4, C8, C4, 7)
4422 || reg->value == CPENS (4, C8, C6, 1)
4423 || reg->value == CPENS (4, C8, C6, 5)
4424 || reg->value == CPENS (4, C8, C2, 1)
4425 || reg->value == CPENS (4, C8, C2, 5)
4426 || reg->value == CPENS (4, C8, C5, 1)
4427 || reg->value == CPENS (4, C8, C5, 5)
4428 || reg->value == CPENS (6, C8, C6, 1)
4429 || reg->value == CPENS (6, C8, C6, 5)
4430 || reg->value == CPENS (6, C8, C2, 1)
4431 || reg->value == CPENS (6, C8, C2, 5)
4432 || reg->value == CPENS (6, C8, C5, 1)
4433 || reg->value == CPENS (6, C8, C5, 5))
4434 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4435 return FALSE;
4436
4437 /* Random Number Instructions. For now they are available
4438 (and optional) only with ARMv8.5-A. */
4439 if ((reg->value == CPENC (3, 3, C2, C4, 0)
4440 || reg->value == CPENC (3, 3, C2, C4, 1))
4441 && !(AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RNG)
4442 && AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_5)))
4443 return FALSE;
4444
4445 /* System Registers in ARMv8.5-A with AARCH64_FEATURE_MEMTAG. */
4446 if ((reg->value == CPENC (3, 3, C4, C2, 7)
4447 || reg->value == CPENC (3, 0, C5, C6, 1)
4448 || reg->value == CPENC (3, 0, C5, C6, 0)
4449 || reg->value == CPENC (3, 4, C5, C6, 0)
4450 || reg->value == CPENC (3, 6, C5, C6, 0)
4451 || reg->value == CPENC (3, 5, C5, C6, 0)
4452 || reg->value == CPENC (3, 0, C1, C0, 5)
4453 || reg->value == CPENC (3, 0, C1, C0, 6)
4454 || reg->value == CPENC (3, 1, C0, C0, 4))
4455 && !(AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG)))
4456 return FALSE;
4457
4458 return TRUE;
4459 }
4460
4461 /* The CPENC below is fairly misleading, the fields
4462 here are not in CPENC form. They are in op2op1 form. The fields are encoded
4463 by ins_pstatefield, which just shifts the value by the width of the fields
4464 in a loop. So if you CPENC them only the first value will be set, the rest
4465 are masked out to 0. As an example. op2 = 3, op1=2. CPENC would produce a
4466 value of 0b110000000001000000 (0x30040) while what you want is
4467 0b011010 (0x1a). */
4468 const aarch64_sys_reg aarch64_pstatefields [] =
4469 {
4470 { "spsel", 0x05, 0 },
4471 { "daifset", 0x1e, 0 },
4472 { "daifclr", 0x1f, 0 },
4473 { "pan", 0x04, F_ARCHEXT },
4474 { "uao", 0x03, F_ARCHEXT },
4475 { "ssbs", 0x19, F_ARCHEXT },
4476 { "dit", 0x1a, F_ARCHEXT },
4477 { "tco", 0x1c, F_ARCHEXT },
4478 { 0, CPENC(0,0,0,0,0), 0 },
4479 };
4480
4481 bfd_boolean
4482 aarch64_pstatefield_supported_p (const aarch64_feature_set features,
4483 const aarch64_sys_reg *reg)
4484 {
4485 if (!(reg->flags & F_ARCHEXT))
4486 return TRUE;
4487
4488 /* PAN. Values are from aarch64_pstatefields. */
4489 if (reg->value == 0x04
4490 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
