cpu-hotplug: fix build on !CONFIG_SMP
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
6b2d7700
SV
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
29f59db3 206 unsigned long shares;
6b2d7700 207
ae8393e5 208 struct rcu_head rcu;
29f59db3
SV
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
9b5b7751
SV
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 218
ec2c507f
SV
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
a1835615
SV
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
6b2d7700
SV
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
29f59db3 235/* Default task group.
3a252015 236 * Every task in system belong to this group at bootup.
29f59db3 237 */
4cf86d77 238struct task_group init_task_group = {
3a252015
IM
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
9b5b7751 242
24e377a8 243#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 245#else
93f992cc 246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
247#endif
248
6b2d7700
SV
249#define MIN_GROUP_SHARES 2
250
93f992cc 251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
252
253/* return group to which a task belongs */
4cf86d77 254static inline struct task_group *task_group(struct task_struct *p)
29f59db3 255{
4cf86d77 256 struct task_group *tg;
9b5b7751 257
24e377a8
SV
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
68318b8e
SV
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
24e377a8 263#else
41a2d6cf 264 tg = &init_task_group;
24e377a8 265#endif
9b5b7751 266 return tg;
29f59db3
SV
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 271{
ce96b5ac
DA
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
274}
275
ec2c507f
SV
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
a1835615
SV
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
29f59db3
SV
296#else
297
ce96b5ac 298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
a1835615
SV
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
29f59db3
SV
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
ddc97297
PZ
321
322 unsigned long nr_spread_over;
323
62160e3f 324#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
41a2d6cf
IM
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
41a2d6cf
IM
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
337#endif
338};
1da177e4 339
6aa645ea
IM
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345};
346
1da177e4
LT
347/*
348 * This is the main, per-CPU runqueue data structure.
349 *
350 * Locking rule: those places that want to lock multiple runqueues
351 * (such as the load balancing or the thread migration code), lock
352 * acquire operations must be ordered by ascending &runqueue.
353 */
70b97a7f 354struct rq {
d8016491
IM
355 /* runqueue lock: */
356 spinlock_t lock;
1da177e4
LT
357
358 /*
359 * nr_running and cpu_load should be in the same cacheline because
360 * remote CPUs use both these fields when doing load calculation.
361 */
362 unsigned long nr_running;
6aa645ea
IM
363 #define CPU_LOAD_IDX_MAX 5
364 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 365 unsigned char idle_at_tick;
46cb4b7c
SS
366#ifdef CONFIG_NO_HZ
367 unsigned char in_nohz_recently;
368#endif
d8016491
IM
369 /* capture load from *all* tasks on this cpu: */
370 struct load_weight load;
6aa645ea
IM
371 unsigned long nr_load_updates;
372 u64 nr_switches;
373
374 struct cfs_rq cfs;
375#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
376 /* list of leaf cfs_rq on this cpu: */
377 struct list_head leaf_cfs_rq_list;
1da177e4 378#endif
41a2d6cf 379 struct rt_rq rt;
1da177e4
LT
380
381 /*
382 * This is part of a global counter where only the total sum
383 * over all CPUs matters. A task can increase this counter on
384 * one CPU and if it got migrated afterwards it may decrease
385 * it on another CPU. Always updated under the runqueue lock:
386 */
387 unsigned long nr_uninterruptible;
388
36c8b586 389 struct task_struct *curr, *idle;
c9819f45 390 unsigned long next_balance;
1da177e4 391 struct mm_struct *prev_mm;
6aa645ea 392
6aa645ea
IM
393 u64 clock, prev_clock_raw;
394 s64 clock_max_delta;
395
396 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
397 u64 idle_clock;
398 unsigned int clock_deep_idle_events;
529c7726 399 u64 tick_timestamp;
6aa645ea 400
1da177e4
LT
401 atomic_t nr_iowait;
402
403#ifdef CONFIG_SMP
404 struct sched_domain *sd;
405
406 /* For active balancing */
407 int active_balance;
408 int push_cpu;
d8016491
IM
409 /* cpu of this runqueue: */
410 int cpu;
1da177e4 411
36c8b586 412 struct task_struct *migration_thread;
1da177e4
LT
413 struct list_head migration_queue;
414#endif
415
416#ifdef CONFIG_SCHEDSTATS
417 /* latency stats */
418 struct sched_info rq_sched_info;
419
420 /* sys_sched_yield() stats */
480b9434
KC
421 unsigned int yld_exp_empty;
422 unsigned int yld_act_empty;
423 unsigned int yld_both_empty;
424 unsigned int yld_count;
1da177e4
LT
425
426 /* schedule() stats */
480b9434
KC
427 unsigned int sched_switch;
428 unsigned int sched_count;
429 unsigned int sched_goidle;
1da177e4
LT
430
431 /* try_to_wake_up() stats */
480b9434
KC
432 unsigned int ttwu_count;
433 unsigned int ttwu_local;
b8efb561
IM
434
435 /* BKL stats */
480b9434 436 unsigned int bkl_count;
1da177e4 437#endif
fcb99371 438 struct lock_class_key rq_lock_key;
1da177e4
LT
439};
440
f34e3b61 441static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 442
dd41f596
IM
443static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
444{
445 rq->curr->sched_class->check_preempt_curr(rq, p);
446}
447
0a2966b4
CL
448static inline int cpu_of(struct rq *rq)
449{
450#ifdef CONFIG_SMP
451 return rq->cpu;
452#else
453 return 0;
454#endif
455}
456
20d315d4 457/*
b04a0f4c
IM
458 * Update the per-runqueue clock, as finegrained as the platform can give
459 * us, but without assuming monotonicity, etc.:
20d315d4 460 */
b04a0f4c 461static void __update_rq_clock(struct rq *rq)
20d315d4
IM
462{
463 u64 prev_raw = rq->prev_clock_raw;
464 u64 now = sched_clock();
465 s64 delta = now - prev_raw;
466 u64 clock = rq->clock;
467
b04a0f4c
IM
468#ifdef CONFIG_SCHED_DEBUG
469 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
470#endif
20d315d4
IM
471 /*
472 * Protect against sched_clock() occasionally going backwards:
473 */
474 if (unlikely(delta < 0)) {
475 clock++;
476 rq->clock_warps++;
477 } else {
478 /*
479 * Catch too large forward jumps too:
480 */
529c7726
IM
481 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
482 if (clock < rq->tick_timestamp + TICK_NSEC)
483 clock = rq->tick_timestamp + TICK_NSEC;
484 else
485 clock++;
20d315d4
IM
486 rq->clock_overflows++;
487 } else {
488 if (unlikely(delta > rq->clock_max_delta))
489 rq->clock_max_delta = delta;
490 clock += delta;
491 }
492 }
493
494 rq->prev_clock_raw = now;
495 rq->clock = clock;
b04a0f4c 496}
20d315d4 497
b04a0f4c
IM
498static void update_rq_clock(struct rq *rq)
499{
500 if (likely(smp_processor_id() == cpu_of(rq)))
501 __update_rq_clock(rq);
20d315d4
IM
502}
503
674311d5
NP
504/*
505 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 506 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
507 *
508 * The domain tree of any CPU may only be accessed from within
509 * preempt-disabled sections.
510 */
48f24c4d
IM
511#define for_each_domain(cpu, __sd) \
512 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
513
514#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
515#define this_rq() (&__get_cpu_var(runqueues))
516#define task_rq(p) cpu_rq(task_cpu(p))
517#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
518
bf5c91ba
IM
519/*
520 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
521 */
522#ifdef CONFIG_SCHED_DEBUG
523# define const_debug __read_mostly
524#else
525# define const_debug static const
526#endif
527
528/*
529 * Debugging: various feature bits
530 */
531enum {
bbdba7c0 532 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
533 SCHED_FEAT_WAKEUP_PREEMPT = 2,
534 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
535 SCHED_FEAT_TREE_AVG = 8,
536 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
537};
538
539const_debug unsigned int sysctl_sched_features =
8401f775 540 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 541 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
542 SCHED_FEAT_START_DEBIT * 1 |
543 SCHED_FEAT_TREE_AVG * 0 |
9612633a 544 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
545
546#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
547
b82d9fdd
PZ
548/*
549 * Number of tasks to iterate in a single balance run.
550 * Limited because this is done with IRQs disabled.
551 */
552const_debug unsigned int sysctl_sched_nr_migrate = 32;
553
e436d800
IM
554/*
555 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
556 * clock constructed from sched_clock():
557 */
558unsigned long long cpu_clock(int cpu)
559{
e436d800
IM
560 unsigned long long now;
561 unsigned long flags;
b04a0f4c 562 struct rq *rq;
e436d800 563
2cd4d0ea 564 local_irq_save(flags);
b04a0f4c 565 rq = cpu_rq(cpu);
8ced5f69
IM
566 /*
567 * Only call sched_clock() if the scheduler has already been
568 * initialized (some code might call cpu_clock() very early):
569 */
570 if (rq->idle)
571 update_rq_clock(rq);
b04a0f4c 572 now = rq->clock;
2cd4d0ea 573 local_irq_restore(flags);
e436d800
IM
574
575 return now;
576}
a58f6f25 577EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 578
1da177e4 579#ifndef prepare_arch_switch
4866cde0
NP
580# define prepare_arch_switch(next) do { } while (0)
581#endif
582#ifndef finish_arch_switch
583# define finish_arch_switch(prev) do { } while (0)
584#endif
585
051a1d1a
DA
586static inline int task_current(struct rq *rq, struct task_struct *p)
587{
588 return rq->curr == p;
589}
590
4866cde0 591#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 592static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 593{
051a1d1a 594 return task_current(rq, p);
4866cde0
NP
595}
596
70b97a7f 597static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
598{
599}
600
70b97a7f 601static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 602{
da04c035
IM
603#ifdef CONFIG_DEBUG_SPINLOCK
604 /* this is a valid case when another task releases the spinlock */
605 rq->lock.owner = current;
606#endif
8a25d5de
IM
607 /*
608 * If we are tracking spinlock dependencies then we have to
609 * fix up the runqueue lock - which gets 'carried over' from
610 * prev into current:
611 */
612 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
613
4866cde0
NP
614 spin_unlock_irq(&rq->lock);
615}
616
617#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 618static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
619{
620#ifdef CONFIG_SMP
621 return p->oncpu;
622#else
051a1d1a 623 return task_current(rq, p);
4866cde0
NP
624#endif
625}
626
70b97a7f 627static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
628{
629#ifdef CONFIG_SMP
630 /*
631 * We can optimise this out completely for !SMP, because the
632 * SMP rebalancing from interrupt is the only thing that cares
633 * here.
634 */
635 next->oncpu = 1;
636#endif
637#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
638 spin_unlock_irq(&rq->lock);
639#else
640 spin_unlock(&rq->lock);
641#endif
642}
643
70b97a7f 644static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
645{
646#ifdef CONFIG_SMP
647 /*
648 * After ->oncpu is cleared, the task can be moved to a different CPU.
649 * We must ensure this doesn't happen until the switch is completely
650 * finished.
651 */
652 smp_wmb();
653 prev->oncpu = 0;
654#endif
655#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
656 local_irq_enable();
1da177e4 657#endif
4866cde0
NP
658}
659#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 660
b29739f9
IM
661/*
662 * __task_rq_lock - lock the runqueue a given task resides on.
663 * Must be called interrupts disabled.
664 */
70b97a7f 665static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
666 __acquires(rq->lock)
667{
3a5c359a
AK
668 for (;;) {
669 struct rq *rq = task_rq(p);
670 spin_lock(&rq->lock);
671 if (likely(rq == task_rq(p)))
672 return rq;
b29739f9 673 spin_unlock(&rq->lock);
b29739f9 674 }
b29739f9
IM
675}
676
1da177e4
LT
677/*
678 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 679 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
680 * explicitly disabling preemption.
681 */
70b97a7f 682static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
683 __acquires(rq->lock)
684{
70b97a7f 685 struct rq *rq;
1da177e4 686
3a5c359a
AK
687 for (;;) {
688 local_irq_save(*flags);
689 rq = task_rq(p);
690 spin_lock(&rq->lock);
691 if (likely(rq == task_rq(p)))
692 return rq;
1da177e4 693 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 694 }
1da177e4
LT
695}
696
a9957449 697static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
698 __releases(rq->lock)
699{
700 spin_unlock(&rq->lock);
701}
702
70b97a7f 703static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
704 __releases(rq->lock)
705{
706 spin_unlock_irqrestore(&rq->lock, *flags);
707}
708
1da177e4 709/*
cc2a73b5 710 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 711 */
a9957449 712static struct rq *this_rq_lock(void)
1da177e4
LT
713 __acquires(rq->lock)
714{
70b97a7f 715 struct rq *rq;
1da177e4
LT
716
717 local_irq_disable();
718 rq = this_rq();
719 spin_lock(&rq->lock);
720
721 return rq;
722}
723
1b9f19c2 724/*
2aa44d05 725 * We are going deep-idle (irqs are disabled):
1b9f19c2 726 */
2aa44d05 727void sched_clock_idle_sleep_event(void)
1b9f19c2 728{
2aa44d05
IM
729 struct rq *rq = cpu_rq(smp_processor_id());
730
731 spin_lock(&rq->lock);
732 __update_rq_clock(rq);
733 spin_unlock(&rq->lock);
734 rq->clock_deep_idle_events++;
735}
736EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
737
738/*
739 * We just idled delta nanoseconds (called with irqs disabled):
740 */
741void sched_clock_idle_wakeup_event(u64 delta_ns)
742{
743 struct rq *rq = cpu_rq(smp_processor_id());
744 u64 now = sched_clock();
1b9f19c2 745
2bacec8c 746 touch_softlockup_watchdog();
2aa44d05
IM
747 rq->idle_clock += delta_ns;
748 /*
749 * Override the previous timestamp and ignore all
750 * sched_clock() deltas that occured while we idled,
751 * and use the PM-provided delta_ns to advance the
752 * rq clock:
753 */
754 spin_lock(&rq->lock);
755 rq->prev_clock_raw = now;
756 rq->clock += delta_ns;
757 spin_unlock(&rq->lock);
1b9f19c2 758}
2aa44d05 759EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 760
c24d20db
IM
761/*
762 * resched_task - mark a task 'to be rescheduled now'.
763 *
764 * On UP this means the setting of the need_resched flag, on SMP it
765 * might also involve a cross-CPU call to trigger the scheduler on
766 * the target CPU.
767 */
768#ifdef CONFIG_SMP
769
770#ifndef tsk_is_polling
771#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
772#endif
773
774static void resched_task(struct task_struct *p)
775{
776 int cpu;
777
778 assert_spin_locked(&task_rq(p)->lock);
779
780 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
781 return;
782
783 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
784
785 cpu = task_cpu(p);
786 if (cpu == smp_processor_id())
787 return;
788
789 /* NEED_RESCHED must be visible before we test polling */
790 smp_mb();
791 if (!tsk_is_polling(p))
792 smp_send_reschedule(cpu);
793}
794
795static void resched_cpu(int cpu)
796{
797 struct rq *rq = cpu_rq(cpu);
798 unsigned long flags;
799
800 if (!spin_trylock_irqsave(&rq->lock, flags))
801 return;
802 resched_task(cpu_curr(cpu));
803 spin_unlock_irqrestore(&rq->lock, flags);
804}
805#else
806static inline void resched_task(struct task_struct *p)
807{
808 assert_spin_locked(&task_rq(p)->lock);
809 set_tsk_need_resched(p);
810}
811#endif
812
45bf76df
IM
813#if BITS_PER_LONG == 32
814# define WMULT_CONST (~0UL)
815#else
816# define WMULT_CONST (1UL << 32)
817#endif
818
819#define WMULT_SHIFT 32
820
194081eb
IM
821/*
822 * Shift right and round:
823 */
cf2ab469 824#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 825
cb1c4fc9 826static unsigned long
45bf76df
IM
827calc_delta_mine(unsigned long delta_exec, unsigned long weight,
828 struct load_weight *lw)
829{
830 u64 tmp;
831
832 if (unlikely(!lw->inv_weight))
194081eb 833 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
834
835 tmp = (u64)delta_exec * weight;
836 /*
837 * Check whether we'd overflow the 64-bit multiplication:
838 */
194081eb 839 if (unlikely(tmp > WMULT_CONST))
cf2ab469 840 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
841 WMULT_SHIFT/2);
842 else
cf2ab469 843 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 844
ecf691da 845 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
846}
847
848static inline unsigned long
849calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
850{
851 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
852}
853
1091985b 854static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
855{
856 lw->weight += inc;
45bf76df
IM
857}
858
1091985b 859static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
860{
861 lw->weight -= dec;
45bf76df
IM
862}
863
2dd73a4f
PW
864/*
865 * To aid in avoiding the subversion of "niceness" due to uneven distribution
866 * of tasks with abnormal "nice" values across CPUs the contribution that
867 * each task makes to its run queue's load is weighted according to its
41a2d6cf 868 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
869 * scaled version of the new time slice allocation that they receive on time
870 * slice expiry etc.
871 */
872
dd41f596
IM
873#define WEIGHT_IDLEPRIO 2
874#define WMULT_IDLEPRIO (1 << 31)
875
876/*
877 * Nice levels are multiplicative, with a gentle 10% change for every
878 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
879 * nice 1, it will get ~10% less CPU time than another CPU-bound task
880 * that remained on nice 0.
881 *
882 * The "10% effect" is relative and cumulative: from _any_ nice level,
883 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
884 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
885 * If a task goes up by ~10% and another task goes down by ~10% then
886 * the relative distance between them is ~25%.)
dd41f596
IM
887 */
888static const int prio_to_weight[40] = {
254753dc
IM
889 /* -20 */ 88761, 71755, 56483, 46273, 36291,
890 /* -15 */ 29154, 23254, 18705, 14949, 11916,
891 /* -10 */ 9548, 7620, 6100, 4904, 3906,
892 /* -5 */ 3121, 2501, 1991, 1586, 1277,
893 /* 0 */ 1024, 820, 655, 526, 423,
894 /* 5 */ 335, 272, 215, 172, 137,
895 /* 10 */ 110, 87, 70, 56, 45,
896 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
897};
898
5714d2de
IM
899/*
900 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
901 *
902 * In cases where the weight does not change often, we can use the
903 * precalculated inverse to speed up arithmetics by turning divisions
904 * into multiplications:
905 */
dd41f596 906static const u32 prio_to_wmult[40] = {
254753dc
IM
907 /* -20 */ 48388, 59856, 76040, 92818, 118348,
908 /* -15 */ 147320, 184698, 229616, 287308, 360437,
909 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
910 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
911 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
912 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
913 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
914 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 915};
2dd73a4f 916
dd41f596
IM
917static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
918
919/*
920 * runqueue iterator, to support SMP load-balancing between different
921 * scheduling classes, without having to expose their internal data
922 * structures to the load-balancing proper:
923 */
924struct rq_iterator {
925 void *arg;
926 struct task_struct *(*start)(void *);
927 struct task_struct *(*next)(void *);
928};
929
e1d1484f
PW
930#ifdef CONFIG_SMP
931static unsigned long
932balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
933 unsigned long max_load_move, struct sched_domain *sd,
934 enum cpu_idle_type idle, int *all_pinned,
935 int *this_best_prio, struct rq_iterator *iterator);
936
937static int
938iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
939 struct sched_domain *sd, enum cpu_idle_type idle,
940 struct rq_iterator *iterator);
e1d1484f 941#endif
dd41f596 942
d842de87
SV
943#ifdef CONFIG_CGROUP_CPUACCT
944static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
945#else
946static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
947#endif
948
58e2d4ca
SV
949static inline void inc_cpu_load(struct rq *rq, unsigned long load)
950{
951 update_load_add(&rq->load, load);
952}
953
954static inline void dec_cpu_load(struct rq *rq, unsigned long load)
955{
956 update_load_sub(&rq->load, load);
957}
958
dd41f596 959#include "sched_stats.h"
dd41f596 960#include "sched_idletask.c"
5522d5d5
IM
961#include "sched_fair.c"
962#include "sched_rt.c"
dd41f596
IM
963#ifdef CONFIG_SCHED_DEBUG
964# include "sched_debug.c"
965#endif
966
967#define sched_class_highest (&rt_sched_class)
968
e5fa2237 969static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
970{
971 rq->nr_running++;
9c217245
IM
972}
973
db53181e 974static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
975{
976 rq->nr_running--;
9c217245
IM
977}
978
45bf76df
IM
979static void set_load_weight(struct task_struct *p)
980{
981 if (task_has_rt_policy(p)) {
dd41f596
IM
982 p->se.load.weight = prio_to_weight[0] * 2;
983 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
984 return;
985 }
45bf76df 986
dd41f596
IM
987 /*
988 * SCHED_IDLE tasks get minimal weight:
989 */
990 if (p->policy == SCHED_IDLE) {
991 p->se.load.weight = WEIGHT_IDLEPRIO;
992 p->se.load.inv_weight = WMULT_IDLEPRIO;
993 return;
994 }
71f8bd46 995
dd41f596
IM
996 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
997 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
998}
999
8159f87e 1000static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1001{
dd41f596 1002 sched_info_queued(p);
fd390f6a 1003 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1004 p->se.on_rq = 1;
71f8bd46
IM
1005}
1006
69be72c1 1007static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1008{
f02231e5 1009 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1010 p->se.on_rq = 0;
71f8bd46
IM
1011}
1012
14531189 1013/*
dd41f596 1014 * __normal_prio - return the priority that is based on the static prio
14531189 1015 */
14531189
IM
1016static inline int __normal_prio(struct task_struct *p)
1017{
dd41f596 1018 return p->static_prio;
14531189
IM
1019}
1020
b29739f9
IM
1021/*
1022 * Calculate the expected normal priority: i.e. priority
1023 * without taking RT-inheritance into account. Might be
1024 * boosted by interactivity modifiers. Changes upon fork,
1025 * setprio syscalls, and whenever the interactivity
1026 * estimator recalculates.
1027 */
36c8b586 1028static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1029{
1030 int prio;
1031
e05606d3 1032 if (task_has_rt_policy(p))
b29739f9
IM
1033 prio = MAX_RT_PRIO-1 - p->rt_priority;
1034 else
1035 prio = __normal_prio(p);
1036 return prio;
1037}
1038
1039/*
1040 * Calculate the current priority, i.e. the priority
1041 * taken into account by the scheduler. This value might
1042 * be boosted by RT tasks, or might be boosted by
1043 * interactivity modifiers. Will be RT if the task got
1044 * RT-boosted. If not then it returns p->normal_prio.
1045 */
36c8b586 1046static int effective_prio(struct task_struct *p)
b29739f9
IM
1047{
1048 p->normal_prio = normal_prio(p);
1049 /*
1050 * If we are RT tasks or we were boosted to RT priority,
1051 * keep the priority unchanged. Otherwise, update priority
1052 * to the normal priority:
1053 */
1054 if (!rt_prio(p->prio))
1055 return p->normal_prio;
1056 return p->prio;
1057}
1058
1da177e4 1059/*
dd41f596 1060 * activate_task - move a task to the runqueue.
1da177e4 1061 */
dd41f596 1062static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1063{
dd41f596
IM
1064 if (p->state == TASK_UNINTERRUPTIBLE)
1065 rq->nr_uninterruptible--;
1da177e4 1066
8159f87e 1067 enqueue_task(rq, p, wakeup);
e5fa2237 1068 inc_nr_running(p, rq);
1da177e4
LT
1069}
1070
1da177e4
LT
1071/*
1072 * deactivate_task - remove a task from the runqueue.
1073 */
2e1cb74a 1074static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1075{
dd41f596
IM
1076 if (p->state == TASK_UNINTERRUPTIBLE)
1077 rq->nr_uninterruptible++;
1078
69be72c1 1079 dequeue_task(rq, p, sleep);
db53181e 1080 dec_nr_running(p, rq);
1da177e4
LT
1081}
1082
1da177e4
LT
1083/**
1084 * task_curr - is this task currently executing on a CPU?
1085 * @p: the task in question.
1086 */
36c8b586 1087inline int task_curr(const struct task_struct *p)
1da177e4
LT
1088{
1089 return cpu_curr(task_cpu(p)) == p;
1090}
1091
2dd73a4f
PW
1092/* Used instead of source_load when we know the type == 0 */
1093unsigned long weighted_cpuload(const int cpu)
1094{
495eca49 1095 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1096}
1097
1098static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1099{
ce96b5ac 1100 set_task_cfs_rq(p, cpu);
dd41f596 1101#ifdef CONFIG_SMP
ce96b5ac
DA
1102 /*
1103 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1104 * successfuly executed on another CPU. We must ensure that updates of
1105 * per-task data have been completed by this moment.
1106 */
1107 smp_wmb();
dd41f596 1108 task_thread_info(p)->cpu = cpu;
dd41f596 1109#endif
2dd73a4f
PW
1110}
1111
1da177e4 1112#ifdef CONFIG_SMP
c65cc870 1113
cc367732
IM
1114/*
1115 * Is this task likely cache-hot:
1116 */
1117static inline int
1118task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1119{
1120 s64 delta;
1121
1122 if (p->sched_class != &fair_sched_class)
1123 return 0;
1124
6bc1665b
IM
1125 if (sysctl_sched_migration_cost == -1)
1126 return 1;
1127 if (sysctl_sched_migration_cost == 0)
1128 return 0;
1129
cc367732
IM
1130 delta = now - p->se.exec_start;
1131
1132 return delta < (s64)sysctl_sched_migration_cost;
1133}
1134
1135
dd41f596 1136void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1137{
dd41f596
IM
1138 int old_cpu = task_cpu(p);
1139 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1140 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1141 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1142 u64 clock_offset;
dd41f596
IM
1143
1144 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1145
1146#ifdef CONFIG_SCHEDSTATS
1147 if (p->se.wait_start)
1148 p->se.wait_start -= clock_offset;
dd41f596
IM
1149 if (p->se.sleep_start)
1150 p->se.sleep_start -= clock_offset;
1151 if (p->se.block_start)
1152 p->se.block_start -= clock_offset;
cc367732
IM
1153 if (old_cpu != new_cpu) {
1154 schedstat_inc(p, se.nr_migrations);
1155 if (task_hot(p, old_rq->clock, NULL))
1156 schedstat_inc(p, se.nr_forced2_migrations);
1157 }
6cfb0d5d 1158#endif
2830cf8c
SV
1159 p->se.vruntime -= old_cfsrq->min_vruntime -
1160 new_cfsrq->min_vruntime;
dd41f596
IM
1161
1162 __set_task_cpu(p, new_cpu);
c65cc870
IM
1163}
1164
70b97a7f 1165struct migration_req {
1da177e4 1166 struct list_head list;
1da177e4 1167
36c8b586 1168 struct task_struct *task;
1da177e4
LT
1169 int dest_cpu;
1170
1da177e4 1171 struct completion done;
70b97a7f 1172};
1da177e4
LT
1173
1174/*
1175 * The task's runqueue lock must be held.
1176 * Returns true if you have to wait for migration thread.
1177 */
36c8b586 1178static int
70b97a7f 1179migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1180{
70b97a7f 1181 struct rq *rq = task_rq(p);
1da177e4
LT
1182
1183 /*
1184 * If the task is not on a runqueue (and not running), then
1185 * it is sufficient to simply update the task's cpu field.
1186 */
dd41f596 1187 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1188 set_task_cpu(p, dest_cpu);
1189 return 0;
1190 }
1191
1192 init_completion(&req->done);
1da177e4
LT
1193 req->task = p;
1194 req->dest_cpu = dest_cpu;
1195 list_add(&req->list, &rq->migration_queue);
48f24c4d 1196
1da177e4
LT
1197 return 1;
1198}
1199
1200/*
1201 * wait_task_inactive - wait for a thread to unschedule.
1202 *
1203 * The caller must ensure that the task *will* unschedule sometime soon,
1204 * else this function might spin for a *long* time. This function can't
1205 * be called with interrupts off, or it may introduce deadlock with
1206 * smp_call_function() if an IPI is sent by the same process we are
1207 * waiting to become inactive.
1208 */
36c8b586 1209void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1210{
1211 unsigned long flags;
dd41f596 1212 int running, on_rq;
70b97a7f 1213 struct rq *rq;
1da177e4 1214
3a5c359a
AK
1215 for (;;) {
1216 /*
1217 * We do the initial early heuristics without holding
1218 * any task-queue locks at all. We'll only try to get
1219 * the runqueue lock when things look like they will
1220 * work out!
1221 */
1222 rq = task_rq(p);
fa490cfd 1223
3a5c359a
AK
1224 /*
1225 * If the task is actively running on another CPU
1226 * still, just relax and busy-wait without holding
1227 * any locks.
1228 *
1229 * NOTE! Since we don't hold any locks, it's not
1230 * even sure that "rq" stays as the right runqueue!
1231 * But we don't care, since "task_running()" will
1232 * return false if the runqueue has changed and p
1233 * is actually now running somewhere else!
1234 */
1235 while (task_running(rq, p))
1236 cpu_relax();
fa490cfd 1237
3a5c359a
AK
1238 /*
1239 * Ok, time to look more closely! We need the rq
1240 * lock now, to be *sure*. If we're wrong, we'll
1241 * just go back and repeat.
1242 */
1243 rq = task_rq_lock(p, &flags);
1244 running = task_running(rq, p);
1245 on_rq = p->se.on_rq;
1246 task_rq_unlock(rq, &flags);
fa490cfd 1247
3a5c359a
AK
1248 /*
1249 * Was it really running after all now that we
1250 * checked with the proper locks actually held?
