kernel/watchdog.c: perform all-CPU backtrace in case of hard lockup
[deliverable/linux.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 180extern void update_cpu_load_nohz(void);
3289bdb4
PZ
181#else
182static inline void update_cpu_load_nohz(void) { }
183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 380extern void touch_softlockup_watchdog(void);
d6ad3e28 381extern void touch_softlockup_watchdog_sync(void);
04c9167f 382extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
383extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
9c44bc03 386extern unsigned int softlockup_panic;
004417a6 387void lockup_detector_init(void);
8446f1d3 388#else
8446f1d3
IM
389static inline void touch_softlockup_watchdog(void)
390{
391}
d6ad3e28
JW
392static inline void touch_softlockup_watchdog_sync(void)
393{
394}
04c9167f
JF
395static inline void touch_all_softlockup_watchdogs(void)
396{
397}
004417a6
PZ
398static inline void lockup_detector_init(void)
399{
400}
8446f1d3
IM
401#endif
402
8b414521
MT
403#ifdef CONFIG_DETECT_HUNG_TASK
404void reset_hung_task_detector(void);
405#else
406static inline void reset_hung_task_detector(void)
407{
408}
409#endif
410
1da177e4
LT
411/* Attach to any functions which should be ignored in wchan output. */
412#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
413
414/* Linker adds these: start and end of __sched functions */
415extern char __sched_text_start[], __sched_text_end[];
416
1da177e4
LT
417/* Is this address in the __sched functions? */
418extern int in_sched_functions(unsigned long addr);
419
420#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 421extern signed long schedule_timeout(signed long timeout);
64ed93a2 422extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 423extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 424extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 425asmlinkage void schedule(void);
c5491ea7 426extern void schedule_preempt_disabled(void);
1da177e4 427
9cff8ade
N
428extern long io_schedule_timeout(long timeout);
429
430static inline void io_schedule(void)
431{
432 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
433}
434
ab516013 435struct nsproxy;
acce292c 436struct user_namespace;
1da177e4 437
efc1a3b1
DH
438#ifdef CONFIG_MMU
439extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
440extern unsigned long
441arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
442 unsigned long, unsigned long);
443extern unsigned long
444arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
445 unsigned long len, unsigned long pgoff,
446 unsigned long flags);
efc1a3b1
DH
447#else
448static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
449#endif
1da177e4 450
d049f74f
KC
451#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
452#define SUID_DUMP_USER 1 /* Dump as user of process */
453#define SUID_DUMP_ROOT 2 /* Dump as root */
454
6c5d5238 455/* mm flags */
f8af4da3 456
7288e118 457/* for SUID_DUMP_* above */
3cb4a0bb 458#define MMF_DUMPABLE_BITS 2
f8af4da3 459#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 460
942be387
ON
461extern void set_dumpable(struct mm_struct *mm, int value);
462/*
463 * This returns the actual value of the suid_dumpable flag. For things
464 * that are using this for checking for privilege transitions, it must
465 * test against SUID_DUMP_USER rather than treating it as a boolean
466 * value.
467 */
468static inline int __get_dumpable(unsigned long mm_flags)
469{
470 return mm_flags & MMF_DUMPABLE_MASK;
471}
472
473static inline int get_dumpable(struct mm_struct *mm)
474{
475 return __get_dumpable(mm->flags);
476}
477
3cb4a0bb
KH
478/* coredump filter bits */
479#define MMF_DUMP_ANON_PRIVATE 2
480#define MMF_DUMP_ANON_SHARED 3
481#define MMF_DUMP_MAPPED_PRIVATE 4
482#define MMF_DUMP_MAPPED_SHARED 5
82df3973 483#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
484#define MMF_DUMP_HUGETLB_PRIVATE 7
485#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 486
3cb4a0bb 487#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 488#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
489#define MMF_DUMP_FILTER_MASK \
490 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
491#define MMF_DUMP_FILTER_DEFAULT \
e575f111 492 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
493 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
494
495#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
496# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
497#else
498# define MMF_DUMP_MASK_DEFAULT_ELF 0
499#endif
f8af4da3
HD
500 /* leave room for more dump flags */
501#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 502#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 503#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 504
9f68f672
ON
505#define MMF_HAS_UPROBES 19 /* has uprobes */
506#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 507
f8af4da3 508#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 509
1da177e4
LT
510struct sighand_struct {
511 atomic_t count;
512 struct k_sigaction action[_NSIG];
513 spinlock_t siglock;
b8fceee1 514 wait_queue_head_t signalfd_wqh;
1da177e4
LT
515};
516
0e464814 517struct pacct_struct {
f6ec29a4
KK
518 int ac_flag;
519 long ac_exitcode;
0e464814 520 unsigned long ac_mem;
77787bfb
KK
521 cputime_t ac_utime, ac_stime;
522 unsigned long ac_minflt, ac_majflt;
0e464814
KK
523};
524
42c4ab41
SG
525struct cpu_itimer {
526 cputime_t expires;
527 cputime_t incr;
8356b5f9
SG
528 u32 error;
529 u32 incr_error;
42c4ab41
SG
530};
531
d37f761d 532/**
9d7fb042 533 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
534 * @utime: time spent in user mode
535 * @stime: time spent in system mode
9d7fb042 536 * @lock: protects the above two fields
d37f761d 537 *
9d7fb042
PZ
538 * Stores previous user/system time values such that we can guarantee
539 * monotonicity.
d37f761d 540 */
9d7fb042
PZ
541struct prev_cputime {
542#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
543 cputime_t utime;
544 cputime_t stime;
9d7fb042
PZ
545 raw_spinlock_t lock;
546#endif
d37f761d
FW
547};
548
9d7fb042
PZ
549static inline void prev_cputime_init(struct prev_cputime *prev)
550{
551#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
552 prev->utime = prev->stime = 0;
553 raw_spin_lock_init(&prev->lock);
554#endif
555}
556
f06febc9
FM
557/**
558 * struct task_cputime - collected CPU time counts
559 * @utime: time spent in user mode, in &cputime_t units
560 * @stime: time spent in kernel mode, in &cputime_t units
561 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 562 *
9d7fb042
PZ
563 * This structure groups together three kinds of CPU time that are tracked for
564 * threads and thread groups. Most things considering CPU time want to group
565 * these counts together and treat all three of them in parallel.
f06febc9
FM
566 */
567struct task_cputime {
568 cputime_t utime;
569 cputime_t stime;
570 unsigned long long sum_exec_runtime;
571};
9d7fb042 572
f06febc9 573/* Alternate field names when used to cache expirations. */
f06febc9 574#define virt_exp utime
9d7fb042 575#define prof_exp stime
f06febc9
FM
576#define sched_exp sum_exec_runtime
577
4cd4c1b4
PZ
578#define INIT_CPUTIME \
579 (struct task_cputime) { \
64861634
MS
580 .utime = 0, \
581 .stime = 0, \
4cd4c1b4
PZ
582 .sum_exec_runtime = 0, \
583 }
584
971e8a98
JL
585/*
586 * This is the atomic variant of task_cputime, which can be used for
587 * storing and updating task_cputime statistics without locking.
588 */
589struct task_cputime_atomic {
590 atomic64_t utime;
591 atomic64_t stime;
592 atomic64_t sum_exec_runtime;
593};
594
595#define INIT_CPUTIME_ATOMIC \
596 (struct task_cputime_atomic) { \
597 .utime = ATOMIC64_INIT(0), \
598 .stime = ATOMIC64_INIT(0), \
599 .sum_exec_runtime = ATOMIC64_INIT(0), \
600 }
601
609ca066 602#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 603
c99e6efe 604/*
87dcbc06
PZ
605 * Disable preemption until the scheduler is running -- use an unconditional
606 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 607 *
87dcbc06 608 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 609 */
87dcbc06 610#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 611
c99e6efe 612/*
609ca066
PZ
613 * Initial preempt_count value; reflects the preempt_count schedule invariant
614 * which states that during context switches:
d86ee480 615 *
609ca066
PZ
616 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
617 *
618 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
619 * Note: See finish_task_switch().
c99e6efe 620 */
609ca066 621#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 622
f06febc9 623/**
4cd4c1b4 624 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 625 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
626 * @running: true when there are timers running and
627 * @cputime_atomic receives updates.
c8d75aa4
JL
628 * @checking_timer: true when a thread in the group is in the
629 * process of checking for thread group timers.
f06febc9
FM
630 *
631 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 632 * used for thread group CPU timer calculations.
f06febc9 633 */
4cd4c1b4 634struct thread_group_cputimer {
71107445 635 struct task_cputime_atomic cputime_atomic;
d5c373eb 636 bool running;
c8d75aa4 637 bool checking_timer;
f06febc9 638};
f06febc9 639
4714d1d3 640#include <linux/rwsem.h>
5091faa4
MG
641struct autogroup;
642
1da177e4 643/*
e815f0a8 644 * NOTE! "signal_struct" does not have its own
1da177e4
LT
645 * locking, because a shared signal_struct always
646 * implies a shared sighand_struct, so locking
647 * sighand_struct is always a proper superset of
648 * the locking of signal_struct.
649 */
650struct signal_struct {
ea6d290c 651 atomic_t sigcnt;
1da177e4 652 atomic_t live;
b3ac022c 653 int nr_threads;
0c740d0a 654 struct list_head thread_head;
1da177e4
LT
655
656 wait_queue_head_t wait_chldexit; /* for wait4() */
657
658 /* current thread group signal load-balancing target: */
36c8b586 659 struct task_struct *curr_target;
1da177e4
LT
660
661 /* shared signal handling: */
662 struct sigpending shared_pending;
663
664 /* thread group exit support */
665 int group_exit_code;
666 /* overloaded:
667 * - notify group_exit_task when ->count is equal to notify_count
668 * - everyone except group_exit_task is stopped during signal delivery
669 * of fatal signals, group_exit_task processes the signal.
670 */
1da177e4 671 int notify_count;
07dd20e0 672 struct task_struct *group_exit_task;
1da177e4
LT
673
674 /* thread group stop support, overloads group_exit_code too */
675 int group_stop_count;
676 unsigned int flags; /* see SIGNAL_* flags below */
677
ebec18a6
LP
678 /*
679 * PR_SET_CHILD_SUBREAPER marks a process, like a service
680 * manager, to re-parent orphan (double-forking) child processes
681 * to this process instead of 'init'. The service manager is
682 * able to receive SIGCHLD signals and is able to investigate
683 * the process until it calls wait(). All children of this
684 * process will inherit a flag if they should look for a
685 * child_subreaper process at exit.
686 */
687 unsigned int is_child_subreaper:1;
688 unsigned int has_child_subreaper:1;
689
1da177e4 690 /* POSIX.1b Interval Timers */
5ed67f05
PE
691 int posix_timer_id;
692 struct list_head posix_timers;
1da177e4
LT
693
694 /* ITIMER_REAL timer for the process */
2ff678b8 695 struct hrtimer real_timer;
fea9d175 696 struct pid *leader_pid;
2ff678b8 697 ktime_t it_real_incr;
1da177e4 698
42c4ab41
SG
699 /*
700 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
701 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
702 * values are defined to 0 and 1 respectively
703 */
704 struct cpu_itimer it[2];
1da177e4 705
f06febc9 706 /*
4cd4c1b4
PZ
707 * Thread group totals for process CPU timers.
708 * See thread_group_cputimer(), et al, for details.
f06febc9 709 */
4cd4c1b4 710 struct thread_group_cputimer cputimer;
f06febc9
FM
711
712 /* Earliest-expiration cache. */
713 struct task_cputime cputime_expires;
714
715 struct list_head cpu_timers[3];
716
ab521dc0 717 struct pid *tty_old_pgrp;
1ec320af 718
1da177e4
LT
719 /* boolean value for session group leader */
720 int leader;
721
722 struct tty_struct *tty; /* NULL if no tty */
723
5091faa4
MG
724#ifdef CONFIG_SCHED_AUTOGROUP
725 struct autogroup *autogroup;
726#endif
1da177e4
LT
727 /*
728 * Cumulative resource counters for dead threads in the group,
729 * and for reaped dead child processes forked by this group.