4491 return FALSE;
4492
4493 /* UAO. Values are from aarch64_pstatefields. */
4494 if (reg->value == 0x03
4495 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4496 return FALSE;
4497
4498 /* SSBS. Values are from aarch64_pstatefields. */
4499 if (reg->value == 0x19
4500 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_SSBS))
4501 return FALSE;
4502
4503 /* DIT. Values are from aarch64_pstatefields. */
4504 if (reg->value == 0x1a
4505 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_4))
4506 return FALSE;
4507
4508 /* TCO. Values are from aarch64_pstatefields. */
4509 if (reg->value == 0x1c
4510 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
4511 return FALSE;
4512
4513 return TRUE;
4514 }
4515
4516 const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
4517 {
4518 { "ialluis", CPENS(0,C7,C1,0), 0 },
4519 { "iallu", CPENS(0,C7,C5,0), 0 },
4520 { "ivau", CPENS (3, C7, C5, 1), F_HASXT },
4521 { 0, CPENS(0,0,0,0), 0 }
4522 };
4523
4524 const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
4525 {
4526 { "zva", CPENS (3, C7, C4, 1), F_HASXT },
4527 { "gva", CPENS (3, C7, C4, 3), F_HASXT | F_ARCHEXT },
4528 { "gzva", CPENS (3, C7, C4, 4), F_HASXT | F_ARCHEXT },
4529 { "ivac", CPENS (0, C7, C6, 1), F_HASXT },
4530 { "igvac", CPENS (0, C7, C6, 3), F_HASXT | F_ARCHEXT },
4531 { "igsw", CPENS (0, C7, C6, 4), F_HASXT | F_ARCHEXT },
4532 { "isw", CPENS (0, C7, C6, 2), F_HASXT },
4533 { "igdvac", CPENS (0, C7, C6, 5), F_HASXT | F_ARCHEXT },
4534 { "igdsw", CPENS (0, C7, C6, 6), F_HASXT | F_ARCHEXT },
4535 { "cvac", CPENS (3, C7, C10, 1), F_HASXT },
4536 { "cgvac", CPENS (3, C7, C10, 3), F_HASXT | F_ARCHEXT },
4537 { "cgdvac", CPENS (3, C7, C10, 5), F_HASXT | F_ARCHEXT },
4538 { "csw", CPENS (0, C7, C10, 2), F_HASXT },
4539 { "cgsw", CPENS (0, C7, C10, 4), F_HASXT | F_ARCHEXT },
4540 { "cgdsw", CPENS (0, C7, C10, 6), F_HASXT | F_ARCHEXT },
4541 { "cvau", CPENS (3, C7, C11, 1), F_HASXT },
4542 { "cvap", CPENS (3, C7, C12, 1), F_HASXT | F_ARCHEXT },
4543 { "cgvap", CPENS (3, C7, C12, 3), F_HASXT | F_ARCHEXT },
4544 { "cgdvap", CPENS (3, C7, C12, 5), F_HASXT | F_ARCHEXT },
4545 { "cvadp", CPENS (3, C7, C13, 1), F_HASXT | F_ARCHEXT },
4546 { "cgvadp", CPENS (3, C7, C13, 3), F_HASXT | F_ARCHEXT },
4547 { "cgdvadp", CPENS (3, C7, C13, 5), F_HASXT | F_ARCHEXT },
4548 { "civac", CPENS (3, C7, C14, 1), F_HASXT },
4549 { "cigvac", CPENS (3, C7, C14, 3), F_HASXT | F_ARCHEXT },
4550 { "cigdvac", CPENS (3, C7, C14, 5), F_HASXT | F_ARCHEXT },
4551 { "cisw", CPENS (0, C7, C14, 2), F_HASXT },
4552 { "cigsw", CPENS (0, C7, C14, 4), F_HASXT | F_ARCHEXT },
4553 { "cigdsw", CPENS (0, C7, C14, 6), F_HASXT | F_ARCHEXT },
4554 { 0, CPENS(0,0,0,0), 0 }
4555 };
4556
4557 const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