1251 *
1252 * Oops. Go back and try again..
1253 */
1254 if (unlikely(running)) {
1255 cpu_relax();
1256 continue;
1257 }
fa490cfd 1258
3a5c359a
AK
1259 /*
1260 * It's not enough that it's not actively running,
1261 * it must be off the runqueue _entirely_, and not
1262 * preempted!
1263 *
1264 * So if it wa still runnable (but just not actively
1265 * running right now), it's preempted, and we should
1266 * yield - it could be a while.
1267 */
1268 if (unlikely(on_rq)) {
1269 schedule_timeout_uninterruptible(1);
1270 continue;
1271 }
fa490cfd 1272
3a5c359a
AK
1273 /*
1274 * Ahh, all good. It wasn't running, and it wasn't
1275 * runnable, which means that it will never become
1276 * running in the future either. We're all done!
1277 */
1278 break;
1279 }
1da177e4
LT
1280}
1281
1282/***
1283 * kick_process - kick a running thread to enter/exit the kernel
1284 * @p: the to-be-kicked thread
1285 *
1286 * Cause a process which is running on another CPU to enter
1287 * kernel-mode, without any delay. (to get signals handled.)
1288 *
1289 * NOTE: this function doesnt have to take the runqueue lock,
1290 * because all it wants to ensure is that the remote task enters
1291 * the kernel. If the IPI races and the task has been migrated
1292 * to another CPU then no harm is done and the purpose has been
1293 * achieved as well.
1294 */
36c8b586 1295void kick_process(struct task_struct *p)
1da177e4
LT
1296{
1297 int cpu;
1298
1299 preempt_disable();
1300 cpu = task_cpu(p);
1301 if ((cpu != smp_processor_id()) && task_curr(p))
1302 smp_send_reschedule(cpu);
1303 preempt_enable();
1304}
1305
1306/*
2dd73a4f
PW
1307 * Return a low guess at the load of a migration-source cpu weighted
1308 * according to the scheduling class and "nice" value.
1da177e4
LT
1309 *
1310 * We want to under-estimate the load of migration sources, to
1311 * balance conservatively.
1312 */
a9957449 1313static unsigned long source_load(int cpu, int type)
1da177e4 1314{
70b97a7f 1315 struct rq *rq = cpu_rq(cpu);
dd41f596 1316 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1317
3b0bd9bc 1318 if (type == 0)
dd41f596 1319 return total;
b910472d 1320
dd41f596 1321 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1322}
1323
1324/*
2dd73a4f
PW
1325 * Return a high guess at the load of a migration-target cpu weighted
1326 * according to the scheduling class and "nice" value.
1da177e4 1327 */
a9957449 1328static unsigned long target_load(int cpu, int type)
1da177e4 1329{
70b97a7f 1330 struct rq *rq = cpu_rq(cpu);
dd41f596 1331 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1332
7897986b 1333 if (type == 0)
dd41f596 1334 return total;
3b0bd9bc 1335
dd41f596 1336 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1337}
1338
1339/*
1340 * Return the average load per task on the cpu's run queue
1341 */
1342static inline unsigned long cpu_avg_load_per_task(int cpu)
1343{
70b97a7f 1344 struct rq *rq = cpu_rq(cpu);
dd41f596 1345 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1346 unsigned long n = rq->nr_running;
1347
dd41f596 1348 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1349}
1350
147cbb4b
NP
1351/*
1352 * find_idlest_group finds and returns the least busy CPU group within the
1353 * domain.
1354 */
1355static struct sched_group *
1356find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1357{
1358 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1359 unsigned long min_load = ULONG_MAX, this_load = 0;
1360 int load_idx = sd->forkexec_idx;
1361 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1362
1363 do {
1364 unsigned long load, avg_load;
1365 int local_group;
1366 int i;
1367
da5a5522
BD
1368 /* Skip over this group if it has no CPUs allowed */
1369 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1370 continue;
da5a5522 1371
147cbb4b 1372 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1373
1374 /* Tally up the load of all CPUs in the group */
1375 avg_load = 0;
1376
1377 for_each_cpu_mask(i, group->cpumask) {
1378 /* Bias balancing toward cpus of our domain */
1379 if (local_group)
1380 load = source_load(i, load_idx);
1381 else
1382 load = target_load(i, load_idx);
1383
1384 avg_load += load;
1385 }
1386
1387 /* Adjust by relative CPU power of the group */
5517d86b
ED
1388 avg_load = sg_div_cpu_power(group,
1389 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1390
1391 if (local_group) {
1392 this_load = avg_load;
1393 this = group;
1394 } else if (avg_load < min_load) {
1395 min_load = avg_load;
1396 idlest = group;
1397 }
3a5c359a 1398 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1399
1400 if (!idlest || 100*this_load < imbalance*min_load)
1401 return NULL;
1402 return idlest;
1403}
1404
1405/*
0feaece9 1406 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1407 */
95cdf3b7
IM
1408static int
1409find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1410{
da5a5522 1411 cpumask_t tmp;
147cbb4b
NP
1412 unsigned long load, min_load = ULONG_MAX;
1413 int idlest = -1;
1414 int i;
1415
da5a5522
BD
1416 /* Traverse only the allowed CPUs */
1417 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1418
1419 for_each_cpu_mask(i, tmp) {
2dd73a4f 1420 load = weighted_cpuload(i);
147cbb4b
NP
1421
1422 if (load < min_load || (load == min_load && i == this_cpu)) {
1423 min_load = load;
1424 idlest = i;
1425 }
1426 }
1427
1428 return idlest;
1429}
1430
476d139c
NP
1431/*
1432 * sched_balance_self: balance the current task (running on cpu) in domains
1433 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1434 * SD_BALANCE_EXEC.
1435 *
1436 * Balance, ie. select the least loaded group.
1437 *
1438 * Returns the target CPU number, or the same CPU if no balancing is needed.
1439 *
1440 * preempt must be disabled.
1441 */
1442static int sched_balance_self(int cpu, int flag)
1443{
1444 struct task_struct *t = current;
1445 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1446
c96d145e 1447 for_each_domain(cpu, tmp) {
9761eea8
IM
1448 /*
1449 * If power savings logic is enabled for a domain, stop there.
1450 */
5c45bf27
SS
1451 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1452 break;
476d139c
NP
1453 if (tmp->flags & flag)
1454 sd = tmp;
c96d145e 1455 }
476d139c
NP
1456
1457 while (sd) {
1458 cpumask_t span;
1459 struct sched_group *group;
1a848870
SS
1460 int new_cpu, weight;
1461
1462 if (!(sd->flags & flag)) {
1463 sd = sd->child;
1464 continue;
1465 }
476d139c
NP
1466
1467 span = sd->span;
1468 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1469 if (!group) {
1470 sd = sd->child;
1471 continue;
1472 }
476d139c 1473
da5a5522 1474 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1475 if (new_cpu == -1 || new_cpu == cpu) {
1476 /* Now try balancing at a lower domain level of cpu */
1477 sd = sd->child;
1478 continue;
1479 }
476d139c 1480
1a848870 1481 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1482 cpu = new_cpu;
476d139c
NP
1483 sd = NULL;
1484 weight = cpus_weight(span);
1485 for_each_domain(cpu, tmp) {
1486 if (weight <= cpus_weight(tmp->span))
1487 break;
1488 if (tmp->flags & flag)
1489 sd = tmp;
1490 }
1491 /* while loop will break here if sd == NULL */
1492 }
1493
1494 return cpu;
1495}
1496
1497#endif /* CONFIG_SMP */
1da177e4
LT
1498
1499/*
1500 * wake_idle() will wake a task on an idle cpu if task->cpu is
1501 * not idle and an idle cpu is available. The span of cpus to
1502 * search starts with cpus closest then further out as needed,
1503 * so we always favor a closer, idle cpu.
1504 *
1505 * Returns the CPU we should wake onto.
1506 */
1507#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1508static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1509{
1510 cpumask_t tmp;
1511 struct sched_domain *sd;
1512 int i;
1513
4953198b
SS
1514 /*
1515 * If it is idle, then it is the best cpu to run this task.
1516 *
1517 * This cpu is also the best, if it has more than one task already.
1518 * Siblings must be also busy(in most cases) as they didn't already
1519 * pickup the extra load from this cpu and hence we need not check
1520 * sibling runqueue info. This will avoid the checks and cache miss
1521 * penalities associated with that.
1522 */
1523 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1524 return cpu;
1525
1526 for_each_domain(cpu, sd) {
1527 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1528 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1529 for_each_cpu_mask(i, tmp) {
cc367732
IM
1530 if (idle_cpu(i)) {
1531 if (i != task_cpu(p)) {
1532 schedstat_inc(p,
1533 se.nr_wakeups_idle);
1534 }
1da177e4 1535 return i;
cc367732 1536 }
1da177e4 1537 }
9761eea8 1538 } else {
e0f364f4 1539 break;
9761eea8 1540 }
1da177e4
LT
1541 }
1542 return cpu;
1543}
1544#else
36c8b586 1545static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1546{
1547 return cpu;
1548}
1549#endif
1550
1551/***
1552 * try_to_wake_up - wake up a thread
1553 * @p: the to-be-woken-up thread
1554 * @state: the mask of task states that can be woken
1555 * @sync: do a synchronous wakeup?
1556 *
1557 * Put it on the run-queue if it's not already there. The "current"
1558 * thread is always on the run-queue (except when the actual
1559 * re-schedule is in progress), and as such you're allowed to do
1560 * the simpler "current->state = TASK_RUNNING" to mark yourself
1561 * runnable without the overhead of this.
1562 *
1563 * returns failure only if the task is already active.
1564 */
36c8b586 1565static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1566{
cc367732 1567 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1568 unsigned long flags;
1569 long old_state;
70b97a7f 1570 struct rq *rq;
1da177e4 1571#ifdef CONFIG_SMP
7897986b 1572 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1573 unsigned long load, this_load;
1da177e4
LT
1574 int new_cpu;
1575#endif
1576
1577 rq = task_rq_lock(p, &flags);
1578 old_state = p->state;
1579 if (!(old_state & state))
1580 goto out;
1581
dd41f596 1582 if (p->se.on_rq)
1da177e4
LT
1583 goto out_running;
1584
1585 cpu = task_cpu(p);
cc367732 1586 orig_cpu = cpu;
1da177e4
LT
1587 this_cpu = smp_processor_id();
1588
1589#ifdef CONFIG_SMP
1590 if (unlikely(task_running(rq, p)))
1591 goto out_activate;
1592
7897986b
NP
1593 new_cpu = cpu;
1594
2d72376b 1595 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1596 if (cpu == this_cpu) {
1597 schedstat_inc(rq, ttwu_local);
7897986b
NP
1598 goto out_set_cpu;
1599 }
1600
1601 for_each_domain(this_cpu, sd) {
1602 if (cpu_isset(cpu, sd->span)) {
1603 schedstat_inc(sd, ttwu_wake_remote);
1604 this_sd = sd;
1605 break;
1da177e4
LT
1606 }
1607 }
1da177e4 1608
7897986b 1609 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1610 goto out_set_cpu;
1611
1da177e4 1612 /*
7897986b 1613 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1614 */
7897986b
NP
1615 if (this_sd) {
1616 int idx = this_sd->wake_idx;
1617 unsigned int imbalance;
1da177e4 1618
a3f21bce
NP
1619 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1620
7897986b
NP
1621 load = source_load(cpu, idx);
1622 this_load = target_load(this_cpu, idx);
1da177e4 1623
7897986b
NP
1624 new_cpu = this_cpu; /* Wake to this CPU if we can */
1625
a3f21bce
NP
1626 if (this_sd->flags & SD_WAKE_AFFINE) {
1627 unsigned long tl = this_load;
33859f7f
MOS
1628 unsigned long tl_per_task;
1629
71e20f18
IM
1630 /*
1631 * Attract cache-cold tasks on sync wakeups:
1632 */
1633 if (sync && !task_hot(p, rq->clock, this_sd))
1634 goto out_set_cpu;
1635
cc367732 1636 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1637 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1638
1da177e4 1639 /*
a3f21bce
NP
1640 * If sync wakeup then subtract the (maximum possible)
1641 * effect of the currently running task from the load
1642 * of the current CPU:
1da177e4 1643 */
a3f21bce 1644 if (sync)
dd41f596 1645 tl -= current->se.load.weight;
a3f21bce
NP
1646
1647 if ((tl <= load &&
2dd73a4f 1648 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1649 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1650 /*
1651 * This domain has SD_WAKE_AFFINE and
1652 * p is cache cold in this domain, and
1653 * there is no bad imbalance.
1654 */
1655 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1656 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1657 goto out_set_cpu;
1658 }
1659 }
1660
1661 /*
1662 * Start passive balancing when half the imbalance_pct
1663 * limit is reached.
1664 */
1665 if (this_sd->flags & SD_WAKE_BALANCE) {
1666 if (imbalance*this_load <= 100*load) {
1667 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1668 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1669 goto out_set_cpu;
1670 }
1da177e4
LT
1671 }
1672 }
1673
1674 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1675out_set_cpu:
1676 new_cpu = wake_idle(new_cpu, p);
1677 if (new_cpu != cpu) {
1678 set_task_cpu(p, new_cpu);
1679 task_rq_unlock(rq, &flags);
1680 /* might preempt at this point */
1681 rq = task_rq_lock(p, &flags);
1682 old_state = p->state;
1683 if (!(old_state & state))
1684 goto out;
dd41f596 1685 if (p->se.on_rq)
1da177e4
LT
1686 goto out_running;
1687
1688 this_cpu = smp_processor_id();
1689 cpu = task_cpu(p);
1690 }
1691
1692out_activate:
1693#endif /* CONFIG_SMP */
cc367732
IM
1694 schedstat_inc(p, se.nr_wakeups);
1695 if (sync)
1696 schedstat_inc(p, se.nr_wakeups_sync);
1697 if (orig_cpu != cpu)
1698 schedstat_inc(p, se.nr_wakeups_migrate);
1699 if (cpu == this_cpu)
1700 schedstat_inc(p, se.nr_wakeups_local);
1701 else
1702 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1703 update_rq_clock(rq);
dd41f596 1704 activate_task(rq, p, 1);
9c63d9c0 1705 check_preempt_curr(rq, p);
1da177e4
LT
1706 success = 1;
1707
1708out_running:
1709 p->state = TASK_RUNNING;
1710out:
1711 task_rq_unlock(rq, &flags);
1712
1713 return success;
1714}
1715
36c8b586 1716int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1717{
1718 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1719 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1720}
1da177e4
LT
1721EXPORT_SYMBOL(wake_up_process);
1722
36c8b586 1723int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1724{
1725 return try_to_wake_up(p, state, 0);
1726}
1727
1da177e4
LT
1728/*
1729 * Perform scheduler related setup for a newly forked process p.
1730 * p is forked by current.
dd41f596
IM
1731 *
1732 * __sched_fork() is basic setup used by init_idle() too:
1733 */
1734static void __sched_fork(struct task_struct *p)
1735{
dd41f596
IM
1736 p->se.exec_start = 0;
1737 p->se.sum_exec_runtime = 0;
f6cf891c 1738 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1739
1740#ifdef CONFIG_SCHEDSTATS
1741 p->se.wait_start = 0;
dd41f596
IM
1742 p->se.sum_sleep_runtime = 0;
1743 p->se.sleep_start = 0;
dd41f596
IM
1744 p->se.block_start = 0;
1745 p->se.sleep_max = 0;
1746 p->se.block_max = 0;
1747 p->se.exec_max = 0;
eba1ed4b 1748 p->se.slice_max = 0;
dd41f596 1749 p->se.wait_max = 0;
6cfb0d5d 1750#endif
476d139c 1751
dd41f596
IM
1752 INIT_LIST_HEAD(&p->run_list);
1753 p->se.on_rq = 0;
476d139c 1754
e107be36
AK
1755#ifdef CONFIG_PREEMPT_NOTIFIERS
1756 INIT_HLIST_HEAD(&p->preempt_notifiers);
1757#endif
1758
1da177e4
LT
1759 /*
1760 * We mark the process as running here, but have not actually
1761 * inserted it onto the runqueue yet. This guarantees that
1762 * nobody will actually run it, and a signal or other external
1763 * event cannot wake it up and insert it on the runqueue either.
1764 */
1765 p->state = TASK_RUNNING;
dd41f596
IM
1766}
1767
1768/*
1769 * fork()/clone()-time setup:
1770 */
1771void sched_fork(struct task_struct *p, int clone_flags)
1772{
1773 int cpu = get_cpu();
1774
1775 __sched_fork(p);
1776
1777#ifdef CONFIG_SMP
1778 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1779#endif
02e4bac2 1780 set_task_cpu(p, cpu);
b29739f9
IM
1781
1782 /*
1783 * Make sure we do not leak PI boosting priority to the child:
1784 */
1785 p->prio = current->normal_prio;
2ddbf952
HS
1786 if (!rt_prio(p->prio))
1787 p->sched_class = &fair_sched_class;
b29739f9 1788
52f17b6c 1789#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1790 if (likely(sched_info_on()))
52f17b6c 1791 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1792#endif
d6077cb8 1793#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1794 p->oncpu = 0;
1795#endif
1da177e4 1796#ifdef CONFIG_PREEMPT
4866cde0 1797 /* Want to start with kernel preemption disabled. */
a1261f54 1798 task_thread_info(p)->preempt_count = 1;
1da177e4 1799#endif
476d139c 1800 put_cpu();
1da177e4
LT
1801}
1802
1803/*
1804 * wake_up_new_task - wake up a newly created task for the first time.
1805 *
1806 * This function will do some initial scheduler statistics housekeeping
1807 * that must be done for every newly created context, then puts the task
1808 * on the runqueue and wakes it.
1809 */
36c8b586 1810void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1811{
1812 unsigned long flags;
dd41f596 1813 struct rq *rq;
1da177e4
LT
1814
1815 rq = task_rq_lock(p, &flags);
147cbb4b 1816 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1817 update_rq_clock(rq);
1da177e4
LT
1818
1819 p->prio = effective_prio(p);
1820
b9dca1e0 1821 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1822 activate_task(rq, p, 0);
1da177e4 1823 } else {
1da177e4 1824 /*
dd41f596
IM
1825 * Let the scheduling class do new task startup
1826 * management (if any):
1da177e4 1827 */
ee0827d8 1828 p->sched_class->task_new(rq, p);
e5fa2237 1829 inc_nr_running(p, rq);
1da177e4 1830 }
dd41f596
IM
1831 check_preempt_curr(rq, p);
1832 task_rq_unlock(rq, &flags);
1da177e4
LT
1833}
1834
e107be36
AK
1835#ifdef CONFIG_PREEMPT_NOTIFIERS
1836
1837/**
421cee29
RD
1838 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1839 * @notifier: notifier struct to register
e107be36
AK
1840 */
1841void preempt_notifier_register(struct preempt_notifier *notifier)
1842{
1843 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1844}
1845EXPORT_SYMBOL_GPL(preempt_notifier_register);
1846
1847/**
1848 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1849 * @notifier: notifier struct to unregister
e107be36
AK
1850 *
1851 * This is safe to call from within a preemption notifier.
1852 */
1853void preempt_notifier_unregister(struct preempt_notifier *notifier)
1854{
1855 hlist_del(&notifier->link);
1856}
1857EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1858
1859static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1860{
1861 struct preempt_notifier *notifier;
1862 struct hlist_node *node;
1863
1864 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1865 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1866}
1867
1868static void
1869fire_sched_out_preempt_notifiers(struct task_struct *curr,
1870 struct task_struct *next)
1871{
1872 struct preempt_notifier *notifier;
1873 struct hlist_node *node;
1874
1875 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1876 notifier->ops->sched_out(notifier, next);
1877}
1878
1879#else
1880
1881static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1882{
1883}
1884
1885static void
1886fire_sched_out_preempt_notifiers(struct task_struct *curr,
1887 struct task_struct *next)
1888{
1889}
1890
1891#endif
1892
4866cde0
NP
1893/**
1894 * prepare_task_switch - prepare to switch tasks
1895 * @rq: the runqueue preparing to switch
421cee29 1896 * @prev: the current task that is being switched out
4866cde0
NP
1897 * @next: the task we are going to switch to.
1898 *
1899 * This is called with the rq lock held and interrupts off. It must
1900 * be paired with a subsequent finish_task_switch after the context
1901 * switch.
1902 *
1903 * prepare_task_switch sets up locking and calls architecture specific
1904 * hooks.
1905 */
e107be36
AK
1906static inline void
1907prepare_task_switch(struct rq *rq, struct task_struct *prev,
1908 struct task_struct *next)
4866cde0 1909{
e107be36 1910 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1911 prepare_lock_switch(rq, next);
1912 prepare_arch_switch(next);
1913}
1914
1da177e4
LT
1915/**
1916 * finish_task_switch - clean up after a task-switch
344babaa 1917 * @rq: runqueue associated with task-switch
1da177e4
LT
1918 * @prev: the thread we just switched away from.
1919 *
4866cde0
NP
1920 * finish_task_switch must be called after the context switch, paired
1921 * with a prepare_task_switch call before the context switch.
1922 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1923 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1924 *
1925 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1926 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1927 * with the lock held can cause deadlocks; see schedule() for
1928 * details.)
1929 */
a9957449 1930static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1931 __releases(rq->lock)
1932{
1da177e4 1933 struct mm_struct *mm = rq->prev_mm;
55a101f8 1934 long prev_state;
1da177e4
LT
1935
1936 rq->prev_mm = NULL;
1937
1938 /*
1939 * A task struct has one reference for the use as "current".
c394cc9f 1940 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1941 * schedule one last time. The schedule call will never return, and
1942 * the scheduled task must drop that reference.
c394cc9f 1943 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1944 * still held, otherwise prev could be scheduled on another cpu, die
1945 * there before we look at prev->state, and then the reference would
1946 * be dropped twice.
1947 * Manfred Spraul <manfred@colorfullife.com>
1948 */
55a101f8 1949 prev_state = prev->state;
4866cde0
NP
1950 finish_arch_switch(prev);
1951 finish_lock_switch(rq, prev);
e107be36 1952 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1953 if (mm)
1954 mmdrop(mm);
c394cc9f 1955 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1956 /*
1957 * Remove function-return probe instances associated with this
1958 * task and put them back on the free list.
9761eea8 1959 */
c6fd91f0 1960 kprobe_flush_task(prev);
1da177e4 1961 put_task_struct(prev);
c6fd91f0 1962 }
1da177e4
LT
1963}
1964
1965/**
1966 * schedule_tail - first thing a freshly forked thread must call.
1967 * @prev: the thread we just switched away from.
1968 */
36c8b586 1969asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1970 __releases(rq->lock)
1971{
70b97a7f
IM
1972 struct rq *rq = this_rq();
1973
4866cde0
NP
1974 finish_task_switch(rq, prev);
1975#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1976 /* In this case, finish_task_switch does not reenable preemption */
1977 preempt_enable();
1978#endif
1da177e4 1979 if (current->set_child_tid)
b488893a 1980 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1981}
1982
1983/*
1984 * context_switch - switch to the new MM and the new
1985 * thread's register state.
1986 */
dd41f596 1987static inline void
70b97a7f 1988context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1989 struct task_struct *next)
1da177e4 1990{
dd41f596 1991 struct mm_struct *mm, *oldmm;
1da177e4 1992
e107be36 1993 prepare_task_switch(rq, prev, next);
dd41f596
IM
1994 mm = next->mm;
1995 oldmm = prev->active_mm;
9226d125
ZA
1996 /*
1997 * For paravirt, this is coupled with an exit in switch_to to
1998 * combine the page table reload and the switch backend into
1999 * one hypercall.
2000 */
2001 arch_enter_lazy_cpu_mode();
2002
dd41f596 2003 if (unlikely(!mm)) {
1da177e4
LT
2004 next->active_mm = oldmm;
2005 atomic_inc(&oldmm->mm_count);
2006 enter_lazy_tlb(oldmm, next);
2007 } else
2008 switch_mm(oldmm, mm, next);
2009
dd41f596 2010 if (unlikely(!prev->mm)) {
1da177e4 2011 prev->active_mm = NULL;
1da177e4
LT
2012 rq->prev_mm = oldmm;
2013 }
3a5f5e48
IM
2014 /*
2015 * Since the runqueue lock will be released by the next
2016 * task (which is an invalid locking op but in the case
2017 * of the scheduler it's an obvious special-case), so we
2018 * do an early lockdep release here:
2019 */
2020#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2021 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2022#endif
1da177e4
LT
2023
2024 /* Here we just switch the register state and the stack. */
2025 switch_to(prev, next, prev);
2026
dd41f596
IM
2027 barrier();
2028 /*
2029 * this_rq must be evaluated again because prev may have moved
2030 * CPUs since it called schedule(), thus the 'rq' on its stack
2031 * frame will be invalid.
2032 */
2033 finish_task_switch(this_rq(), prev);
1da177e4
LT
2034}
2035
2036/*
2037 * nr_running, nr_uninterruptible and nr_context_switches:
2038 *
2039 * externally visible scheduler statistics: current number of runnable
2040 * threads, current number of uninterruptible-sleeping threads, total
2041 * number of context switches performed since bootup.
2042 */
2043unsigned long nr_running(void)
2044{
2045 unsigned long i, sum = 0;
2046
2047 for_each_online_cpu(i)
2048 sum += cpu_rq(i)->nr_running;
2049
2050 return sum;
2051}
2052
2053unsigned long nr_uninterruptible(void)
2054{
2055 unsigned long i, sum = 0;
2056
0a945022 2057 for_each_possible_cpu(i)
1da177e4
LT
2058 sum += cpu_rq(i)->nr_uninterruptible;
2059
2060 /*
2061 * Since we read the counters lockless, it might be slightly
2062 * inaccurate. Do not allow it to go below zero though:
2063 */
2064 if (unlikely((long)sum < 0))
2065 sum = 0;
2066
2067 return sum;
2068}
2069
2070unsigned long long nr_context_switches(void)
2071{
cc94abfc
SR
2072 int i;
2073 unsigned long long sum = 0;
1da177e4 2074
0a945022 2075 for_each_possible_cpu(i)
1da177e4
LT
2076 sum += cpu_rq(i)->nr_switches;
2077
2078 return sum;
2079}
2080
2081unsigned long nr_iowait(void)
2082{
2083 unsigned long i, sum = 0;
2084
0a945022 2085 for_each_possible_cpu(i)
1da177e4
LT
2086 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2087
2088 return sum;
2089}
2090
db1b1fef
JS
2091unsigned long nr_active(void)
2092{
2093 unsigned long i, running = 0, uninterruptible = 0;
2094
2095 for_each_online_cpu(i) {
2096 running += cpu_rq(i)->nr_running;
2097 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2098 }
2099
2100 if (unlikely((long)uninterruptible < 0))
2101 uninterruptible = 0;
2102
2103 return running + uninterruptible;
2104}
2105
48f24c4d 2106/*
dd41f596
IM
2107 * Update rq->cpu_load[] statistics. This function is usually called every
2108 * scheduler tick (TICK_NSEC).
48f24c4d 2109 */
dd41f596 2110static void update_cpu_load(struct rq *this_rq)
48f24c4d 2111{
495eca49 2112 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2113 int i, scale;
2114
2115 this_rq->nr_load_updates++;
dd41f596
IM
2116
2117 /* Update our load: */
2118 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2119 unsigned long old_load, new_load;
2120
2121 /* scale is effectively 1 << i now, and >> i divides by scale */
2122
2123 old_load = this_rq->cpu_load[i];
2124 new_load = this_load;
a25707f3
IM
2125 /*
2126 * Round up the averaging division if load is increasing. This
2127 * prevents us from getting stuck on 9 if the load is 10, for
2128 * example.
2129 */
2130 if (new_load > old_load)
2131 new_load += scale-1;
dd41f596
IM
2132 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2133 }
48f24c4d
IM
2134}
2135
dd41f596
IM
2136#ifdef CONFIG_SMP
2137
1da177e4
LT
2138/*
2139 * double_rq_lock - safely lock two runqueues
2140 *
2141 * Note this does not disable interrupts like task_rq_lock,
2142 * you need to do so manually before calling.
2143 */
70b97a7f 2144static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2145 __acquires(rq1->lock)
2146 __acquires(rq2->lock)
2147{
054b9108 2148 BUG_ON(!irqs_disabled());
1da177e4
LT
2149 if (rq1 == rq2) {
2150 spin_lock(&rq1->lock);
2151 __acquire(rq2->lock); /* Fake it out ;) */
2152 } else {
c96d145e 2153 if (rq1 < rq2) {
1da177e4
LT
2154 spin_lock(&rq1->lock);
2155 spin_lock(&rq2->lock);
2156 } else {
2157 spin_lock(&rq2->lock);
2158 spin_lock(&rq1->lock);
2159 }
2160 }
6e82a3be
IM
2161 update_rq_clock(rq1);
2162 update_rq_clock(rq2);
1da177e4
LT
2163}
2164
2165/*
2166 * double_rq_unlock - safely unlock two runqueues
2167 *
2168 * Note this does not restore interrupts like task_rq_unlock,
2169 * you need to do so manually after calling.