730 * Live threads maintain their own counters and add to these
731 * in __exit_signal, except for the group leader.
732 */
e78c3496 733 seqlock_t stats_lock;
32bd671d 734 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
735 cputime_t gtime;
736 cputime_t cgtime;
9d7fb042 737 struct prev_cputime prev_cputime;
1da177e4
LT
738 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
739 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 740 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 741 unsigned long maxrss, cmaxrss;
940389b8 742 struct task_io_accounting ioac;
1da177e4 743
32bd671d
PZ
744 /*
745 * Cumulative ns of schedule CPU time fo dead threads in the
746 * group, not including a zombie group leader, (This only differs
747 * from jiffies_to_ns(utime + stime) if sched_clock uses something
748 * other than jiffies.)
749 */
750 unsigned long long sum_sched_runtime;
751
1da177e4
LT
752 /*
753 * We don't bother to synchronize most readers of this at all,
754 * because there is no reader checking a limit that actually needs
755 * to get both rlim_cur and rlim_max atomically, and either one
756 * alone is a single word that can safely be read normally.
757 * getrlimit/setrlimit use task_lock(current->group_leader) to
758 * protect this instead of the siglock, because they really
759 * have no need to disable irqs.
760 */
761 struct rlimit rlim[RLIM_NLIMITS];
762
0e464814
KK
763#ifdef CONFIG_BSD_PROCESS_ACCT
764 struct pacct_struct pacct; /* per-process accounting information */
765#endif
ad4ecbcb 766#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
767 struct taskstats *stats;
768#endif
522ed776
MT
769#ifdef CONFIG_AUDIT
770 unsigned audit_tty;
46e959ea 771 unsigned audit_tty_log_passwd;
522ed776
MT
772 struct tty_audit_buf *tty_audit_buf;
773#endif
0c986253
TH
774#ifdef CONFIG_CGROUPS
775 /*
776 * group_rwsem prevents new tasks from entering the threadgroup and
777 * member tasks from exiting,a more specifically, setting of
778 * PF_EXITING. fork and exit paths are protected with this rwsem
779 * using threadgroup_change_begin/end(). Users which require
780 * threadgroup to remain stable should use threadgroup_[un]lock()
781 * which also takes care of exec path. Currently, cgroup is the
782 * only user.
783 */
784 struct rw_semaphore group_rwsem;
785#endif
28b83c51 786
e1e12d2f 787 oom_flags_t oom_flags;
a9c58b90
DR
788 short oom_score_adj; /* OOM kill score adjustment */
789 short oom_score_adj_min; /* OOM kill score adjustment min value.
790 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
791
792 struct mutex cred_guard_mutex; /* guard against foreign influences on
793 * credential calculations
794 * (notably. ptrace) */
1da177e4
LT
795};
796
797/*
798 * Bits in flags field of signal_struct.
799 */
800#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
801#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
802#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 803#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
804/*
805 * Pending notifications to parent.
806 */
807#define SIGNAL_CLD_STOPPED 0x00000010
808#define SIGNAL_CLD_CONTINUED 0x00000020
809#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 810
fae5fa44
ON
811#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
812
ed5d2cac
ON
813/* If true, all threads except ->group_exit_task have pending SIGKILL */
814static inline int signal_group_exit(const struct signal_struct *sig)
815{
816 return (sig->flags & SIGNAL_GROUP_EXIT) ||
817 (sig->group_exit_task != NULL);
818}
819
1da177e4
LT
820/*
821 * Some day this will be a full-fledged user tracking system..
822 */
823struct user_struct {
824 atomic_t __count; /* reference count */
825 atomic_t processes; /* How many processes does this user have? */
1da177e4 826 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 827#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
828 atomic_t inotify_watches; /* How many inotify watches does this user have? */
829 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
830#endif
4afeff85
EP
831#ifdef CONFIG_FANOTIFY
832 atomic_t fanotify_listeners;
833#endif
7ef9964e 834#ifdef CONFIG_EPOLL
52bd19f7 835 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 836#endif
970a8645 837#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
838 /* protected by mq_lock */
839 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 840#endif
1da177e4
LT
841 unsigned long locked_shm; /* How many pages of mlocked shm ? */
842
843#ifdef CONFIG_KEYS
844 struct key *uid_keyring; /* UID specific keyring */
845 struct key *session_keyring; /* UID's default session keyring */
846#endif
847
848 /* Hash table maintenance information */
735de223 849 struct hlist_node uidhash_node;
7b44ab97 850 kuid_t uid;
24e377a8 851
aaac3ba9 852#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
853 atomic_long_t locked_vm;
854#endif
1da177e4
LT
855};
856
eb41d946 857extern int uids_sysfs_init(void);
5cb350ba 858
7b44ab97 859extern struct user_struct *find_user(kuid_t);
1da177e4
LT
860
861extern struct user_struct root_user;
862#define INIT_USER (&root_user)
863
b6dff3ec 864
1da177e4
LT
865struct backing_dev_info;
866struct reclaim_state;
867
f6db8347 868#ifdef CONFIG_SCHED_INFO
1da177e4
LT
869struct sched_info {
870 /* cumulative counters */
2d72376b 871 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 872 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
873
874 /* timestamps */
172ba844
BS
875 unsigned long long last_arrival,/* when we last ran on a cpu */
876 last_queued; /* when we were last queued to run */
1da177e4 877};
f6db8347 878#endif /* CONFIG_SCHED_INFO */
1da177e4 879
ca74e92b
SN
880#ifdef CONFIG_TASK_DELAY_ACCT
881struct task_delay_info {
882 spinlock_t lock;
883 unsigned int flags; /* Private per-task flags */
884
885 /* For each stat XXX, add following, aligned appropriately
886 *
887 * struct timespec XXX_start, XXX_end;
888 * u64 XXX_delay;
889 * u32 XXX_count;
890 *
891 * Atomicity of updates to XXX_delay, XXX_count protected by
892 * single lock above (split into XXX_lock if contention is an issue).
893 */
0ff92245
SN
894
895 /*
896 * XXX_count is incremented on every XXX operation, the delay
897 * associated with the operation is added to XXX_delay.
898 * XXX_delay contains the accumulated delay time in nanoseconds.
899 */
9667a23d 900 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
901 u64 blkio_delay; /* wait for sync block io completion */
902 u64 swapin_delay; /* wait for swapin block io completion */
903 u32 blkio_count; /* total count of the number of sync block */
904 /* io operations performed */
905 u32 swapin_count; /* total count of the number of swapin block */
906 /* io operations performed */
873b4771 907
9667a23d 908 u64 freepages_start;
873b4771
KK
909 u64 freepages_delay; /* wait for memory reclaim */
910 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 911};
52f17b6c
CS
912#endif /* CONFIG_TASK_DELAY_ACCT */
913
914static inline int sched_info_on(void)
915{
916#ifdef CONFIG_SCHEDSTATS
917 return 1;
918#elif defined(CONFIG_TASK_DELAY_ACCT)
919 extern int delayacct_on;
920 return delayacct_on;
921#else
922 return 0;
ca74e92b 923#endif
52f17b6c 924}
ca74e92b 925
d15bcfdb
IM
926enum cpu_idle_type {
927 CPU_IDLE,
928 CPU_NOT_IDLE,
929 CPU_NEWLY_IDLE,
930 CPU_MAX_IDLE_TYPES
1da177e4
LT
931};
932
1399fa78 933/*
ca8ce3d0 934 * Increase resolution of cpu_capacity calculations
1399fa78 935 */
ca8ce3d0
NP
936#define SCHED_CAPACITY_SHIFT 10
937#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 938
76751049
PZ
939/*
940 * Wake-queues are lists of tasks with a pending wakeup, whose
941 * callers have already marked the task as woken internally,
942 * and can thus carry on. A common use case is being able to
943 * do the wakeups once the corresponding user lock as been
944 * released.
945 *
946 * We hold reference to each task in the list across the wakeup,
947 * thus guaranteeing that the memory is still valid by the time
948 * the actual wakeups are performed in wake_up_q().
949 *
950 * One per task suffices, because there's never a need for a task to be
951 * in two wake queues simultaneously; it is forbidden to abandon a task
952 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
953 * already in a wake queue, the wakeup will happen soon and the second
954 * waker can just skip it.
955 *
956 * The WAKE_Q macro declares and initializes the list head.
957 * wake_up_q() does NOT reinitialize the list; it's expected to be
958 * called near the end of a function, where the fact that the queue is
959 * not used again will be easy to see by inspection.
960 *
961 * Note that this can cause spurious wakeups. schedule() callers
962 * must ensure the call is done inside a loop, confirming that the
963 * wakeup condition has in fact occurred.
964 */
965struct wake_q_node {
966 struct wake_q_node *next;
967};
968
969struct wake_q_head {
970 struct wake_q_node *first;
971 struct wake_q_node **lastp;
972};
973
974#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
975
976#define WAKE_Q(name) \
977 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
978
979extern void wake_q_add(struct wake_q_head *head,
980 struct task_struct *task);
981extern void wake_up_q(struct wake_q_head *head);
982
1399fa78
NR
983/*
984 * sched-domains (multiprocessor balancing) declarations:
985 */
2dd73a4f 986#ifdef CONFIG_SMP
b5d978e0
PZ
987#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
988#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
989#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
990#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 991#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 992#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 993#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 994#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
995#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
996#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 997#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 998#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 999#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1000#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1001
143e1e28 1002#ifdef CONFIG_SCHED_SMT
b6220ad6 1003static inline int cpu_smt_flags(void)
143e1e28 1004{
5d4dfddd 1005 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1006}
1007#endif
1008
1009#ifdef CONFIG_SCHED_MC
b6220ad6 1010static inline int cpu_core_flags(void)
143e1e28
VG
1011{
1012 return SD_SHARE_PKG_RESOURCES;
1013}
1014#endif
1015
1016#ifdef CONFIG_NUMA
b6220ad6 1017static inline int cpu_numa_flags(void)
143e1e28
VG
1018{
1019 return SD_NUMA;
1020}
1021#endif
532cb4c4 1022
1d3504fc
HS
1023struct sched_domain_attr {
1024 int relax_domain_level;
1025};
1026
1027#define SD_ATTR_INIT (struct sched_domain_attr) { \
1028 .relax_domain_level = -1, \
1029}
1030
60495e77
PZ
1031extern int sched_domain_level_max;
1032
5e6521ea
LZ
1033struct sched_group;
1034
1da177e4
LT
1035struct sched_domain {
1036 /* These fields must be setup */
1037 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1038 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1039 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1040 unsigned long min_interval; /* Minimum balance interval ms */
1041 unsigned long max_interval; /* Maximum balance interval ms */
1042 unsigned int busy_factor; /* less balancing by factor if busy */
1043 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1044 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1045 unsigned int busy_idx;
1046 unsigned int idle_idx;
1047 unsigned int newidle_idx;
1048 unsigned int wake_idx;
147cbb4b 1049 unsigned int forkexec_idx;
a52bfd73 1050 unsigned int smt_gain;
25f55d9d
VG
1051
1052 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1053 int flags; /* See SD_* */
60495e77 1054 int level;
1da177e4
LT
1055
1056 /* Runtime fields. */
1057 unsigned long last_balance; /* init to jiffies. units in jiffies */
1058 unsigned int balance_interval; /* initialise to 1. units in ms. */
1059 unsigned int nr_balance_failed; /* initialise to 0 */
1060
f48627e6 1061 /* idle_balance() stats */
9bd721c5 1062 u64 max_newidle_lb_cost;
f48627e6 1063 unsigned long next_decay_max_lb_cost;
2398f2c6 1064
1da177e4
LT
1065#ifdef CONFIG_SCHEDSTATS
1066 /* load_balance() stats */
480b9434
KC
1067 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1068 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1069 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1070 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1075
1076 /* Active load balancing */
480b9434
KC
1077 unsigned int alb_count;
1078 unsigned int alb_failed;
1079 unsigned int alb_pushed;
1da177e4 1080
68767a0a 1081 /* SD_BALANCE_EXEC stats */
480b9434
KC
1082 unsigned int sbe_count;
1083 unsigned int sbe_balanced;
1084 unsigned int sbe_pushed;
1da177e4 1085
68767a0a 1086 /* SD_BALANCE_FORK stats */
480b9434
KC
1087 unsigned int sbf_count;
1088 unsigned int sbf_balanced;
1089 unsigned int sbf_pushed;
68767a0a 1090
1da177e4 1091 /* try_to_wake_up() stats */
480b9434
KC
1092 unsigned int ttwu_wake_remote;
1093 unsigned int ttwu_move_affine;
1094 unsigned int ttwu_move_balance;
1da177e4 1095#endif
a5d8c348
IM
1096#ifdef CONFIG_SCHED_DEBUG
1097 char *name;
1098#endif
dce840a0
PZ
1099 union {
1100 void *private; /* used during construction */
1101 struct rcu_head rcu; /* used during destruction */
1102 };
6c99e9ad 1103
669c55e9 1104 unsigned int span_weight;
4200efd9
IM
1105 /*
1106 * Span of all CPUs in this domain.