4558 {
4559 { "s1e1r", CPENS (0, C7, C8, 0), F_HASXT },
4560 { "s1e1w", CPENS (0, C7, C8, 1), F_HASXT },
4561 { "s1e0r", CPENS (0, C7, C8, 2), F_HASXT },
4562 { "s1e0w", CPENS (0, C7, C8, 3), F_HASXT },
4563 { "s12e1r", CPENS (4, C7, C8, 4), F_HASXT },
4564 { "s12e1w", CPENS (4, C7, C8, 5), F_HASXT },
4565 { "s12e0r", CPENS (4, C7, C8, 6), F_HASXT },
4566 { "s12e0w", CPENS (4, C7, C8, 7), F_HASXT },
4567 { "s1e2r", CPENS (4, C7, C8, 0), F_HASXT },
4568 { "s1e2w", CPENS (4, C7, C8, 1), F_HASXT },
4569 { "s1e3r", CPENS (6, C7, C8, 0), F_HASXT },
4570 { "s1e3w", CPENS (6, C7, C8, 1), F_HASXT },
4571 { "s1e1rp", CPENS (0, C7, C9, 0), F_HASXT | F_ARCHEXT },
4572 { "s1e1wp", CPENS (0, C7, C9, 1), F_HASXT | F_ARCHEXT },
4573 { 0, CPENS(0,0,0,0), 0 }
4574 };
4575
4576 const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
4577 {
4578 { "vmalle1", CPENS(0,C8,C7,0), 0 },
4579 { "vae1", CPENS (0, C8, C7, 1), F_HASXT },
4580 { "aside1", CPENS (0, C8, C7, 2), F_HASXT },
4581 { "vaae1", CPENS (0, C8, C7, 3), F_HASXT },
4582 { "vmalle1is", CPENS(0,C8,C3,0), 0 },
4583 { "vae1is", CPENS (0, C8, C3, 1), F_HASXT },
4584 { "aside1is", CPENS (0, C8, C3, 2), F_HASXT },
4585 { "vaae1is", CPENS (0, C8, C3, 3), F_HASXT },
4586 { "ipas2e1is", CPENS (4, C8, C0, 1), F_HASXT },
4587 { "ipas2le1is",CPENS (4, C8, C0, 5), F_HASXT },
4588 { "ipas2e1", CPENS (4, C8, C4, 1), F_HASXT },
4589 { "ipas2le1", CPENS (4, C8, C4, 5), F_HASXT },
4590 { "vae2", CPENS (4, C8, C7, 1), F_HASXT },
4591 { "vae2is", CPENS (4, C8, C3, 1), F_HASXT },
4592 { "vmalls12e1",CPENS(4,C8,C7,6), 0 },
4593 { "vmalls12e1is",CPENS(4,C8,C3,6), 0 },
4594 { "vae3", CPENS (6, C8, C7, 1), F_HASXT },
4595 { "vae3is", CPENS (6, C8, C3, 1), F_HASXT },
4596 { "alle2", CPENS(4,C8,C7,0), 0 },
4597 { "alle2is", CPENS(4,C8,C3,0), 0 },
4598 { "alle1", CPENS(4,C8,C7,4), 0 },
4599 { "alle1is", CPENS(4,C8,C3,4), 0 },
4600 { "alle3", CPENS(6,C8,C7,0), 0 },
4601 { "alle3is", CPENS(6,C8,C3,0), 0 },
4602 { "vale1is", CPENS (0, C8, C3, 5), F_HASXT },
4603 { "vale2is", CPENS (4, C8, C3, 5), F_HASXT },
4604 { "vale3is", CPENS (6, C8, C3, 5), F_HASXT },
4605 { "vaale1is", CPENS (0, C8, C3, 7), F_HASXT },
4606 { "vale1", CPENS (0, C8, C7, 5), F_HASXT },
4607 { "vale2", CPENS (4, C8, C7, 5), F_HASXT },
4608 { "vale3", CPENS (6, C8, C7, 5), F_HASXT },
4609 { "vaale1", CPENS (0, C8, C7, 7), F_HASXT },
4610
4611 { "vmalle1os", CPENS (0, C8, C1, 0), F_ARCHEXT },
4612 { "vae1os", CPENS (0, C8, C1, 1), F_HASXT | F_ARCHEXT },
4613 { "aside1os", CPENS (0, C8, C1, 2), F_HASXT | F_ARCHEXT },
4614 { "vaae1os", CPENS (0, C8, C1, 3), F_HASXT | F_ARCHEXT },
4615 { "vale1os", CPENS (0, C8, C1, 5), F_HASXT | F_ARCHEXT },
4616 { "vaale1os", CPENS (0, C8, C1, 7), F_HASXT | F_ARCHEXT },