2170 */
70b97a7f 2171static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2172 __releases(rq1->lock)
2173 __releases(rq2->lock)
2174{
2175 spin_unlock(&rq1->lock);
2176 if (rq1 != rq2)
2177 spin_unlock(&rq2->lock);
2178 else
2179 __release(rq2->lock);
2180}
2181
2182/*
2183 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2184 */
70b97a7f 2185static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2186 __releases(this_rq->lock)
2187 __acquires(busiest->lock)
2188 __acquires(this_rq->lock)
2189{
054b9108
KK
2190 if (unlikely(!irqs_disabled())) {
2191 /* printk() doesn't work good under rq->lock */
2192 spin_unlock(&this_rq->lock);
2193 BUG_ON(1);
2194 }
1da177e4 2195 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2196 if (busiest < this_rq) {
1da177e4
LT
2197 spin_unlock(&this_rq->lock);
2198 spin_lock(&busiest->lock);
2199 spin_lock(&this_rq->lock);
2200 } else
2201 spin_lock(&busiest->lock);
2202 }
2203}
2204
1da177e4
LT
2205/*
2206 * If dest_cpu is allowed for this process, migrate the task to it.
2207 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2208 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2209 * the cpu_allowed mask is restored.
2210 */
36c8b586 2211static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2212{
70b97a7f 2213 struct migration_req req;
1da177e4 2214 unsigned long flags;
70b97a7f 2215 struct rq *rq;
1da177e4
LT
2216
2217 rq = task_rq_lock(p, &flags);
2218 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2219 || unlikely(cpu_is_offline(dest_cpu)))
2220 goto out;
2221
2222 /* force the process onto the specified CPU */
2223 if (migrate_task(p, dest_cpu, &req)) {
2224 /* Need to wait for migration thread (might exit: take ref). */
2225 struct task_struct *mt = rq->migration_thread;
36c8b586 2226
1da177e4
LT
2227 get_task_struct(mt);
2228 task_rq_unlock(rq, &flags);
2229 wake_up_process(mt);
2230 put_task_struct(mt);
2231 wait_for_completion(&req.done);
36c8b586 2232
1da177e4
LT
2233 return;
2234 }
2235out:
2236 task_rq_unlock(rq, &flags);
2237}
2238
2239/*
476d139c
NP
2240 * sched_exec - execve() is a valuable balancing opportunity, because at
2241 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2242 */
2243void sched_exec(void)
2244{
1da177e4 2245 int new_cpu, this_cpu = get_cpu();
476d139c 2246 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2247 put_cpu();
476d139c
NP
2248 if (new_cpu != this_cpu)
2249 sched_migrate_task(current, new_cpu);
1da177e4
LT
2250}
2251
2252/*
2253 * pull_task - move a task from a remote runqueue to the local runqueue.
2254 * Both runqueues must be locked.
2255 */
dd41f596
IM
2256static void pull_task(struct rq *src_rq, struct task_struct *p,
2257 struct rq *this_rq, int this_cpu)
1da177e4 2258{
2e1cb74a 2259 deactivate_task(src_rq, p, 0);
1da177e4 2260 set_task_cpu(p, this_cpu);
dd41f596 2261 activate_task(this_rq, p, 0);
1da177e4
LT
2262 /*
2263 * Note that idle threads have a prio of MAX_PRIO, for this test
2264 * to be always true for them.
2265 */
dd41f596 2266 check_preempt_curr(this_rq, p);
1da177e4
LT
2267}
2268
2269/*
2270 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2271 */
858119e1 2272static
70b97a7f 2273int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2274 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2275 int *all_pinned)
1da177e4
LT
2276{
2277 /*
2278 * We do not migrate tasks that are:
2279 * 1) running (obviously), or
2280 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2281 * 3) are cache-hot on their current CPU.
2282 */
cc367732
IM
2283 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2284 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2285 return 0;
cc367732 2286 }
81026794
NP
2287 *all_pinned = 0;
2288
cc367732
IM
2289 if (task_running(rq, p)) {
2290 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2291 return 0;
cc367732 2292 }
1da177e4 2293
da84d961
IM
2294 /*
2295 * Aggressive migration if:
2296 * 1) task is cache cold, or
2297 * 2) too many balance attempts have failed.
2298 */
2299
6bc1665b
IM
2300 if (!task_hot(p, rq->clock, sd) ||
2301 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2302#ifdef CONFIG_SCHEDSTATS
cc367732 2303 if (task_hot(p, rq->clock, sd)) {
da84d961 2304 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2305 schedstat_inc(p, se.nr_forced_migrations);
2306 }
da84d961
IM
2307#endif
2308 return 1;
2309 }
2310
cc367732
IM
2311 if (task_hot(p, rq->clock, sd)) {
2312 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2313 return 0;
cc367732 2314 }
1da177e4
LT
2315 return 1;
2316}
2317
e1d1484f
PW
2318static unsigned long
2319balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2320 unsigned long max_load_move, struct sched_domain *sd,
2321 enum cpu_idle_type idle, int *all_pinned,
2322 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2323{
b82d9fdd 2324 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2325 struct task_struct *p;
2326 long rem_load_move = max_load_move;
1da177e4 2327
e1d1484f 2328 if (max_load_move == 0)
1da177e4
LT
2329 goto out;
2330
81026794
NP
2331 pinned = 1;
2332
1da177e4 2333 /*
dd41f596 2334 * Start the load-balancing iterator:
1da177e4 2335 */
dd41f596
IM
2336 p = iterator->start(iterator->arg);
2337next:
b82d9fdd 2338 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2339 goto out;
50ddd969 2340 /*
b82d9fdd 2341 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2342 * skip a task if it will be the highest priority task (i.e. smallest
2343 * prio value) on its new queue regardless of its load weight
2344 */
dd41f596
IM
2345 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2346 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2347 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2348 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2349 p = iterator->next(iterator->arg);
2350 goto next;
1da177e4
LT
2351 }
2352
dd41f596 2353 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2354 pulled++;
dd41f596 2355 rem_load_move -= p->se.load.weight;
1da177e4 2356
2dd73a4f 2357 /*
b82d9fdd 2358 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2359 */
e1d1484f 2360 if (rem_load_move > 0) {
a4ac01c3
PW
2361 if (p->prio < *this_best_prio)
2362 *this_best_prio = p->prio;
dd41f596
IM
2363 p = iterator->next(iterator->arg);
2364 goto next;
1da177e4
LT
2365 }
2366out:
2367 /*
e1d1484f 2368 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2369 * so we can safely collect pull_task() stats here rather than
2370 * inside pull_task().
2371 */
2372 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2373
2374 if (all_pinned)
2375 *all_pinned = pinned;
e1d1484f
PW
2376
2377 return max_load_move - rem_load_move;
1da177e4
LT
2378}
2379
dd41f596 2380/*
43010659
PW
2381 * move_tasks tries to move up to max_load_move weighted load from busiest to
2382 * this_rq, as part of a balancing operation within domain "sd".
2383 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2384 *
2385 * Called with both runqueues locked.
2386 */
2387static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2388 unsigned long max_load_move,
dd41f596
IM
2389 struct sched_domain *sd, enum cpu_idle_type idle,
2390 int *all_pinned)
2391{
5522d5d5 2392 const struct sched_class *class = sched_class_highest;
43010659 2393 unsigned long total_load_moved = 0;
a4ac01c3 2394 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2395
2396 do {
43010659
PW
2397 total_load_moved +=
2398 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2399 max_load_move - total_load_moved,
a4ac01c3 2400 sd, idle, all_pinned, &this_best_prio);
dd41f596 2401 class = class->next;
43010659 2402 } while (class && max_load_move > total_load_moved);
dd41f596 2403
43010659
PW
2404 return total_load_moved > 0;
2405}
2406
e1d1484f
PW
2407static int
2408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2409 struct sched_domain *sd, enum cpu_idle_type idle,
2410 struct rq_iterator *iterator)
2411{
2412 struct task_struct *p = iterator->start(iterator->arg);
2413 int pinned = 0;
2414
2415 while (p) {
2416 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2417 pull_task(busiest, p, this_rq, this_cpu);
2418 /*
2419 * Right now, this is only the second place pull_task()
2420 * is called, so we can safely collect pull_task()
2421 * stats here rather than inside pull_task().
2422 */
2423 schedstat_inc(sd, lb_gained[idle]);
2424
2425 return 1;
2426 }
2427 p = iterator->next(iterator->arg);
2428 }
2429
2430 return 0;
2431}
2432
43010659
PW
2433/*
2434 * move_one_task tries to move exactly one task from busiest to this_rq, as
2435 * part of active balancing operations within "domain".
2436 * Returns 1 if successful and 0 otherwise.
2437 *
2438 * Called with both runqueues locked.
2439 */
2440static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2441 struct sched_domain *sd, enum cpu_idle_type idle)
2442{
5522d5d5 2443 const struct sched_class *class;
43010659
PW
2444
2445 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2446 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2447 return 1;
2448
2449 return 0;
dd41f596
IM
2450}
2451
1da177e4
LT
2452/*
2453 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2454 * domain. It calculates and returns the amount of weighted load which
2455 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2456 */
2457static struct sched_group *
2458find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2459 unsigned long *imbalance, enum cpu_idle_type idle,
2460 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2461{
2462 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2463 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2464 unsigned long max_pull;
2dd73a4f
PW
2465 unsigned long busiest_load_per_task, busiest_nr_running;
2466 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2467 int load_idx, group_imb = 0;
5c45bf27
SS
2468#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2469 int power_savings_balance = 1;
2470 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2471 unsigned long min_nr_running = ULONG_MAX;
2472 struct sched_group *group_min = NULL, *group_leader = NULL;
2473#endif
1da177e4
LT
2474
2475 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2476 busiest_load_per_task = busiest_nr_running = 0;
2477 this_load_per_task = this_nr_running = 0;
d15bcfdb 2478 if (idle == CPU_NOT_IDLE)
7897986b 2479 load_idx = sd->busy_idx;
d15bcfdb 2480 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2481 load_idx = sd->newidle_idx;
2482 else
2483 load_idx = sd->idle_idx;
1da177e4
LT
2484
2485 do {
908a7c1b 2486 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2487 int local_group;
2488 int i;
908a7c1b 2489 int __group_imb = 0;
783609c6 2490 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2491 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2492
2493 local_group = cpu_isset(this_cpu, group->cpumask);
2494
783609c6
SS
2495 if (local_group)
2496 balance_cpu = first_cpu(group->cpumask);
2497
1da177e4 2498 /* Tally up the load of all CPUs in the group */
2dd73a4f 2499 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2500 max_cpu_load = 0;
2501 min_cpu_load = ~0UL;
1da177e4
LT
2502
2503 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2504 struct rq *rq;
2505
2506 if (!cpu_isset(i, *cpus))
2507 continue;
2508
2509 rq = cpu_rq(i);
2dd73a4f 2510
9439aab8 2511 if (*sd_idle && rq->nr_running)
5969fe06
NP
2512 *sd_idle = 0;
2513
1da177e4 2514 /* Bias balancing toward cpus of our domain */
783609c6
SS
2515 if (local_group) {
2516 if (idle_cpu(i) && !first_idle_cpu) {
2517 first_idle_cpu = 1;
2518 balance_cpu = i;
2519 }
2520
a2000572 2521 load = target_load(i, load_idx);
908a7c1b 2522 } else {
a2000572 2523 load = source_load(i, load_idx);
908a7c1b
KC
2524 if (load > max_cpu_load)
2525 max_cpu_load = load;
2526 if (min_cpu_load > load)
2527 min_cpu_load = load;
2528 }
1da177e4
LT
2529
2530 avg_load += load;
2dd73a4f 2531 sum_nr_running += rq->nr_running;
dd41f596 2532 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2533 }
2534
783609c6
SS
2535 /*
2536 * First idle cpu or the first cpu(busiest) in this sched group
2537 * is eligible for doing load balancing at this and above
9439aab8
SS
2538 * domains. In the newly idle case, we will allow all the cpu's
2539 * to do the newly idle load balance.
783609c6 2540 */
9439aab8
SS
2541 if (idle != CPU_NEWLY_IDLE && local_group &&
2542 balance_cpu != this_cpu && balance) {
783609c6
SS
2543 *balance = 0;
2544 goto ret;
2545 }
2546
1da177e4 2547 total_load += avg_load;
5517d86b 2548 total_pwr += group->__cpu_power;
1da177e4
LT
2549
2550 /* Adjust by relative CPU power of the group */
5517d86b
ED
2551 avg_load = sg_div_cpu_power(group,
2552 avg_load * SCHED_LOAD_SCALE);
1da177e4 2553
908a7c1b
KC
2554 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2555 __group_imb = 1;
2556
5517d86b 2557 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2558
1da177e4
LT
2559 if (local_group) {
2560 this_load = avg_load;
2561 this = group;
2dd73a4f
PW
2562 this_nr_running = sum_nr_running;
2563 this_load_per_task = sum_weighted_load;
2564 } else if (avg_load > max_load &&
908a7c1b 2565 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2566 max_load = avg_load;
2567 busiest = group;
2dd73a4f
PW
2568 busiest_nr_running = sum_nr_running;
2569 busiest_load_per_task = sum_weighted_load;
908a7c1b 2570 group_imb = __group_imb;
1da177e4 2571 }
5c45bf27
SS
2572
2573#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2574 /*
2575 * Busy processors will not participate in power savings
2576 * balance.
2577 */
dd41f596
IM
2578 if (idle == CPU_NOT_IDLE ||
2579 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2580 goto group_next;
5c45bf27
SS
2581
2582 /*
2583 * If the local group is idle or completely loaded
2584 * no need to do power savings balance at this domain
2585 */
2586 if (local_group && (this_nr_running >= group_capacity ||
2587 !this_nr_running))
2588 power_savings_balance = 0;
2589
dd41f596 2590 /*
5c45bf27
SS
2591 * If a group is already running at full capacity or idle,
2592 * don't include that group in power savings calculations
dd41f596
IM
2593 */
2594 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2595 || !sum_nr_running)
dd41f596 2596 goto group_next;
5c45bf27 2597
dd41f596 2598 /*
5c45bf27 2599 * Calculate the group which has the least non-idle load.
dd41f596
IM
2600 * This is the group from where we need to pick up the load
2601 * for saving power
2602 */
2603 if ((sum_nr_running < min_nr_running) ||
2604 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2605 first_cpu(group->cpumask) <
2606 first_cpu(group_min->cpumask))) {
dd41f596
IM
2607 group_min = group;
2608 min_nr_running = sum_nr_running;
5c45bf27
SS
2609 min_load_per_task = sum_weighted_load /
2610 sum_nr_running;
dd41f596 2611 }
5c45bf27 2612
dd41f596 2613 /*
5c45bf27 2614 * Calculate the group which is almost near its
dd41f596
IM
2615 * capacity but still has some space to pick up some load
2616 * from other group and save more power
2617 */
2618 if (sum_nr_running <= group_capacity - 1) {
2619 if (sum_nr_running > leader_nr_running ||
2620 (sum_nr_running == leader_nr_running &&
2621 first_cpu(group->cpumask) >
2622 first_cpu(group_leader->cpumask))) {
2623 group_leader = group;
2624 leader_nr_running = sum_nr_running;
2625 }
48f24c4d 2626 }
5c45bf27
SS
2627group_next:
2628#endif
1da177e4
LT
2629 group = group->next;
2630 } while (group != sd->groups);
2631
2dd73a4f 2632 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2633 goto out_balanced;
2634
2635 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2636
2637 if (this_load >= avg_load ||
2638 100*max_load <= sd->imbalance_pct*this_load)
2639 goto out_balanced;
2640
2dd73a4f 2641 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2642 if (group_imb)
2643 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2644
1da177e4
LT
2645 /*
2646 * We're trying to get all the cpus to the average_load, so we don't
2647 * want to push ourselves above the average load, nor do we wish to
2648 * reduce the max loaded cpu below the average load, as either of these
2649 * actions would just result in more rebalancing later, and ping-pong
2650 * tasks around. Thus we look for the minimum possible imbalance.
2651 * Negative imbalances (*we* are more loaded than anyone else) will
2652 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2653 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2654 * appear as very large values with unsigned longs.
2655 */
2dd73a4f
PW
2656 if (max_load <= busiest_load_per_task)
2657 goto out_balanced;
2658
2659 /*
2660 * In the presence of smp nice balancing, certain scenarios can have
2661 * max load less than avg load(as we skip the groups at or below
2662 * its cpu_power, while calculating max_load..)
2663 */
2664 if (max_load < avg_load) {
2665 *imbalance = 0;
2666 goto small_imbalance;
2667 }
0c117f1b
SS
2668
2669 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2670 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2671
1da177e4 2672 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2673 *imbalance = min(max_pull * busiest->__cpu_power,
2674 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2675 / SCHED_LOAD_SCALE;
2676
2dd73a4f
PW
2677 /*
2678 * if *imbalance is less than the average load per runnable task
2679 * there is no gaurantee that any tasks will be moved so we'll have
2680 * a think about bumping its value to force at least one task to be
2681 * moved
2682 */
7fd0d2dd 2683 if (*imbalance < busiest_load_per_task) {
48f24c4d 2684 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2685 unsigned int imbn;
2686
2687small_imbalance:
2688 pwr_move = pwr_now = 0;
2689 imbn = 2;
2690 if (this_nr_running) {
2691 this_load_per_task /= this_nr_running;
2692 if (busiest_load_per_task > this_load_per_task)
2693 imbn = 1;
2694 } else
2695 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2696
dd41f596
IM
2697 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2698 busiest_load_per_task * imbn) {
2dd73a4f 2699 *imbalance = busiest_load_per_task;
1da177e4
LT
2700 return busiest;
2701 }
2702
2703 /*
2704 * OK, we don't have enough imbalance to justify moving tasks,
2705 * however we may be able to increase total CPU power used by
2706 * moving them.
2707 */
2708
5517d86b
ED
2709 pwr_now += busiest->__cpu_power *
2710 min(busiest_load_per_task, max_load);
2711 pwr_now += this->__cpu_power *
2712 min(this_load_per_task, this_load);
1da177e4
LT
2713 pwr_now /= SCHED_LOAD_SCALE;
2714
2715 /* Amount of load we'd subtract */
5517d86b
ED
2716 tmp = sg_div_cpu_power(busiest,
2717 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2718 if (max_load > tmp)
5517d86b 2719 pwr_move += busiest->__cpu_power *
2dd73a4f 2720 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2721
2722 /* Amount of load we'd add */
5517d86b 2723 if (max_load * busiest->__cpu_power <
33859f7f 2724 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2725 tmp = sg_div_cpu_power(this,
2726 max_load * busiest->__cpu_power);
1da177e4 2727 else
5517d86b
ED
2728 tmp = sg_div_cpu_power(this,
2729 busiest_load_per_task * SCHED_LOAD_SCALE);
2730 pwr_move += this->__cpu_power *
2731 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2732 pwr_move /= SCHED_LOAD_SCALE;
2733
2734 /* Move if we gain throughput */
7fd0d2dd
SS
2735 if (pwr_move > pwr_now)
2736 *imbalance = busiest_load_per_task;
1da177e4
LT
2737 }
2738
1da177e4
LT
2739 return busiest;
2740
2741out_balanced:
5c45bf27 2742#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2743 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2744 goto ret;
1da177e4 2745
5c45bf27
SS
2746 if (this == group_leader && group_leader != group_min) {
2747 *imbalance = min_load_per_task;
2748 return group_min;
2749 }
5c45bf27 2750#endif
783609c6 2751ret:
1da177e4
LT
2752 *imbalance = 0;
2753 return NULL;
2754}
2755
2756/*
2757 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2758 */
70b97a7f 2759static struct rq *
d15bcfdb 2760find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2761 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2762{
70b97a7f 2763 struct rq *busiest = NULL, *rq;
2dd73a4f 2764 unsigned long max_load = 0;
1da177e4
LT
2765 int i;
2766
2767 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2768 unsigned long wl;
0a2966b4
CL
2769
2770 if (!cpu_isset(i, *cpus))
2771 continue;
2772
48f24c4d 2773 rq = cpu_rq(i);
dd41f596 2774 wl = weighted_cpuload(i);
2dd73a4f 2775
dd41f596 2776 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2777 continue;
1da177e4 2778
dd41f596
IM
2779 if (wl > max_load) {
2780 max_load = wl;
48f24c4d 2781 busiest = rq;
1da177e4
LT
2782 }
2783 }
2784
2785 return busiest;
2786}
2787
77391d71
NP
2788/*
2789 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2790 * so long as it is large enough.
2791 */
2792#define MAX_PINNED_INTERVAL 512
2793
1da177e4
LT
2794/*
2795 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2796 * tasks if there is an imbalance.
1da177e4 2797 */
70b97a7f 2798static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2799 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2800 int *balance)
1da177e4 2801{
43010659 2802 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2803 struct sched_group *group;
1da177e4 2804 unsigned long imbalance;
70b97a7f 2805 struct rq *busiest;
0a2966b4 2806 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2807 unsigned long flags;
5969fe06 2808
89c4710e
SS
2809 /*
2810 * When power savings policy is enabled for the parent domain, idle
2811 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2812 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2813 * portraying it as CPU_NOT_IDLE.
89c4710e 2814 */
d15bcfdb 2815 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2816 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2817 sd_idle = 1;
1da177e4 2818
2d72376b 2819 schedstat_inc(sd, lb_count[idle]);
1da177e4 2820
0a2966b4
CL
2821redo:
2822 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2823 &cpus, balance);
2824
06066714 2825 if (*balance == 0)
783609c6 2826 goto out_balanced;
783609c6 2827
1da177e4
LT
2828 if (!group) {
2829 schedstat_inc(sd, lb_nobusyg[idle]);
2830 goto out_balanced;
2831 }
2832
0a2966b4 2833 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2834 if (!busiest) {
2835 schedstat_inc(sd, lb_nobusyq[idle]);
2836 goto out_balanced;
2837 }
2838
db935dbd 2839 BUG_ON(busiest == this_rq);
1da177e4
LT
2840
2841 schedstat_add(sd, lb_imbalance[idle], imbalance);
2842
43010659 2843 ld_moved = 0;
1da177e4
LT
2844 if (busiest->nr_running > 1) {
2845 /*
2846 * Attempt to move tasks. If find_busiest_group has found
2847 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2848 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2849 * correctly treated as an imbalance.
2850 */
fe2eea3f 2851 local_irq_save(flags);
e17224bf 2852 double_rq_lock(this_rq, busiest);
43010659 2853 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2854 imbalance, sd, idle, &all_pinned);
e17224bf 2855 double_rq_unlock(this_rq, busiest);
fe2eea3f 2856 local_irq_restore(flags);
81026794 2857
46cb4b7c
SS
2858 /*
2859 * some other cpu did the load balance for us.
2860 */
43010659 2861 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2862 resched_cpu(this_cpu);
2863
81026794 2864 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2865 if (unlikely(all_pinned)) {
2866 cpu_clear(cpu_of(busiest), cpus);
2867 if (!cpus_empty(cpus))
2868 goto redo;
81026794 2869 goto out_balanced;
0a2966b4 2870 }
1da177e4 2871 }
81026794 2872
43010659 2873 if (!ld_moved) {
1da177e4
LT
2874 schedstat_inc(sd, lb_failed[idle]);
2875 sd->nr_balance_failed++;
2876
2877 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2878
fe2eea3f 2879 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2880
2881 /* don't kick the migration_thread, if the curr
2882 * task on busiest cpu can't be moved to this_cpu
2883 */
2884 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2885 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2886 all_pinned = 1;
2887 goto out_one_pinned;
2888 }
2889
1da177e4
LT
2890 if (!busiest->active_balance) {
2891 busiest->active_balance = 1;
2892 busiest->push_cpu = this_cpu;
81026794 2893 active_balance = 1;
1da177e4 2894 }
fe2eea3f 2895 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2896 if (active_balance)
1da177e4
LT
2897 wake_up_process(busiest->migration_thread);
2898
2899 /*
2900 * We've kicked active balancing, reset the failure
2901 * counter.
2902 */
39507451 2903 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2904 }
81026794 2905 } else
1da177e4
LT
2906 sd->nr_balance_failed = 0;
2907
81026794 2908 if (likely(!active_balance)) {
1da177e4
LT
2909 /* We were unbalanced, so reset the balancing interval */
2910 sd->balance_interval = sd->min_interval;
81026794
NP
2911 } else {
2912 /*
2913 * If we've begun active balancing, start to back off. This
2914 * case may not be covered by the all_pinned logic if there
2915 * is only 1 task on the busy runqueue (because we don't call
2916 * move_tasks).
2917 */
2918 if (sd->balance_interval < sd->max_interval)
2919 sd->balance_interval *= 2;
1da177e4
LT
2920 }
2921
43010659 2922 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2923 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2924 return -1;
43010659 2925 return ld_moved;
1da177e4
LT
2926
2927out_balanced:
1da177e4
LT
2928 schedstat_inc(sd, lb_balanced[idle]);
2929
16cfb1c0 2930 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2931
2932out_one_pinned:
1da177e4 2933 /* tune up the balancing interval */
77391d71
NP
2934 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2935 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2936 sd->balance_interval *= 2;
2937
48f24c4d 2938 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2939 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2940 return -1;
1da177e4
LT
2941 return 0;
2942}
2943
2944/*
2945 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2946 * tasks if there is an imbalance.
2947 *
d15bcfdb 2948 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2949 * this_rq is locked.
2950 */
48f24c4d 2951static int
70b97a7f 2952load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2953{
2954 struct sched_group *group;
70b97a7f 2955 struct rq *busiest = NULL;
1da177e4 2956 unsigned long imbalance;
43010659 2957 int ld_moved = 0;
5969fe06 2958 int sd_idle = 0;
969bb4e4 2959 int all_pinned = 0;
0a2966b4 2960 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2961
89c4710e
SS
2962 /*
2963 * When power savings policy is enabled for the parent domain, idle
2964 * sibling can pick up load irrespective of busy siblings. In this case,
2965 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2966 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2967 */
2968 if (sd->flags & SD_SHARE_CPUPOWER &&
2969 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2970 sd_idle = 1;
1da177e4 2971
2d72376b 2972 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2973redo:
d15bcfdb 2974 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2975 &sd_idle, &cpus, NULL);
1da177e4 2976 if (!group) {
d15bcfdb 2977 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2978 goto out_balanced;
1da177e4
LT
2979 }
2980
d15bcfdb 2981 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2982 &cpus);
db935dbd 2983 if (!busiest) {
d15bcfdb 2984 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2985 goto out_balanced;
1da177e4
LT
2986 }
2987
db935dbd
NP
2988 BUG_ON(busiest == this_rq);
2989
d15bcfdb 2990 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2991
43010659 2992 ld_moved = 0;
d6d5cfaf
NP
2993 if (busiest->nr_running > 1) {
2994 /* Attempt to move tasks */
2995 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2996 /* this_rq->clock is already updated */
2997 update_rq_clock(busiest);
43010659 2998 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2999 imbalance, sd, CPU_NEWLY_IDLE,
3000 &all_pinned);
d6d5cfaf 3001 spin_unlock(&busiest->lock);
0a2966b4 3002
969bb4e4 3003 if (unlikely(all_pinned)) {
0a2966b4
CL
3004 cpu_clear(cpu_of(busiest), cpus);
3005 if (!cpus_empty(cpus))
3006 goto redo;
3007 }
d6d5cfaf
NP
3008 }
3009
43010659 3010 if (!ld_moved) {
d15bcfdb 3011 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3012 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3013 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3014 return -1;
3015 } else
16cfb1c0 3016 sd->nr_balance_failed = 0;
1da177e4 3017
43010659 3018 return ld_moved;
16cfb1c0
NP
3019
3020out_balanced:
d15bcfdb 3021 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3024 return -1;
16cfb1c0 3025 sd->nr_balance_failed = 0;
48f24c4d 3026
16cfb1c0 3027 return 0;
1da177e4
LT
3028}
3029
3030/*
3031 * idle_balance is called by schedule() if this_cpu is about to become
3032 * idle. Attempts to pull tasks from other CPUs.
3033 */
70b97a7f 3034static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3035{
3036 struct sched_domain *sd;
dd41f596
IM
3037 int pulled_task = -1;
3038 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3039
3040 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3041 unsigned long interval;
3042
3043 if (!(sd->flags & SD_LOAD_BALANCE))
3044 continue;
3045
3046 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3047 /* If we've pulled tasks over stop searching: */
1bd77f2d 3048 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3049 this_rq, sd);
3050
3051 interval = msecs_to_jiffies(sd->balance_interval);
3052 if (time_after(next_balance, sd->last_balance + interval))
3053 next_balance = sd->last_balance + interval;
3054 if (pulled_task)
3055 break;
1da177e4 3056 }
dd41f596 3057 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3058 /*
3059 * We are going idle. next_balance may be set based on
3060 * a busy processor. So reset next_balance.
3061 */
3062 this_rq->next_balance = next_balance;
dd41f596 3063 }
1da177e4
LT
3064}
3065
3066/*
3067 * active_load_balance is run by migration threads. It pushes running tasks
3068 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3069 * running on each physical CPU where possible, and avoids physical /
3070 * logical imbalances.
3071 *
3072 * Called with busiest_rq locked.