1107 *
1108 * NOTE: this field is variable length. (Allocated dynamically
1109 * by attaching extra space to the end of the structure,
1110 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1111 */
1112 unsigned long span[0];
1da177e4
LT
1113};
1114
758b2cdc
RR
1115static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1116{
6c99e9ad 1117 return to_cpumask(sd->span);
758b2cdc
RR
1118}
1119
acc3f5d7 1120extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1121 struct sched_domain_attr *dattr_new);
029190c5 1122
acc3f5d7
RR
1123/* Allocate an array of sched domains, for partition_sched_domains(). */
1124cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1125void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1126
39be3501
PZ
1127bool cpus_share_cache(int this_cpu, int that_cpu);
1128
143e1e28 1129typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1130typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1131
1132#define SDTL_OVERLAP 0x01
1133
1134struct sd_data {
1135 struct sched_domain **__percpu sd;
1136 struct sched_group **__percpu sg;
63b2ca30 1137 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1138};
1139
1140struct sched_domain_topology_level {
1141 sched_domain_mask_f mask;
1142 sched_domain_flags_f sd_flags;
1143 int flags;
1144 int numa_level;
1145 struct sd_data data;
1146#ifdef CONFIG_SCHED_DEBUG
1147 char *name;
1148#endif
1149};
1150
143e1e28 1151extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1152extern void wake_up_if_idle(int cpu);
143e1e28
VG
1153
1154#ifdef CONFIG_SCHED_DEBUG
1155# define SD_INIT_NAME(type) .name = #type
1156#else
1157# define SD_INIT_NAME(type)
1158#endif
1159
1b427c15 1160#else /* CONFIG_SMP */
1da177e4 1161
1b427c15 1162struct sched_domain_attr;
d02c7a8c 1163
1b427c15 1164static inline void
acc3f5d7 1165partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1166 struct sched_domain_attr *dattr_new)
1167{
d02c7a8c 1168}
39be3501
PZ
1169
1170static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1171{
1172 return true;
1173}
1174
1b427c15 1175#endif /* !CONFIG_SMP */
1da177e4 1176
47fe38fc 1177
1da177e4 1178struct io_context; /* See blkdev.h */
1da177e4 1179
1da177e4 1180
383f2835 1181#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1182extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1183#else
1184static inline void prefetch_stack(struct task_struct *t) { }
1185#endif
1da177e4
LT
1186
1187struct audit_context; /* See audit.c */
1188struct mempolicy;
b92ce558 1189struct pipe_inode_info;
4865ecf1 1190struct uts_namespace;
1da177e4 1191
20b8a59f 1192struct load_weight {
9dbdb155
PZ
1193 unsigned long weight;
1194 u32 inv_weight;
20b8a59f
IM
1195};
1196
9d89c257
YD
1197/*
1198 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1199 * 1) load_avg factors frequency scaling into the amount of time that a
1200 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1201 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1202 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1203 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1204 * For cfs_rq, it is the aggregated such times of all runnable and
1205 * blocked sched_entities.
1206 * The 64 bit load_sum can:
1207 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1208 * the highest weight (=88761) always runnable, we should not overflow
1209 * 2) for entity, support any load.weight always runnable
1210 */
9d85f21c 1211struct sched_avg {
9d89c257
YD
1212 u64 last_update_time, load_sum;
1213 u32 util_sum, period_contrib;
1214 unsigned long load_avg, util_avg;
9d85f21c
PT
1215};
1216
94c18227 1217#ifdef CONFIG_SCHEDSTATS
41acab88 1218struct sched_statistics {
20b8a59f 1219 u64 wait_start;
94c18227 1220 u64 wait_max;
6d082592
AV
1221 u64 wait_count;
1222 u64 wait_sum;
8f0dfc34
AV
1223 u64 iowait_count;
1224 u64 iowait_sum;
94c18227 1225
20b8a59f 1226 u64 sleep_start;
20b8a59f 1227 u64 sleep_max;
94c18227
IM
1228 s64 sum_sleep_runtime;
1229
1230 u64 block_start;
20b8a59f
IM
1231 u64 block_max;
1232 u64 exec_max;
eba1ed4b 1233 u64 slice_max;
cc367732 1234
cc367732
IM
1235 u64 nr_migrations_cold;
1236 u64 nr_failed_migrations_affine;
1237 u64 nr_failed_migrations_running;
1238 u64 nr_failed_migrations_hot;
1239 u64 nr_forced_migrations;
cc367732
IM
1240
1241 u64 nr_wakeups;
1242 u64 nr_wakeups_sync;
1243 u64 nr_wakeups_migrate;
1244 u64 nr_wakeups_local;
1245 u64 nr_wakeups_remote;
1246 u64 nr_wakeups_affine;
1247 u64 nr_wakeups_affine_attempts;
1248 u64 nr_wakeups_passive;
1249 u64 nr_wakeups_idle;
41acab88
LDM
1250};
1251#endif
1252
1253struct sched_entity {
1254 struct load_weight load; /* for load-balancing */
1255 struct rb_node run_node;
1256 struct list_head group_node;
1257 unsigned int on_rq;
1258
1259 u64 exec_start;
1260 u64 sum_exec_runtime;
1261 u64 vruntime;
1262 u64 prev_sum_exec_runtime;
1263
41acab88
LDM
1264 u64 nr_migrations;
1265
41acab88
LDM
1266#ifdef CONFIG_SCHEDSTATS
1267 struct sched_statistics statistics;
94c18227
IM
1268#endif
1269
20b8a59f 1270#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1271 int depth;
20b8a59f
IM
1272 struct sched_entity *parent;
1273 /* rq on which this entity is (to be) queued: */
1274 struct cfs_rq *cfs_rq;
1275 /* rq "owned" by this entity/group: */
1276 struct cfs_rq *my_q;
1277#endif
8bd75c77 1278
141965c7 1279#ifdef CONFIG_SMP
9d89c257 1280 /* Per entity load average tracking */
9d85f21c
PT
1281 struct sched_avg avg;
1282#endif
20b8a59f 1283};
70b97a7f 1284
fa717060
PZ
1285struct sched_rt_entity {
1286 struct list_head run_list;
78f2c7db 1287 unsigned long timeout;
57d2aa00 1288 unsigned long watchdog_stamp;
bee367ed 1289 unsigned int time_slice;
6f505b16 1290
58d6c2d7 1291 struct sched_rt_entity *back;
052f1dc7 1292#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1293 struct sched_rt_entity *parent;
1294 /* rq on which this entity is (to be) queued: */
1295 struct rt_rq *rt_rq;
1296 /* rq "owned" by this entity/group: */
1297 struct rt_rq *my_q;
1298#endif
fa717060
PZ
1299};
1300
aab03e05
DF
1301struct sched_dl_entity {
1302 struct rb_node rb_node;
1303
1304 /*
1305 * Original scheduling parameters. Copied here from sched_attr
4027d080 1306 * during sched_setattr(), they will remain the same until
1307 * the next sched_setattr().
aab03e05
DF
1308 */
1309 u64 dl_runtime; /* maximum runtime for each instance */
1310 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1311 u64 dl_period; /* separation of two instances (period) */
332ac17e 1312 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1313
1314 /*
1315 * Actual scheduling parameters. Initialized with the values above,
1316 * they are continously updated during task execution. Note that
1317 * the remaining runtime could be < 0 in case we are in overrun.
1318 */
1319 s64 runtime; /* remaining runtime for this instance */
1320 u64 deadline; /* absolute deadline for this instance */
1321 unsigned int flags; /* specifying the scheduler behaviour */
1322
1323 /*
1324 * Some bool flags:
1325 *
1326 * @dl_throttled tells if we exhausted the runtime. If so, the
1327 * task has to wait for a replenishment to be performed at the
1328 * next firing of dl_timer.
1329 *
1330 * @dl_new tells if a new instance arrived. If so we must
1331 * start executing it with full runtime and reset its absolute
1332 * deadline;
2d3d891d
DF
1333 *
1334 * @dl_boosted tells if we are boosted due to DI. If so we are
1335 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1336 * exit the critical section);
1337 *
1338 * @dl_yielded tells if task gave up the cpu before consuming
1339 * all its available runtime during the last job.
aab03e05 1340 */
5bfd126e 1341 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1342
1343 /*
1344 * Bandwidth enforcement timer. Each -deadline task has its
1345 * own bandwidth to be enforced, thus we need one timer per task.
1346 */
1347 struct hrtimer dl_timer;
1348};
8bd75c77 1349
1d082fd0
PM
1350union rcu_special {
1351 struct {
8203d6d0
PM
1352 u8 blocked;
1353 u8 need_qs;
1354 u8 exp_need_qs;
1355 u8 pad; /* Otherwise the compiler can store garbage here. */
1356 } b; /* Bits. */
1357 u32 s; /* Set of bits. */
1d082fd0 1358};
86848966
PM
1359struct rcu_node;
1360
8dc85d54
PZ
1361enum perf_event_task_context {
1362 perf_invalid_context = -1,
1363 perf_hw_context = 0,
89a1e187 1364 perf_sw_context,
8dc85d54
PZ
1365 perf_nr_task_contexts,
1366};
1367
72b252ae
MG
1368/* Track pages that require TLB flushes */
1369struct tlbflush_unmap_batch {
1370 /*
1371 * Each bit set is a CPU that potentially has a TLB entry for one of
1372 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1373 */
1374 struct cpumask cpumask;
1375
1376 /* True if any bit in cpumask is set */
1377 bool flush_required;
d950c947
MG
1378
1379 /*
1380 * If true then the PTE was dirty when unmapped. The entry must be
1381 * flushed before IO is initiated or a stale TLB entry potentially
1382 * allows an update without redirtying the page.