4617 { "ipas2e1os", CPENS (4, C8, C4, 0), F_HASXT | F_ARCHEXT },
4618 { "ipas2le1os", CPENS (4, C8, C4, 4), F_HASXT | F_ARCHEXT },
4619 { "vae2os", CPENS (4, C8, C1, 1), F_HASXT | F_ARCHEXT },
4620 { "vale2os", CPENS (4, C8, C1, 5), F_HASXT | F_ARCHEXT },
4621 { "vmalls12e1os", CPENS (4, C8, C1, 6), F_ARCHEXT },
4622 { "vae3os", CPENS (6, C8, C1, 1), F_HASXT | F_ARCHEXT },
4623 { "vale3os", CPENS (6, C8, C1, 5), F_HASXT | F_ARCHEXT },
4624 { "alle2os", CPENS (4, C8, C1, 0), F_ARCHEXT },
4625 { "alle1os", CPENS (4, C8, C1, 4), F_ARCHEXT },
4626 { "alle3os", CPENS (6, C8, C1, 0), F_ARCHEXT },
4627
4628 { "rvae1", CPENS (0, C8, C6, 1), F_HASXT | F_ARCHEXT },
4629 { "rvaae1", CPENS (0, C8, C6, 3), F_HASXT | F_ARCHEXT },
4630 { "rvale1", CPENS (0, C8, C6, 5), F_HASXT | F_ARCHEXT },
4631 { "rvaale1", CPENS (0, C8, C6, 7), F_HASXT | F_ARCHEXT },
4632 { "rvae1is", CPENS (0, C8, C2, 1), F_HASXT | F_ARCHEXT },
4633 { "rvaae1is", CPENS (0, C8, C2, 3), F_HASXT | F_ARCHEXT },
4634 { "rvale1is", CPENS (0, C8, C2, 5), F_HASXT | F_ARCHEXT },
4635 { "rvaale1is", CPENS (0, C8, C2, 7), F_HASXT | F_ARCHEXT },
4636 { "rvae1os", CPENS (0, C8, C5, 1), F_HASXT | F_ARCHEXT },
4637 { "rvaae1os", CPENS (0, C8, C5, 3), F_HASXT | F_ARCHEXT },
4638 { "rvale1os", CPENS (0, C8, C5, 5), F_HASXT | F_ARCHEXT },
4639 { "rvaale1os", CPENS (0, C8, C5, 7), F_HASXT | F_ARCHEXT },
4640 { "ripas2e1is", CPENS (4, C8, C0, 2), F_HASXT | F_ARCHEXT },
4641 { "ripas2le1is",CPENS (4, C8, C0, 6), F_HASXT | F_ARCHEXT },
4642 { "ripas2e1", CPENS (4, C8, C4, 2), F_HASXT | F_ARCHEXT },
4643 { "ripas2le1", CPENS (4, C8, C4, 6), F_HASXT | F_ARCHEXT },
4644 { "ripas2e1os", CPENS (4, C8, C4, 3), F_HASXT | F_ARCHEXT },
4645 { "ripas2le1os",CPENS (4, C8, C4, 7), F_HASXT | F_ARCHEXT },
4646 { "rvae2", CPENS (4, C8, C6, 1), F_HASXT | F_ARCHEXT },
4647 { "rvale2", CPENS (4, C8, C6, 5), F_HASXT | F_ARCHEXT },
4648 { "rvae2is", CPENS (4, C8, C2, 1), F_HASXT | F_ARCHEXT },
4649 { "rvale2is", CPENS (4, C8, C2, 5), F_HASXT | F_ARCHEXT },
4650 { "rvae2os", CPENS (4, C8, C5, 1), F_HASXT | F_ARCHEXT },
4651 { "rvale2os", CPENS (4, C8, C5, 5), F_HASXT | F_ARCHEXT },
4652 { "rvae3", CPENS (6, C8, C6, 1), F_HASXT | F_ARCHEXT },
4653 { "rvale3", CPENS (6, C8, C6, 5), F_HASXT | F_ARCHEXT },
4654 { "rvae3is", CPENS (6, C8, C2, 1), F_HASXT | F_ARCHEXT },
4655 { "rvale3is", CPENS (6, C8, C2, 5), F_HASXT | F_ARCHEXT },
4656 { "rvae3os", CPENS (6, C8, C5, 1), F_HASXT | F_ARCHEXT },
4657 { "rvale3os", CPENS (6, C8, C5, 5), F_HASXT | F_ARCHEXT },
4658
4659 { 0, CPENS(0,0,0,0), 0 }
4660 };
4661
4662 const aarch64_sys_ins_reg aarch64_sys_regs_sr[] =
4663 {
4664 /* RCTX is somewhat unique in a way that it has different values
4665 (op2) based on the instruction in which it is used (cfp/dvp/cpp).