3073 */
70b97a7f 3074static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3075{
39507451 3076 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3077 struct sched_domain *sd;
3078 struct rq *target_rq;
39507451 3079
48f24c4d 3080 /* Is there any task to move? */
39507451 3081 if (busiest_rq->nr_running <= 1)
39507451
NP
3082 return;
3083
3084 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3085
3086 /*
39507451 3087 * This condition is "impossible", if it occurs
41a2d6cf 3088 * we need to fix it. Originally reported by
39507451 3089 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3090 */
39507451 3091 BUG_ON(busiest_rq == target_rq);
1da177e4 3092
39507451
NP
3093 /* move a task from busiest_rq to target_rq */
3094 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3095 update_rq_clock(busiest_rq);
3096 update_rq_clock(target_rq);
39507451
NP
3097
3098 /* Search for an sd spanning us and the target CPU. */
c96d145e 3099 for_each_domain(target_cpu, sd) {
39507451 3100 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3101 cpu_isset(busiest_cpu, sd->span))
39507451 3102 break;
c96d145e 3103 }
39507451 3104
48f24c4d 3105 if (likely(sd)) {
2d72376b 3106 schedstat_inc(sd, alb_count);
39507451 3107
43010659
PW
3108 if (move_one_task(target_rq, target_cpu, busiest_rq,
3109 sd, CPU_IDLE))
48f24c4d
IM
3110 schedstat_inc(sd, alb_pushed);
3111 else
3112 schedstat_inc(sd, alb_failed);
3113 }
39507451 3114 spin_unlock(&target_rq->lock);
1da177e4
LT
3115}
3116
46cb4b7c
SS
3117#ifdef CONFIG_NO_HZ
3118static struct {
3119 atomic_t load_balancer;
41a2d6cf 3120 cpumask_t cpu_mask;
46cb4b7c
SS
3121} nohz ____cacheline_aligned = {
3122 .load_balancer = ATOMIC_INIT(-1),
3123 .cpu_mask = CPU_MASK_NONE,
3124};
3125
7835b98b 3126/*
46cb4b7c
SS
3127 * This routine will try to nominate the ilb (idle load balancing)
3128 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3129 * load balancing on behalf of all those cpus. If all the cpus in the system
3130 * go into this tickless mode, then there will be no ilb owner (as there is
3131 * no need for one) and all the cpus will sleep till the next wakeup event
3132 * arrives...
3133 *
3134 * For the ilb owner, tick is not stopped. And this tick will be used
3135 * for idle load balancing. ilb owner will still be part of
3136 * nohz.cpu_mask..
7835b98b 3137 *
46cb4b7c
SS
3138 * While stopping the tick, this cpu will become the ilb owner if there
3139 * is no other owner. And will be the owner till that cpu becomes busy
3140 * or if all cpus in the system stop their ticks at which point
3141 * there is no need for ilb owner.
3142 *
3143 * When the ilb owner becomes busy, it nominates another owner, during the
3144 * next busy scheduler_tick()
3145 */
3146int select_nohz_load_balancer(int stop_tick)
3147{
3148 int cpu = smp_processor_id();
3149
3150 if (stop_tick) {
3151 cpu_set(cpu, nohz.cpu_mask);
3152 cpu_rq(cpu)->in_nohz_recently = 1;
3153
3154 /*
3155 * If we are going offline and still the leader, give up!
3156 */
3157 if (cpu_is_offline(cpu) &&
3158 atomic_read(&nohz.load_balancer) == cpu) {
3159 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3160 BUG();
3161 return 0;
3162 }
3163
3164 /* time for ilb owner also to sleep */
3165 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3166 if (atomic_read(&nohz.load_balancer) == cpu)
3167 atomic_set(&nohz.load_balancer, -1);
3168 return 0;
3169 }
3170
3171 if (atomic_read(&nohz.load_balancer) == -1) {
3172 /* make me the ilb owner */
3173 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3174 return 1;
3175 } else if (atomic_read(&nohz.load_balancer) == cpu)
3176 return 1;
3177 } else {
3178 if (!cpu_isset(cpu, nohz.cpu_mask))
3179 return 0;
3180
3181 cpu_clear(cpu, nohz.cpu_mask);
3182
3183 if (atomic_read(&nohz.load_balancer) == cpu)
3184 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3185 BUG();
3186 }
3187 return 0;
3188}
3189#endif
3190
3191static DEFINE_SPINLOCK(balancing);
3192
3193/*
7835b98b
CL
3194 * It checks each scheduling domain to see if it is due to be balanced,
3195 * and initiates a balancing operation if so.
3196 *
3197 * Balancing parameters are set up in arch_init_sched_domains.
3198 */
a9957449 3199static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3200{
46cb4b7c
SS
3201 int balance = 1;
3202 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3203 unsigned long interval;
3204 struct sched_domain *sd;
46cb4b7c 3205 /* Earliest time when we have to do rebalance again */
c9819f45 3206 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3207 int update_next_balance = 0;
1da177e4 3208
46cb4b7c 3209 for_each_domain(cpu, sd) {
1da177e4
LT
3210 if (!(sd->flags & SD_LOAD_BALANCE))
3211 continue;
3212
3213 interval = sd->balance_interval;
d15bcfdb 3214 if (idle != CPU_IDLE)
1da177e4
LT
3215 interval *= sd->busy_factor;
3216
3217 /* scale ms to jiffies */
3218 interval = msecs_to_jiffies(interval);
3219 if (unlikely(!interval))
3220 interval = 1;
dd41f596
IM
3221 if (interval > HZ*NR_CPUS/10)
3222 interval = HZ*NR_CPUS/10;
3223
1da177e4 3224
08c183f3
CL
3225 if (sd->flags & SD_SERIALIZE) {
3226 if (!spin_trylock(&balancing))
3227 goto out;
3228 }
3229
c9819f45 3230 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3231 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3232 /*
3233 * We've pulled tasks over so either we're no
5969fe06
NP
3234 * longer idle, or one of our SMT siblings is
3235 * not idle.
3236 */
d15bcfdb 3237 idle = CPU_NOT_IDLE;
1da177e4 3238 }
1bd77f2d 3239 sd->last_balance = jiffies;
1da177e4 3240 }
08c183f3
CL
3241 if (sd->flags & SD_SERIALIZE)
3242 spin_unlock(&balancing);
3243out:
f549da84 3244 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3245 next_balance = sd->last_balance + interval;
f549da84
SS
3246 update_next_balance = 1;
3247 }
783609c6
SS
3248
3249 /*
3250 * Stop the load balance at this level. There is another
3251 * CPU in our sched group which is doing load balancing more
3252 * actively.
3253 */
3254 if (!balance)
3255 break;
1da177e4 3256 }
f549da84
SS
3257
3258 /*
3259 * next_balance will be updated only when there is a need.
3260 * When the cpu is attached to null domain for ex, it will not be
3261 * updated.
3262 */
3263 if (likely(update_next_balance))
3264 rq->next_balance = next_balance;
46cb4b7c
SS
3265}
3266
3267/*
3268 * run_rebalance_domains is triggered when needed from the scheduler tick.
3269 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3270 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3271 */
3272static void run_rebalance_domains(struct softirq_action *h)
3273{
dd41f596
IM
3274 int this_cpu = smp_processor_id();
3275 struct rq *this_rq = cpu_rq(this_cpu);
3276 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3277 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3278
dd41f596 3279 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3280
3281#ifdef CONFIG_NO_HZ
3282 /*
3283 * If this cpu is the owner for idle load balancing, then do the
3284 * balancing on behalf of the other idle cpus whose ticks are
3285 * stopped.
3286 */
dd41f596
IM
3287 if (this_rq->idle_at_tick &&
3288 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3289 cpumask_t cpus = nohz.cpu_mask;
3290 struct rq *rq;
3291 int balance_cpu;
3292
dd41f596 3293 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3294 for_each_cpu_mask(balance_cpu, cpus) {
3295 /*
3296 * If this cpu gets work to do, stop the load balancing
3297 * work being done for other cpus. Next load
3298 * balancing owner will pick it up.
3299 */
3300 if (need_resched())
3301 break;
3302
de0cf899 3303 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3304
3305 rq = cpu_rq(balance_cpu);
dd41f596
IM
3306 if (time_after(this_rq->next_balance, rq->next_balance))
3307 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3308 }
3309 }
3310#endif
3311}
3312
3313/*
3314 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3315 *
3316 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3317 * idle load balancing owner or decide to stop the periodic load balancing,
3318 * if the whole system is idle.
3319 */
dd41f596 3320static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3321{
46cb4b7c
SS
3322#ifdef CONFIG_NO_HZ
3323 /*
3324 * If we were in the nohz mode recently and busy at the current
3325 * scheduler tick, then check if we need to nominate new idle
3326 * load balancer.
3327 */
3328 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3329 rq->in_nohz_recently = 0;
3330
3331 if (atomic_read(&nohz.load_balancer) == cpu) {
3332 cpu_clear(cpu, nohz.cpu_mask);
3333 atomic_set(&nohz.load_balancer, -1);
3334 }
3335
3336 if (atomic_read(&nohz.load_balancer) == -1) {
3337 /*
3338 * simple selection for now: Nominate the
3339 * first cpu in the nohz list to be the next
3340 * ilb owner.
3341 *
3342 * TBD: Traverse the sched domains and nominate
3343 * the nearest cpu in the nohz.cpu_mask.
3344 */
3345 int ilb = first_cpu(nohz.cpu_mask);
3346
3347 if (ilb != NR_CPUS)
3348 resched_cpu(ilb);
3349 }
3350 }
3351
3352 /*
3353 * If this cpu is idle and doing idle load balancing for all the
3354 * cpus with ticks stopped, is it time for that to stop?
3355 */
3356 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3357 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3358 resched_cpu(cpu);
3359 return;
3360 }
3361
3362 /*
3363 * If this cpu is idle and the idle load balancing is done by
3364 * someone else, then no need raise the SCHED_SOFTIRQ
3365 */
3366 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3367 cpu_isset(cpu, nohz.cpu_mask))
3368 return;
3369#endif
3370 if (time_after_eq(jiffies, rq->next_balance))
3371 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3372}
dd41f596
IM
3373
3374#else /* CONFIG_SMP */
3375
1da177e4
LT
3376/*
3377 * on UP we do not need to balance between CPUs:
3378 */
70b97a7f 3379static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3380{
3381}
dd41f596 3382
1da177e4
LT
3383#endif
3384
1da177e4
LT
3385DEFINE_PER_CPU(struct kernel_stat, kstat);
3386
3387EXPORT_PER_CPU_SYMBOL(kstat);
3388
3389/*
41b86e9c
IM
3390 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3391 * that have not yet been banked in case the task is currently running.
1da177e4 3392 */
41b86e9c 3393unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3394{
1da177e4 3395 unsigned long flags;
41b86e9c
IM
3396 u64 ns, delta_exec;
3397 struct rq *rq;
48f24c4d 3398
41b86e9c
IM
3399 rq = task_rq_lock(p, &flags);
3400 ns = p->se.sum_exec_runtime;
051a1d1a 3401 if (task_current(rq, p)) {
a8e504d2
IM
3402 update_rq_clock(rq);
3403 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3404 if ((s64)delta_exec > 0)
3405 ns += delta_exec;
3406 }
3407 task_rq_unlock(rq, &flags);
48f24c4d 3408
1da177e4
LT
3409 return ns;
3410}
3411
1da177e4
LT
3412/*
3413 * Account user cpu time to a process.
3414 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3415 * @cputime: the cpu time spent in user space since the last update
3416 */
3417void account_user_time(struct task_struct *p, cputime_t cputime)
3418{
3419 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3420 cputime64_t tmp;
3421
3422 p->utime = cputime_add(p->utime, cputime);
3423
3424 /* Add user time to cpustat. */
3425 tmp = cputime_to_cputime64(cputime);
3426 if (TASK_NICE(p) > 0)
3427 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3428 else
3429 cpustat->user = cputime64_add(cpustat->user, tmp);
3430}
3431
94886b84
LV
3432/*
3433 * Account guest cpu time to a process.
3434 * @p: the process that the cpu time gets accounted to
3435 * @cputime: the cpu time spent in virtual machine since the last update
3436 */
f7402e03 3437static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3438{
3439 cputime64_t tmp;
3440 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3441
3442 tmp = cputime_to_cputime64(cputime);
3443
3444 p->utime = cputime_add(p->utime, cputime);
3445 p->gtime = cputime_add(p->gtime, cputime);
3446
3447 cpustat->user = cputime64_add(cpustat->user, tmp);
3448 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3449}
3450
c66f08be
MN
3451/*
3452 * Account scaled user cpu time to a process.
3453 * @p: the process that the cpu time gets accounted to
3454 * @cputime: the cpu time spent in user space since the last update
3455 */
3456void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3457{
3458 p->utimescaled = cputime_add(p->utimescaled, cputime);
3459}
3460
1da177e4
LT
3461/*
3462 * Account system cpu time to a process.
3463 * @p: the process that the cpu time gets accounted to
3464 * @hardirq_offset: the offset to subtract from hardirq_count()
3465 * @cputime: the cpu time spent in kernel space since the last update
3466 */
3467void account_system_time(struct task_struct *p, int hardirq_offset,
3468 cputime_t cputime)
3469{
3470 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3471 struct rq *rq = this_rq();
1da177e4
LT
3472 cputime64_t tmp;
3473
9778385d
CB
3474 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3475 return account_guest_time(p, cputime);
94886b84 3476
1da177e4
LT
3477 p->stime = cputime_add(p->stime, cputime);
3478
3479 /* Add system time to cpustat. */
3480 tmp = cputime_to_cputime64(cputime);
3481 if (hardirq_count() - hardirq_offset)
3482 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3483 else if (softirq_count())
3484 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3485 else if (p != rq->idle)
1da177e4 3486 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3487 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3488 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3489 else
3490 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3491 /* Account for system time used */
3492 acct_update_integrals(p);
1da177e4
LT
3493}
3494
c66f08be
MN
3495/*
3496 * Account scaled system cpu time to a process.
3497 * @p: the process that the cpu time gets accounted to
3498 * @hardirq_offset: the offset to subtract from hardirq_count()
3499 * @cputime: the cpu time spent in kernel space since the last update
3500 */
3501void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3502{
3503 p->stimescaled = cputime_add(p->stimescaled, cputime);
3504}
3505
1da177e4
LT
3506/*
3507 * Account for involuntary wait time.
3508 * @p: the process from which the cpu time has been stolen
3509 * @steal: the cpu time spent in involuntary wait
3510 */
3511void account_steal_time(struct task_struct *p, cputime_t steal)
3512{
3513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3514 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3515 struct rq *rq = this_rq();
1da177e4
LT
3516
3517 if (p == rq->idle) {
3518 p->stime = cputime_add(p->stime, steal);
3519 if (atomic_read(&rq->nr_iowait) > 0)
3520 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3521 else
3522 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3523 } else
1da177e4
LT
3524 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3525}
3526
7835b98b
CL
3527/*
3528 * This function gets called by the timer code, with HZ frequency.
3529 * We call it with interrupts disabled.
3530 *
3531 * It also gets called by the fork code, when changing the parent's
3532 * timeslices.
3533 */
3534void scheduler_tick(void)
3535{
7835b98b
CL
3536 int cpu = smp_processor_id();
3537 struct rq *rq = cpu_rq(cpu);
dd41f596 3538 struct task_struct *curr = rq->curr;
529c7726 3539 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3540
3541 spin_lock(&rq->lock);
546fe3c9 3542 __update_rq_clock(rq);
529c7726
IM
3543 /*
3544 * Let rq->clock advance by at least TICK_NSEC:
3545 */
3546 if (unlikely(rq->clock < next_tick))
3547 rq->clock = next_tick;
3548 rq->tick_timestamp = rq->clock;
f1a438d8 3549 update_cpu_load(rq);
dd41f596
IM
3550 if (curr != rq->idle) /* FIXME: needed? */
3551 curr->sched_class->task_tick(rq, curr);
dd41f596 3552 spin_unlock(&rq->lock);
7835b98b 3553
e418e1c2 3554#ifdef CONFIG_SMP
dd41f596
IM
3555 rq->idle_at_tick = idle_cpu(cpu);
3556 trigger_load_balance(rq, cpu);
e418e1c2 3557#endif
1da177e4
LT
3558}
3559
1da177e4
LT
3560#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3561
3562void fastcall add_preempt_count(int val)
3563{
3564 /*
3565 * Underflow?
3566 */
9a11b49a
IM
3567 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3568 return;
1da177e4
LT
3569 preempt_count() += val;
3570 /*
3571 * Spinlock count overflowing soon?
3572 */
33859f7f
MOS
3573 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3574 PREEMPT_MASK - 10);
1da177e4
LT
3575}
3576EXPORT_SYMBOL(add_preempt_count);
3577
3578void fastcall sub_preempt_count(int val)
3579{
3580 /*
3581 * Underflow?
3582 */
9a11b49a
IM
3583 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3584 return;
1da177e4
LT
3585 /*
3586 * Is the spinlock portion underflowing?
3587 */
9a11b49a
IM
3588 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3589 !(preempt_count() & PREEMPT_MASK)))
3590 return;
3591
1da177e4
LT
3592 preempt_count() -= val;
3593}
3594EXPORT_SYMBOL(sub_preempt_count);
3595
3596#endif
3597
3598/*
dd41f596 3599 * Print scheduling while atomic bug:
1da177e4 3600 */
dd41f596 3601static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3602{
838225b4
SS
3603 struct pt_regs *regs = get_irq_regs();
3604
3605 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3606 prev->comm, prev->pid, preempt_count());
3607
dd41f596
IM
3608 debug_show_held_locks(prev);
3609 if (irqs_disabled())
3610 print_irqtrace_events(prev);
838225b4
SS
3611
3612 if (regs)
3613 show_regs(regs);
3614 else
3615 dump_stack();
dd41f596 3616}
1da177e4 3617
dd41f596
IM
3618/*
3619 * Various schedule()-time debugging checks and statistics:
3620 */
3621static inline void schedule_debug(struct task_struct *prev)
3622{
1da177e4 3623 /*
41a2d6cf 3624 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3625 * schedule() atomically, we ignore that path for now.
3626 * Otherwise, whine if we are scheduling when we should not be.
3627 */
dd41f596
IM
3628 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3629 __schedule_bug(prev);
3630
1da177e4
LT
3631 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3632
2d72376b 3633 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3634#ifdef CONFIG_SCHEDSTATS
3635 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3636 schedstat_inc(this_rq(), bkl_count);
3637 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3638 }
3639#endif
dd41f596
IM
3640}
3641
3642/*
3643 * Pick up the highest-prio task:
3644 */
3645static inline struct task_struct *
ff95f3df 3646pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3647{
5522d5d5 3648 const struct sched_class *class;
dd41f596 3649 struct task_struct *p;
1da177e4
LT
3650
3651 /*
dd41f596
IM
3652 * Optimization: we know that if all tasks are in
3653 * the fair class we can call that function directly:
1da177e4 3654 */
dd41f596 3655 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3656 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3657 if (likely(p))
3658 return p;
1da177e4
LT
3659 }
3660
dd41f596
IM
3661 class = sched_class_highest;
3662 for ( ; ; ) {
fb8d4724 3663 p = class->pick_next_task(rq);
dd41f596
IM
3664 if (p)
3665 return p;
3666 /*
3667 * Will never be NULL as the idle class always
3668 * returns a non-NULL p:
3669 */
3670 class = class->next;
3671 }
3672}
1da177e4 3673
dd41f596
IM
3674/*
3675 * schedule() is the main scheduler function.
3676 */
3677asmlinkage void __sched schedule(void)
3678{
3679 struct task_struct *prev, *next;
3680 long *switch_count;
3681 struct rq *rq;
dd41f596
IM
3682 int cpu;
3683
3684need_resched:
3685 preempt_disable();
3686 cpu = smp_processor_id();
3687 rq = cpu_rq(cpu);
3688 rcu_qsctr_inc(cpu);
3689 prev = rq->curr;
3690 switch_count = &prev->nivcsw;
3691
3692 release_kernel_lock(prev);
3693need_resched_nonpreemptible:
3694
3695 schedule_debug(prev);
1da177e4 3696
1e819950
IM
3697 /*
3698 * Do the rq-clock update outside the rq lock:
3699 */
3700 local_irq_disable();
c1b3da3e 3701 __update_rq_clock(rq);
1e819950
IM
3702 spin_lock(&rq->lock);
3703 clear_tsk_need_resched(prev);
1da177e4 3704
1da177e4 3705 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3706 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3707 unlikely(signal_pending(prev)))) {
1da177e4 3708 prev->state = TASK_RUNNING;
dd41f596 3709 } else {
2e1cb74a 3710 deactivate_task(rq, prev, 1);
1da177e4 3711 }
dd41f596 3712 switch_count = &prev->nvcsw;
1da177e4
LT
3713 }
3714
dd41f596 3715 if (unlikely(!rq->nr_running))
1da177e4 3716 idle_balance(cpu, rq);
1da177e4 3717
31ee529c 3718 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3719 next = pick_next_task(rq, prev);
1da177e4
LT
3720
3721 sched_info_switch(prev, next);
dd41f596 3722
1da177e4 3723 if (likely(prev != next)) {
1da177e4
LT
3724 rq->nr_switches++;
3725 rq->curr = next;
3726 ++*switch_count;
3727
dd41f596 3728 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3729 } else
3730 spin_unlock_irq(&rq->lock);
3731
dd41f596
IM
3732 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3733 cpu = smp_processor_id();
3734 rq = cpu_rq(cpu);
1da177e4 3735 goto need_resched_nonpreemptible;
dd41f596 3736 }
1da177e4
LT
3737 preempt_enable_no_resched();
3738 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3739 goto need_resched;
3740}
1da177e4
LT
3741EXPORT_SYMBOL(schedule);
3742
3743#ifdef CONFIG_PREEMPT
3744/*
2ed6e34f 3745 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3746 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3747 * occur there and call schedule directly.
3748 */
3749asmlinkage void __sched preempt_schedule(void)
3750{
3751 struct thread_info *ti = current_thread_info();
3752#ifdef CONFIG_PREEMPT_BKL
3753 struct task_struct *task = current;
3754 int saved_lock_depth;
3755#endif
3756 /*
3757 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3758 * we do not want to preempt the current task. Just return..
1da177e4 3759 */
beed33a8 3760 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3761 return;
3762
3a5c359a
AK
3763 do {
3764 add_preempt_count(PREEMPT_ACTIVE);
3765
3766 /*
3767 * We keep the big kernel semaphore locked, but we
3768 * clear ->lock_depth so that schedule() doesnt
3769 * auto-release the semaphore:
3770 */
1da177e4 3771#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3772 saved_lock_depth = task->lock_depth;
3773 task->lock_depth = -1;
1da177e4 3774#endif
3a5c359a 3775 schedule();
1da177e4 3776#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3777 task->lock_depth = saved_lock_depth;
1da177e4 3778#endif
3a5c359a 3779 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3780
3a5c359a
AK
3781 /*
3782 * Check again in case we missed a preemption opportunity
3783 * between schedule and now.
3784 */
3785 barrier();
3786 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3787}
1da177e4
LT
3788EXPORT_SYMBOL(preempt_schedule);
3789
3790/*
2ed6e34f 3791 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3792 * off of irq context.
3793 * Note, that this is called and return with irqs disabled. This will
3794 * protect us against recursive calling from irq.
3795 */
3796asmlinkage void __sched preempt_schedule_irq(void)
3797{
3798 struct thread_info *ti = current_thread_info();
3799#ifdef CONFIG_PREEMPT_BKL
3800 struct task_struct *task = current;
3801 int saved_lock_depth;
3802#endif
2ed6e34f 3803 /* Catch callers which need to be fixed */
1da177e4
LT
3804 BUG_ON(ti->preempt_count || !irqs_disabled());
3805
3a5c359a
AK
3806 do {
3807 add_preempt_count(PREEMPT_ACTIVE);
3808
3809 /*
3810 * We keep the big kernel semaphore locked, but we
3811 * clear ->lock_depth so that schedule() doesnt
3812 * auto-release the semaphore:
3813 */
1da177e4 3814#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3815 saved_lock_depth = task->lock_depth;
3816 task->lock_depth = -1;
1da177e4 3817#endif
3a5c359a
AK
3818 local_irq_enable();
3819 schedule();
3820 local_irq_disable();
1da177e4 3821#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3822 task->lock_depth = saved_lock_depth;
1da177e4 3823#endif
3a5c359a 3824 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3825
3a5c359a
AK
3826 /*
3827 * Check again in case we missed a preemption opportunity
3828 * between schedule and now.
3829 */
3830 barrier();
3831 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3832}
3833
3834#endif /* CONFIG_PREEMPT */
3835
95cdf3b7
IM
3836int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3837 void *key)
1da177e4 3838{
48f24c4d 3839 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3840}
1da177e4
LT
3841EXPORT_SYMBOL(default_wake_function);
3842
3843/*
41a2d6cf
IM
3844 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3845 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3846 * number) then we wake all the non-exclusive tasks and one exclusive task.
3847 *
3848 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3849 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3850 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3851 */
3852static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3853 int nr_exclusive, int sync, void *key)
3854{
2e45874c 3855 wait_queue_t *curr, *next;
1da177e4 3856
2e45874c 3857 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3858 unsigned flags = curr->flags;
3859
1da177e4 3860 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3861 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3862 break;
3863 }
3864}
3865
3866/**
3867 * __wake_up - wake up threads blocked on a waitqueue.
3868 * @q: the waitqueue
3869 * @mode: which threads
3870 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3871 * @key: is directly passed to the wakeup function
1da177e4
LT
3872 */
3873void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3874 int nr_exclusive, void *key)
1da177e4
LT
3875{
3876 unsigned long flags;
3877
3878 spin_lock_irqsave(&q->lock, flags);
3879 __wake_up_common(q, mode, nr_exclusive, 0, key);
3880 spin_unlock_irqrestore(&q->lock, flags);
3881}
1da177e4
LT
3882EXPORT_SYMBOL(__wake_up);
3883
3884/*
3885 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3886 */
3887void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3888{
3889 __wake_up_common(q, mode, 1, 0, NULL);
3890}
3891
3892/**
67be2dd1 3893 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3894 * @q: the waitqueue
3895 * @mode: which threads
3896 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3897 *
3898 * The sync wakeup differs that the waker knows that it will schedule
3899 * away soon, so while the target thread will be woken up, it will not
3900 * be migrated to another CPU - ie. the two threads are 'synchronized'
3901 * with each other. This can prevent needless bouncing between CPUs.
3902 *
3903 * On UP it can prevent extra preemption.
3904 */
95cdf3b7
IM
3905void fastcall
3906__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3907{
3908 unsigned long flags;
3909 int sync = 1;
3910
3911 if (unlikely(!q))
3912 return;
3913
3914 if (unlikely(!nr_exclusive))
3915 sync = 0;
3916
3917 spin_lock_irqsave(&q->lock, flags);
3918 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3919 spin_unlock_irqrestore(&q->lock, flags);
3920}
3921EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3922
b15136e9 3923void complete(struct completion *x)
1da177e4
LT
3924{
3925 unsigned long flags;
3926
3927 spin_lock_irqsave(&x->wait.lock, flags);
3928 x->done++;
3929 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3930 1, 0, NULL);
3931 spin_unlock_irqrestore(&x->wait.lock, flags);
3932}
3933EXPORT_SYMBOL(complete);
3934
b15136e9 3935void complete_all(struct completion *x)
1da177e4
LT
3936{
3937 unsigned long flags;
3938
3939 spin_lock_irqsave(&x->wait.lock, flags);
3940 x->done += UINT_MAX/2;
3941 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3942 0, 0, NULL);
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3944}
3945EXPORT_SYMBOL(complete_all);
3946
8cbbe86d
AK
3947static inline long __sched
3948do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3949{
1da177e4
LT
3950 if (!x->done) {
3951 DECLARE_WAITQUEUE(wait, current);
3952
3953 wait.flags |= WQ_FLAG_EXCLUSIVE;
3954 __add_wait_queue_tail(&x->wait, &wait);
3955 do {
8cbbe86d
AK
3956 if (state == TASK_INTERRUPTIBLE &&
3957 signal_pending(current)) {
3958 __remove_wait_queue(&x->wait, &wait);
3959 return -ERESTARTSYS;
3960 }
3961 __set_current_state(state);
1da177e4
LT
3962 spin_unlock_irq(&x->wait.lock);
3963 timeout = schedule_timeout(timeout);
3964 spin_lock_irq(&x->wait.lock);
3965 if (!timeout) {
3966 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3967 return timeout;
1da177e4
LT
3968 }
3969 } while (!x->done);
3970 __remove_wait_queue(&x->wait, &wait);
3971 }
3972 x->done--;
1da177e4
LT
3973 return timeout;
3974}
1da177e4 3975
8cbbe86d
AK
3976static long __sched
3977wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3978{
1da177e4
LT
3979 might_sleep();
3980
3981 spin_lock_irq(&x->wait.lock);
8cbbe86d 3982 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3983 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3984 return timeout;
3985}
1da177e4 3986
b15136e9 3987void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3988{
3989 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3990}
8cbbe86d 3991EXPORT_SYMBOL(wait_for_completion);
1da177e4 3992
b15136e9 3993unsigned long __sched
8cbbe86d 3994wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3995{
8cbbe86d 3996 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3997}
8cbbe86d 3998EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3999
8cbbe86d 4000int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4001{
51e97990
AK
4002 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4003 if (t == -ERESTARTSYS)
4004 return t;
4005 return 0;
0fec171c 4006}
8cbbe86d 4007EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4008
b15136e9 4009unsigned long __sched
8cbbe86d
AK
4010wait_for_completion_interruptible_timeout(struct completion *x,
4011 unsigned long timeout)
0fec171c 4012{
8cbbe86d 4013 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4014}
8cbbe86d 4015EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4016
8cbbe86d
AK
4017static long __sched
4018sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4019{
0fec171c
IM
4020 unsigned long flags;
4021 wait_queue_t wait;
4022
4023 init_waitqueue_entry(&wait, current);
1da177e4 4024
8cbbe86d 4025 __set_current_state(state);
1da177e4 4026
8cbbe86d
AK
4027 spin_lock_irqsave(&q->lock, flags);
4028 __add_wait_queue(q, &wait);
4029 spin_unlock(&q->lock);
4030 timeout = schedule_timeout(timeout);
4031 spin_lock_irq(&q->lock);
4032 __remove_wait_queue(q, &wait);
4033 spin_unlock_irqrestore(&q->lock, flags);
4034
4035 return timeout;
4036}
4037
4038void __sched interruptible_sleep_on(wait_queue_head_t *q)
4039{
4040 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4041}
1da177e4
LT
4042EXPORT_SYMBOL(interruptible_sleep_on);
4043
0fec171c 4044long __sched
95cdf3b7 4045interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4046{
8cbbe86d 4047 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4048}
1da177e4
LT
4049EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4050
0fec171c 4051void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4052{
8cbbe86d 4053 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4054}
1da177e4
LT
4055EXPORT_SYMBOL(sleep_on);
4056
0fec171c 4057long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4058{
8cbbe86d 4059 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4060}
1da177e4
LT
4061EXPORT_SYMBOL(sleep_on_timeout);
4062
b29739f9
IM
4063#ifdef CONFIG_RT_MUTEXES
4064
4065/*
4066 * rt_mutex_setprio - set the current priority of a task
4067 * @p: task
4068 * @prio: prio value (kernel-internal form)
4069 *
4070 * This function changes the 'effective' priority of a task. It does
4071 * not touch ->normal_prio like __setscheduler().