1383 */
1384 bool writable;
72b252ae
MG
1385};
1386
1da177e4
LT
1387struct task_struct {
1388 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1389 void *stack;
1da177e4 1390 atomic_t usage;
97dc32cd
WC
1391 unsigned int flags; /* per process flags, defined below */
1392 unsigned int ptrace;
1da177e4 1393
2dd73a4f 1394#ifdef CONFIG_SMP
fa14ff4a 1395 struct llist_node wake_entry;
3ca7a440 1396 int on_cpu;
63b0e9ed 1397 unsigned int wakee_flips;
62470419 1398 unsigned long wakee_flip_decay_ts;
63b0e9ed 1399 struct task_struct *last_wakee;
ac66f547
PZ
1400
1401 int wake_cpu;
2dd73a4f 1402#endif
fd2f4419 1403 int on_rq;
50e645a8 1404
b29739f9 1405 int prio, static_prio, normal_prio;
c7aceaba 1406 unsigned int rt_priority;
5522d5d5 1407 const struct sched_class *sched_class;
20b8a59f 1408 struct sched_entity se;
fa717060 1409 struct sched_rt_entity rt;
8323f26c
PZ
1410#ifdef CONFIG_CGROUP_SCHED
1411 struct task_group *sched_task_group;
1412#endif
aab03e05 1413 struct sched_dl_entity dl;
1da177e4 1414
e107be36
AK
1415#ifdef CONFIG_PREEMPT_NOTIFIERS
1416 /* list of struct preempt_notifier: */
1417 struct hlist_head preempt_notifiers;
1418#endif
1419
6c5c9341 1420#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1421 unsigned int btrace_seq;
6c5c9341 1422#endif
1da177e4 1423
97dc32cd 1424 unsigned int policy;
29baa747 1425 int nr_cpus_allowed;
1da177e4 1426 cpumask_t cpus_allowed;
1da177e4 1427
a57eb940 1428#ifdef CONFIG_PREEMPT_RCU
e260be67 1429 int rcu_read_lock_nesting;
1d082fd0 1430 union rcu_special rcu_read_unlock_special;
f41d911f 1431 struct list_head rcu_node_entry;
a57eb940 1432 struct rcu_node *rcu_blocked_node;
28f6569a 1433#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1434#ifdef CONFIG_TASKS_RCU
1435 unsigned long rcu_tasks_nvcsw;
1436 bool rcu_tasks_holdout;
1437 struct list_head rcu_tasks_holdout_list;
176f8f7a 1438 int rcu_tasks_idle_cpu;
8315f422 1439#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1440
f6db8347 1441#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1442 struct sched_info sched_info;
1443#endif
1444
1445 struct list_head tasks;
806c09a7 1446#ifdef CONFIG_SMP
917b627d 1447 struct plist_node pushable_tasks;
1baca4ce 1448 struct rb_node pushable_dl_tasks;
806c09a7 1449#endif
1da177e4
LT
1450
1451 struct mm_struct *mm, *active_mm;
615d6e87
DB
1452 /* per-thread vma caching */
1453 u32 vmacache_seqnum;
1454 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1455#if defined(SPLIT_RSS_COUNTING)
1456 struct task_rss_stat rss_stat;
1457#endif
1da177e4 1458/* task state */
97dc32cd 1459 int exit_state;
1da177e4
LT
1460 int exit_code, exit_signal;
1461 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1462 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1463
1464 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1465 unsigned int personality;
9b89f6ba 1466
f9ce1f1c
KT
1467 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1468 * execve */
8f0dfc34
AV
1469 unsigned in_iowait:1;
1470
ca94c442
LP
1471 /* Revert to default priority/policy when forking */
1472 unsigned sched_reset_on_fork:1;
a8e4f2ea 1473 unsigned sched_contributes_to_load:1;
ff303e66 1474 unsigned sched_migrated:1;
ca94c442 1475
6f185c29
VD
1476#ifdef CONFIG_MEMCG_KMEM
1477 unsigned memcg_kmem_skip_account:1;
1478#endif
ff303e66
PZ
1479#ifdef CONFIG_COMPAT_BRK
1480 unsigned brk_randomized:1;
1481#endif
6f185c29 1482
1d4457f9
KC
1483 unsigned long atomic_flags; /* Flags needing atomic access. */
1484
f56141e3
AL
1485 struct restart_block restart_block;
1486
1da177e4
LT
1487 pid_t pid;
1488 pid_t tgid;
0a425405 1489
1314562a 1490#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1491 /* Canary value for the -fstack-protector gcc feature */
1492 unsigned long stack_canary;
1314562a 1493#endif
4d1d61a6 1494 /*
1da177e4 1495 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1496 * older sibling, respectively. (p->father can be replaced with
f470021a 1497 * p->real_parent->pid)
1da177e4 1498 */
abd63bc3
KC
1499 struct task_struct __rcu *real_parent; /* real parent process */
1500 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1501 /*
f470021a 1502 * children/sibling forms the list of my natural children
1da177e4
LT
1503 */
1504 struct list_head children; /* list of my children */
1505 struct list_head sibling; /* linkage in my parent's children list */
1506 struct task_struct *group_leader; /* threadgroup leader */
1507
f470021a
RM
1508 /*
1509 * ptraced is the list of tasks this task is using ptrace on.
1510 * This includes both natural children and PTRACE_ATTACH targets.
1511 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1512 */
1513 struct list_head ptraced;
1514 struct list_head ptrace_entry;
1515
1da177e4 1516 /* PID/PID hash table linkage. */
92476d7f 1517 struct pid_link pids[PIDTYPE_MAX];
47e65328 1518 struct list_head thread_group;
0c740d0a 1519 struct list_head thread_node;
1da177e4
LT
1520
1521 struct completion *vfork_done; /* for vfork() */
1522 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1523 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1524
c66f08be 1525 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1526 cputime_t gtime;
9d7fb042 1527 struct prev_cputime prev_cputime;
6a61671b
FW
1528#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1529 seqlock_t vtime_seqlock;
1530 unsigned long long vtime_snap;
1531 enum {
1532 VTIME_SLEEPING = 0,
1533 VTIME_USER,
1534 VTIME_SYS,
1535 } vtime_snap_whence;
d99ca3b9 1536#endif
1da177e4 1537 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1538 u64 start_time; /* monotonic time in nsec */
57e0be04 1539 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1540/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1541 unsigned long min_flt, maj_flt;
1542
f06febc9 1543 struct task_cputime cputime_expires;
1da177e4
LT
1544 struct list_head cpu_timers[3];
1545
1546/* process credentials */
1b0ba1c9 1547 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1548 * credentials (COW) */
1b0ba1c9 1549 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1550 * credentials (COW) */
36772092
PBG
1551 char comm[TASK_COMM_LEN]; /* executable name excluding path
1552 - access with [gs]et_task_comm (which lock
1553 it with task_lock())
221af7f8 1554 - initialized normally by setup_new_exec */
1da177e4 1555/* file system info */
756daf26 1556 struct nameidata *nameidata;
3d5b6fcc 1557#ifdef CONFIG_SYSVIPC
1da177e4
LT
1558/* ipc stuff */
1559 struct sysv_sem sysvsem;
ab602f79 1560 struct sysv_shm sysvshm;
3d5b6fcc 1561#endif
e162b39a 1562#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1563/* hung task detection */
82a1fcb9
IM
1564 unsigned long last_switch_count;
1565#endif
1da177e4
LT
1566/* filesystem information */
1567 struct fs_struct *fs;
1568/* open file information */
1569 struct files_struct *files;
1651e14e 1570/* namespaces */
ab516013 1571 struct nsproxy *nsproxy;
1da177e4
LT
1572/* signal handlers */
1573 struct signal_struct *signal;
1574 struct sighand_struct *sighand;
1575
1576 sigset_t blocked, real_blocked;
f3de272b 1577 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1578 struct sigpending pending;
1579
1580 unsigned long sas_ss_sp;
1581 size_t sas_ss_size;
1582 int (*notifier)(void *priv);
1583 void *notifier_data;
1584 sigset_t *notifier_mask;
67d12145 1585 struct callback_head *task_works;
e73f8959 1586
1da177e4 1587 struct audit_context *audit_context;
bfef93a5 1588#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1589 kuid_t loginuid;
4746ec5b 1590 unsigned int sessionid;
bfef93a5 1591#endif
932ecebb 1592 struct seccomp seccomp;
1da177e4
LT
1593
1594/* Thread group tracking */
1595 u32 parent_exec_id;
1596 u32 self_exec_id;
58568d2a
MX
1597/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1598 * mempolicy */
1da177e4 1599 spinlock_t alloc_lock;
1da177e4 1600
b29739f9 1601 /* Protection of the PI data structures: */
1d615482 1602 raw_spinlock_t pi_lock;
b29739f9 1603
76751049
PZ
1604 struct wake_q_node wake_q;
1605
23f78d4a
IM
1606#ifdef CONFIG_RT_MUTEXES
1607 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1608 struct rb_root pi_waiters;
1609 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1610 /* Deadlock detection and priority inheritance handling */
1611 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1612#endif
1613
408894ee
IM
1614#ifdef CONFIG_DEBUG_MUTEXES
1615 /* mutex deadlock detection */
1616 struct mutex_waiter *blocked_on;
1617#endif
de30a2b3
IM
1618#ifdef CONFIG_TRACE_IRQFLAGS
1619 unsigned int irq_events;
de30a2b3 1620 unsigned long hardirq_enable_ip;
de30a2b3 1621 unsigned long hardirq_disable_ip;
fa1452e8 1622 unsigned int hardirq_enable_event;
de30a2b3 1623 unsigned int hardirq_disable_event;
fa1452e8
HS
1624 int hardirqs_enabled;
1625 int hardirq_context;
de30a2b3 1626 unsigned long softirq_disable_ip;
de30a2b3 1627 unsigned long softirq_enable_ip;
fa1452e8 1628 unsigned int softirq_disable_event;
de30a2b3 1629 unsigned int softirq_enable_event;
fa1452e8 1630 int softirqs_enabled;
de30a2b3
IM
1631 int softirq_context;
1632#endif
fbb9ce95 1633#ifdef CONFIG_LOCKDEP
bdb9441e 1634# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1635 u64 curr_chain_key;
1636 int lockdep_depth;
fbb9ce95 1637 unsigned int lockdep_recursion;
c7aceaba 1638 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1639 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1640#endif
408894ee 1641
1da177e4
LT
1642/* journalling filesystem info */
1643 void *journal_info;
1644
d89d8796 1645/* stacked block device info */
bddd87c7 1646 struct bio_list *bio_list;
d89d8796 1647
73c10101
JA
1648#ifdef CONFIG_BLOCK
1649/* stack plugging */
1650 struct blk_plug *plug;
1651#endif
1652
1da177e4
LT
1653/* VM state */
1654 struct reclaim_state *reclaim_state;
1655
1da177e4
LT
1656 struct backing_dev_info *backing_dev_info;
1657
1658 struct io_context *io_context;
1659
1660 unsigned long ptrace_message;
1661 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1662 struct task_io_accounting ioac;
8f0ab514 1663#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1664 u64 acct_rss_mem1; /* accumulated rss usage */
1665 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1666 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1667#endif
1668#ifdef CONFIG_CPUSETS
58568d2a 1669 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1670 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1671 int cpuset_mem_spread_rotor;
6adef3eb 1672 int cpuset_slab_spread_rotor;
1da177e4 1673#endif
ddbcc7e8 1674#ifdef CONFIG_CGROUPS
817929ec 1675 /* Control Group info protected by css_set_lock */
2c392b8c 1676 struct css_set __rcu *cgroups;
817929ec
PM
1677 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1678 struct list_head cg_list;
ddbcc7e8 1679#endif
42b2dd0a 1680#ifdef CONFIG_FUTEX
0771dfef 1681 struct robust_list_head __user *robust_list;
34f192c6
IM
1682#ifdef CONFIG_COMPAT
1683 struct compat_robust_list_head __user *compat_robust_list;
1684#endif
c87e2837
IM
1685 struct list_head pi_state_list;
1686 struct futex_pi_state *pi_state_cache;
c7aceaba 1687#endif
cdd6c482 1688#ifdef CONFIG_PERF_EVENTS
8dc85d54 1689 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1690 struct mutex perf_event_mutex;
1691 struct list_head perf_event_list;
a63eaf34 1692#endif
8f47b187
TG
1693#ifdef CONFIG_DEBUG_PREEMPT
1694 unsigned long preempt_disable_ip;
1695#endif
c7aceaba 1696#ifdef CONFIG_NUMA
58568d2a 1697 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1698 short il_next;
207205a2 1699 short pref_node_fork;
42b2dd0a 1700#endif
cbee9f88
PZ
1701#ifdef CONFIG_NUMA_BALANCING
1702 int numa_scan_seq;
cbee9f88 1703 unsigned int numa_scan_period;
598f0ec0 1704 unsigned int numa_scan_period_max;
de1c9ce6 1705 int numa_preferred_nid;
6b9a7460 1706 unsigned long numa_migrate_retry;
cbee9f88 1707 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1708 u64 last_task_numa_placement;
1709 u64 last_sum_exec_runtime;
cbee9f88 1710 struct callback_head numa_work;
f809ca9a 1711
8c8a743c
PZ
1712 struct list_head numa_entry;
1713 struct numa_group *numa_group;
1714
745d6147 1715 /*
44dba3d5
IM
1716 * numa_faults is an array split into four regions:
1717 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1718 * in this precise order.