4666 Thus op2 is masked out and instead encoded directly in the
4667 aarch64_opcode_table entries for the respective instructions. */
4668 { "rctx", CPENS(3,C7,C3,0), F_HASXT | F_ARCHEXT | F_REG_WRITE}, /* WO */
4669
4670 { 0, CPENS(0,0,0,0), 0 }
4671 };
4672
4673 bfd_boolean
4674 aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg *sys_ins_reg)
4675 {
4676 return (sys_ins_reg->flags & F_HASXT) != 0;
4677 }
4678
4679 extern bfd_boolean
4680 aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features,
4681 const aarch64_sys_ins_reg *reg)
4682 {
4683 if (!(reg->flags & F_ARCHEXT))
4684 return TRUE;
4685
4686 /* DC CVAP. Values are from aarch64_sys_regs_dc. */
4687 if (reg->value == CPENS (3, C7, C12, 1)
4688 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4689 return FALSE;
4690
4691 /* DC CVADP. Values are from aarch64_sys_regs_dc. */
4692 if (reg->value == CPENS (3, C7, C13, 1)
4693 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_CVADP))
4694 return FALSE;
4695
4696 /* DC <dc_op> for ARMv8.5-A Memory Tagging Extension. */
4697 if ((reg->value == CPENS (0, C7, C6, 3)
4698 || reg->value == CPENS (0, C7, C6, 4)
4699 || reg->value == CPENS (0, C7, C10, 4)
4700 || reg->value == CPENS (0, C7, C14, 4)
4701 || reg->value == CPENS (3, C7, C10, 3)
4702 || reg->value == CPENS (3, C7, C12, 3)
4703 || reg->value == CPENS (3, C7, C13, 3)
4704 || reg->value == CPENS (3, C7, C14, 3)
4705 || reg->value == CPENS (3, C7, C4, 3)
4706 || reg->value == CPENS (0, C7, C6, 5)
4707 || reg->value == CPENS (0, C7, C6, 6)
4708 || reg->value == CPENS (0, C7, C10, 6)
4709 || reg->value == CPENS (0, C7, C14, 6)
4710 || reg->value == CPENS (3, C7, C10, 5)
4711 || reg->value == CPENS (3, C7, C12, 5)
4712 || reg->value == CPENS (3, C7, C13, 5)
4713 || reg->value == CPENS (3, C7, C14, 5)
4714 || reg->value == CPENS (3, C7, C4, 4))
4715 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_MEMTAG))
4716 return FALSE;
4717
4718 /* AT S1E1RP, AT S1E1WP. Values are from aarch64_sys_regs_at. */
4719 if ((reg->value == CPENS (0, C7, C9, 0)
4720 || reg->value == CPENS (0, C7, C9, 1))
4721 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
4722 return FALSE;
4723
4724 /* CFP/DVP/CPP RCTX : Value are from aarch64_sys_regs_sr. */
4725 if (reg->value == CPENS (3, C7, C3, 0)
4726 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PREDRES))
4727 return FALSE;
4728
4729 return TRUE;
4730 }
4731
4732 #undef C0
4733 #undef C1
4734 #undef C2
4735 #undef C3
4736 #undef C4
4737 #undef C5
4738 #undef C6
4739 #undef C7
4740 #undef C8
4741 #undef C9
4742 #undef C10
4743 #undef C11
4744 #undef C12
4745 #undef C13
4746 #undef C14
4747 #undef C15
4748
4749 #define BIT(INSN,BT) (((INSN) >> (BT)) & 1)
4750 #define BITS(INSN,HI,LO) (((INSN) >> (LO)) & ((1 << (((HI) - (LO)) + 1)) - 1))
4751
4752 static enum err_type
4753 verify_ldpsw (const struct aarch64_inst *inst ATTRIBUTE_UNUSED,
4754 const aarch64_insn insn, bfd_vma pc ATTRIBUTE_UNUSED,
4755 bfd_boolean encoding ATTRIBUTE_UNUSED,
4756 aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
4757 aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
4758 {
4759 int t = BITS (insn, 4, 0);
4760 int n = BITS (insn, 9, 5);
4761 int t2 = BITS (insn, 14, 10);
4762
4763 if (BIT (insn, 23))
4764 {
4765 /* Write back enabled. */
4766 if ((t == n || t2 == n) && n != 31)
4767 return ERR_UND;
4768 }
4769
4770 if (BIT (insn, 22))
4771 {
4772 /* Load */
4773 if (t == t2)
4774 return ERR_UND;
4775 }
4776
4777 return ERR_OK;
4778 }
4779
4780 /* Verifier for vector by element 3 operands functions where the
4781 conditions `if sz:L == 11 then UNDEFINED` holds. */
4782
4783 static enum err_type
4784 verify_elem_sd (const struct aarch64_inst *inst, const aarch64_insn insn,
4785 bfd_vma pc ATTRIBUTE_UNUSED, bfd_boolean encoding,
4786 aarch64_operand_error *mismatch_detail ATTRIBUTE_UNUSED,
4787 aarch64_instr_sequence *insn_sequence ATTRIBUTE_UNUSED)
4788 {
4789 const aarch64_insn undef_pattern = 0x3;
4790 aarch64_insn value;
4791
4792 assert (inst->opcode);
4793 assert (inst->opcode->operands[2] == AARCH64_OPND_Em);
4794 value = encoding ? inst->value : insn;
4795 assert (value);
4796
4797 if (undef_pattern == extract_fields (value, 0, 2, FLD_sz, FLD_L))
4798 return ERR_UND;
4799
4800 return ERR_OK;
4801 }
4802
4803 /* Initialize an instruction sequence insn_sequence with the instruction INST.