4072 *
4073 * Used by the rt_mutex code to implement priority inheritance logic.
4074 */
36c8b586 4075void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4076{
4077 unsigned long flags;
83b699ed 4078 int oldprio, on_rq, running;
70b97a7f 4079 struct rq *rq;
b29739f9
IM
4080
4081 BUG_ON(prio < 0 || prio > MAX_PRIO);
4082
4083 rq = task_rq_lock(p, &flags);
a8e504d2 4084 update_rq_clock(rq);
b29739f9 4085
d5f9f942 4086 oldprio = p->prio;
dd41f596 4087 on_rq = p->se.on_rq;
051a1d1a 4088 running = task_current(rq, p);
83b699ed 4089 if (on_rq) {
69be72c1 4090 dequeue_task(rq, p, 0);
83b699ed
SV
4091 if (running)
4092 p->sched_class->put_prev_task(rq, p);
4093 }
dd41f596
IM
4094
4095 if (rt_prio(prio))
4096 p->sched_class = &rt_sched_class;
4097 else
4098 p->sched_class = &fair_sched_class;
4099
b29739f9
IM
4100 p->prio = prio;
4101
dd41f596 4102 if (on_rq) {
83b699ed
SV
4103 if (running)
4104 p->sched_class->set_curr_task(rq);
8159f87e 4105 enqueue_task(rq, p, 0);
b29739f9
IM
4106 /*
4107 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4108 * our priority decreased, or if we are not currently running on
4109 * this runqueue and our priority is higher than the current's
b29739f9 4110 */
83b699ed 4111 if (running) {
d5f9f942
AM
4112 if (p->prio > oldprio)
4113 resched_task(rq->curr);
dd41f596
IM
4114 } else {
4115 check_preempt_curr(rq, p);
4116 }
b29739f9
IM
4117 }
4118 task_rq_unlock(rq, &flags);
4119}
4120
4121#endif
4122
36c8b586 4123void set_user_nice(struct task_struct *p, long nice)
1da177e4 4124{
dd41f596 4125 int old_prio, delta, on_rq;
1da177e4 4126 unsigned long flags;
70b97a7f 4127 struct rq *rq;
1da177e4
LT
4128
4129 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4130 return;
4131 /*
4132 * We have to be careful, if called from sys_setpriority(),
4133 * the task might be in the middle of scheduling on another CPU.
4134 */
4135 rq = task_rq_lock(p, &flags);
a8e504d2 4136 update_rq_clock(rq);
1da177e4
LT
4137 /*
4138 * The RT priorities are set via sched_setscheduler(), but we still
4139 * allow the 'normal' nice value to be set - but as expected
4140 * it wont have any effect on scheduling until the task is
dd41f596 4141 * SCHED_FIFO/SCHED_RR:
1da177e4 4142 */
e05606d3 4143 if (task_has_rt_policy(p)) {
1da177e4
LT
4144 p->static_prio = NICE_TO_PRIO(nice);
4145 goto out_unlock;
4146 }
dd41f596 4147 on_rq = p->se.on_rq;
58e2d4ca 4148 if (on_rq)
69be72c1 4149 dequeue_task(rq, p, 0);
1da177e4 4150
1da177e4 4151 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4152 set_load_weight(p);
b29739f9
IM
4153 old_prio = p->prio;
4154 p->prio = effective_prio(p);
4155 delta = p->prio - old_prio;
1da177e4 4156
dd41f596 4157 if (on_rq) {
8159f87e 4158 enqueue_task(rq, p, 0);
1da177e4 4159 /*
d5f9f942
AM
4160 * If the task increased its priority or is running and
4161 * lowered its priority, then reschedule its CPU:
1da177e4 4162 */
d5f9f942 4163 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4164 resched_task(rq->curr);
4165 }
4166out_unlock:
4167 task_rq_unlock(rq, &flags);
4168}
1da177e4
LT
4169EXPORT_SYMBOL(set_user_nice);
4170
e43379f1
MM
4171/*
4172 * can_nice - check if a task can reduce its nice value
4173 * @p: task
4174 * @nice: nice value
4175 */
36c8b586 4176int can_nice(const struct task_struct *p, const int nice)
e43379f1 4177{
024f4747
MM
4178 /* convert nice value [19,-20] to rlimit style value [1,40] */
4179 int nice_rlim = 20 - nice;
48f24c4d 4180
e43379f1
MM
4181 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4182 capable(CAP_SYS_NICE));
4183}
4184
1da177e4
LT
4185#ifdef __ARCH_WANT_SYS_NICE
4186
4187/*
4188 * sys_nice - change the priority of the current process.
4189 * @increment: priority increment
4190 *
4191 * sys_setpriority is a more generic, but much slower function that
4192 * does similar things.
4193 */
4194asmlinkage long sys_nice(int increment)
4195{
48f24c4d 4196 long nice, retval;
1da177e4
LT
4197
4198 /*
4199 * Setpriority might change our priority at the same moment.
4200 * We don't have to worry. Conceptually one call occurs first
4201 * and we have a single winner.
4202 */
e43379f1
MM
4203 if (increment < -40)
4204 increment = -40;
1da177e4
LT
4205 if (increment > 40)
4206 increment = 40;
4207
4208 nice = PRIO_TO_NICE(current->static_prio) + increment;
4209 if (nice < -20)
4210 nice = -20;
4211 if (nice > 19)
4212 nice = 19;
4213
e43379f1
MM
4214 if (increment < 0 && !can_nice(current, nice))
4215 return -EPERM;
4216
1da177e4
LT
4217 retval = security_task_setnice(current, nice);
4218 if (retval)
4219 return retval;
4220
4221 set_user_nice(current, nice);
4222 return 0;
4223}
4224
4225#endif
4226
4227/**
4228 * task_prio - return the priority value of a given task.
4229 * @p: the task in question.
4230 *
4231 * This is the priority value as seen by users in /proc.
4232 * RT tasks are offset by -200. Normal tasks are centered
4233 * around 0, value goes from -16 to +15.
4234 */
36c8b586 4235int task_prio(const struct task_struct *p)
1da177e4
LT
4236{
4237 return p->prio - MAX_RT_PRIO;
4238}
4239
4240/**
4241 * task_nice - return the nice value of a given task.
4242 * @p: the task in question.
4243 */
36c8b586 4244int task_nice(const struct task_struct *p)
1da177e4
LT
4245{
4246 return TASK_NICE(p);
4247}
1da177e4 4248EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4249
4250/**
4251 * idle_cpu - is a given cpu idle currently?
4252 * @cpu: the processor in question.
4253 */
4254int idle_cpu(int cpu)
4255{
4256 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4257}
4258
1da177e4
LT
4259/**
4260 * idle_task - return the idle task for a given cpu.
4261 * @cpu: the processor in question.
4262 */
36c8b586 4263struct task_struct *idle_task(int cpu)
1da177e4
LT
4264{
4265 return cpu_rq(cpu)->idle;
4266}
4267
4268/**
4269 * find_process_by_pid - find a process with a matching PID value.
4270 * @pid: the pid in question.
4271 */
a9957449 4272static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4273{
228ebcbe 4274 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4275}
4276
4277/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4278static void
4279__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4280{
dd41f596 4281 BUG_ON(p->se.on_rq);
48f24c4d 4282
1da177e4 4283 p->policy = policy;
dd41f596
IM
4284 switch (p->policy) {
4285 case SCHED_NORMAL:
4286 case SCHED_BATCH:
4287 case SCHED_IDLE:
4288 p->sched_class = &fair_sched_class;
4289 break;
4290 case SCHED_FIFO:
4291 case SCHED_RR:
4292 p->sched_class = &rt_sched_class;
4293 break;
4294 }
4295
1da177e4 4296 p->rt_priority = prio;
b29739f9
IM
4297 p->normal_prio = normal_prio(p);
4298 /* we are holding p->pi_lock already */
4299 p->prio = rt_mutex_getprio(p);
2dd73a4f 4300 set_load_weight(p);
1da177e4
LT
4301}
4302
4303/**
72fd4a35 4304 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4305 * @p: the task in question.
4306 * @policy: new policy.
4307 * @param: structure containing the new RT priority.
5fe1d75f 4308 *
72fd4a35 4309 * NOTE that the task may be already dead.
1da177e4 4310 */
95cdf3b7
IM
4311int sched_setscheduler(struct task_struct *p, int policy,
4312 struct sched_param *param)
1da177e4 4313{
83b699ed 4314 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4315 unsigned long flags;
70b97a7f 4316 struct rq *rq;
1da177e4 4317
66e5393a
SR
4318 /* may grab non-irq protected spin_locks */
4319 BUG_ON(in_interrupt());
1da177e4
LT
4320recheck:
4321 /* double check policy once rq lock held */
4322 if (policy < 0)
4323 policy = oldpolicy = p->policy;
4324 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4325 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4326 policy != SCHED_IDLE)
b0a9499c 4327 return -EINVAL;
1da177e4
LT
4328 /*
4329 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4330 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4331 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4332 */
4333 if (param->sched_priority < 0 ||
95cdf3b7 4334 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4335 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4336 return -EINVAL;
e05606d3 4337 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4338 return -EINVAL;
4339
37e4ab3f
OC
4340 /*
4341 * Allow unprivileged RT tasks to decrease priority:
4342 */
4343 if (!capable(CAP_SYS_NICE)) {
e05606d3 4344 if (rt_policy(policy)) {
8dc3e909 4345 unsigned long rlim_rtprio;
8dc3e909
ON
4346
4347 if (!lock_task_sighand(p, &flags))
4348 return -ESRCH;
4349 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4350 unlock_task_sighand(p, &flags);
4351
4352 /* can't set/change the rt policy */
4353 if (policy != p->policy && !rlim_rtprio)
4354 return -EPERM;
4355
4356 /* can't increase priority */
4357 if (param->sched_priority > p->rt_priority &&
4358 param->sched_priority > rlim_rtprio)
4359 return -EPERM;
4360 }
dd41f596
IM
4361 /*
4362 * Like positive nice levels, dont allow tasks to
4363 * move out of SCHED_IDLE either:
4364 */
4365 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4366 return -EPERM;
5fe1d75f 4367
37e4ab3f
OC
4368 /* can't change other user's priorities */
4369 if ((current->euid != p->euid) &&
4370 (current->euid != p->uid))
4371 return -EPERM;
4372 }
1da177e4
LT
4373
4374 retval = security_task_setscheduler(p, policy, param);
4375 if (retval)
4376 return retval;
b29739f9
IM
4377 /*
4378 * make sure no PI-waiters arrive (or leave) while we are
4379 * changing the priority of the task:
4380 */
4381 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4382 /*
4383 * To be able to change p->policy safely, the apropriate
4384 * runqueue lock must be held.
4385 */
b29739f9 4386 rq = __task_rq_lock(p);
1da177e4
LT
4387 /* recheck policy now with rq lock held */
4388 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4389 policy = oldpolicy = -1;
b29739f9
IM
4390 __task_rq_unlock(rq);
4391 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4392 goto recheck;
4393 }
2daa3577 4394 update_rq_clock(rq);
dd41f596 4395 on_rq = p->se.on_rq;
051a1d1a 4396 running = task_current(rq, p);
83b699ed 4397 if (on_rq) {
2e1cb74a 4398 deactivate_task(rq, p, 0);
83b699ed
SV
4399 if (running)
4400 p->sched_class->put_prev_task(rq, p);
4401 }
f6b53205 4402
1da177e4 4403 oldprio = p->prio;
dd41f596 4404 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4405
dd41f596 4406 if (on_rq) {
83b699ed
SV
4407 if (running)
4408 p->sched_class->set_curr_task(rq);
dd41f596 4409 activate_task(rq, p, 0);
1da177e4
LT
4410 /*
4411 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4412 * our priority decreased, or if we are not currently running on
4413 * this runqueue and our priority is higher than the current's
1da177e4 4414 */
83b699ed 4415 if (running) {
d5f9f942
AM
4416 if (p->prio > oldprio)
4417 resched_task(rq->curr);
dd41f596
IM
4418 } else {
4419 check_preempt_curr(rq, p);
4420 }
1da177e4 4421 }
b29739f9
IM
4422 __task_rq_unlock(rq);
4423 spin_unlock_irqrestore(&p->pi_lock, flags);
4424
95e02ca9
TG
4425 rt_mutex_adjust_pi(p);
4426
1da177e4
LT
4427 return 0;
4428}
4429EXPORT_SYMBOL_GPL(sched_setscheduler);
4430
95cdf3b7
IM
4431static int
4432do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4433{
1da177e4
LT
4434 struct sched_param lparam;
4435 struct task_struct *p;
36c8b586 4436 int retval;
1da177e4
LT
4437
4438 if (!param || pid < 0)
4439 return -EINVAL;
4440 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4441 return -EFAULT;
5fe1d75f
ON
4442
4443 rcu_read_lock();
4444 retval = -ESRCH;
1da177e4 4445 p = find_process_by_pid(pid);
5fe1d75f
ON
4446 if (p != NULL)
4447 retval = sched_setscheduler(p, policy, &lparam);
4448 rcu_read_unlock();
36c8b586 4449
1da177e4
LT
4450 return retval;
4451}
4452
4453/**
4454 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4455 * @pid: the pid in question.
4456 * @policy: new policy.
4457 * @param: structure containing the new RT priority.
4458 */
41a2d6cf
IM
4459asmlinkage long
4460sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4461{
c21761f1
JB
4462 /* negative values for policy are not valid */
4463 if (policy < 0)
4464 return -EINVAL;
4465
1da177e4
LT
4466 return do_sched_setscheduler(pid, policy, param);
4467}
4468
4469/**
4470 * sys_sched_setparam - set/change the RT priority of a thread
4471 * @pid: the pid in question.
4472 * @param: structure containing the new RT priority.
4473 */
4474asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4475{
4476 return do_sched_setscheduler(pid, -1, param);
4477}
4478
4479/**
4480 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4481 * @pid: the pid in question.
4482 */
4483asmlinkage long sys_sched_getscheduler(pid_t pid)
4484{
36c8b586 4485 struct task_struct *p;
3a5c359a 4486 int retval;
1da177e4
LT
4487
4488 if (pid < 0)
3a5c359a 4489 return -EINVAL;
1da177e4
LT
4490
4491 retval = -ESRCH;
4492 read_lock(&tasklist_lock);
4493 p = find_process_by_pid(pid);
4494 if (p) {
4495 retval = security_task_getscheduler(p);
4496 if (!retval)
4497 retval = p->policy;
4498 }
4499 read_unlock(&tasklist_lock);
1da177e4
LT
4500 return retval;
4501}
4502
4503/**
4504 * sys_sched_getscheduler - get the RT priority of a thread
4505 * @pid: the pid in question.
4506 * @param: structure containing the RT priority.
4507 */
4508asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4509{
4510 struct sched_param lp;
36c8b586 4511 struct task_struct *p;
3a5c359a 4512 int retval;
1da177e4
LT
4513
4514 if (!param || pid < 0)
3a5c359a 4515 return -EINVAL;
1da177e4
LT
4516
4517 read_lock(&tasklist_lock);
4518 p = find_process_by_pid(pid);
4519 retval = -ESRCH;
4520 if (!p)
4521 goto out_unlock;
4522
4523 retval = security_task_getscheduler(p);
4524 if (retval)
4525 goto out_unlock;
4526
4527 lp.sched_priority = p->rt_priority;
4528 read_unlock(&tasklist_lock);
4529
4530 /*
4531 * This one might sleep, we cannot do it with a spinlock held ...
4532 */
4533 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4534
1da177e4
LT
4535 return retval;
4536
4537out_unlock:
4538 read_unlock(&tasklist_lock);
4539 return retval;
4540}
4541
4542long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4543{
1da177e4 4544 cpumask_t cpus_allowed;
36c8b586
IM
4545 struct task_struct *p;
4546 int retval;
1da177e4 4547
95402b38 4548 get_online_cpus();
1da177e4
LT
4549 read_lock(&tasklist_lock);
4550
4551 p = find_process_by_pid(pid);
4552 if (!p) {
4553 read_unlock(&tasklist_lock);
95402b38 4554 put_online_cpus();
1da177e4
LT
4555 return -ESRCH;
4556 }
4557
4558 /*
4559 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4560 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4561 * usage count and then drop tasklist_lock.
4562 */
4563 get_task_struct(p);
4564 read_unlock(&tasklist_lock);
4565
4566 retval = -EPERM;
4567 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4568 !capable(CAP_SYS_NICE))
4569 goto out_unlock;
4570
e7834f8f
DQ
4571 retval = security_task_setscheduler(p, 0, NULL);
4572 if (retval)
4573 goto out_unlock;
4574
1da177e4
LT
4575 cpus_allowed = cpuset_cpus_allowed(p);
4576 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4577 again:
1da177e4
LT
4578 retval = set_cpus_allowed(p, new_mask);
4579
8707d8b8
PM
4580 if (!retval) {
4581 cpus_allowed = cpuset_cpus_allowed(p);
4582 if (!cpus_subset(new_mask, cpus_allowed)) {
4583 /*
4584 * We must have raced with a concurrent cpuset
4585 * update. Just reset the cpus_allowed to the
4586 * cpuset's cpus_allowed
4587 */
4588 new_mask = cpus_allowed;
4589 goto again;
4590 }
4591 }
1da177e4
LT
4592out_unlock:
4593 put_task_struct(p);
95402b38 4594 put_online_cpus();
1da177e4
LT
4595 return retval;
4596}
4597
4598static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4599 cpumask_t *new_mask)
4600{
4601 if (len < sizeof(cpumask_t)) {
4602 memset(new_mask, 0, sizeof(cpumask_t));
4603 } else if (len > sizeof(cpumask_t)) {
4604 len = sizeof(cpumask_t);
4605 }
4606 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4607}
4608
4609/**
4610 * sys_sched_setaffinity - set the cpu affinity of a process
4611 * @pid: pid of the process
4612 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4613 * @user_mask_ptr: user-space pointer to the new cpu mask
4614 */
4615asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4616 unsigned long __user *user_mask_ptr)
4617{
4618 cpumask_t new_mask;
4619 int retval;
4620
4621 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4622 if (retval)
4623 return retval;
4624
4625 return sched_setaffinity(pid, new_mask);
4626}
4627
4628/*
4629 * Represents all cpu's present in the system
4630 * In systems capable of hotplug, this map could dynamically grow
4631 * as new cpu's are detected in the system via any platform specific
4632 * method, such as ACPI for e.g.
4633 */
4634
4cef0c61 4635cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4636EXPORT_SYMBOL(cpu_present_map);
4637
4638#ifndef CONFIG_SMP
4cef0c61 4639cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4640EXPORT_SYMBOL(cpu_online_map);
4641
4cef0c61 4642cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4643EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4644#endif
4645
4646long sched_getaffinity(pid_t pid, cpumask_t *mask)
4647{
36c8b586 4648 struct task_struct *p;
1da177e4 4649 int retval;
1da177e4 4650
95402b38 4651 get_online_cpus();
1da177e4
LT
4652 read_lock(&tasklist_lock);
4653
4654 retval = -ESRCH;
4655 p = find_process_by_pid(pid);
4656 if (!p)
4657 goto out_unlock;
4658
e7834f8f
DQ
4659 retval = security_task_getscheduler(p);
4660 if (retval)
4661 goto out_unlock;
4662
2f7016d9 4663 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4664
4665out_unlock:
4666 read_unlock(&tasklist_lock);
95402b38 4667 put_online_cpus();
1da177e4 4668
9531b62f 4669 return retval;
1da177e4
LT
4670}
4671
4672/**
4673 * sys_sched_getaffinity - get the cpu affinity of a process
4674 * @pid: pid of the process
4675 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4676 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4677 */
4678asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4679 unsigned long __user *user_mask_ptr)
4680{
4681 int ret;
4682 cpumask_t mask;
4683
4684 if (len < sizeof(cpumask_t))
4685 return -EINVAL;
4686
4687 ret = sched_getaffinity(pid, &mask);
4688 if (ret < 0)
4689 return ret;
4690
4691 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4692 return -EFAULT;
4693
4694 return sizeof(cpumask_t);
4695}
4696
4697/**
4698 * sys_sched_yield - yield the current processor to other threads.
4699 *
dd41f596
IM
4700 * This function yields the current CPU to other tasks. If there are no
4701 * other threads running on this CPU then this function will return.
1da177e4
LT
4702 */
4703asmlinkage long sys_sched_yield(void)
4704{
70b97a7f 4705 struct rq *rq = this_rq_lock();
1da177e4 4706
2d72376b 4707 schedstat_inc(rq, yld_count);
4530d7ab 4708 current->sched_class->yield_task(rq);
1da177e4
LT
4709
4710 /*
4711 * Since we are going to call schedule() anyway, there's
4712 * no need to preempt or enable interrupts:
4713 */
4714 __release(rq->lock);
8a25d5de 4715 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4716 _raw_spin_unlock(&rq->lock);
4717 preempt_enable_no_resched();
4718
4719 schedule();
4720
4721 return 0;
4722}
4723
e7b38404 4724static void __cond_resched(void)
1da177e4 4725{
8e0a43d8
IM
4726#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4727 __might_sleep(__FILE__, __LINE__);
4728#endif
5bbcfd90
IM
4729 /*
4730 * The BKS might be reacquired before we have dropped
4731 * PREEMPT_ACTIVE, which could trigger a second
4732 * cond_resched() call.
4733 */
1da177e4
LT
4734 do {
4735 add_preempt_count(PREEMPT_ACTIVE);
4736 schedule();
4737 sub_preempt_count(PREEMPT_ACTIVE);
4738 } while (need_resched());
4739}
4740
4741int __sched cond_resched(void)
4742{
9414232f
IM
4743 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4744 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4745 __cond_resched();
4746 return 1;
4747 }
4748 return 0;
4749}
1da177e4
LT
4750EXPORT_SYMBOL(cond_resched);
4751
4752/*
4753 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4754 * call schedule, and on return reacquire the lock.
4755 *
41a2d6cf 4756 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4757 * operations here to prevent schedule() from being called twice (once via
4758 * spin_unlock(), once by hand).
4759 */
95cdf3b7 4760int cond_resched_lock(spinlock_t *lock)
1da177e4 4761{
6df3cecb
JK
4762 int ret = 0;
4763
1da177e4
LT
4764 if (need_lockbreak(lock)) {
4765 spin_unlock(lock);
4766 cpu_relax();
6df3cecb 4767 ret = 1;
1da177e4
LT
4768 spin_lock(lock);
4769 }
9414232f 4770 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4771 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4772 _raw_spin_unlock(lock);
4773 preempt_enable_no_resched();
4774 __cond_resched();
6df3cecb 4775 ret = 1;
1da177e4 4776 spin_lock(lock);
1da177e4 4777 }
6df3cecb 4778 return ret;
1da177e4 4779}
1da177e4
LT
4780EXPORT_SYMBOL(cond_resched_lock);
4781
4782int __sched cond_resched_softirq(void)
4783{
4784 BUG_ON(!in_softirq());
4785
9414232f 4786 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4787 local_bh_enable();
1da177e4
LT
4788 __cond_resched();
4789 local_bh_disable();
4790 return 1;
4791 }
4792 return 0;
4793}
1da177e4
LT
4794EXPORT_SYMBOL(cond_resched_softirq);
4795
1da177e4
LT
4796/**
4797 * yield - yield the current processor to other threads.
4798 *
72fd4a35 4799 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4800 * thread runnable and calls sys_sched_yield().
4801 */
4802void __sched yield(void)
4803{
4804 set_current_state(TASK_RUNNING);
4805 sys_sched_yield();
4806}
1da177e4
LT
4807EXPORT_SYMBOL(yield);
4808
4809/*
41a2d6cf 4810 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4811 * that process accounting knows that this is a task in IO wait state.
4812 *
4813 * But don't do that if it is a deliberate, throttling IO wait (this task
4814 * has set its backing_dev_info: the queue against which it should throttle)
4815 */
4816void __sched io_schedule(void)
4817{
70b97a7f 4818 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4819
0ff92245 4820 delayacct_blkio_start();
1da177e4
LT
4821 atomic_inc(&rq->nr_iowait);
4822 schedule();
4823 atomic_dec(&rq->nr_iowait);
0ff92245 4824 delayacct_blkio_end();
1da177e4 4825}
1da177e4
LT
4826EXPORT_SYMBOL(io_schedule);
4827
4828long __sched io_schedule_timeout(long timeout)
4829{
70b97a7f 4830 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4831 long ret;
4832
0ff92245 4833 delayacct_blkio_start();
1da177e4
LT
4834 atomic_inc(&rq->nr_iowait);
4835 ret = schedule_timeout(timeout);
4836 atomic_dec(&rq->nr_iowait);
0ff92245 4837 delayacct_blkio_end();
1da177e4
LT
4838 return ret;
4839}
4840
4841/**
4842 * sys_sched_get_priority_max - return maximum RT priority.
4843 * @policy: scheduling class.
4844 *
4845 * this syscall returns the maximum rt_priority that can be used
4846 * by a given scheduling class.
4847 */
4848asmlinkage long sys_sched_get_priority_max(int policy)
4849{
4850 int ret = -EINVAL;
4851
4852 switch (policy) {
4853 case SCHED_FIFO:
4854 case SCHED_RR:
4855 ret = MAX_USER_RT_PRIO-1;
4856 break;
4857 case SCHED_NORMAL:
b0a9499c 4858 case SCHED_BATCH:
dd41f596 4859 case SCHED_IDLE:
1da177e4
LT
4860 ret = 0;
4861 break;
4862 }
4863 return ret;
4864}
4865
4866/**
4867 * sys_sched_get_priority_min - return minimum RT priority.
4868 * @policy: scheduling class.
4869 *
4870 * this syscall returns the minimum rt_priority that can be used
4871 * by a given scheduling class.
4872 */
4873asmlinkage long sys_sched_get_priority_min(int policy)
4874{
4875 int ret = -EINVAL;
4876
4877 switch (policy) {
4878 case SCHED_FIFO:
4879 case SCHED_RR:
4880 ret = 1;
4881 break;
4882 case SCHED_NORMAL:
b0a9499c 4883 case SCHED_BATCH:
dd41f596 4884 case SCHED_IDLE:
1da177e4
LT
4885 ret = 0;
4886 }
4887 return ret;
4888}
4889
4890/**
4891 * sys_sched_rr_get_interval - return the default timeslice of a process.
4892 * @pid: pid of the process.
4893 * @interval: userspace pointer to the timeslice value.
4894 *
4895 * this syscall writes the default timeslice value of a given process
4896 * into the user-space timespec buffer. A value of '0' means infinity.