1719 *
1720 * faults_memory: Exponential decaying average of faults on a per-node
1721 * basis. Scheduling placement decisions are made based on these
1722 * counts. The values remain static for the duration of a PTE scan.
1723 * faults_cpu: Track the nodes the process was running on when a NUMA
1724 * hinting fault was incurred.
1725 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1726 * during the current scan window. When the scan completes, the counts
1727 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1728 */
44dba3d5 1729 unsigned long *numa_faults;
83e1d2cd 1730 unsigned long total_numa_faults;
745d6147 1731
04bb2f94
RR
1732 /*
1733 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1734 * scan window were remote/local or failed to migrate. The task scan
1735 * period is adapted based on the locality of the faults with different
1736 * weights depending on whether they were shared or private faults
04bb2f94 1737 */
074c2381 1738 unsigned long numa_faults_locality[3];
04bb2f94 1739
b32e86b4 1740 unsigned long numa_pages_migrated;
cbee9f88
PZ
1741#endif /* CONFIG_NUMA_BALANCING */
1742
72b252ae
MG
1743#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1744 struct tlbflush_unmap_batch tlb_ubc;
1745#endif
1746
e56d0903 1747 struct rcu_head rcu;
b92ce558
JA
1748
1749 /*
1750 * cache last used pipe for splice
1751 */
1752 struct pipe_inode_info *splice_pipe;
5640f768
ED
1753
1754 struct page_frag task_frag;
1755
ca74e92b
SN
1756#ifdef CONFIG_TASK_DELAY_ACCT
1757 struct task_delay_info *delays;
f4f154fd
AM
1758#endif
1759#ifdef CONFIG_FAULT_INJECTION
1760 int make_it_fail;
ca74e92b 1761#endif
9d823e8f
WF
1762 /*
1763 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1764 * balance_dirty_pages() for some dirty throttling pause
1765 */
1766 int nr_dirtied;
1767 int nr_dirtied_pause;
83712358 1768 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1769
9745512c
AV
1770#ifdef CONFIG_LATENCYTOP
1771 int latency_record_count;
1772 struct latency_record latency_record[LT_SAVECOUNT];
1773#endif
6976675d
AV
1774 /*
1775 * time slack values; these are used to round up poll() and
1776 * select() etc timeout values. These are in nanoseconds.
1777 */
1778 unsigned long timer_slack_ns;
1779 unsigned long default_timer_slack_ns;
f8d570a4 1780
0b24becc
AR
1781#ifdef CONFIG_KASAN
1782 unsigned int kasan_depth;
1783#endif
fb52607a 1784#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1785 /* Index of current stored address in ret_stack */
f201ae23
FW
1786 int curr_ret_stack;
1787 /* Stack of return addresses for return function tracing */
1788 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1789 /* time stamp for last schedule */
1790 unsigned long long ftrace_timestamp;
f201ae23
FW
1791 /*
1792 * Number of functions that haven't been traced
1793 * because of depth overrun.
1794 */
1795 atomic_t trace_overrun;
380c4b14
FW
1796 /* Pause for the tracing */
1797 atomic_t tracing_graph_pause;
f201ae23 1798#endif
ea4e2bc4
SR
1799#ifdef CONFIG_TRACING
1800 /* state flags for use by tracers */
1801 unsigned long trace;
b1cff0ad 1802 /* bitmask and counter of trace recursion */
261842b7
SR
1803 unsigned long trace_recursion;
1804#endif /* CONFIG_TRACING */
6f185c29 1805#ifdef CONFIG_MEMCG
519e5247 1806 struct memcg_oom_info {
49426420
JW
1807 struct mem_cgroup *memcg;
1808 gfp_t gfp_mask;
1809 int order;
519e5247
JW
1810 unsigned int may_oom:1;
1811 } memcg_oom;
569b846d 1812#endif
0326f5a9
SD
1813#ifdef CONFIG_UPROBES
1814 struct uprobe_task *utask;
0326f5a9 1815#endif
cafe5635
KO
1816#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1817 unsigned int sequential_io;
1818 unsigned int sequential_io_avg;
1819#endif
8eb23b9f
PZ
1820#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1821 unsigned long task_state_change;
1822#endif
8bcbde54 1823 int pagefault_disabled;
0c8c0f03
DH
1824/* CPU-specific state of this task */
1825 struct thread_struct thread;
1826/*
1827 * WARNING: on x86, 'thread_struct' contains a variable-sized
1828 * structure. It *MUST* be at the end of 'task_struct'.
1829 *
1830 * Do not put anything below here!
1831 */
1da177e4
LT
1832};
1833
5aaeb5c0
IM
1834#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1835extern int arch_task_struct_size __read_mostly;
1836#else
1837# define arch_task_struct_size (sizeof(struct task_struct))
1838#endif
0c8c0f03 1839
76e6eee0 1840/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1841#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1842
6688cc05
PZ
1843#define TNF_MIGRATED 0x01
1844#define TNF_NO_GROUP 0x02
dabe1d99 1845#define TNF_SHARED 0x04
04bb2f94 1846#define TNF_FAULT_LOCAL 0x08
074c2381 1847#define TNF_MIGRATE_FAIL 0x10
6688cc05 1848
cbee9f88 1849#ifdef CONFIG_NUMA_BALANCING
6688cc05 1850extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1851extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1852extern void set_numabalancing_state(bool enabled);
82727018 1853extern void task_numa_free(struct task_struct *p);
10f39042
RR
1854extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1855 int src_nid, int dst_cpu);
cbee9f88 1856#else
ac8e895b 1857static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1858 int flags)
cbee9f88
PZ
1859{
1860}
e29cf08b
MG
1861static inline pid_t task_numa_group_id(struct task_struct *p)
1862{
1863 return 0;
1864}
1a687c2e
MG
1865static inline void set_numabalancing_state(bool enabled)
1866{
1867}
82727018
RR
1868static inline void task_numa_free(struct task_struct *p)
1869{
1870}
10f39042
RR
1871static inline bool should_numa_migrate_memory(struct task_struct *p,
1872 struct page *page, int src_nid, int dst_cpu)
1873{
1874 return true;
1875}
cbee9f88
PZ
1876#endif
1877
e868171a 1878static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1879{
1880 return task->pids[PIDTYPE_PID].pid;
1881}
1882
e868171a 1883static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1884{
1885 return task->group_leader->pids[PIDTYPE_PID].pid;
1886}
1887
6dda81f4
ON
1888/*
1889 * Without tasklist or rcu lock it is not safe to dereference
1890 * the result of task_pgrp/task_session even if task == current,
1891 * we can race with another thread doing sys_setsid/sys_setpgid.
1892 */
e868171a 1893static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1894{
1895 return task->group_leader->pids[PIDTYPE_PGID].pid;
1896}
1897
e868171a 1898static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1899{
1900 return task->group_leader->pids[PIDTYPE_SID].pid;
1901}
1902
7af57294
PE
1903struct pid_namespace;
1904
1905/*
1906 * the helpers to get the task's different pids as they are seen
1907 * from various namespaces
1908 *
1909 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1910 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1911 * current.
7af57294
PE
1912 * task_xid_nr_ns() : id seen from the ns specified;
1913 *
1914 * set_task_vxid() : assigns a virtual id to a task;
1915 *
7af57294
PE
1916 * see also pid_nr() etc in include/linux/pid.h
1917 */
52ee2dfd
ON
1918pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1919 struct pid_namespace *ns);
7af57294 1920
e868171a 1921static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1922{
1923 return tsk->pid;
1924}
1925
52ee2dfd
ON
1926static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1927 struct pid_namespace *ns)
1928{
1929 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1930}
7af57294
PE
1931
1932static inline pid_t task_pid_vnr(struct task_struct *tsk)
1933{
52ee2dfd 1934 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1935}
1936
1937
e868171a 1938static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1939{
1940 return tsk->tgid;
1941}
1942
2f2a3a46 1943pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1944
1945static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1946{
1947 return pid_vnr(task_tgid(tsk));
1948}
1949
1950
80e0b6e8 1951static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1952static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1953{
1954 pid_t pid = 0;
1955
1956 rcu_read_lock();
1957 if (pid_alive(tsk))
1958 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1959 rcu_read_unlock();
1960
1961 return pid;
1962}
1963
1964static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1965{
1966 return task_ppid_nr_ns(tsk, &init_pid_ns);
1967}
1968
52ee2dfd
ON
1969static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1970 struct pid_namespace *ns)
7af57294 1971{
52ee2dfd 1972 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1973}
1974
7af57294
PE
1975static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1976{
52ee2dfd 1977 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1978}
1979
1980
52ee2dfd
ON
1981static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1982 struct pid_namespace *ns)
7af57294 1983{
52ee2dfd 1984 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1985}
1986
7af57294
PE
1987static inline pid_t task_session_vnr(struct task_struct *tsk)
1988{
52ee2dfd 1989 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1990}
1991
1b0f7ffd
ON
1992/* obsolete, do not use */
1993static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1994{
1995 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1996}
7af57294 1997
1da177e4
LT
1998/**
1999 * pid_alive - check that a task structure is not stale
2000 * @p: Task structure to be checked.
2001 *
2002 * Test if a process is not yet dead (at most zombie state)
2003 * If pid_alive fails, then pointers within the task structure
2004 * can be stale and must not be dereferenced.
e69f6186
YB
2005 *
2006 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2007 */
ad36d282 2008static inline int pid_alive(const struct task_struct *p)
1da177e4 2009{
92476d7f 2010 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2011}
2012
f400e198 2013/**
b460cbc5 2014 * is_global_init - check if a task structure is init
3260259f
H
2015 * @tsk: Task structure to be checked.