4804 If INST is NULL the given insn_sequence is cleared and the sequence is left
4805 uninitialized. */
4806
4807 void
4808 init_insn_sequence (const struct aarch64_inst *inst,
4809 aarch64_instr_sequence *insn_sequence)
4810 {
4811 int num_req_entries = 0;
4812 insn_sequence->next_insn = 0;
4813 insn_sequence->num_insns = num_req_entries;
4814 if (insn_sequence->instr)
4815 XDELETE (insn_sequence->instr);
4816 insn_sequence->instr = NULL;
4817
4818 if (inst)
4819 {
4820 insn_sequence->instr = XNEW (aarch64_inst);
4821 memcpy (insn_sequence->instr, inst, sizeof (aarch64_inst));
4822 }
4823
4824 /* Handle all the cases here. May need to think of something smarter than
4825 a giant if/else chain if this grows. At that time, a lookup table may be
4826 best. */
4827 if (inst && inst->opcode->constraints & C_SCAN_MOVPRFX)
4828 num_req_entries = 1;
4829
4830 if (insn_sequence->current_insns)
4831 XDELETEVEC (insn_sequence->current_insns);
4832 insn_sequence->current_insns = NULL;
4833
4834 if (num_req_entries != 0)
4835 {
4836 size_t size = num_req_entries * sizeof (aarch64_inst);
4837 insn_sequence->current_insns
4838 = (aarch64_inst**) XNEWVEC (aarch64_inst, num_req_entries);
4839 memset (insn_sequence->current_insns, 0, size);
4840 }
4841 }
4842
4843
4844 /* This function verifies that the instruction INST adheres to its specified
4845 constraints. If it does then ERR_OK is returned, if not then ERR_VFI is
4846 returned and MISMATCH_DETAIL contains the reason why verification failed.
4847
4848 The function is called both during assembly and disassembly. If assembling
4849 then ENCODING will be TRUE, else FALSE. If dissassembling PC will be set
4850 and will contain the PC of the current instruction w.r.t to the section.
4851
4852 If ENCODING and PC=0 then you are at a start of a section. The constraints
4853 are verified against the given state insn_sequence which is updated as it
4854 transitions through the verification. */
4855
4856 enum err_type
4857 verify_constraints (const struct aarch64_inst *inst,
4858 const aarch64_insn insn ATTRIBUTE_UNUSED,
4859 bfd_vma pc,
4860 bfd_boolean encoding,
4861 aarch64_operand_error *mismatch_detail,
4862 aarch64_instr_sequence *insn_sequence)
4863 {
4864 assert (inst);
4865 assert (inst->opcode);
4866
4867 const struct aarch64_opcode *opcode = inst->opcode;
4868 if (!opcode->constraints && !insn_sequence->instr)
4869 return ERR_OK;
4870
4871 assert (insn_sequence);
4872
4873 enum err_type res = ERR_OK;
4874
4875 /* This instruction puts a constraint on the insn_sequence. */
4876 if (opcode->flags & F_SCAN)
4877 {
4878 if (insn_sequence->instr)
4879 {
4880 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4881 mismatch_detail->error = _("instruction opens new dependency "
4882 "sequence without ending previous one");
4883 mismatch_detail->index = -1;
4884 mismatch_detail->non_fatal = TRUE;
4885 res = ERR_VFI;
4886 }
4887
4888 init_insn_sequence (inst, insn_sequence);
4889 return res;
4890 }
4891
4892 /* Verify constraints on an existing sequence. */
4893 if (insn_sequence->instr)
4894 {
4895 const struct aarch64_opcode* inst_opcode = insn_sequence->instr->opcode;
4896 /* If we're decoding and we hit PC=0 with an open sequence then we haven't
4897 closed a previous one that we should have. */
4898 if (!encoding && pc == 0)
4899 {
4900 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4901 mismatch_detail->error = _("previous `movprfx' sequence not closed");
4902 mismatch_detail->index = -1;
4903 mismatch_detail->non_fatal = TRUE;
4904 res = ERR_VFI;
4905 /* Reset the sequence. */
4906 init_insn_sequence (NULL, insn_sequence);
4907 return res;
4908 }
4909
4910 /* Validate C_SCAN_MOVPRFX constraints. Move this to a lookup table. */
4911 if (inst_opcode->constraints & C_SCAN_MOVPRFX)
4912 {
4913 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4914 instruction for better error messages. */
4915 if (!opcode->avariant
4916 || !(*opcode->avariant &