4897 */
4898asmlinkage
4899long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4900{
36c8b586 4901 struct task_struct *p;
a4ec24b4 4902 unsigned int time_slice;
3a5c359a 4903 int retval;
1da177e4 4904 struct timespec t;
1da177e4
LT
4905
4906 if (pid < 0)
3a5c359a 4907 return -EINVAL;
1da177e4
LT
4908
4909 retval = -ESRCH;
4910 read_lock(&tasklist_lock);
4911 p = find_process_by_pid(pid);
4912 if (!p)
4913 goto out_unlock;
4914
4915 retval = security_task_getscheduler(p);
4916 if (retval)
4917 goto out_unlock;
4918
77034937
IM
4919 /*
4920 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4921 * tasks that are on an otherwise idle runqueue:
4922 */
4923 time_slice = 0;
4924 if (p->policy == SCHED_RR) {
a4ec24b4 4925 time_slice = DEF_TIMESLICE;
77034937 4926 } else {
a4ec24b4
DA
4927 struct sched_entity *se = &p->se;
4928 unsigned long flags;
4929 struct rq *rq;
4930
4931 rq = task_rq_lock(p, &flags);
77034937
IM
4932 if (rq->cfs.load.weight)
4933 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4934 task_rq_unlock(rq, &flags);
4935 }
1da177e4 4936 read_unlock(&tasklist_lock);
a4ec24b4 4937 jiffies_to_timespec(time_slice, &t);
1da177e4 4938 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4939 return retval;
3a5c359a 4940
1da177e4
LT
4941out_unlock:
4942 read_unlock(&tasklist_lock);
4943 return retval;
4944}
4945
2ed6e34f 4946static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4947
4948static void show_task(struct task_struct *p)
1da177e4 4949{
1da177e4 4950 unsigned long free = 0;
36c8b586 4951 unsigned state;
1da177e4 4952
1da177e4 4953 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4954 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4955 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4956#if BITS_PER_LONG == 32
1da177e4 4957 if (state == TASK_RUNNING)
cc4ea795 4958 printk(KERN_CONT " running ");
1da177e4 4959 else
cc4ea795 4960 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4961#else
4962 if (state == TASK_RUNNING)
cc4ea795 4963 printk(KERN_CONT " running task ");
1da177e4 4964 else
cc4ea795 4965 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4966#endif
4967#ifdef CONFIG_DEBUG_STACK_USAGE
4968 {
10ebffde 4969 unsigned long *n = end_of_stack(p);
1da177e4
LT
4970 while (!*n)
4971 n++;
10ebffde 4972 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4973 }
4974#endif
ba25f9dc 4975 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4976 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4977
4978 if (state != TASK_RUNNING)
4979 show_stack(p, NULL);
4980}
4981
e59e2ae2 4982void show_state_filter(unsigned long state_filter)
1da177e4 4983{
36c8b586 4984 struct task_struct *g, *p;
1da177e4 4985
4bd77321
IM
4986#if BITS_PER_LONG == 32
4987 printk(KERN_INFO
4988 " task PC stack pid father\n");
1da177e4 4989#else
4bd77321
IM
4990 printk(KERN_INFO
4991 " task PC stack pid father\n");
1da177e4
LT
4992#endif
4993 read_lock(&tasklist_lock);
4994 do_each_thread(g, p) {
4995 /*
4996 * reset the NMI-timeout, listing all files on a slow
4997 * console might take alot of time:
4998 */
4999 touch_nmi_watchdog();
39bc89fd 5000 if (!state_filter || (p->state & state_filter))
e59e2ae2 5001 show_task(p);
1da177e4
LT
5002 } while_each_thread(g, p);
5003
04c9167f
JF
5004 touch_all_softlockup_watchdogs();
5005
dd41f596
IM
5006#ifdef CONFIG_SCHED_DEBUG
5007 sysrq_sched_debug_show();
5008#endif
1da177e4 5009 read_unlock(&tasklist_lock);
e59e2ae2
IM
5010 /*
5011 * Only show locks if all tasks are dumped:
5012 */
5013 if (state_filter == -1)
5014 debug_show_all_locks();
1da177e4
LT
5015}
5016
1df21055
IM
5017void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5018{
dd41f596 5019 idle->sched_class = &idle_sched_class;
1df21055
IM
5020}
5021
f340c0d1
IM
5022/**
5023 * init_idle - set up an idle thread for a given CPU
5024 * @idle: task in question
5025 * @cpu: cpu the idle task belongs to
5026 *
5027 * NOTE: this function does not set the idle thread's NEED_RESCHED
5028 * flag, to make booting more robust.
5029 */
5c1e1767 5030void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5031{
70b97a7f 5032 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5033 unsigned long flags;
5034
dd41f596
IM
5035 __sched_fork(idle);
5036 idle->se.exec_start = sched_clock();
5037
b29739f9 5038 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5039 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5040 __set_task_cpu(idle, cpu);
1da177e4
LT
5041
5042 spin_lock_irqsave(&rq->lock, flags);
5043 rq->curr = rq->idle = idle;
4866cde0
NP
5044#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5045 idle->oncpu = 1;
5046#endif
1da177e4
LT
5047 spin_unlock_irqrestore(&rq->lock, flags);
5048
5049 /* Set the preempt count _outside_ the spinlocks! */
5050#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5051 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5052#else
a1261f54 5053 task_thread_info(idle)->preempt_count = 0;
1da177e4 5054#endif
dd41f596
IM
5055 /*
5056 * The idle tasks have their own, simple scheduling class:
5057 */
5058 idle->sched_class = &idle_sched_class;
1da177e4
LT
5059}
5060
5061/*
5062 * In a system that switches off the HZ timer nohz_cpu_mask
5063 * indicates which cpus entered this state. This is used
5064 * in the rcu update to wait only for active cpus. For system
5065 * which do not switch off the HZ timer nohz_cpu_mask should
5066 * always be CPU_MASK_NONE.
5067 */
5068cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5069
19978ca6
IM
5070/*
5071 * Increase the granularity value when there are more CPUs,
5072 * because with more CPUs the 'effective latency' as visible
5073 * to users decreases. But the relationship is not linear,
5074 * so pick a second-best guess by going with the log2 of the
5075 * number of CPUs.
5076 *
5077 * This idea comes from the SD scheduler of Con Kolivas:
5078 */
5079static inline void sched_init_granularity(void)
5080{
5081 unsigned int factor = 1 + ilog2(num_online_cpus());
5082 const unsigned long limit = 200000000;
5083
5084 sysctl_sched_min_granularity *= factor;
5085 if (sysctl_sched_min_granularity > limit)
5086 sysctl_sched_min_granularity = limit;
5087
5088 sysctl_sched_latency *= factor;
5089 if (sysctl_sched_latency > limit)
5090 sysctl_sched_latency = limit;
5091
5092 sysctl_sched_wakeup_granularity *= factor;
5093 sysctl_sched_batch_wakeup_granularity *= factor;
5094}
5095
1da177e4
LT
5096#ifdef CONFIG_SMP
5097/*
5098 * This is how migration works:
5099 *
70b97a7f 5100 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5101 * runqueue and wake up that CPU's migration thread.
5102 * 2) we down() the locked semaphore => thread blocks.
5103 * 3) migration thread wakes up (implicitly it forces the migrated
5104 * thread off the CPU)
5105 * 4) it gets the migration request and checks whether the migrated
5106 * task is still in the wrong runqueue.
5107 * 5) if it's in the wrong runqueue then the migration thread removes
5108 * it and puts it into the right queue.
5109 * 6) migration thread up()s the semaphore.
5110 * 7) we wake up and the migration is done.
5111 */
5112
5113/*
5114 * Change a given task's CPU affinity. Migrate the thread to a
5115 * proper CPU and schedule it away if the CPU it's executing on
5116 * is removed from the allowed bitmask.
5117 *
5118 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5119 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5120 * call is not atomic; no spinlocks may be held.
5121 */
36c8b586 5122int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5123{
70b97a7f 5124 struct migration_req req;
1da177e4 5125 unsigned long flags;
70b97a7f 5126 struct rq *rq;
48f24c4d 5127 int ret = 0;
1da177e4
LT
5128
5129 rq = task_rq_lock(p, &flags);
5130 if (!cpus_intersects(new_mask, cpu_online_map)) {
5131 ret = -EINVAL;
5132 goto out;
5133 }
5134
5135 p->cpus_allowed = new_mask;
5136 /* Can the task run on the task's current CPU? If so, we're done */
5137 if (cpu_isset(task_cpu(p), new_mask))
5138 goto out;
5139
5140 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5141 /* Need help from migration thread: drop lock and wait. */
5142 task_rq_unlock(rq, &flags);
5143 wake_up_process(rq->migration_thread);
5144 wait_for_completion(&req.done);
5145 tlb_migrate_finish(p->mm);
5146 return 0;
5147 }
5148out:
5149 task_rq_unlock(rq, &flags);
48f24c4d 5150
1da177e4
LT
5151 return ret;
5152}
1da177e4
LT
5153EXPORT_SYMBOL_GPL(set_cpus_allowed);
5154
5155/*
41a2d6cf 5156 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5157 * this because either it can't run here any more (set_cpus_allowed()
5158 * away from this CPU, or CPU going down), or because we're
5159 * attempting to rebalance this task on exec (sched_exec).
5160 *
5161 * So we race with normal scheduler movements, but that's OK, as long
5162 * as the task is no longer on this CPU.
efc30814
KK
5163 *
5164 * Returns non-zero if task was successfully migrated.
1da177e4 5165 */
efc30814 5166static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5167{
70b97a7f 5168 struct rq *rq_dest, *rq_src;
dd41f596 5169 int ret = 0, on_rq;
1da177e4
LT
5170
5171 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5172 return ret;
1da177e4
LT
5173
5174 rq_src = cpu_rq(src_cpu);
5175 rq_dest = cpu_rq(dest_cpu);
5176
5177 double_rq_lock(rq_src, rq_dest);
5178 /* Already moved. */
5179 if (task_cpu(p) != src_cpu)
5180 goto out;
5181 /* Affinity changed (again). */
5182 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5183 goto out;
5184
dd41f596 5185 on_rq = p->se.on_rq;
6e82a3be 5186 if (on_rq)
2e1cb74a 5187 deactivate_task(rq_src, p, 0);
6e82a3be 5188
1da177e4 5189 set_task_cpu(p, dest_cpu);
dd41f596
IM
5190 if (on_rq) {
5191 activate_task(rq_dest, p, 0);
5192 check_preempt_curr(rq_dest, p);
1da177e4 5193 }
efc30814 5194 ret = 1;
1da177e4
LT
5195out:
5196 double_rq_unlock(rq_src, rq_dest);
efc30814 5197 return ret;
1da177e4
LT
5198}
5199
5200/*
5201 * migration_thread - this is a highprio system thread that performs
5202 * thread migration by bumping thread off CPU then 'pushing' onto
5203 * another runqueue.
5204 */
95cdf3b7 5205static int migration_thread(void *data)
1da177e4 5206{
1da177e4 5207 int cpu = (long)data;
70b97a7f 5208 struct rq *rq;
1da177e4
LT
5209
5210 rq = cpu_rq(cpu);
5211 BUG_ON(rq->migration_thread != current);
5212
5213 set_current_state(TASK_INTERRUPTIBLE);
5214 while (!kthread_should_stop()) {
70b97a7f 5215 struct migration_req *req;
1da177e4 5216 struct list_head *head;
1da177e4 5217
1da177e4
LT
5218 spin_lock_irq(&rq->lock);
5219
5220 if (cpu_is_offline(cpu)) {
5221 spin_unlock_irq(&rq->lock);
5222 goto wait_to_die;
5223 }
5224
5225 if (rq->active_balance) {
5226 active_load_balance(rq, cpu);
5227 rq->active_balance = 0;
5228 }
5229
5230 head = &rq->migration_queue;
5231
5232 if (list_empty(head)) {
5233 spin_unlock_irq(&rq->lock);
5234 schedule();
5235 set_current_state(TASK_INTERRUPTIBLE);
5236 continue;
5237 }
70b97a7f 5238 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5239 list_del_init(head->next);
5240
674311d5
NP
5241 spin_unlock(&rq->lock);
5242 __migrate_task(req->task, cpu, req->dest_cpu);
5243 local_irq_enable();
1da177e4
LT
5244
5245 complete(&req->done);
5246 }
5247 __set_current_state(TASK_RUNNING);
5248 return 0;
5249
5250wait_to_die:
5251 /* Wait for kthread_stop */
5252 set_current_state(TASK_INTERRUPTIBLE);
5253 while (!kthread_should_stop()) {
5254 schedule();
5255 set_current_state(TASK_INTERRUPTIBLE);
5256 }
5257 __set_current_state(TASK_RUNNING);
5258 return 0;
5259}
5260
5261#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5262
5263static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5264{
5265 int ret;
5266
5267 local_irq_disable();
5268 ret = __migrate_task(p, src_cpu, dest_cpu);
5269 local_irq_enable();
5270 return ret;
5271}
5272
054b9108 5273/*
3a4fa0a2 5274 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5275 * NOTE: interrupts should be disabled by the caller
5276 */
48f24c4d 5277static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5278{
efc30814 5279 unsigned long flags;
1da177e4 5280 cpumask_t mask;
70b97a7f
IM
5281 struct rq *rq;
5282 int dest_cpu;
1da177e4 5283
3a5c359a
AK
5284 do {
5285 /* On same node? */
5286 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5287 cpus_and(mask, mask, p->cpus_allowed);
5288 dest_cpu = any_online_cpu(mask);
5289
5290 /* On any allowed CPU? */
5291 if (dest_cpu == NR_CPUS)
5292 dest_cpu = any_online_cpu(p->cpus_allowed);
5293
5294 /* No more Mr. Nice Guy. */
5295 if (dest_cpu == NR_CPUS) {
470fd646
CW
5296 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5297 /*
5298 * Try to stay on the same cpuset, where the
5299 * current cpuset may be a subset of all cpus.
5300 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5301 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5302 * called within calls to cpuset_lock/cpuset_unlock.
5303 */
3a5c359a 5304 rq = task_rq_lock(p, &flags);
470fd646 5305 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5306 dest_cpu = any_online_cpu(p->cpus_allowed);
5307 task_rq_unlock(rq, &flags);
1da177e4 5308
3a5c359a
AK
5309 /*
5310 * Don't tell them about moving exiting tasks or
5311 * kernel threads (both mm NULL), since they never
5312 * leave kernel.
5313 */
41a2d6cf 5314 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5315 printk(KERN_INFO "process %d (%s) no "
5316 "longer affine to cpu%d\n",
41a2d6cf
IM
5317 task_pid_nr(p), p->comm, dead_cpu);
5318 }
3a5c359a 5319 }
f7b4cddc 5320 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5321}
5322
5323/*
5324 * While a dead CPU has no uninterruptible tasks queued at this point,
5325 * it might still have a nonzero ->nr_uninterruptible counter, because
5326 * for performance reasons the counter is not stricly tracking tasks to
5327 * their home CPUs. So we just add the counter to another CPU's counter,
5328 * to keep the global sum constant after CPU-down:
5329 */
70b97a7f 5330static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5331{
70b97a7f 5332 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5333 unsigned long flags;
5334
5335 local_irq_save(flags);
5336 double_rq_lock(rq_src, rq_dest);
5337 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5338 rq_src->nr_uninterruptible = 0;
5339 double_rq_unlock(rq_src, rq_dest);
5340 local_irq_restore(flags);
5341}
5342
5343/* Run through task list and migrate tasks from the dead cpu. */
5344static void migrate_live_tasks(int src_cpu)
5345{
48f24c4d 5346 struct task_struct *p, *t;
1da177e4 5347
f7b4cddc 5348 read_lock(&tasklist_lock);
1da177e4 5349
48f24c4d
IM
5350 do_each_thread(t, p) {
5351 if (p == current)
1da177e4
LT
5352 continue;
5353
48f24c4d
IM
5354 if (task_cpu(p) == src_cpu)
5355 move_task_off_dead_cpu(src_cpu, p);
5356 } while_each_thread(t, p);
1da177e4 5357
f7b4cddc 5358 read_unlock(&tasklist_lock);
1da177e4
LT
5359}
5360
dd41f596
IM
5361/*
5362 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5363 * It does so by boosting its priority to highest possible.
5364 * Used by CPU offline code.
1da177e4
LT
5365 */
5366void sched_idle_next(void)
5367{
48f24c4d 5368 int this_cpu = smp_processor_id();
70b97a7f 5369 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5370 struct task_struct *p = rq->idle;
5371 unsigned long flags;
5372
5373 /* cpu has to be offline */
48f24c4d 5374 BUG_ON(cpu_online(this_cpu));
1da177e4 5375
48f24c4d
IM
5376 /*
5377 * Strictly not necessary since rest of the CPUs are stopped by now
5378 * and interrupts disabled on the current cpu.
1da177e4
LT
5379 */
5380 spin_lock_irqsave(&rq->lock, flags);
5381
dd41f596 5382 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5383
94bc9a7b
DA
5384 update_rq_clock(rq);
5385 activate_task(rq, p, 0);
1da177e4
LT
5386
5387 spin_unlock_irqrestore(&rq->lock, flags);
5388}
5389
48f24c4d
IM
5390/*
5391 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5392 * offline.
5393 */
5394void idle_task_exit(void)
5395{
5396 struct mm_struct *mm = current->active_mm;
5397
5398 BUG_ON(cpu_online(smp_processor_id()));
5399
5400 if (mm != &init_mm)
5401 switch_mm(mm, &init_mm, current);
5402 mmdrop(mm);
5403}
5404
054b9108 5405/* called under rq->lock with disabled interrupts */
36c8b586 5406static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5407{
70b97a7f 5408 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5409
5410 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5411 BUG_ON(!p->exit_state);
1da177e4
LT
5412
5413 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5414 BUG_ON(p->state == TASK_DEAD);
1da177e4 5415
48f24c4d 5416 get_task_struct(p);
1da177e4
LT
5417
5418 /*
5419 * Drop lock around migration; if someone else moves it,
41a2d6cf 5420 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5421 * fine.
5422 */
f7b4cddc 5423 spin_unlock_irq(&rq->lock);
48f24c4d 5424 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5425 spin_lock_irq(&rq->lock);
1da177e4 5426
48f24c4d 5427 put_task_struct(p);
1da177e4
LT
5428}
5429
5430/* release_task() removes task from tasklist, so we won't find dead tasks. */
5431static void migrate_dead_tasks(unsigned int dead_cpu)
5432{
70b97a7f 5433 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5434 struct task_struct *next;
48f24c4d 5435
dd41f596
IM
5436 for ( ; ; ) {
5437 if (!rq->nr_running)
5438 break;
a8e504d2 5439 update_rq_clock(rq);
ff95f3df 5440 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5441 if (!next)
5442 break;
5443 migrate_dead(dead_cpu, next);
e692ab53 5444
1da177e4
LT
5445 }
5446}
5447#endif /* CONFIG_HOTPLUG_CPU */
5448
e692ab53
NP
5449#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5450
5451static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5452 {
5453 .procname = "sched_domain",
c57baf1e 5454 .mode = 0555,
e0361851 5455 },
38605cae 5456 {0, },
e692ab53
NP
5457};
5458
5459static struct ctl_table sd_ctl_root[] = {
e0361851 5460 {
c57baf1e 5461 .ctl_name = CTL_KERN,
e0361851 5462 .procname = "kernel",
c57baf1e 5463 .mode = 0555,
e0361851
AD
5464 .child = sd_ctl_dir,
5465 },
38605cae 5466 {0, },
e692ab53
NP
5467};
5468
5469static struct ctl_table *sd_alloc_ctl_entry(int n)
5470{
5471 struct ctl_table *entry =
5cf9f062 5472 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5473
e692ab53
NP
5474 return entry;
5475}
5476
6382bc90
MM
5477static void sd_free_ctl_entry(struct ctl_table **tablep)
5478{
cd790076 5479 struct ctl_table *entry;
6382bc90 5480
cd790076
MM
5481 /*
5482 * In the intermediate directories, both the child directory and
5483 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5484 * will always be set. In the lowest directory the names are
cd790076
MM
5485 * static strings and all have proc handlers.
5486 */
5487 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5488 if (entry->child)
5489 sd_free_ctl_entry(&entry->child);
cd790076
MM
5490 if (entry->proc_handler == NULL)
5491 kfree(entry->procname);
5492 }
6382bc90
MM
5493
5494 kfree(*tablep);
5495 *tablep = NULL;
5496}
5497
e692ab53 5498static void
e0361851 5499set_table_entry(struct ctl_table *entry,
e692ab53
NP
5500 const char *procname, void *data, int maxlen,
5501 mode_t mode, proc_handler *proc_handler)
5502{
e692ab53
NP
5503 entry->procname = procname;
5504 entry->data = data;
5505 entry->maxlen = maxlen;
5506 entry->mode = mode;
5507 entry->proc_handler = proc_handler;
5508}
5509
5510static struct ctl_table *
5511sd_alloc_ctl_domain_table(struct sched_domain *sd)
5512{
ace8b3d6 5513 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5514
ad1cdc1d
MM
5515 if (table == NULL)
5516 return NULL;
5517
e0361851 5518 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5519 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5520 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5521 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5522 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5523 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5524 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5525 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5526 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5527 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5528 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5529 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5530 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5531 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5532 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5533 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5534 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5535 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5536 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5537 &sd->cache_nice_tries,
5538 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5539 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5540 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5541 /* &table[11] is terminator */
e692ab53
NP
5542
5543 return table;
5544}
5545
9a4e7159 5546static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5547{
5548 struct ctl_table *entry, *table;
5549 struct sched_domain *sd;
5550 int domain_num = 0, i;
5551 char buf[32];
5552
5553 for_each_domain(cpu, sd)
5554 domain_num++;
5555 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5556 if (table == NULL)
5557 return NULL;
e692ab53
NP
5558
5559 i = 0;
5560 for_each_domain(cpu, sd) {
5561 snprintf(buf, 32, "domain%d", i);
e692ab53 5562 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5563 entry->mode = 0555;
e692ab53
NP
5564 entry->child = sd_alloc_ctl_domain_table(sd);
5565 entry++;
5566 i++;
5567 }
5568 return table;
5569}
5570
5571static struct ctl_table_header *sd_sysctl_header;
6382bc90 5572static void register_sched_domain_sysctl(void)
e692ab53
NP
5573{
5574 int i, cpu_num = num_online_cpus();
5575 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5576 char buf[32];
5577
7378547f
MM
5578 WARN_ON(sd_ctl_dir[0].child);
5579 sd_ctl_dir[0].child = entry;
5580
ad1cdc1d
MM
5581 if (entry == NULL)
5582 return;
5583
97b6ea7b 5584 for_each_online_cpu(i) {
e692ab53 5585 snprintf(buf, 32, "cpu%d", i);
e692ab53 5586 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5587 entry->mode = 0555;
e692ab53 5588 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5589 entry++;
e692ab53 5590 }
7378547f
MM
5591
5592 WARN_ON(sd_sysctl_header);
e692ab53
NP
5593 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5594}
6382bc90 5595
7378547f 5596/* may be called multiple times per register */
6382bc90
MM
5597static void unregister_sched_domain_sysctl(void)
5598{
7378547f
MM
5599 if (sd_sysctl_header)
5600 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5601 sd_sysctl_header = NULL;
7378547f
MM
5602 if (sd_ctl_dir[0].child)
5603 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5604}
e692ab53 5605#else
6382bc90
MM
5606static void register_sched_domain_sysctl(void)
5607{
5608}
5609static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5610{
5611}
5612#endif
5613
1da177e4
LT
5614/*
5615 * migration_call - callback that gets triggered when a CPU is added.
5616 * Here we can start up the necessary migration thread for the new CPU.
5617 */
48f24c4d
IM
5618static int __cpuinit
5619migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5620{
1da177e4 5621 struct task_struct *p;
48f24c4d 5622 int cpu = (long)hcpu;
1da177e4 5623 unsigned long flags;
70b97a7f 5624 struct rq *rq;
1da177e4
LT
5625
5626 switch (action) {
5be9361c 5627
1da177e4 5628 case CPU_UP_PREPARE:
8bb78442 5629 case CPU_UP_PREPARE_FROZEN:
dd41f596 5630 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5631 if (IS_ERR(p))
5632 return NOTIFY_BAD;
1da177e4
LT
5633 kthread_bind(p, cpu);
5634 /* Must be high prio: stop_machine expects to yield to it. */
5635 rq = task_rq_lock(p, &flags);
dd41f596 5636 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5637 task_rq_unlock(rq, &flags);
5638 cpu_rq(cpu)->migration_thread = p;
5639 break;
48f24c4d 5640
1da177e4 5641 case CPU_ONLINE:
8bb78442 5642 case CPU_ONLINE_FROZEN:
3a4fa0a2 5643 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5644 wake_up_process(cpu_rq(cpu)->migration_thread);
5645 break;
48f24c4d 5646
1da177e4
LT
5647#ifdef CONFIG_HOTPLUG_CPU
5648 case CPU_UP_CANCELED:
8bb78442 5649 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5650 if (!cpu_rq(cpu)->migration_thread)
5651 break;
41a2d6cf 5652 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5653 kthread_bind(cpu_rq(cpu)->migration_thread,
5654 any_online_cpu(cpu_online_map));
1da177e4
LT
5655 kthread_stop(cpu_rq(cpu)->migration_thread);
5656 cpu_rq(cpu)->migration_thread = NULL;
5657 break;
48f24c4d 5658
1da177e4 5659 case CPU_DEAD:
8bb78442 5660 case CPU_DEAD_FROZEN:
470fd646 5661 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5662 migrate_live_tasks(cpu);
5663 rq = cpu_rq(cpu);
5664 kthread_stop(rq->migration_thread);
5665 rq->migration_thread = NULL;
5666 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5667 spin_lock_irq(&rq->lock);
a8e504d2 5668 update_rq_clock(rq);
2e1cb74a 5669 deactivate_task(rq, rq->idle, 0);
1da177e4 5670 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5671 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5672 rq->idle->sched_class = &idle_sched_class;
1da177e4 5673 migrate_dead_tasks(cpu);
d2da272a 5674 spin_unlock_irq(&rq->lock);
470fd646 5675 cpuset_unlock();
1da177e4
LT
5676 migrate_nr_uninterruptible(rq);
5677 BUG_ON(rq->nr_running != 0);
5678
41a2d6cf
IM
5679 /*
5680 * No need to migrate the tasks: it was best-effort if
5681 * they didn't take sched_hotcpu_mutex. Just wake up
5682 * the requestors.
5683 */
1da177e4
LT
5684 spin_lock_irq(&rq->lock);
5685 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5686 struct migration_req *req;
5687
1da177e4 5688 req = list_entry(rq->migration_queue.next,
70b97a7f 5689 struct migration_req, list);
1da177e4
LT
5690 list_del_init(&req->list);
5691 complete(&req->done);
5692 }
5693 spin_unlock_irq(&rq->lock);
5694 break;
5695#endif
5696 }
5697 return NOTIFY_OK;
5698}
5699
5700/* Register at highest priority so that task migration (migrate_all_tasks)
5701 * happens before everything else.
5702 */
26c2143b 5703static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5704 .notifier_call = migration_call,
5705 .priority = 10
5706};
5707
e6fe6649 5708void __init migration_init(void)
1da177e4
LT
5709{
5710 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5711 int err;
48f24c4d
IM
5712
5713 /* Start one for the boot CPU: */
07dccf33
AM
5714 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5715 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5716 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5717 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5718}
5719#endif
5720
5721#ifdef CONFIG_SMP
476f3534
CL
5722
5723/* Number of possible processor ids */
5724int nr_cpu_ids __read_mostly = NR_CPUS;
5725EXPORT_SYMBOL(nr_cpu_ids);
5726
3e9830dc 5727#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5728
5729static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5730{
4dcf6aff
IM
5731 struct sched_group *group = sd->groups;
5732 cpumask_t groupmask;
5733 char str[NR_CPUS];
1da177e4 5734
4dcf6aff
IM
5735 cpumask_scnprintf(str, NR_CPUS, sd->span);
5736 cpus_clear(groupmask);
5737
5738 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5739
5740 if (!(sd->flags & SD_LOAD_BALANCE)) {
5741 printk("does not load-balance\n");
5742 if (sd->parent)
5743 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5744 " has parent");
5745 return -1;
41c7ce9a
NP
5746 }
5747
4dcf6aff
IM
5748 printk(KERN_CONT "span %s\n", str);
5749
5750 if (!cpu_isset(cpu, sd->span)) {
5751 printk(KERN_ERR "ERROR: domain->span does not contain "
5752 "CPU%d\n", cpu);
5753 }
5754 if (!cpu_isset(cpu, group->cpumask)) {
5755 printk(KERN_ERR "ERROR: domain->groups does not contain"
5756 " CPU%d\n", cpu);
5757 }
1da177e4 5758
4dcf6aff 5759 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5760 do {
4dcf6aff
IM
5761 if (!group) {
5762 printk("\n");
5763 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5764 break;
5765 }
5766
4dcf6aff
IM
5767 if (!group->__cpu_power) {
5768 printk(KERN_CONT "\n");
5769 printk(KERN_ERR "ERROR: domain->cpu_power not "
5770 "set\n");
5771 break;
5772 }
1da177e4 5773
4dcf6aff
IM
5774 if (!cpus_weight(group->cpumask)) {
5775 printk(KERN_CONT "\n");
5776 printk(KERN_ERR "ERROR: empty group\n");
5777 break;
5778 }
1da177e4 5779
4dcf6aff
IM
5780 if (cpus_intersects(groupmask, group->cpumask)) {
5781 printk(KERN_CONT "\n");
5782 printk(KERN_ERR "ERROR: repeated CPUs\n");
5783 break;
5784 }
1da177e4 5785
4dcf6aff 5786 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5787
4dcf6aff
IM
5788 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5789 printk(KERN_CONT " %s", str);
1da177e4 5790
4dcf6aff
IM
5791 group = group->next;
5792 } while (group != sd->groups);
5793 printk(KERN_CONT "\n");
1da177e4 5794
4dcf6aff
IM
5795 if (!cpus_equal(sd->span, groupmask))
5796 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5797
4dcf6aff
IM
5798 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5799 printk(KERN_ERR "ERROR: parent span is not a superset "
5800 "of domain->span\n");
5801 return 0;
5802}
1da177e4 5803
4dcf6aff
IM
5804static void sched_domain_debug(struct sched_domain *sd, int cpu)
5805{
5806 int level = 0;
1da177e4 5807
4dcf6aff
IM
5808 if (!sd) {
5809 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5810 return;
5811 }
1da177e4 5812
4dcf6aff
IM
5813 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5814
5815 for (;;) {
5816 if (sched_domain_debug_one(sd, cpu, level))
5817 break;
1da177e4
LT
5818 level++;
5819 sd = sd->parent;
33859f7f 5820 if (!sd)
4dcf6aff
IM
5821 break;
5822 }
1da177e4
LT
5823}
5824#else
48f24c4d 5825# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5826#endif
5827
1a20ff27 5828static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5829{
5830 if (cpus_weight(sd->span) == 1)
5831 return 1;
5832
5833 /* Following flags need at least 2 groups */
5834 if (sd->flags & (SD_LOAD_BALANCE |
5835 SD_BALANCE_NEWIDLE |
5836 SD_BALANCE_FORK |
89c4710e
SS
5837 SD_BALANCE_EXEC |
5838 SD_SHARE_CPUPOWER |
5839 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5840 if (sd->groups != sd->groups->next)
5841 return 0;
5842 }
5843
5844 /* Following flags don't use groups */
5845 if (sd->flags & (SD_WAKE_IDLE |
5846 SD_WAKE_AFFINE |
5847 SD_WAKE_BALANCE))
5848 return 0;
5849
5850 return 1;
5851}
5852
48f24c4d
IM
5853static int
5854sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5855{
5856 unsigned long cflags = sd->flags, pflags = parent->flags;
5857
5858 if (sd_degenerate(parent))
5859 return 1;
5860
5861 if (!cpus_equal(sd->span, parent->span))
5862 return 0;
5863
5864 /* Does parent contain flags not in child? */
5865 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5866 if (cflags & SD_WAKE_AFFINE)
5867 pflags &= ~SD_WAKE_BALANCE;
5868 /* Flags needing groups don't count if only 1 group in parent */
5869 if (parent->groups == parent->groups->next) {
5870 pflags &= ~(SD_LOAD_BALANCE |
5871 SD_BALANCE_NEWIDLE |
5872 SD_BALANCE_FORK |
89c4710e
SS
5873 SD_BALANCE_EXEC |
5874 SD_SHARE_CPUPOWER |
5875 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5876 }
5877 if (~cflags & pflags)
5878 return 0;
5879
5880 return 1;
5881}
5882
1da177e4
LT
5883/*
5884 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5885 * hold the hotplug lock.