2016 *
2017 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2018 *
2019 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2020 */
e868171a 2021static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
2022{
2023 return tsk->pid == 1;
2024}
b460cbc5 2025
9ec52099
CLG
2026extern struct pid *cad_pid;
2027
1da177e4 2028extern void free_task(struct task_struct *tsk);
1da177e4 2029#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2030
158d9ebd 2031extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2032
2033static inline void put_task_struct(struct task_struct *t)
2034{
2035 if (atomic_dec_and_test(&t->usage))
8c7904a0 2036 __put_task_struct(t);
e56d0903 2037}
1da177e4 2038
6a61671b
FW
2039#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2040extern void task_cputime(struct task_struct *t,
2041 cputime_t *utime, cputime_t *stime);
2042extern void task_cputime_scaled(struct task_struct *t,
2043 cputime_t *utimescaled, cputime_t *stimescaled);
2044extern cputime_t task_gtime(struct task_struct *t);
2045#else
6fac4829
FW
2046static inline void task_cputime(struct task_struct *t,
2047 cputime_t *utime, cputime_t *stime)
2048{
2049 if (utime)
2050 *utime = t->utime;
2051 if (stime)
2052 *stime = t->stime;
2053}
2054
2055static inline void task_cputime_scaled(struct task_struct *t,
2056 cputime_t *utimescaled,
2057 cputime_t *stimescaled)
2058{
2059 if (utimescaled)
2060 *utimescaled = t->utimescaled;
2061 if (stimescaled)
2062 *stimescaled = t->stimescaled;
2063}
6a61671b
FW
2064
2065static inline cputime_t task_gtime(struct task_struct *t)
2066{
2067 return t->gtime;
2068}
2069#endif
e80d0a1a
FW
2070extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2071extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2072
1da177e4
LT
2073/*
2074 * Per process flags
2075 */
1da177e4 2076#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2077#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2078#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2079#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2080#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2081#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2082#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2083#define PF_DUMPCORE 0x00000200 /* dumped core */
2084#define PF_SIGNALED 0x00000400 /* killed by a signal */
2085#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2086#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2087#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2088#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2089#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2090#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2091#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2092#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2093#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2094#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2095#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2096#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2097#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2098#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2099#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2100#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2101#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2102#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2103
2104/*
2105 * Only the _current_ task can read/write to tsk->flags, but other
2106 * tasks can access tsk->flags in readonly mode for example
2107 * with tsk_used_math (like during threaded core dumping).
2108 * There is however an exception to this rule during ptrace
2109 * or during fork: the ptracer task is allowed to write to the
2110 * child->flags of its traced child (same goes for fork, the parent
2111 * can write to the child->flags), because we're guaranteed the
2112 * child is not running and in turn not changing child->flags
2113 * at the same time the parent does it.
2114 */
2115#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2116#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2117#define clear_used_math() clear_stopped_child_used_math(current)
2118#define set_used_math() set_stopped_child_used_math(current)
2119#define conditional_stopped_child_used_math(condition, child) \
2120 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2121#define conditional_used_math(condition) \
2122 conditional_stopped_child_used_math(condition, current)
2123#define copy_to_stopped_child_used_math(child) \
2124 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2125/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2126#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2127#define used_math() tsk_used_math(current)
2128
934f3072
JB
2129/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2130 * __GFP_FS is also cleared as it implies __GFP_IO.
2131 */
21caf2fc
ML
2132static inline gfp_t memalloc_noio_flags(gfp_t flags)
2133{
2134 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2135 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2136 return flags;
2137}
2138
2139static inline unsigned int memalloc_noio_save(void)
2140{
2141 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2142 current->flags |= PF_MEMALLOC_NOIO;
2143 return flags;
2144}
2145
2146static inline void memalloc_noio_restore(unsigned int flags)
2147{
2148 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2149}
2150
1d4457f9 2151/* Per-process atomic flags. */
a2b86f77 2152#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2153#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2154#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2155
1d4457f9 2156
e0e5070b
ZL
2157#define TASK_PFA_TEST(name, func) \
2158 static inline bool task_##func(struct task_struct *p) \
2159 { return test_bit(PFA_##name, &p->atomic_flags); }
2160#define TASK_PFA_SET(name, func) \
2161 static inline void task_set_##func(struct task_struct *p) \
2162 { set_bit(PFA_##name, &p->atomic_flags); }
2163#define TASK_PFA_CLEAR(name, func) \
2164 static inline void task_clear_##func(struct task_struct *p) \
2165 { clear_bit(PFA_##name, &p->atomic_flags); }
2166
2167TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2168TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2169
2ad654bc
ZL
2170TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2171TASK_PFA_SET(SPREAD_PAGE, spread_page)
2172TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2173
2174TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2175TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2176TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2177
e5c1902e 2178/*
a8f072c1 2179 * task->jobctl flags
e5c1902e 2180 */
a8f072c1 2181#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2182
a8f072c1
TH
2183#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2184#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2185#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2186#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2187#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2188#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2189#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2190
b76808e6
PD
2191#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2192#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2193#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2194#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2195#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2196#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2197#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2198
fb1d910c 2199#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2200#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2201
7dd3db54 2202extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2203 unsigned long mask);
73ddff2b 2204extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2205extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2206 unsigned long mask);
39efa3ef 2207
f41d911f
PM
2208static inline void rcu_copy_process(struct task_struct *p)
2209{
8315f422 2210#ifdef CONFIG_PREEMPT_RCU
f41d911f 2211 p->rcu_read_lock_nesting = 0;
1d082fd0 2212 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2213 p->rcu_blocked_node = NULL;
f41d911f 2214 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2215#endif /* #ifdef CONFIG_PREEMPT_RCU */
2216#ifdef CONFIG_TASKS_RCU
2217 p->rcu_tasks_holdout = false;
2218 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2219 p->rcu_tasks_idle_cpu = -1;
8315f422 2220#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2221}
2222
907aed48
MG
2223static inline void tsk_restore_flags(struct task_struct *task,
2224 unsigned long orig_flags, unsigned long flags)
2225{
2226 task->flags &= ~flags;
2227 task->flags |= orig_flags & flags;
2228}
2229
f82f8042
JL
2230extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2231 const struct cpumask *trial);
7f51412a
JL
2232extern int task_can_attach(struct task_struct *p,
2233 const struct cpumask *cs_cpus_allowed);
1da177e4 2234#ifdef CONFIG_SMP
1e1b6c51
KM
2235extern void do_set_cpus_allowed(struct task_struct *p,
2236 const struct cpumask *new_mask);
2237
cd8ba7cd 2238extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2239 const struct cpumask *new_mask);
1da177e4 2240#else
1e1b6c51
KM
2241static inline void do_set_cpus_allowed(struct task_struct *p,
2242 const struct cpumask *new_mask)
2243{
2244}
cd8ba7cd 2245static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2246 const struct cpumask *new_mask)
1da177e4 2247{
96f874e2 2248 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2249 return -EINVAL;
2250 return 0;
2251}
2252#endif
e0ad9556 2253
3451d024 2254#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2255void calc_load_enter_idle(void);
2256void calc_load_exit_idle(void);
2257#else
2258static inline void calc_load_enter_idle(void) { }
2259static inline void calc_load_exit_idle(void) { }
3451d024 2260#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2261
b342501c 2262/*
c676329a
PZ
2263 * Do not use outside of architecture code which knows its limitations.
2264 *
2265 * sched_clock() has no promise of monotonicity or bounded drift between
2266 * CPUs, use (which you should not) requires disabling IRQs.
2267 *
2268 * Please use one of the three interfaces below.
b342501c 2269 */
1bbfa6f2 2270extern unsigned long long notrace sched_clock(void);
c676329a 2271/*
489a71b0 2272 * See the comment in kernel/sched/clock.c
c676329a
PZ
2273 */
2274extern u64 cpu_clock(int cpu);
2275extern u64 local_clock(void);
545a2bf7 2276extern u64 running_clock(void);
c676329a
PZ
2277extern u64 sched_clock_cpu(int cpu);
2278
e436d800 2279
c1955a3d 2280extern void sched_clock_init(void);
3e51f33f 2281
c1955a3d 2282#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2283static inline void sched_clock_tick(void)
2284{
2285}
2286
2287static inline void sched_clock_idle_sleep_event(void)
2288{
2289}
2290
2291static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2292{
2293}
2294#else
c676329a
PZ
2295/*
2296 * Architectures can set this to 1 if they have specified
2297 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2298 * but then during bootup it turns out that sched_clock()
2299 * is reliable after all:
2300 */
35af99e6
PZ
2301extern int sched_clock_stable(void);
2302extern void set_sched_clock_stable(void);
2303extern void clear_sched_clock_stable(void);
c676329a 2304
3e51f33f
PZ
2305extern void sched_clock_tick(void);
2306extern void sched_clock_idle_sleep_event(void);
2307extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2308#endif
2309
b52bfee4
VP
2310#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2311/*
2312 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2313 * The reason for this explicit opt-in is not to have perf penalty with
2314 * slow sched_clocks.
2315 */
2316extern void enable_sched_clock_irqtime(void);
2317extern void disable_sched_clock_irqtime(void);
2318#else
2319static inline void enable_sched_clock_irqtime(void) {}
2320static inline void disable_sched_clock_irqtime(void) {}
2321#endif
2322
36c8b586 2323extern unsigned long long
41b86e9c 2324task_sched_runtime(struct task_struct *task);
1da177e4
LT
2325
2326/* sched_exec is called by processes performing an exec */
2327#ifdef CONFIG_SMP
2328extern void sched_exec(void);
2329#else
2330#define sched_exec() {}
2331#endif
2332
2aa44d05
IM
2333extern void sched_clock_idle_sleep_event(void);
2334extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2335
1da177e4
LT
2336#ifdef CONFIG_HOTPLUG_CPU
2337extern void idle_task_exit(void);
2338#else
2339static inline void idle_task_exit(void) {}
2340#endif
2341
3451d024 2342#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2343extern void wake_up_nohz_cpu(int cpu);
06d8308c 2344#else
1c20091e 2345static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2346#endif
2347
ce831b38
FW
2348#ifdef CONFIG_NO_HZ_FULL
2349extern bool sched_can_stop_tick(void);
265f22a9 2350extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2351#else
2352static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2353#endif
2354
5091faa4 2355#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2356extern void sched_autogroup_create_attach(struct task_struct *p);
2357extern void sched_autogroup_detach(struct task_struct *p);
2358extern void sched_autogroup_fork(struct signal_struct *sig);
2359extern void sched_autogroup_exit(struct signal_struct *sig);
2360#ifdef CONFIG_PROC_FS
2361extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2362extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2363#endif
2364#else
2365static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2366static inline void sched_autogroup_detach(struct task_struct *p) { }
2367static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2368static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2369#endif
2370
fa93384f 2371extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2372extern void set_user_nice(struct task_struct *p, long nice);
2373extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2374/**
2375 * task_nice - return the nice value of a given task.
2376 * @p: the task in question.
2377 *
2378 * Return: The nice value [ -20 ... 0 ... 19 ].