4917 (AARCH64_FEATURE_SVE | AARCH64_FEATURE_SVE2)))
4918 {
4919 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4920 mismatch_detail->error = _("SVE instruction expected after "
4921 "`movprfx'");
4922 mismatch_detail->index = -1;
4923 mismatch_detail->non_fatal = TRUE;
4924 res = ERR_VFI;
4925 goto done;
4926 }
4927
4928 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4929 instruction that is allowed to be used with a MOVPRFX. */
4930 if (!(opcode->constraints & C_SCAN_MOVPRFX))
4931 {
4932 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
4933 mismatch_detail->error = _("SVE `movprfx' compatible instruction "
4934 "expected");
4935 mismatch_detail->index = -1;
4936 mismatch_detail->non_fatal = TRUE;
4937 res = ERR_VFI;
4938 goto done;
4939 }
4940
4941 /* Next check for usage of the predicate register. */
4942 aarch64_opnd_info blk_dest = insn_sequence->instr->operands[0];
4943 aarch64_opnd_info blk_pred, inst_pred;
4944 memset (&blk_pred, 0, sizeof (aarch64_opnd_info));
4945 memset (&inst_pred, 0, sizeof (aarch64_opnd_info));
4946 bfd_boolean predicated = FALSE;
4947 assert (blk_dest.type == AARCH64_OPND_SVE_Zd);
4948
4949 /* Determine if the movprfx instruction used is predicated or not. */
4950 if (insn_sequence->instr->operands[1].type == AARCH64_OPND_SVE_Pg3)
4951 {
4952 predicated = TRUE;
4953 blk_pred = insn_sequence->instr->operands[1];
4954 }
4955
4956 unsigned char max_elem_size = 0;
4957 unsigned char current_elem_size;
4958 int num_op_used = 0, last_op_usage = 0;
4959 int i, inst_pred_idx = -1;
4960 int num_ops = aarch64_num_of_operands (opcode);
4961 for (i = 0; i < num_ops; i++)
4962 {
4963 aarch64_opnd_info inst_op = inst->operands[i];
4964 switch (inst_op.type)
4965 {
4966 case AARCH64_OPND_SVE_Zd:
4967 case AARCH64_OPND_SVE_Zm_5:
4968 case AARCH64_OPND_SVE_Zm_16:
4969 case AARCH64_OPND_SVE_Zn:
4970 case AARCH64_OPND_SVE_Zt:
4971 case AARCH64_OPND_SVE_Vm:
4972 case AARCH64_OPND_SVE_Vn:
4973 case AARCH64_OPND_Va:
4974 case AARCH64_OPND_Vn:
4975 case AARCH64_OPND_Vm:
4976 case AARCH64_OPND_Sn:
4977 case AARCH64_OPND_Sm:
4978 if (inst_op.reg.regno == blk_dest.reg.regno)
4979 {
4980 num_op_used++;
4981 last_op_usage = i;
4982 }
4983 current_elem_size
4984 = aarch64_get_qualifier_esize (inst_op.qualifier);
4985 if (current_elem_size > max_elem_size)
4986 max_elem_size = current_elem_size;
4987 break;
4988 case AARCH64_OPND_SVE_Pd:
4989 case AARCH64_OPND_SVE_Pg3:
4990 case AARCH64_OPND_SVE_Pg4_5:
4991 case AARCH64_OPND_SVE_Pg4_10:
4992 case AARCH64_OPND_SVE_Pg4_16:
4993 case AARCH64_OPND_SVE_Pm:
4994 case AARCH64_OPND_SVE_Pn:
4995 case AARCH64_OPND_SVE_Pt:
4996 inst_pred = inst_op;
4997 inst_pred_idx = i;
4998 break;
4999 default:
5000 break;
5001 }
5002 }
5003
5004 assert (max_elem_size != 0);
5005 aarch64_opnd_info inst_dest = inst->operands[0];
5006 /* Determine the size that should be used to compare against the
5007 movprfx size. */
5008 current_elem_size
5009 = opcode->constraints & C_MAX_ELEM
5010 ? max_elem_size
5011 : aarch64_get_qualifier_esize (inst_dest.qualifier);
5012
5013 /* If movprfx is predicated do some extra checks. */
5014 if (predicated)
5015 {
5016 /* The instruction must be predicated. */
5017 if (inst_pred_idx < 0)
5018 {
5019 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5020 mismatch_detail->error = _("predicated instruction expected "
5021 "after `movprfx'");
5022 mismatch_detail->index = -1;
5023 mismatch_detail->non_fatal = TRUE;
5024 res = ERR_VFI;
5025 goto done;
5026 }
5027
5028 /* The instruction must have a merging predicate. */
5029 if (inst_pred.qualifier != AARCH64_OPND_QLF_P_M)
5030 {
5031 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5032 mismatch_detail->error = _("merging predicate expected due "
5033 "to preceding `movprfx'");
5034 mismatch_detail->index = inst_pred_idx;
5035 mismatch_detail->non_fatal = TRUE;
5036 res = ERR_VFI;
5037 goto done;
5038 }
5039
5040 /* The same register must be used in instruction. */