5886 */
9c1cfda2 5887static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5888{
70b97a7f 5889 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5890 struct sched_domain *tmp;
5891
5892 /* Remove the sched domains which do not contribute to scheduling. */
5893 for (tmp = sd; tmp; tmp = tmp->parent) {
5894 struct sched_domain *parent = tmp->parent;
5895 if (!parent)
5896 break;
1a848870 5897 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5898 tmp->parent = parent->parent;
1a848870
SS
5899 if (parent->parent)
5900 parent->parent->child = tmp;
5901 }
245af2c7
SS
5902 }
5903
1a848870 5904 if (sd && sd_degenerate(sd)) {
245af2c7 5905 sd = sd->parent;
1a848870
SS
5906 if (sd)
5907 sd->child = NULL;
5908 }
1da177e4
LT
5909
5910 sched_domain_debug(sd, cpu);
5911
674311d5 5912 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5913}
5914
5915/* cpus with isolated domains */
67af63a6 5916static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5917
5918/* Setup the mask of cpus configured for isolated domains */
5919static int __init isolated_cpu_setup(char *str)
5920{
5921 int ints[NR_CPUS], i;
5922
5923 str = get_options(str, ARRAY_SIZE(ints), ints);
5924 cpus_clear(cpu_isolated_map);
5925 for (i = 1; i <= ints[0]; i++)
5926 if (ints[i] < NR_CPUS)
5927 cpu_set(ints[i], cpu_isolated_map);
5928 return 1;
5929}
5930
8927f494 5931__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5932
5933/*
6711cab4
SS
5934 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5935 * to a function which identifies what group(along with sched group) a CPU
5936 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5937 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5938 *
5939 * init_sched_build_groups will build a circular linked list of the groups
5940 * covered by the given span, and will set each group's ->cpumask correctly,
5941 * and ->cpu_power to 0.
5942 */
a616058b 5943static void
6711cab4
SS
5944init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5945 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5946 struct sched_group **sg))
1da177e4
LT
5947{
5948 struct sched_group *first = NULL, *last = NULL;
5949 cpumask_t covered = CPU_MASK_NONE;
5950 int i;
5951
5952 for_each_cpu_mask(i, span) {
6711cab4
SS
5953 struct sched_group *sg;
5954 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5955 int j;
5956
5957 if (cpu_isset(i, covered))
5958 continue;
5959
5960 sg->cpumask = CPU_MASK_NONE;
5517d86b 5961 sg->__cpu_power = 0;
1da177e4
LT
5962
5963 for_each_cpu_mask(j, span) {
6711cab4 5964 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5965 continue;
5966
5967 cpu_set(j, covered);
5968 cpu_set(j, sg->cpumask);
5969 }
5970 if (!first)
5971 first = sg;
5972 if (last)
5973 last->next = sg;
5974 last = sg;
5975 }
5976 last->next = first;
5977}
5978
9c1cfda2 5979#define SD_NODES_PER_DOMAIN 16
1da177e4 5980
9c1cfda2 5981#ifdef CONFIG_NUMA
198e2f18 5982
9c1cfda2
JH
5983/**
5984 * find_next_best_node - find the next node to include in a sched_domain
5985 * @node: node whose sched_domain we're building
5986 * @used_nodes: nodes already in the sched_domain
5987 *
41a2d6cf 5988 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5989 * finds the closest node not already in the @used_nodes map.
5990 *
5991 * Should use nodemask_t.
5992 */
5993static int find_next_best_node(int node, unsigned long *used_nodes)
5994{
5995 int i, n, val, min_val, best_node = 0;
5996
5997 min_val = INT_MAX;
5998
5999 for (i = 0; i < MAX_NUMNODES; i++) {
6000 /* Start at @node */
6001 n = (node + i) % MAX_NUMNODES;
6002
6003 if (!nr_cpus_node(n))
6004 continue;
6005
6006 /* Skip already used nodes */
6007 if (test_bit(n, used_nodes))
6008 continue;
6009
6010 /* Simple min distance search */
6011 val = node_distance(node, n);
6012
6013 if (val < min_val) {
6014 min_val = val;
6015 best_node = n;
6016 }
6017 }
6018
6019 set_bit(best_node, used_nodes);
6020 return best_node;
6021}
6022
6023/**
6024 * sched_domain_node_span - get a cpumask for a node's sched_domain
6025 * @node: node whose cpumask we're constructing
6026 * @size: number of nodes to include in this span
6027 *
41a2d6cf 6028 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6029 * should be one that prevents unnecessary balancing, but also spreads tasks
6030 * out optimally.
6031 */
6032static cpumask_t sched_domain_node_span(int node)
6033{
9c1cfda2 6034 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6035 cpumask_t span, nodemask;
6036 int i;
9c1cfda2
JH
6037
6038 cpus_clear(span);
6039 bitmap_zero(used_nodes, MAX_NUMNODES);
6040
6041 nodemask = node_to_cpumask(node);
6042 cpus_or(span, span, nodemask);
6043 set_bit(node, used_nodes);
6044
6045 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6046 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6047
9c1cfda2
JH
6048 nodemask = node_to_cpumask(next_node);
6049 cpus_or(span, span, nodemask);
6050 }
6051
6052 return span;
6053}
6054#endif
6055
5c45bf27 6056int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6057
9c1cfda2 6058/*
48f24c4d 6059 * SMT sched-domains:
9c1cfda2 6060 */
1da177e4
LT
6061#ifdef CONFIG_SCHED_SMT
6062static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6063static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6064
41a2d6cf
IM
6065static int
6066cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6067{
6711cab4
SS
6068 if (sg)
6069 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6070 return cpu;
6071}
6072#endif
6073
48f24c4d
IM
6074/*
6075 * multi-core sched-domains:
6076 */
1e9f28fa
SS
6077#ifdef CONFIG_SCHED_MC
6078static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6079static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6080#endif
6081
6082#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6083static int
6084cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6085{
6711cab4 6086 int group;
d5a7430d 6087 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6088 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6089 group = first_cpu(mask);
6090 if (sg)
6091 *sg = &per_cpu(sched_group_core, group);
6092 return group;
1e9f28fa
SS
6093}
6094#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6095static int
6096cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6097{
6711cab4
SS
6098 if (sg)
6099 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6100 return cpu;
6101}
6102#endif
6103
1da177e4 6104static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6105static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6106
41a2d6cf
IM
6107static int
6108cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6109{
6711cab4 6110 int group;
48f24c4d 6111#ifdef CONFIG_SCHED_MC
1e9f28fa 6112 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6113 cpus_and(mask, mask, *cpu_map);
6711cab4 6114 group = first_cpu(mask);
1e9f28fa 6115#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6116 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6117 cpus_and(mask, mask, *cpu_map);
6711cab4 6118 group = first_cpu(mask);
1da177e4 6119#else
6711cab4 6120 group = cpu;
1da177e4 6121#endif
6711cab4
SS
6122 if (sg)
6123 *sg = &per_cpu(sched_group_phys, group);
6124 return group;
1da177e4
LT
6125}
6126
6127#ifdef CONFIG_NUMA
1da177e4 6128/*
9c1cfda2
JH
6129 * The init_sched_build_groups can't handle what we want to do with node
6130 * groups, so roll our own. Now each node has its own list of groups which
6131 * gets dynamically allocated.
1da177e4 6132 */
9c1cfda2 6133static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6134static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6135
9c1cfda2 6136static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6137static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6138
6711cab4
SS
6139static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6140 struct sched_group **sg)
9c1cfda2 6141{
6711cab4
SS
6142 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6143 int group;
6144
6145 cpus_and(nodemask, nodemask, *cpu_map);
6146 group = first_cpu(nodemask);
6147
6148 if (sg)
6149 *sg = &per_cpu(sched_group_allnodes, group);
6150 return group;
1da177e4 6151}
6711cab4 6152
08069033
SS
6153static void init_numa_sched_groups_power(struct sched_group *group_head)
6154{
6155 struct sched_group *sg = group_head;
6156 int j;
6157
6158 if (!sg)
6159 return;
3a5c359a
AK
6160 do {
6161 for_each_cpu_mask(j, sg->cpumask) {
6162 struct sched_domain *sd;
08069033 6163
3a5c359a
AK
6164 sd = &per_cpu(phys_domains, j);
6165 if (j != first_cpu(sd->groups->cpumask)) {
6166 /*
6167 * Only add "power" once for each
6168 * physical package.
6169 */
6170 continue;
6171 }
08069033 6172
3a5c359a
AK
6173 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6174 }
6175 sg = sg->next;
6176 } while (sg != group_head);
08069033 6177}
1da177e4
LT
6178#endif
6179
a616058b 6180#ifdef CONFIG_NUMA
51888ca2
SV
6181/* Free memory allocated for various sched_group structures */
6182static void free_sched_groups(const cpumask_t *cpu_map)
6183{
a616058b 6184 int cpu, i;
51888ca2
SV
6185
6186 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6187 struct sched_group **sched_group_nodes
6188 = sched_group_nodes_bycpu[cpu];
6189
51888ca2
SV
6190 if (!sched_group_nodes)
6191 continue;
6192
6193 for (i = 0; i < MAX_NUMNODES; i++) {
6194 cpumask_t nodemask = node_to_cpumask(i);
6195 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6196
6197 cpus_and(nodemask, nodemask, *cpu_map);
6198 if (cpus_empty(nodemask))
6199 continue;
6200
6201 if (sg == NULL)
6202 continue;
6203 sg = sg->next;
6204next_sg:
6205 oldsg = sg;
6206 sg = sg->next;
6207 kfree(oldsg);
6208 if (oldsg != sched_group_nodes[i])
6209 goto next_sg;
6210 }
6211 kfree(sched_group_nodes);
6212 sched_group_nodes_bycpu[cpu] = NULL;
6213 }
51888ca2 6214}
a616058b
SS
6215#else
6216static void free_sched_groups(const cpumask_t *cpu_map)
6217{
6218}
6219#endif
51888ca2 6220
89c4710e
SS
6221/*
6222 * Initialize sched groups cpu_power.
6223 *
6224 * cpu_power indicates the capacity of sched group, which is used while
6225 * distributing the load between different sched groups in a sched domain.
6226 * Typically cpu_power for all the groups in a sched domain will be same unless
6227 * there are asymmetries in the topology. If there are asymmetries, group
6228 * having more cpu_power will pickup more load compared to the group having
6229 * less cpu_power.
6230 *
6231 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6232 * the maximum number of tasks a group can handle in the presence of other idle
6233 * or lightly loaded groups in the same sched domain.
6234 */
6235static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6236{
6237 struct sched_domain *child;
6238 struct sched_group *group;
6239
6240 WARN_ON(!sd || !sd->groups);
6241
6242 if (cpu != first_cpu(sd->groups->cpumask))
6243 return;
6244
6245 child = sd->child;
6246
5517d86b
ED
6247 sd->groups->__cpu_power = 0;
6248
89c4710e
SS
6249 /*
6250 * For perf policy, if the groups in child domain share resources
6251 * (for example cores sharing some portions of the cache hierarchy
6252 * or SMT), then set this domain groups cpu_power such that each group
6253 * can handle only one task, when there are other idle groups in the
6254 * same sched domain.
6255 */
6256 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6257 (child->flags &
6258 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6259 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6260 return;
6261 }
6262
89c4710e
SS
6263 /*
6264 * add cpu_power of each child group to this groups cpu_power
6265 */
6266 group = child->groups;
6267 do {
5517d86b 6268 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6269 group = group->next;
6270 } while (group != child->groups);
6271}
6272
1da177e4 6273/*
1a20ff27
DG
6274 * Build sched domains for a given set of cpus and attach the sched domains
6275 * to the individual cpus
1da177e4 6276 */
51888ca2 6277static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6278{
6279 int i;
d1b55138
JH
6280#ifdef CONFIG_NUMA
6281 struct sched_group **sched_group_nodes = NULL;
6711cab4 6282 int sd_allnodes = 0;
d1b55138
JH
6283
6284 /*
6285 * Allocate the per-node list of sched groups
6286 */
5cf9f062 6287 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6288 GFP_KERNEL);
d1b55138
JH
6289 if (!sched_group_nodes) {
6290 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6291 return -ENOMEM;
d1b55138
JH
6292 }
6293 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6294#endif
1da177e4
LT
6295
6296 /*
1a20ff27 6297 * Set up domains for cpus specified by the cpu_map.
1da177e4 6298 */
1a20ff27 6299 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6300 struct sched_domain *sd = NULL, *p;
6301 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6302
1a20ff27 6303 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6304
6305#ifdef CONFIG_NUMA
dd41f596
IM
6306 if (cpus_weight(*cpu_map) >
6307 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6308 sd = &per_cpu(allnodes_domains, i);
6309 *sd = SD_ALLNODES_INIT;
6310 sd->span = *cpu_map;
6711cab4 6311 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6312 p = sd;
6711cab4 6313 sd_allnodes = 1;
9c1cfda2
JH
6314 } else
6315 p = NULL;
6316
1da177e4 6317 sd = &per_cpu(node_domains, i);
1da177e4 6318 *sd = SD_NODE_INIT;
9c1cfda2
JH
6319 sd->span = sched_domain_node_span(cpu_to_node(i));
6320 sd->parent = p;
1a848870
SS
6321 if (p)
6322 p->child = sd;
9c1cfda2 6323 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6324#endif
6325
6326 p = sd;
6327 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6328 *sd = SD_CPU_INIT;
6329 sd->span = nodemask;
6330 sd->parent = p;
1a848870
SS
6331 if (p)
6332 p->child = sd;
6711cab4 6333 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6334
1e9f28fa
SS
6335#ifdef CONFIG_SCHED_MC
6336 p = sd;
6337 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6338 *sd = SD_MC_INIT;
6339 sd->span = cpu_coregroup_map(i);
6340 cpus_and(sd->span, sd->span, *cpu_map);
6341 sd->parent = p;
1a848870 6342 p->child = sd;
6711cab4 6343 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6344#endif
6345
1da177e4
LT
6346#ifdef CONFIG_SCHED_SMT
6347 p = sd;
6348 sd = &per_cpu(cpu_domains, i);
1da177e4 6349 *sd = SD_SIBLING_INIT;
d5a7430d 6350 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6351 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6352 sd->parent = p;
1a848870 6353 p->child = sd;
6711cab4 6354 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6355#endif
6356 }
6357
6358#ifdef CONFIG_SCHED_SMT
6359 /* Set up CPU (sibling) groups */
9c1cfda2 6360 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6361 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6362 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6363 if (i != first_cpu(this_sibling_map))
6364 continue;
6365
dd41f596
IM
6366 init_sched_build_groups(this_sibling_map, cpu_map,
6367 &cpu_to_cpu_group);
1da177e4
LT
6368 }
6369#endif
6370
1e9f28fa
SS
6371#ifdef CONFIG_SCHED_MC
6372 /* Set up multi-core groups */
6373 for_each_cpu_mask(i, *cpu_map) {
6374 cpumask_t this_core_map = cpu_coregroup_map(i);
6375 cpus_and(this_core_map, this_core_map, *cpu_map);
6376 if (i != first_cpu(this_core_map))
6377 continue;
dd41f596
IM
6378 init_sched_build_groups(this_core_map, cpu_map,
6379 &cpu_to_core_group);
1e9f28fa
SS
6380 }
6381#endif
6382
1da177e4
LT
6383 /* Set up physical groups */
6384 for (i = 0; i < MAX_NUMNODES; i++) {
6385 cpumask_t nodemask = node_to_cpumask(i);
6386
1a20ff27 6387 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6388 if (cpus_empty(nodemask))
6389 continue;
6390
6711cab4 6391 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6392 }
6393
6394#ifdef CONFIG_NUMA
6395 /* Set up node groups */
6711cab4 6396 if (sd_allnodes)
dd41f596
IM
6397 init_sched_build_groups(*cpu_map, cpu_map,
6398 &cpu_to_allnodes_group);
9c1cfda2
JH
6399
6400 for (i = 0; i < MAX_NUMNODES; i++) {
6401 /* Set up node groups */
6402 struct sched_group *sg, *prev;
6403 cpumask_t nodemask = node_to_cpumask(i);
6404 cpumask_t domainspan;
6405 cpumask_t covered = CPU_MASK_NONE;
6406 int j;
6407
6408 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6409 if (cpus_empty(nodemask)) {
6410 sched_group_nodes[i] = NULL;
9c1cfda2 6411 continue;
d1b55138 6412 }
9c1cfda2
JH
6413
6414 domainspan = sched_domain_node_span(i);
6415 cpus_and(domainspan, domainspan, *cpu_map);
6416
15f0b676 6417 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6418 if (!sg) {
6419 printk(KERN_WARNING "Can not alloc domain group for "
6420 "node %d\n", i);
6421 goto error;
6422 }
9c1cfda2
JH
6423 sched_group_nodes[i] = sg;
6424 for_each_cpu_mask(j, nodemask) {
6425 struct sched_domain *sd;
9761eea8 6426
9c1cfda2
JH
6427 sd = &per_cpu(node_domains, j);
6428 sd->groups = sg;
9c1cfda2 6429 }
5517d86b 6430 sg->__cpu_power = 0;
9c1cfda2 6431 sg->cpumask = nodemask;
51888ca2 6432 sg->next = sg;
9c1cfda2
JH
6433 cpus_or(covered, covered, nodemask);
6434 prev = sg;
6435
6436 for (j = 0; j < MAX_NUMNODES; j++) {
6437 cpumask_t tmp, notcovered;
6438 int n = (i + j) % MAX_NUMNODES;
6439
6440 cpus_complement(notcovered, covered);
6441 cpus_and(tmp, notcovered, *cpu_map);
6442 cpus_and(tmp, tmp, domainspan);
6443 if (cpus_empty(tmp))
6444 break;
6445
6446 nodemask = node_to_cpumask(n);
6447 cpus_and(tmp, tmp, nodemask);
6448 if (cpus_empty(tmp))
6449 continue;
6450
15f0b676
SV
6451 sg = kmalloc_node(sizeof(struct sched_group),
6452 GFP_KERNEL, i);
9c1cfda2
JH
6453 if (!sg) {
6454 printk(KERN_WARNING
6455 "Can not alloc domain group for node %d\n", j);
51888ca2 6456 goto error;
9c1cfda2 6457 }
5517d86b 6458 sg->__cpu_power = 0;
9c1cfda2 6459 sg->cpumask = tmp;
51888ca2 6460 sg->next = prev->next;
9c1cfda2
JH
6461 cpus_or(covered, covered, tmp);
6462 prev->next = sg;
6463 prev = sg;
6464 }
9c1cfda2 6465 }
1da177e4
LT
6466#endif
6467
6468 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6469#ifdef CONFIG_SCHED_SMT
1a20ff27 6470 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6471 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6472
89c4710e 6473 init_sched_groups_power(i, sd);
5c45bf27 6474 }
1da177e4 6475#endif
1e9f28fa 6476#ifdef CONFIG_SCHED_MC
5c45bf27 6477 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6478 struct sched_domain *sd = &per_cpu(core_domains, i);
6479
89c4710e 6480 init_sched_groups_power(i, sd);
5c45bf27
SS
6481 }
6482#endif
1e9f28fa 6483
5c45bf27 6484 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6485 struct sched_domain *sd = &per_cpu(phys_domains, i);
6486
89c4710e 6487 init_sched_groups_power(i, sd);
1da177e4
LT
6488 }
6489
9c1cfda2 6490#ifdef CONFIG_NUMA
08069033
SS
6491 for (i = 0; i < MAX_NUMNODES; i++)
6492 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6493
6711cab4
SS
6494 if (sd_allnodes) {
6495 struct sched_group *sg;
f712c0c7 6496
6711cab4 6497 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6498 init_numa_sched_groups_power(sg);
6499 }
9c1cfda2
JH
6500#endif
6501
1da177e4 6502 /* Attach the domains */
1a20ff27 6503 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6504 struct sched_domain *sd;
6505#ifdef CONFIG_SCHED_SMT
6506 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6507#elif defined(CONFIG_SCHED_MC)
6508 sd = &per_cpu(core_domains, i);
1da177e4
LT
6509#else
6510 sd = &per_cpu(phys_domains, i);
6511#endif
6512 cpu_attach_domain(sd, i);
6513 }
51888ca2
SV
6514
6515 return 0;
6516
a616058b 6517#ifdef CONFIG_NUMA
51888ca2
SV
6518error:
6519 free_sched_groups(cpu_map);
6520 return -ENOMEM;
a616058b 6521#endif
1da177e4 6522}
029190c5
PJ
6523
6524static cpumask_t *doms_cur; /* current sched domains */
6525static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6526
6527/*
6528 * Special case: If a kmalloc of a doms_cur partition (array of
6529 * cpumask_t) fails, then fallback to a single sched domain,
6530 * as determined by the single cpumask_t fallback_doms.
6531 */
6532static cpumask_t fallback_doms;
6533
1a20ff27 6534/*
41a2d6cf 6535 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6536 * For now this just excludes isolated cpus, but could be used to
6537 * exclude other special cases in the future.
1a20ff27 6538 */
51888ca2 6539static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6540{
7378547f
MM
6541 int err;
6542
029190c5
PJ
6543 ndoms_cur = 1;
6544 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6545 if (!doms_cur)
6546 doms_cur = &fallback_doms;
6547 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6548 err = build_sched_domains(doms_cur);
6382bc90 6549 register_sched_domain_sysctl();
7378547f
MM
6550
6551 return err;
1a20ff27
DG
6552}
6553
6554static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6555{
51888ca2 6556 free_sched_groups(cpu_map);
9c1cfda2 6557}
1da177e4 6558
1a20ff27
DG
6559/*
6560 * Detach sched domains from a group of cpus specified in cpu_map
6561 * These cpus will now be attached to the NULL domain
6562 */
858119e1 6563static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6564{
6565 int i;
6566
6382bc90
MM
6567 unregister_sched_domain_sysctl();
6568
1a20ff27
DG
6569 for_each_cpu_mask(i, *cpu_map)
6570 cpu_attach_domain(NULL, i);
6571 synchronize_sched();
6572 arch_destroy_sched_domains(cpu_map);
6573}
6574
029190c5
PJ
6575/*
6576 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6577 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6578 * doms_new[] to the current sched domain partitioning, doms_cur[].
6579 * It destroys each deleted domain and builds each new domain.
6580 *
6581 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6582 * The masks don't intersect (don't overlap.) We should setup one
6583 * sched domain for each mask. CPUs not in any of the cpumasks will
6584 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6585 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6586 * it as it is.
6587 *
41a2d6cf
IM
6588 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6589 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6590 * failed the kmalloc call, then it can pass in doms_new == NULL,
6591 * and partition_sched_domains() will fallback to the single partition
6592 * 'fallback_doms'.
6593 *
6594 * Call with hotplug lock held
6595 */
6596void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6597{
6598 int i, j;
6599
a1835615
SV
6600 lock_doms_cur();
6601
7378547f
MM
6602 /* always unregister in case we don't destroy any domains */
6603 unregister_sched_domain_sysctl();
6604
029190c5
PJ
6605 if (doms_new == NULL) {
6606 ndoms_new = 1;
6607 doms_new = &fallback_doms;
6608 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6609 }
6610
6611 /* Destroy deleted domains */
6612 for (i = 0; i < ndoms_cur; i++) {
6613 for (j = 0; j < ndoms_new; j++) {
6614 if (cpus_equal(doms_cur[i], doms_new[j]))
6615 goto match1;
6616 }
6617 /* no match - a current sched domain not in new doms_new[] */
6618 detach_destroy_domains(doms_cur + i);
6619match1:
6620 ;
6621 }
6622
6623 /* Build new domains */
6624 for (i = 0; i < ndoms_new; i++) {
6625 for (j = 0; j < ndoms_cur; j++) {
6626 if (cpus_equal(doms_new[i], doms_cur[j]))
6627 goto match2;
6628 }
6629 /* no match - add a new doms_new */
6630 build_sched_domains(doms_new + i);
6631match2:
6632 ;
6633 }
6634
6635 /* Remember the new sched domains */
6636 if (doms_cur != &fallback_doms)
6637 kfree(doms_cur);
6638 doms_cur = doms_new;
6639 ndoms_cur = ndoms_new;
7378547f
MM
6640
6641 register_sched_domain_sysctl();
a1835615
SV
6642
6643 unlock_doms_cur();
029190c5
PJ
6644}
6645
5c45bf27 6646#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6647static int arch_reinit_sched_domains(void)
5c45bf27
SS
6648{
6649 int err;
6650
95402b38 6651 get_online_cpus();
5c45bf27
SS
6652 detach_destroy_domains(&cpu_online_map);
6653 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6654 put_online_cpus();
5c45bf27
SS
6655
6656 return err;
6657}
6658
6659static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6660{
6661 int ret;
6662
6663 if (buf[0] != '0' && buf[0] != '1')
6664 return -EINVAL;
6665
6666 if (smt)
6667 sched_smt_power_savings = (buf[0] == '1');
6668 else
6669 sched_mc_power_savings = (buf[0] == '1');
6670
6671 ret = arch_reinit_sched_domains();
6672
6673 return ret ? ret : count;
6674}
6675
5c45bf27
SS
6676#ifdef CONFIG_SCHED_MC
6677static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6678{
6679 return sprintf(page, "%u\n", sched_mc_power_savings);
6680}
48f24c4d
IM
6681static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6682 const char *buf, size_t count)
5c45bf27
SS
6683{
6684 return sched_power_savings_store(buf, count, 0);
6685}
6707de00
AB
6686static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6687 sched_mc_power_savings_store);
5c45bf27
SS
6688#endif
6689
6690#ifdef CONFIG_SCHED_SMT
6691static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6692{
6693 return sprintf(page, "%u\n", sched_smt_power_savings);
6694}
48f24c4d
IM
6695static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6696 const char *buf, size_t count)
5c45bf27
SS
6697{
6698 return sched_power_savings_store(buf, count, 1);
6699}
6707de00
AB
6700static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6701 sched_smt_power_savings_store);
6702#endif
6703
6704int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6705{
6706 int err = 0;
6707
6708#ifdef CONFIG_SCHED_SMT
6709 if (smt_capable())
6710 err = sysfs_create_file(&cls->kset.kobj,
6711 &attr_sched_smt_power_savings.attr);
6712#endif
6713#ifdef CONFIG_SCHED_MC
6714 if (!err && mc_capable())
6715 err = sysfs_create_file(&cls->kset.kobj,
6716 &attr_sched_mc_power_savings.attr);
6717#endif
6718 return err;
6719}
5c45bf27
SS
6720#endif
6721
1da177e4 6722/*
41a2d6cf 6723 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6724 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6725 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6726 * which will prevent rebalancing while the sched domains are recalculated.