2379 */
2380static inline int task_nice(const struct task_struct *p)
2381{
2382 return PRIO_TO_NICE((p)->static_prio);
2383}
36c8b586
IM
2384extern int can_nice(const struct task_struct *p, const int nice);
2385extern int task_curr(const struct task_struct *p);
1da177e4 2386extern int idle_cpu(int cpu);
fe7de49f
KM
2387extern int sched_setscheduler(struct task_struct *, int,
2388 const struct sched_param *);
961ccddd 2389extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2390 const struct sched_param *);
d50dde5a
DF
2391extern int sched_setattr(struct task_struct *,
2392 const struct sched_attr *);
36c8b586 2393extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2394/**
2395 * is_idle_task - is the specified task an idle task?
fa757281 2396 * @p: the task in question.
e69f6186
YB
2397 *
2398 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2399 */
7061ca3b 2400static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2401{
2402 return p->pid == 0;
2403}
36c8b586
IM
2404extern struct task_struct *curr_task(int cpu);
2405extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2406
2407void yield(void);
2408
1da177e4
LT
2409union thread_union {
2410 struct thread_info thread_info;
2411 unsigned long stack[THREAD_SIZE/sizeof(long)];
2412};
2413
2414#ifndef __HAVE_ARCH_KSTACK_END
2415static inline int kstack_end(void *addr)
2416{
2417 /* Reliable end of stack detection:
2418 * Some APM bios versions misalign the stack
2419 */
2420 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2421}
2422#endif
2423
2424extern union thread_union init_thread_union;
2425extern struct task_struct init_task;
2426
2427extern struct mm_struct init_mm;
2428
198fe21b
PE
2429extern struct pid_namespace init_pid_ns;
2430
2431/*
2432 * find a task by one of its numerical ids
2433 *
198fe21b
PE
2434 * find_task_by_pid_ns():
2435 * finds a task by its pid in the specified namespace
228ebcbe
PE
2436 * find_task_by_vpid():
2437 * finds a task by its virtual pid
198fe21b 2438 *
e49859e7 2439 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2440 */
2441
228ebcbe
PE
2442extern struct task_struct *find_task_by_vpid(pid_t nr);
2443extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2444 struct pid_namespace *ns);
198fe21b 2445
1da177e4 2446/* per-UID process charging. */
7b44ab97 2447extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2448static inline struct user_struct *get_uid(struct user_struct *u)
2449{
2450 atomic_inc(&u->__count);
2451 return u;
2452}
2453extern void free_uid(struct user_struct *);
1da177e4
LT
2454
2455#include <asm/current.h>
2456
f0af911a 2457extern void xtime_update(unsigned long ticks);
1da177e4 2458
b3c97528
HH
2459extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2460extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2461extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2462#ifdef CONFIG_SMP
2463 extern void kick_process(struct task_struct *tsk);
2464#else
2465 static inline void kick_process(struct task_struct *tsk) { }
2466#endif
aab03e05 2467extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2468extern void sched_dead(struct task_struct *p);
1da177e4 2469
1da177e4
LT
2470extern void proc_caches_init(void);
2471extern void flush_signals(struct task_struct *);
10ab825b 2472extern void ignore_signals(struct task_struct *);
1da177e4
LT
2473extern void flush_signal_handlers(struct task_struct *, int force_default);
2474extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2475
2476static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2477{
2478 unsigned long flags;
2479 int ret;
2480
2481 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2482 ret = dequeue_signal(tsk, mask, info);
2483 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2484
2485 return ret;
53c8f9f1 2486}
1da177e4
LT
2487
2488extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2489 sigset_t *mask);
2490extern void unblock_all_signals(void);
2491extern void release_task(struct task_struct * p);
2492extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2493extern int force_sigsegv(int, struct task_struct *);
2494extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2495extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2496extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2497extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2498 const struct cred *, u32);
c4b92fc1
EB
2499extern int kill_pgrp(struct pid *pid, int sig, int priv);
2500extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2501extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2502extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2503extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2504extern void force_sig(int, struct task_struct *);
1da177e4 2505extern int send_sig(int, struct task_struct *, int);
09faef11 2506extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2507extern struct sigqueue *sigqueue_alloc(void);
2508extern void sigqueue_free(struct sigqueue *);
ac5c2153 2509extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2510extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2511
51a7b448
AV
2512static inline void restore_saved_sigmask(void)
2513{
2514 if (test_and_clear_restore_sigmask())
77097ae5 2515 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2516}
2517
b7f9a11a
AV
2518static inline sigset_t *sigmask_to_save(void)
2519{
2520 sigset_t *res = &current->blocked;
2521 if (unlikely(test_restore_sigmask()))
2522 res = &current->saved_sigmask;
2523 return res;
2524}
2525
9ec52099
CLG
2526static inline int kill_cad_pid(int sig, int priv)
2527{
2528 return kill_pid(cad_pid, sig, priv);
2529}
2530
1da177e4
LT
2531/* These can be the second arg to send_sig_info/send_group_sig_info. */
2532#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2533#define SEND_SIG_PRIV ((struct siginfo *) 1)
2534#define SEND_SIG_FORCED ((struct siginfo *) 2)
2535
2a855dd0
SAS
2536/*
2537 * True if we are on the alternate signal stack.
2538 */
1da177e4
LT
2539static inline int on_sig_stack(unsigned long sp)
2540{
2a855dd0
SAS
2541#ifdef CONFIG_STACK_GROWSUP
2542 return sp >= current->sas_ss_sp &&
2543 sp - current->sas_ss_sp < current->sas_ss_size;
2544#else
2545 return sp > current->sas_ss_sp &&
2546 sp - current->sas_ss_sp <= current->sas_ss_size;
2547#endif
1da177e4
LT
2548}
2549
2550static inline int sas_ss_flags(unsigned long sp)
2551{
72f15c03
RW
2552 if (!current->sas_ss_size)
2553 return SS_DISABLE;
2554
2555 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2556}
2557
5a1b98d3
AV
2558static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2559{
2560 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2561#ifdef CONFIG_STACK_GROWSUP
2562 return current->sas_ss_sp;
2563#else
2564 return current->sas_ss_sp + current->sas_ss_size;
2565#endif
2566 return sp;
2567}
2568
1da177e4
LT
2569/*
2570 * Routines for handling mm_structs
2571 */
2572extern struct mm_struct * mm_alloc(void);
2573
2574/* mmdrop drops the mm and the page tables */
b3c97528 2575extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2576static inline void mmdrop(struct mm_struct * mm)
2577{
6fb43d7b 2578 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2579 __mmdrop(mm);
2580}
2581
2582/* mmput gets rid of the mappings and all user-space */
2583extern void mmput(struct mm_struct *);
2584/* Grab a reference to a task's mm, if it is not already going away */
2585extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2586/*
2587 * Grab a reference to a task's mm, if it is not already going away
2588 * and ptrace_may_access with the mode parameter passed to it
2589 * succeeds.
2590 */
2591extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2592/* Remove the current tasks stale references to the old mm_struct */
2593extern void mm_release(struct task_struct *, struct mm_struct *);
2594
3033f14a
JT
2595#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2596extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2597 struct task_struct *, unsigned long);
2598#else
6f2c55b8 2599extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2600 struct task_struct *);
3033f14a
JT
2601
2602/* Architectures that haven't opted into copy_thread_tls get the tls argument
2603 * via pt_regs, so ignore the tls argument passed via C. */
2604static inline int copy_thread_tls(
2605 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2606 struct task_struct *p, unsigned long tls)
2607{
2608 return copy_thread(clone_flags, sp, arg, p);
2609}
2610#endif
1da177e4
LT
2611extern void flush_thread(void);
2612extern void exit_thread(void);
2613
1da177e4 2614extern void exit_files(struct task_struct *);
a7e5328a 2615extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2616
1da177e4 2617extern void exit_itimers(struct signal_struct *);
cbaffba1 2618extern void flush_itimer_signals(void);
1da177e4 2619
9402c95f 2620extern void do_group_exit(int);
1da177e4 2621
c4ad8f98 2622extern int do_execve(struct filename *,
d7627467 2623 const char __user * const __user *,
da3d4c5f 2624 const char __user * const __user *);
51f39a1f
DD
2625extern int do_execveat(int, struct filename *,
2626 const char __user * const __user *,
2627 const char __user * const __user *,
2628 int);
3033f14a 2629extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2630extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2631struct task_struct *fork_idle(int);
2aa3a7f8 2632extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2633
82b89778
AH
2634extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2635static inline void set_task_comm(struct task_struct *tsk, const char *from)
2636{
2637 __set_task_comm(tsk, from, false);
2638}
59714d65 2639extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2640
2641#ifdef CONFIG_SMP
317f3941 2642void scheduler_ipi(void);
85ba2d86 2643extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2644#else
184748cc 2645static inline void scheduler_ipi(void) { }
85ba2d86
RM
2646static inline unsigned long wait_task_inactive(struct task_struct *p,
2647 long match_state)
2648{
2649 return 1;
2650}
1da177e4
LT
2651#endif
2652
fafe870f
FW
2653#define tasklist_empty() \
2654 list_empty(&init_task.tasks)
2655
05725f7e
JP
2656#define next_task(p) \
2657 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2658
2659#define for_each_process(p) \
2660 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2661
5bb459bb 2662extern bool current_is_single_threaded(void);
d84f4f99 2663
1da177e4
LT
2664/*
2665 * Careful: do_each_thread/while_each_thread is a double loop so
2666 * 'break' will not work as expected - use goto instead.
2667 */
2668#define do_each_thread(g, t) \
2669 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2670
2671#define while_each_thread(g, t) \
2672 while ((t = next_thread(t)) != g)
2673
0c740d0a
ON
2674#define __for_each_thread(signal, t) \
2675 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2676
2677#define for_each_thread(p, t) \
2678 __for_each_thread((p)->signal, t)
2679
2680/* Careful: this is a double loop, 'break' won't work as expected. */
2681#define for_each_process_thread(p, t) \
2682 for_each_process(p) for_each_thread(p, t)
2683
7e49827c
ON
2684static inline int get_nr_threads(struct task_struct *tsk)
2685{
b3ac022c 2686 return tsk->signal->nr_threads;
7e49827c
ON
2687}
2688
087806b1
ON
2689static inline bool thread_group_leader(struct task_struct *p)
2690{
2691 return p->exit_signal >= 0;
2692}
1da177e4 2693
0804ef4b
EB
2694/* Do to the insanities of de_thread it is possible for a process
2695 * to have the pid of the thread group leader without actually being
2696 * the thread group leader. For iteration through the pids in proc
2697 * all we care about is that we have a task with the appropriate
2698 * pid, we don't actually care if we have the right task.
2699 */
e1403b8e 2700static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2701{
e1403b8e 2702 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2703}
2704
bac0abd6 2705static inline
e1403b8e 2706bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2707{
e1403b8e 2708 return p1->signal == p2->signal;
bac0abd6
PE
2709}
2710
36c8b586 2711static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2712{
05725f7e
JP
2713 return list_entry_rcu(p->thread_group.next,
2714 struct task_struct, thread_group);
47e65328
ON
2715}
2716
e868171a 2717static inline int thread_group_empty(struct task_struct *p)
1da177e4 2718{
47e65328 2719 return list_empty(&p->thread_group);
1da177e4
LT
2720}
2721
2722#define delay_group_leader(p) \
2723 (thread_group_leader(p) && !thread_group_empty(p))
2724
1da177e4 2725/*
260ea101 2726 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2727 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2728 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2729 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2730 *
2731 * Nests both inside and outside of read_lock(&tasklist_lock).
2732 * It must not be nested with write_lock_irq(&tasklist_lock),
2733 * neither inside nor outside.
2734 */
2735static inline void task_lock(struct task_struct *p)
2736{
2737 spin_lock(&p->alloc_lock);
2738}
2739
2740static inline void task_unlock(struct task_struct *p)
2741{
2742 spin_unlock(&p->alloc_lock);
2743}
2744
b8ed374e 2745extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2746 unsigned long *flags);
2747
9388dc30
AV
2748static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2749 unsigned long *flags)
2750{
2751 struct sighand_struct *ret;
2752
2753 ret = __lock_task_sighand(tsk, flags);
2754 (void)__cond_lock(&tsk->sighand->siglock, ret);
2755 return ret;
2756}
b8ed374e 2757
f63ee72e
ON
2758static inline void unlock_task_sighand(struct task_struct *tsk,
2759 unsigned long *flags)
2760{
2761 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2762}
2763
77e4ef99 2764/**
7d7efec3
TH
2765 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2766 * @tsk: task causing the changes
77e4ef99 2767 *
7d7efec3
TH
2768 * All operations which modify a threadgroup - a new thread joining the
2769 * group, death of a member thread (the assertion of PF_EXITING) and
2770 * exec(2) dethreading the process and replacing the leader - are wrapped
2771 * by threadgroup_change_{begin|end}(). This is to provide a place which
2772 * subsystems needing threadgroup stability can hook into for
2773 * synchronization.