5041 if (blk_pred.reg.regno != inst_pred.reg.regno)
5042 {
5043 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5044 mismatch_detail->error = _("predicate register differs "
5045 "from that in preceding "
5046 "`movprfx'");
5047 mismatch_detail->index = inst_pred_idx;
5048 mismatch_detail->non_fatal = TRUE;
5049 res = ERR_VFI;
5050 goto done;
5051 }
5052 }
5053
5054 /* Destructive operations by definition must allow one usage of the
5055 same register. */
5056 int allowed_usage
5057 = aarch64_is_destructive_by_operands (opcode) ? 2 : 1;
5058
5059 /* Operand is not used at all. */
5060 if (num_op_used == 0)
5061 {
5062 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5063 mismatch_detail->error = _("output register of preceding "
5064 "`movprfx' not used in current "
5065 "instruction");
5066 mismatch_detail->index = 0;
5067 mismatch_detail->non_fatal = TRUE;
5068 res = ERR_VFI;
5069 goto done;
5070 }
5071
5072 /* We now know it's used, now determine exactly where it's used. */
5073 if (blk_dest.reg.regno != inst_dest.reg.regno)
5074 {
5075 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5076 mismatch_detail->error = _("output register of preceding "
5077 "`movprfx' expected as output");
5078 mismatch_detail->index = 0;
5079 mismatch_detail->non_fatal = TRUE;
5080 res = ERR_VFI;
5081 goto done;
5082 }
5083
5084 /* Operand used more than allowed for the specific opcode type. */
5085 if (num_op_used > allowed_usage)
5086 {
5087 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5088 mismatch_detail->error = _("output register of preceding "
5089 "`movprfx' used as input");
5090 mismatch_detail->index = last_op_usage;
5091 mismatch_detail->non_fatal = TRUE;
5092 res = ERR_VFI;
5093 goto done;
5094 }
5095
5096 /* Now the only thing left is the qualifiers checks. The register
5097 must have the same maximum element size. */
5098 if (inst_dest.qualifier
5099 && blk_dest.qualifier
5100 && current_elem_size
5101 != aarch64_get_qualifier_esize (blk_dest.qualifier))
5102 {
5103 mismatch_detail->kind = AARCH64_OPDE_SYNTAX_ERROR;
5104 mismatch_detail->error = _("register size not compatible with "
5105 "previous `movprfx'");
5106 mismatch_detail->index = 0;
5107 mismatch_detail->non_fatal = TRUE;
5108 res = ERR_VFI;
5109 goto done;
5110 }
5111 }
5112
5113 done:
5114 /* Add the new instruction to the sequence. */
5115 memcpy (insn_sequence->current_insns + insn_sequence->next_insn++,
5116 inst, sizeof (aarch64_inst));
5117
5118 /* Check if sequence is now full. */
5119 if (insn_sequence->next_insn >= insn_sequence->num_insns)
5120 {
5121 /* Sequence is full, but we don't have anything special to do for now,
5122 so clear and reset it. */
5123 init_insn_sequence (NULL, insn_sequence);
5124 }
5125 }
5126
5127 return res;
5128 }
5129
5130
5131 /* Return true if VALUE cannot be moved into an SVE register using DUP
5132 (with any element size, not just ESIZE) and if using DUPM would
5133 therefore be OK. ESIZE is the number of bytes in the immediate. */
5134
5135 bfd_boolean
5136 aarch64_sve_dupm_mov_immediate_p (uint64_t uvalue, int esize)
5137 {
5138 int64_t svalue = uvalue;
5139 uint64_t upper = (uint64_t) -1 << (esize * 4) << (esize * 4);
5140
5141 if ((uvalue & ~upper) != uvalue && (uvalue | upper) != uvalue)
5142 return FALSE;
5143 if (esize <= 4 || (uint32_t) uvalue == (uint32_t) (uvalue >> 32))
5144 {
5145 svalue = (int32_t) uvalue;
5146 if (esize <= 2 || (uint16_t) uvalue == (uint16_t) (uvalue >> 16))
5147 {
5148 svalue = (int16_t) uvalue;
5149 if (esize == 1 || (uint8_t) uvalue == (uint8_t) (uvalue >> 8))
5150 return FALSE;
5151 }
5152 }
5153 if ((svalue & 0xff) == 0)
5154 svalue /= 256;
5155 return svalue < -128 || svalue >= 128;
5156 }
5157
5158 /* Include the opcode description table as well as the operand description
5159 table. */
5160 #define VERIFIER(x) verify_##x
5161 #include "aarch64-tbl.h"
This page took 0.18299 seconds and 3 git commands to generate.