6727 */
6728static int update_sched_domains(struct notifier_block *nfb,
6729 unsigned long action, void *hcpu)
6730{
1da177e4
LT
6731 switch (action) {
6732 case CPU_UP_PREPARE:
8bb78442 6733 case CPU_UP_PREPARE_FROZEN:
1da177e4 6734 case CPU_DOWN_PREPARE:
8bb78442 6735 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6736 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6737 return NOTIFY_OK;
6738
6739 case CPU_UP_CANCELED:
8bb78442 6740 case CPU_UP_CANCELED_FROZEN:
1da177e4 6741 case CPU_DOWN_FAILED:
8bb78442 6742 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6743 case CPU_ONLINE:
8bb78442 6744 case CPU_ONLINE_FROZEN:
1da177e4 6745 case CPU_DEAD:
8bb78442 6746 case CPU_DEAD_FROZEN:
1da177e4
LT
6747 /*
6748 * Fall through and re-initialise the domains.
6749 */
6750 break;
6751 default:
6752 return NOTIFY_DONE;
6753 }
6754
6755 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6756 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6757
6758 return NOTIFY_OK;
6759}
1da177e4
LT
6760
6761void __init sched_init_smp(void)
6762{
5c1e1767
NP
6763 cpumask_t non_isolated_cpus;
6764
95402b38 6765 get_online_cpus();
1a20ff27 6766 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6767 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6768 if (cpus_empty(non_isolated_cpus))
6769 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6770 put_online_cpus();
1da177e4
LT
6771 /* XXX: Theoretical race here - CPU may be hotplugged now */
6772 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6773
6774 /* Move init over to a non-isolated CPU */
6775 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6776 BUG();
19978ca6 6777 sched_init_granularity();
6b2d7700
SV
6778
6779#ifdef CONFIG_FAIR_GROUP_SCHED
6780 if (nr_cpu_ids == 1)
6781 return;
6782
6783 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6784 "group_balance");
6785 if (!IS_ERR(lb_monitor_task)) {
6786 lb_monitor_task->flags |= PF_NOFREEZE;
6787 wake_up_process(lb_monitor_task);
6788 } else {
6789 printk(KERN_ERR "Could not create load balance monitor thread"
6790 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6791 }
6792#endif
1da177e4
LT
6793}
6794#else
6795void __init sched_init_smp(void)
6796{
19978ca6 6797 sched_init_granularity();
1da177e4
LT
6798}
6799#endif /* CONFIG_SMP */
6800
6801int in_sched_functions(unsigned long addr)
6802{
1da177e4
LT
6803 return in_lock_functions(addr) ||
6804 (addr >= (unsigned long)__sched_text_start
6805 && addr < (unsigned long)__sched_text_end);
6806}
6807
a9957449 6808static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6809{
6810 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6811#ifdef CONFIG_FAIR_GROUP_SCHED
6812 cfs_rq->rq = rq;
6813#endif
67e9fb2a 6814 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6815}
6816
1da177e4
LT
6817void __init sched_init(void)
6818{
476f3534 6819 int highest_cpu = 0;
dd41f596
IM
6820 int i, j;
6821
0a945022 6822 for_each_possible_cpu(i) {
dd41f596 6823 struct rt_prio_array *array;
70b97a7f 6824 struct rq *rq;
1da177e4
LT
6825
6826 rq = cpu_rq(i);
6827 spin_lock_init(&rq->lock);
fcb99371 6828 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6829 rq->nr_running = 0;
dd41f596
IM
6830 rq->clock = 1;
6831 init_cfs_rq(&rq->cfs, rq);
6832#ifdef CONFIG_FAIR_GROUP_SCHED
6833 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6834 {
6835 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6836 struct sched_entity *se =
6837 &per_cpu(init_sched_entity, i);
6838
6839 init_cfs_rq_p[i] = cfs_rq;
6840 init_cfs_rq(cfs_rq, rq);
4cf86d77 6841 cfs_rq->tg = &init_task_group;
3a252015 6842 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6843 &rq->leaf_cfs_rq_list);
6844
3a252015
IM
6845 init_sched_entity_p[i] = se;
6846 se->cfs_rq = &rq->cfs;
6847 se->my_q = cfs_rq;
4cf86d77 6848 se->load.weight = init_task_group_load;
9b5b7751 6849 se->load.inv_weight =
4cf86d77 6850 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6851 se->parent = NULL;
6852 }
4cf86d77 6853 init_task_group.shares = init_task_group_load;
dd41f596 6854#endif
1da177e4 6855
dd41f596
IM
6856 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857 rq->cpu_load[j] = 0;
1da177e4 6858#ifdef CONFIG_SMP
41c7ce9a 6859 rq->sd = NULL;
1da177e4 6860 rq->active_balance = 0;
dd41f596 6861 rq->next_balance = jiffies;
1da177e4 6862 rq->push_cpu = 0;
0a2966b4 6863 rq->cpu = i;
1da177e4
LT
6864 rq->migration_thread = NULL;
6865 INIT_LIST_HEAD(&rq->migration_queue);
6866#endif
6867 atomic_set(&rq->nr_iowait, 0);
6868
dd41f596
IM
6869 array = &rq->rt.active;
6870 for (j = 0; j < MAX_RT_PRIO; j++) {
6871 INIT_LIST_HEAD(array->queue + j);
6872 __clear_bit(j, array->bitmap);
1da177e4 6873 }
476f3534 6874 highest_cpu = i;
dd41f596
IM
6875 /* delimiter for bitsearch: */
6876 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6877 }
6878
2dd73a4f 6879 set_load_weight(&init_task);
b50f60ce 6880
e107be36
AK
6881#ifdef CONFIG_PREEMPT_NOTIFIERS
6882 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6883#endif
6884
c9819f45 6885#ifdef CONFIG_SMP
476f3534 6886 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6887 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6888#endif
6889
b50f60ce
HC
6890#ifdef CONFIG_RT_MUTEXES
6891 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6892#endif
6893
1da177e4
LT
6894 /*
6895 * The boot idle thread does lazy MMU switching as well:
6896 */
6897 atomic_inc(&init_mm.mm_count);
6898 enter_lazy_tlb(&init_mm, current);
6899
6900 /*
6901 * Make us the idle thread. Technically, schedule() should not be
6902 * called from this thread, however somewhere below it might be,
6903 * but because we are the idle thread, we just pick up running again
6904 * when this runqueue becomes "idle".
6905 */
6906 init_idle(current, smp_processor_id());
dd41f596
IM
6907 /*
6908 * During early bootup we pretend to be a normal task:
6909 */
6910 current->sched_class = &fair_sched_class;
1da177e4
LT
6911}
6912
6913#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6914void __might_sleep(char *file, int line)
6915{
48f24c4d 6916#ifdef in_atomic
1da177e4
LT
6917 static unsigned long prev_jiffy; /* ratelimiting */
6918
6919 if ((in_atomic() || irqs_disabled()) &&
6920 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6921 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6922 return;
6923 prev_jiffy = jiffies;
91368d73 6924 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6925 " context at %s:%d\n", file, line);
6926 printk("in_atomic():%d, irqs_disabled():%d\n",
6927 in_atomic(), irqs_disabled());
a4c410f0 6928 debug_show_held_locks(current);
3117df04
IM
6929 if (irqs_disabled())
6930 print_irqtrace_events(current);
1da177e4
LT
6931 dump_stack();
6932 }
6933#endif
6934}
6935EXPORT_SYMBOL(__might_sleep);
6936#endif
6937
6938#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6939static void normalize_task(struct rq *rq, struct task_struct *p)
6940{
6941 int on_rq;
6942 update_rq_clock(rq);
6943 on_rq = p->se.on_rq;
6944 if (on_rq)
6945 deactivate_task(rq, p, 0);
6946 __setscheduler(rq, p, SCHED_NORMAL, 0);
6947 if (on_rq) {
6948 activate_task(rq, p, 0);
6949 resched_task(rq->curr);
6950 }
6951}
6952
1da177e4
LT
6953void normalize_rt_tasks(void)
6954{
a0f98a1c 6955 struct task_struct *g, *p;
1da177e4 6956 unsigned long flags;
70b97a7f 6957 struct rq *rq;
1da177e4
LT
6958
6959 read_lock_irq(&tasklist_lock);
a0f98a1c 6960 do_each_thread(g, p) {
178be793
IM
6961 /*
6962 * Only normalize user tasks:
6963 */
6964 if (!p->mm)
6965 continue;
6966
6cfb0d5d 6967 p->se.exec_start = 0;
6cfb0d5d 6968#ifdef CONFIG_SCHEDSTATS
dd41f596 6969 p->se.wait_start = 0;
dd41f596 6970 p->se.sleep_start = 0;
dd41f596 6971 p->se.block_start = 0;
6cfb0d5d 6972#endif
dd41f596
IM
6973 task_rq(p)->clock = 0;
6974
6975 if (!rt_task(p)) {
6976 /*
6977 * Renice negative nice level userspace
6978 * tasks back to 0:
6979 */
6980 if (TASK_NICE(p) < 0 && p->mm)
6981 set_user_nice(p, 0);
1da177e4 6982 continue;
dd41f596 6983 }
1da177e4 6984
b29739f9
IM
6985 spin_lock_irqsave(&p->pi_lock, flags);
6986 rq = __task_rq_lock(p);
1da177e4 6987
178be793 6988 normalize_task(rq, p);
3a5e4dc1 6989
b29739f9
IM
6990 __task_rq_unlock(rq);
6991 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6992 } while_each_thread(g, p);
6993
1da177e4
LT
6994 read_unlock_irq(&tasklist_lock);
6995}
6996
6997#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6998
6999#ifdef CONFIG_IA64
7000/*
7001 * These functions are only useful for the IA64 MCA handling.
7002 *
7003 * They can only be called when the whole system has been
7004 * stopped - every CPU needs to be quiescent, and no scheduling
7005 * activity can take place. Using them for anything else would
7006 * be a serious bug, and as a result, they aren't even visible
7007 * under any other configuration.
7008 */
7009
7010/**
7011 * curr_task - return the current task for a given cpu.
7012 * @cpu: the processor in question.
7013 *
7014 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7015 */
36c8b586 7016struct task_struct *curr_task(int cpu)
1df5c10a
LT
7017{
7018 return cpu_curr(cpu);
7019}
7020
7021/**
7022 * set_curr_task - set the current task for a given cpu.
7023 * @cpu: the processor in question.
7024 * @p: the task pointer to set.
7025 *
7026 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7027 * are serviced on a separate stack. It allows the architecture to switch the
7028 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7029 * must be called with all CPU's synchronized, and interrupts disabled, the
7030 * and caller must save the original value of the current task (see
7031 * curr_task() above) and restore that value before reenabling interrupts and
7032 * re-starting the system.
7033 *
7034 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7035 */
36c8b586 7036void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7037{
7038 cpu_curr(cpu) = p;
7039}
7040
7041#endif
29f59db3
SV
7042
7043#ifdef CONFIG_FAIR_GROUP_SCHED
7044
6b2d7700
SV
7045#ifdef CONFIG_SMP
7046/*
7047 * distribute shares of all task groups among their schedulable entities,
7048 * to reflect load distrbution across cpus.
7049 */
7050static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7051{
7052 struct cfs_rq *cfs_rq;
7053 struct rq *rq = cpu_rq(this_cpu);
7054 cpumask_t sdspan = sd->span;
7055 int balanced = 1;
7056
7057 /* Walk thr' all the task groups that we have */
7058 for_each_leaf_cfs_rq(rq, cfs_rq) {
7059 int i;
7060 unsigned long total_load = 0, total_shares;
7061 struct task_group *tg = cfs_rq->tg;
7062
7063 /* Gather total task load of this group across cpus */
7064 for_each_cpu_mask(i, sdspan)
7065 total_load += tg->cfs_rq[i]->load.weight;
7066
7067 /* Nothing to do if this group has no load */
7068 if (!total_load)
7069 continue;
7070
7071 /*
7072 * tg->shares represents the number of cpu shares the task group
7073 * is eligible to hold on a single cpu. On N cpus, it is
7074 * eligible to hold (N * tg->shares) number of cpu shares.
7075 */
7076 total_shares = tg->shares * cpus_weight(sdspan);
7077
7078 /*
7079 * redistribute total_shares across cpus as per the task load
7080 * distribution.
7081 */
7082 for_each_cpu_mask(i, sdspan) {
7083 unsigned long local_load, local_shares;
7084
7085 local_load = tg->cfs_rq[i]->load.weight;
7086 local_shares = (local_load * total_shares) / total_load;
7087 if (!local_shares)
7088 local_shares = MIN_GROUP_SHARES;
7089 if (local_shares == tg->se[i]->load.weight)
7090 continue;
7091
7092 spin_lock_irq(&cpu_rq(i)->lock);
7093 set_se_shares(tg->se[i], local_shares);
7094 spin_unlock_irq(&cpu_rq(i)->lock);
7095 balanced = 0;
7096 }
7097 }
7098
7099 return balanced;
7100}
7101
7102/*
7103 * How frequently should we rebalance_shares() across cpus?
7104 *
7105 * The more frequently we rebalance shares, the more accurate is the fairness
7106 * of cpu bandwidth distribution between task groups. However higher frequency
7107 * also implies increased scheduling overhead.
7108 *
7109 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7110 * consecutive calls to rebalance_shares() in the same sched domain.
7111 *
7112 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7113 * consecutive calls to rebalance_shares() in the same sched domain.
7114 *
7115 * These settings allows for the appropriate tradeoff between accuracy of
7116 * fairness and the associated overhead.
7117 *
7118 */
7119
7120/* default: 8ms, units: milliseconds */
7121const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7122
7123/* default: 128ms, units: milliseconds */
7124const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7125
7126/* kernel thread that runs rebalance_shares() periodically */
7127static int load_balance_monitor(void *unused)
7128{
7129 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7130 struct sched_param schedparm;
7131 int ret;
7132
7133 /*
7134 * We don't want this thread's execution to be limited by the shares
7135 * assigned to default group (init_task_group). Hence make it run
7136 * as a SCHED_RR RT task at the lowest priority.
7137 */
7138 schedparm.sched_priority = 1;
7139 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7140 if (ret)
7141 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7142 " monitor thread (error = %d) \n", ret);
7143
7144 while (!kthread_should_stop()) {
7145 int i, cpu, balanced = 1;
7146
7147 /* Prevent cpus going down or coming up */
86ef5c9a 7148 get_online_cpus();
6b2d7700
SV
7149 /* lockout changes to doms_cur[] array */
7150 lock_doms_cur();
7151 /*
7152 * Enter a rcu read-side critical section to safely walk rq->sd
7153 * chain on various cpus and to walk task group list
7154 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7155 */
7156 rcu_read_lock();
7157
7158 for (i = 0; i < ndoms_cur; i++) {
7159 cpumask_t cpumap = doms_cur[i];
7160 struct sched_domain *sd = NULL, *sd_prev = NULL;
7161
7162 cpu = first_cpu(cpumap);
7163
7164 /* Find the highest domain at which to balance shares */
7165 for_each_domain(cpu, sd) {
7166 if (!(sd->flags & SD_LOAD_BALANCE))
7167 continue;
7168 sd_prev = sd;
7169 }
7170
7171 sd = sd_prev;
7172 /* sd == NULL? No load balance reqd in this domain */
7173 if (!sd)
7174 continue;
7175
7176 balanced &= rebalance_shares(sd, cpu);
7177 }
7178
7179 rcu_read_unlock();
7180
7181 unlock_doms_cur();
86ef5c9a 7182 put_online_cpus();
6b2d7700
SV
7183
7184 if (!balanced)
7185 timeout = sysctl_sched_min_bal_int_shares;
7186 else if (timeout < sysctl_sched_max_bal_int_shares)
7187 timeout *= 2;
7188
7189 msleep_interruptible(timeout);
7190 }
7191
7192 return 0;
7193}
7194#endif /* CONFIG_SMP */
7195
29f59db3 7196/* allocate runqueue etc for a new task group */
4cf86d77 7197struct task_group *sched_create_group(void)
29f59db3 7198{
4cf86d77 7199 struct task_group *tg;
29f59db3
SV
7200 struct cfs_rq *cfs_rq;
7201 struct sched_entity *se;
9b5b7751 7202 struct rq *rq;
29f59db3
SV
7203 int i;
7204
29f59db3
SV
7205 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7206 if (!tg)
7207 return ERR_PTR(-ENOMEM);
7208
9b5b7751 7209 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7210 if (!tg->cfs_rq)
7211 goto err;
9b5b7751 7212 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7213 if (!tg->se)
7214 goto err;
7215
7216 for_each_possible_cpu(i) {
9b5b7751 7217 rq = cpu_rq(i);
29f59db3
SV
7218
7219 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7220 cpu_to_node(i));
7221 if (!cfs_rq)
7222 goto err;
7223
7224 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7225 cpu_to_node(i));
7226 if (!se)
7227 goto err;
7228
7229 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7230 memset(se, 0, sizeof(struct sched_entity));
7231
7232 tg->cfs_rq[i] = cfs_rq;
7233 init_cfs_rq(cfs_rq, rq);
7234 cfs_rq->tg = tg;
29f59db3
SV
7235
7236 tg->se[i] = se;
7237 se->cfs_rq = &rq->cfs;
7238 se->my_q = cfs_rq;
7239 se->load.weight = NICE_0_LOAD;
7240 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7241 se->parent = NULL;
7242 }
7243
ec2c507f
SV
7244 tg->shares = NICE_0_LOAD;
7245
7246 lock_task_group_list();
9b5b7751
SV
7247 for_each_possible_cpu(i) {
7248 rq = cpu_rq(i);
7249 cfs_rq = tg->cfs_rq[i];
7250 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7251 }
ec2c507f 7252 unlock_task_group_list();
29f59db3 7253
9b5b7751 7254 return tg;
29f59db3
SV
7255
7256err:
7257 for_each_possible_cpu(i) {
a65914b3 7258 if (tg->cfs_rq)
29f59db3 7259 kfree(tg->cfs_rq[i]);
a65914b3 7260 if (tg->se)
29f59db3
SV
7261 kfree(tg->se[i]);
7262 }
a65914b3
IM
7263 kfree(tg->cfs_rq);
7264 kfree(tg->se);
7265 kfree(tg);
29f59db3
SV
7266
7267 return ERR_PTR(-ENOMEM);
7268}
7269
9b5b7751
SV
7270/* rcu callback to free various structures associated with a task group */
7271static void free_sched_group(struct rcu_head *rhp)
29f59db3 7272{
ae8393e5
SV
7273 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7274 struct cfs_rq *cfs_rq;
29f59db3
SV
7275 struct sched_entity *se;
7276 int i;
7277
29f59db3
SV
7278 /* now it should be safe to free those cfs_rqs */
7279 for_each_possible_cpu(i) {
7280 cfs_rq = tg->cfs_rq[i];
7281 kfree(cfs_rq);
7282
7283 se = tg->se[i];
7284 kfree(se);
7285 }
7286
7287 kfree(tg->cfs_rq);
7288 kfree(tg->se);
7289 kfree(tg);
7290}
7291
9b5b7751 7292/* Destroy runqueue etc associated with a task group */
4cf86d77 7293void sched_destroy_group(struct task_group *tg)
29f59db3 7294{
7bae49d4 7295 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7296 int i;
29f59db3 7297
ec2c507f 7298 lock_task_group_list();
9b5b7751
SV
7299 for_each_possible_cpu(i) {
7300 cfs_rq = tg->cfs_rq[i];
7301 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7302 }
ec2c507f 7303 unlock_task_group_list();
9b5b7751 7304
7bae49d4 7305 BUG_ON(!cfs_rq);
9b5b7751
SV
7306
7307 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7308 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7309}
7310
9b5b7751 7311/* change task's runqueue when it moves between groups.
3a252015
IM
7312 * The caller of this function should have put the task in its new group
7313 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7314 * reflect its new group.
9b5b7751
SV
7315 */
7316void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7317{
7318 int on_rq, running;
7319 unsigned long flags;
7320 struct rq *rq;
7321
7322 rq = task_rq_lock(tsk, &flags);
7323
dae51f56 7324 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7325 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7326 goto done;
dae51f56 7327 }
29f59db3
SV
7328
7329 update_rq_clock(rq);
7330
051a1d1a 7331 running = task_current(rq, tsk);
29f59db3
SV
7332 on_rq = tsk->se.on_rq;
7333
83b699ed 7334 if (on_rq) {
29f59db3 7335 dequeue_task(rq, tsk, 0);
83b699ed
SV
7336 if (unlikely(running))
7337 tsk->sched_class->put_prev_task(rq, tsk);
7338 }
29f59db3 7339
ce96b5ac 7340 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7341
83b699ed
SV
7342 if (on_rq) {
7343 if (unlikely(running))
7344 tsk->sched_class->set_curr_task(rq);
7074badb 7345 enqueue_task(rq, tsk, 0);
83b699ed 7346 }
29f59db3
SV
7347
7348done:
7349 task_rq_unlock(rq, &flags);
7350}
7351
6b2d7700 7352/* rq->lock to be locked by caller */
29f59db3
SV
7353static void set_se_shares(struct sched_entity *se, unsigned long shares)
7354{
7355 struct cfs_rq *cfs_rq = se->cfs_rq;
7356 struct rq *rq = cfs_rq->rq;
7357 int on_rq;
7358
6b2d7700
SV
7359 if (!shares)
7360 shares = MIN_GROUP_SHARES;
29f59db3
SV
7361
7362 on_rq = se->on_rq;
6b2d7700 7363 if (on_rq) {
29f59db3 7364 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7365 dec_cpu_load(rq, se->load.weight);
7366 }
29f59db3
SV
7367
7368 se->load.weight = shares;
7369 se->load.inv_weight = div64_64((1ULL<<32), shares);
7370
6b2d7700 7371 if (on_rq) {
29f59db3 7372 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7373 inc_cpu_load(rq, se->load.weight);
7374 }
29f59db3
SV
7375}
7376
4cf86d77 7377int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7378{
7379 int i;
6b2d7700
SV
7380 struct cfs_rq *cfs_rq;
7381 struct rq *rq;
c61935fd 7382
ec2c507f 7383 lock_task_group_list();
9b5b7751 7384 if (tg->shares == shares)
5cb350ba 7385 goto done;
29f59db3 7386
6b2d7700
SV
7387 if (shares < MIN_GROUP_SHARES)
7388 shares = MIN_GROUP_SHARES;
7389
7390 /*
7391 * Prevent any load balance activity (rebalance_shares,
7392 * load_balance_fair) from referring to this group first,
7393 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7394 */
7395 for_each_possible_cpu(i) {
7396 cfs_rq = tg->cfs_rq[i];
7397 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7398 }
7399
7400 /* wait for any ongoing reference to this group to finish */
7401 synchronize_sched();
7402
7403 /*
7404 * Now we are free to modify the group's share on each cpu
7405 * w/o tripping rebalance_share or load_balance_fair.
7406 */
9b5b7751 7407 tg->shares = shares;
6b2d7700
SV
7408 for_each_possible_cpu(i) {
7409 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7410 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7411 spin_unlock_irq(&cpu_rq(i)->lock);
7412 }
29f59db3 7413
6b2d7700
SV
7414 /*
7415 * Enable load balance activity on this group, by inserting it back on
7416 * each cpu's rq->leaf_cfs_rq_list.
7417 */
7418 for_each_possible_cpu(i) {
7419 rq = cpu_rq(i);
7420 cfs_rq = tg->cfs_rq[i];
7421 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7422 }
5cb350ba 7423done:
ec2c507f 7424 unlock_task_group_list();
9b5b7751 7425 return 0;
29f59db3
SV
7426}
7427
5cb350ba
DG
7428unsigned long sched_group_shares(struct task_group *tg)
7429{
7430 return tg->shares;
7431}
7432
3a252015 7433#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7434
7435#ifdef CONFIG_FAIR_CGROUP_SCHED
7436
7437/* return corresponding task_group object of a cgroup */
2b01dfe3 7438static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7439{
2b01dfe3
PM
7440 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7441 struct task_group, css);
68318b8e
SV
7442}
7443
7444static struct cgroup_subsys_state *
2b01dfe3 7445cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7446{
7447 struct task_group *tg;
7448
2b01dfe3 7449 if (!cgrp->parent) {
68318b8e 7450 /* This is early initialization for the top cgroup */
2b01dfe3 7451 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7452 return &init_task_group.css;
7453 }
7454
7455 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7456 if (cgrp->parent->parent)
68318b8e
SV
7457 return ERR_PTR(-EINVAL);
7458
7459 tg = sched_create_group();
7460 if (IS_ERR(tg))
7461 return ERR_PTR(-ENOMEM);
7462
7463 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7464 tg->css.cgroup = cgrp;
68318b8e
SV
7465
7466 return &tg->css;
7467}
7468
41a2d6cf
IM
7469static void
7470cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7471{
2b01dfe3 7472 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7473
7474 sched_destroy_group(tg);
7475}
7476
41a2d6cf
IM
7477static int
7478cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7479 struct task_struct *tsk)
68318b8e
SV
7480{
7481 /* We don't support RT-tasks being in separate groups */
7482 if (tsk->sched_class != &fair_sched_class)
7483 return -EINVAL;
7484
7485 return 0;
7486}
7487
7488static void
2b01dfe3 7489cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7490 struct cgroup *old_cont, struct task_struct *tsk)
7491{
7492 sched_move_task(tsk);
7493}
7494
2b01dfe3
PM
7495static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7496 u64 shareval)
68318b8e 7497{
2b01dfe3 7498 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7499}
7500
2b01dfe3 7501static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7502{
2b01dfe3 7503 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7504
7505 return (u64) tg->shares;
7506}
7507
fe5c7cc2
PM
7508static struct cftype cpu_files[] = {
7509 {
7510 .name = "shares",
7511 .read_uint = cpu_shares_read_uint,
7512 .write_uint = cpu_shares_write_uint,
7513 },
68318b8e
SV
7514};
7515
7516static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7517{
fe5c7cc2 7518 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7519}
7520
7521struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7522 .name = "cpu",
7523 .create = cpu_cgroup_create,
7524 .destroy = cpu_cgroup_destroy,
7525 .can_attach = cpu_cgroup_can_attach,
7526 .attach = cpu_cgroup_attach,
7527 .populate = cpu_cgroup_populate,
7528 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7529 .early_init = 1,
7530};
7531
7532#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7533
7534#ifdef CONFIG_CGROUP_CPUACCT
7535
7536/*
7537 * CPU accounting code for task groups.
7538 *
7539 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7540 * (balbir@in.ibm.com).
7541 */
7542
7543/* track cpu usage of a group of tasks */
7544struct cpuacct {
7545 struct cgroup_subsys_state css;
7546 /* cpuusage holds pointer to a u64-type object on every cpu */
7547 u64 *cpuusage;
7548};
7549
7550struct cgroup_subsys cpuacct_subsys;
7551
7552/* return cpu accounting group corresponding to this container */
7553static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7554{
7555 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7556 struct cpuacct, css);
7557}
7558
7559/* return cpu accounting group to which this task belongs */
7560static inline struct cpuacct *task_ca(struct task_struct *tsk)
7561{
7562 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7563 struct cpuacct, css);
7564}
7565
7566/* create a new cpu accounting group */
7567static struct cgroup_subsys_state *cpuacct_create(
7568 struct cgroup_subsys *ss, struct cgroup *cont)
7569{
7570 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7571
7572 if (!ca)
7573 return ERR_PTR(-ENOMEM);
7574
7575 ca->cpuusage = alloc_percpu(u64);
7576 if (!ca->cpuusage) {
7577 kfree(ca);
7578 return ERR_PTR(-ENOMEM);
7579 }
7580
7581 return &ca->css;
7582}
7583
7584/* destroy an existing cpu accounting group */
41a2d6cf
IM
7585static void
7586cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7587{
7588 struct cpuacct *ca = cgroup_ca(cont);
7589
7590 free_percpu(ca->cpuusage);
7591 kfree(ca);
7592}
7593
7594/* return total cpu usage (in nanoseconds) of a group */
7595static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7596{
7597 struct cpuacct *ca = cgroup_ca(cont);
7598 u64 totalcpuusage = 0;
7599 int i;
7600
7601 for_each_possible_cpu(i) {
7602 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7603
7604 /*
7605 * Take rq->lock to make 64-bit addition safe on 32-bit
7606 * platforms.
7607 */
7608 spin_lock_irq(&cpu_rq(i)->lock);
7609 totalcpuusage += *cpuusage;
7610 spin_unlock_irq(&cpu_rq(i)->lock);
7611 }
7612
7613 return totalcpuusage;
7614}
7615
7616static struct cftype files[] = {
7617 {
7618 .name = "usage",
7619 .read_uint = cpuusage_read,
7620 },
7621};
7622
7623static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7624{
7625 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7626}
7627
7628/*
7629 * charge this task's execution time to its accounting group.
7630 *
7631 * called with rq->lock held.
7632 */
7633static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7634{
7635 struct cpuacct *ca;
7636
7637 if (!cpuacct_subsys.active)
7638 return;
7639
7640 ca = task_ca(tsk);
7641 if (ca) {
7642 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7643
7644 *cpuusage += cputime;
7645 }
7646}
7647
7648struct cgroup_subsys cpuacct_subsys = {
7649 .name = "cpuacct",
7650 .create = cpuacct_create,
7651 .destroy = cpuacct_destroy,
7652 .populate = cpuacct_populate,
7653 .subsys_id = cpuacct_subsys_id,
7654};
7655#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.953499 seconds and 5 git commands to generate.