77e4ef99 2774 */
7d7efec3 2775static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2776{
7d7efec3
TH
2777 might_sleep();
2778 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2779}
77e4ef99
TH
2780
2781/**
7d7efec3
TH
2782 * threadgroup_change_end - mark the end of changes to a threadgroup
2783 * @tsk: task causing the changes
77e4ef99 2784 *
7d7efec3 2785 * See threadgroup_change_begin().
77e4ef99 2786 */
7d7efec3 2787static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2788{
7d7efec3 2789 cgroup_threadgroup_change_end(tsk);
4714d1d3 2790}
4714d1d3 2791
f037360f
AV
2792#ifndef __HAVE_THREAD_FUNCTIONS
2793
f7e4217b
RZ
2794#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2795#define task_stack_page(task) ((task)->stack)
a1261f54 2796
10ebffde
AV
2797static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2798{
2799 *task_thread_info(p) = *task_thread_info(org);
2800 task_thread_info(p)->task = p;
2801}
2802
6a40281a
CE
2803/*
2804 * Return the address of the last usable long on the stack.
2805 *
2806 * When the stack grows down, this is just above the thread
2807 * info struct. Going any lower will corrupt the threadinfo.
2808 *
2809 * When the stack grows up, this is the highest address.
2810 * Beyond that position, we corrupt data on the next page.
2811 */
10ebffde
AV
2812static inline unsigned long *end_of_stack(struct task_struct *p)
2813{
6a40281a
CE
2814#ifdef CONFIG_STACK_GROWSUP
2815 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2816#else
f7e4217b 2817 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2818#endif
10ebffde
AV
2819}
2820
f037360f 2821#endif
a70857e4
AT
2822#define task_stack_end_corrupted(task) \
2823 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2824
8b05c7e6
FT
2825static inline int object_is_on_stack(void *obj)
2826{
2827 void *stack = task_stack_page(current);
2828
2829 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2830}
2831
8c9843e5
BH
2832extern void thread_info_cache_init(void);
2833
7c9f8861
ES
2834#ifdef CONFIG_DEBUG_STACK_USAGE
2835static inline unsigned long stack_not_used(struct task_struct *p)
2836{
2837 unsigned long *n = end_of_stack(p);
2838
2839 do { /* Skip over canary */
2840 n++;
2841 } while (!*n);
2842
2843 return (unsigned long)n - (unsigned long)end_of_stack(p);
2844}
2845#endif
d4311ff1 2846extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2847
1da177e4
LT
2848/* set thread flags in other task's structures
2849 * - see asm/thread_info.h for TIF_xxxx flags available
2850 */
2851static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2852{
a1261f54 2853 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2854}
2855
2856static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2857{
a1261f54 2858 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2859}
2860
2861static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2862{
a1261f54 2863 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2864}
2865
2866static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2867{
a1261f54 2868 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2869}
2870
2871static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2872{
a1261f54 2873 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2874}
2875
2876static inline void set_tsk_need_resched(struct task_struct *tsk)
2877{
2878 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2879}
2880
2881static inline void clear_tsk_need_resched(struct task_struct *tsk)
2882{
2883 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2884}
2885
8ae121ac
GH
2886static inline int test_tsk_need_resched(struct task_struct *tsk)
2887{
2888 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2889}
2890
690cc3ff
EB
2891static inline int restart_syscall(void)
2892{
2893 set_tsk_thread_flag(current, TIF_SIGPENDING);
2894 return -ERESTARTNOINTR;
2895}
2896
1da177e4
LT
2897static inline int signal_pending(struct task_struct *p)
2898{
2899 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2900}
f776d12d 2901
d9588725
RM
2902static inline int __fatal_signal_pending(struct task_struct *p)
2903{
2904 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2905}
f776d12d
MW
2906
2907static inline int fatal_signal_pending(struct task_struct *p)
2908{
2909 return signal_pending(p) && __fatal_signal_pending(p);
2910}
2911
16882c1e
ON
2912static inline int signal_pending_state(long state, struct task_struct *p)
2913{
2914 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2915 return 0;
2916 if (!signal_pending(p))
2917 return 0;
2918
16882c1e
ON
2919 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2920}
2921
1da177e4
LT
2922/*
2923 * cond_resched() and cond_resched_lock(): latency reduction via
2924 * explicit rescheduling in places that are safe. The return
2925 * value indicates whether a reschedule was done in fact.
2926 * cond_resched_lock() will drop the spinlock before scheduling,
2927 * cond_resched_softirq() will enable bhs before scheduling.
2928 */
c3921ab7 2929extern int _cond_resched(void);
6f80bd98 2930
613afbf8 2931#define cond_resched() ({ \
3427445a 2932 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2933 _cond_resched(); \
2934})
6f80bd98 2935
613afbf8
FW
2936extern int __cond_resched_lock(spinlock_t *lock);
2937
2938#define cond_resched_lock(lock) ({ \
3427445a 2939 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2940 __cond_resched_lock(lock); \
2941})
2942
2943extern int __cond_resched_softirq(void);
2944
75e1056f 2945#define cond_resched_softirq() ({ \
3427445a 2946 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2947 __cond_resched_softirq(); \
613afbf8 2948})
1da177e4 2949
f6f3c437
SH
2950static inline void cond_resched_rcu(void)
2951{
2952#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2953 rcu_read_unlock();
2954 cond_resched();
2955 rcu_read_lock();
2956#endif
2957}
2958
1da177e4
LT
2959/*
2960 * Does a critical section need to be broken due to another
95c354fe
NP
2961 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2962 * but a general need for low latency)
1da177e4 2963 */
95c354fe 2964static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2965{
95c354fe
NP
2966#ifdef CONFIG_PREEMPT
2967 return spin_is_contended(lock);
2968#else
1da177e4 2969 return 0;
95c354fe 2970#endif
1da177e4
LT
2971}
2972
ee761f62
TG
2973/*
2974 * Idle thread specific functions to determine the need_resched
69dd0f84 2975 * polling state.
ee761f62 2976 */
69dd0f84 2977#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2978static inline int tsk_is_polling(struct task_struct *p)
2979{
2980 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2981}
ea811747
PZ
2982
2983static inline void __current_set_polling(void)
3a98f871
TG
2984{
2985 set_thread_flag(TIF_POLLING_NRFLAG);
2986}
2987
ea811747
PZ
2988static inline bool __must_check current_set_polling_and_test(void)
2989{
2990 __current_set_polling();
2991
2992 /*
2993 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2994 * paired by resched_curr()
ea811747 2995 */
4e857c58 2996 smp_mb__after_atomic();
ea811747
PZ
2997
2998 return unlikely(tif_need_resched());
2999}
3000
3001static inline void __current_clr_polling(void)
3a98f871
TG
3002{
3003 clear_thread_flag(TIF_POLLING_NRFLAG);
3004}
ea811747
PZ
3005
3006static inline bool __must_check current_clr_polling_and_test(void)
3007{
3008 __current_clr_polling();
3009
3010 /*
3011 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3012 * paired by resched_curr()
ea811747 3013 */
4e857c58 3014 smp_mb__after_atomic();
ea811747
PZ
3015
3016 return unlikely(tif_need_resched());
3017}
3018
ee761f62
TG
3019#else
3020static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3021static inline void __current_set_polling(void) { }
3022static inline void __current_clr_polling(void) { }
3023
3024static inline bool __must_check current_set_polling_and_test(void)
3025{
3026 return unlikely(tif_need_resched());
3027}
3028static inline bool __must_check current_clr_polling_and_test(void)
3029{
3030 return unlikely(tif_need_resched());
3031}
ee761f62
TG
3032#endif
3033
8cb75e0c
PZ
3034static inline void current_clr_polling(void)
3035{
3036 __current_clr_polling();
3037
3038 /*
3039 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3040 * Once the bit is cleared, we'll get IPIs with every new
3041 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3042 * fold.
3043 */
8875125e 3044 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3045
3046 preempt_fold_need_resched();
3047}
3048
75f93fed
PZ
3049static __always_inline bool need_resched(void)
3050{
3051 return unlikely(tif_need_resched());
3052}
3053
f06febc9
FM
3054/*
3055 * Thread group CPU time accounting.
3056 */
4cd4c1b4 3057void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3058void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3059
7bb44ade
RM
3060/*
3061 * Reevaluate whether the task has signals pending delivery.
3062 * Wake the task if so.
3063 * This is required every time the blocked sigset_t changes.
3064 * callers must hold sighand->siglock.
3065 */
3066extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3067extern void recalc_sigpending(void);
3068
910ffdb1
ON
3069extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3070
3071static inline void signal_wake_up(struct task_struct *t, bool resume)
3072{
3073 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3074}
3075static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3076{
3077 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3078}
1da177e4
LT
3079
3080/*
3081 * Wrappers for p->thread_info->cpu access. No-op on UP.
3082 */
3083#ifdef CONFIG_SMP
3084
3085static inline unsigned int task_cpu(const struct task_struct *p)
3086{
a1261f54 3087 return task_thread_info(p)->cpu;
1da177e4
LT
3088}
3089
b32e86b4
IM
3090static inline int task_node(const struct task_struct *p)
3091{
3092 return cpu_to_node(task_cpu(p));
3093}
3094
c65cc870 3095extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3096
3097#else
3098
3099static inline unsigned int task_cpu(const struct task_struct *p)
3100{
3101 return 0;
3102}
3103
3104static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3105{
3106}
3107
3108#endif /* CONFIG_SMP */
3109
96f874e2
RR
3110extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3111extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3112
7c941438 3113#ifdef CONFIG_CGROUP_SCHED
07e06b01 3114extern struct task_group root_task_group;
8323f26c 3115#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3116
54e99124
DG
3117extern int task_can_switch_user(struct user_struct *up,
3118 struct task_struct *tsk);
3119
4b98d11b
AD
3120#ifdef CONFIG_TASK_XACCT
3121static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3122{
940389b8 3123 tsk->ioac.rchar += amt;
4b98d11b
AD
3124}
3125
3126static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3127{
940389b8 3128 tsk->ioac.wchar += amt;
4b98d11b
AD
3129}
3130
3131static inline void inc_syscr(struct task_struct *tsk)
3132{
940389b8 3133 tsk->ioac.syscr++;
4b98d11b
AD
3134}
3135
3136static inline void inc_syscw(struct task_struct *tsk)
3137{
940389b8 3138 tsk->ioac.syscw++;
4b98d11b
AD
3139}
3140#else
3141static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3142{
3143}
3144
3145static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3146{
3147}
3148
3149static inline void inc_syscr(struct task_struct *tsk)
3150{
3151}
3152
3153static inline void inc_syscw(struct task_struct *tsk)
3154{
3155}
3156#endif
3157
82455257
DH
3158#ifndef TASK_SIZE_OF
3159#define TASK_SIZE_OF(tsk) TASK_SIZE
3160#endif
3161
f98bafa0 3162#ifdef CONFIG_MEMCG
cf475ad2 3163extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3164#else
3165static inline void mm_update_next_owner(struct mm_struct *mm)
3166{
3167}
f98bafa0 3168#endif /* CONFIG_MEMCG */
cf475ad2 3169
3e10e716
JS
3170static inline unsigned long task_rlimit(const struct task_struct *tsk,
3171 unsigned int limit)
3172{
316c1608 3173 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3174}
3175
3176static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3177 unsigned int limit)
3178{
316c1608 3179 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3180}
3181
3182static inline unsigned long rlimit(unsigned int limit)
3183{
3184 return task_rlimit(current, limit);
3185}
3186
3187static inline unsigned long rlimit_max(unsigned int limit)
3188{
3189 return task_rlimit_max(current, limit);
3190}
3191
1da177e4 3192#endif
This page took 2.235456 seconds and 5 git commands to generate.