tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698 116 struct radix_tree_node *node;
83929372 117 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 118
83929372
KS
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageTail(page), page);
121 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698
JW
122
123 if (shadow) {
83929372 124 mapping->nrexceptional += nr;
91b0abe3 125 /*
f9fe48be 126 * Make sure the nrexceptional update is committed before
91b0abe3
JW
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
130 */
131 smp_wmb();
449dd698 132 }
83929372 133 mapping->nrpages -= nr;
449dd698 134
83929372
KS
135 for (i = 0; i < nr; i++) {
136 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137 page->index + i, shadow);
138 if (!node) {
139 VM_BUG_ON_PAGE(nr != 1, page);
449dd698 140 return;
83929372 141 }
449dd698 142
83929372
KS
143 workingset_node_pages_dec(node);
144 if (shadow)
145 workingset_node_shadows_inc(node);
146 else
147 if (__radix_tree_delete_node(&mapping->page_tree, node))
148 continue;
149
150 /*
151 * Track node that only contains shadow entries. DAX mappings
152 * contain no shadow entries and may contain other exceptional
153 * entries so skip those.
154 *
155 * Avoid acquiring the list_lru lock if already tracked.
156 * The list_empty() test is safe as node->private_list is
157 * protected by mapping->tree_lock.
158 */
159 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160 list_empty(&node->private_list)) {
161 node->private_data = mapping;
162 list_lru_add(&workingset_shadow_nodes,
163 &node->private_list);
164 }
449dd698 165 }
91b0abe3
JW
166}
167
1da177e4 168/*
e64a782f 169 * Delete a page from the page cache and free it. Caller has to make
1da177e4 170 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 171 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 172 */
62cccb8c 173void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
174{
175 struct address_space *mapping = page->mapping;
83929372 176 int nr = hpage_nr_pages(page);
1da177e4 177
fe0bfaaf 178 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
179 /*
180 * if we're uptodate, flush out into the cleancache, otherwise
181 * invalidate any existing cleancache entries. We can't leave
182 * stale data around in the cleancache once our page is gone
183 */
184 if (PageUptodate(page) && PageMappedToDisk(page))
185 cleancache_put_page(page);
186 else
3167760f 187 cleancache_invalidate_page(mapping, page);
c515e1fd 188
83929372 189 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
190 VM_BUG_ON_PAGE(page_mapped(page), page);
191 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
192 int mapcount;
193
194 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
195 current->comm, page_to_pfn(page));
196 dump_page(page, "still mapped when deleted");
197 dump_stack();
198 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
199
200 mapcount = page_mapcount(page);
201 if (mapping_exiting(mapping) &&
202 page_count(page) >= mapcount + 2) {
203 /*
204 * All vmas have already been torn down, so it's
205 * a good bet that actually the page is unmapped,
206 * and we'd prefer not to leak it: if we're wrong,
207 * some other bad page check should catch it later.
208 */
209 page_mapcount_reset(page);
6d061f9f 210 page_ref_sub(page, mapcount);
06b241f3
HD
211 }
212 }
213
91b0abe3
JW
214 page_cache_tree_delete(mapping, page, shadow);
215
1da177e4 216 page->mapping = NULL;
b85e0eff 217 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 218
4165b9b4
MH
219 /* hugetlb pages do not participate in page cache accounting. */
220 if (!PageHuge(page))
11fb9989 221 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 222 if (PageSwapBacked(page)) {
11fb9989 223 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 224 if (PageTransHuge(page))
11fb9989 225 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
226 } else {
227 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
228 }
3a692790
LT
229
230 /*
b9ea2515
KK
231 * At this point page must be either written or cleaned by truncate.
232 * Dirty page here signals a bug and loss of unwritten data.
3a692790 233 *
b9ea2515
KK
234 * This fixes dirty accounting after removing the page entirely but
235 * leaves PageDirty set: it has no effect for truncated page and
236 * anyway will be cleared before returning page into buddy allocator.
3a692790 237 */
b9ea2515 238 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 239 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
240}
241
702cfbf9
MK
242/**
243 * delete_from_page_cache - delete page from page cache
244 * @page: the page which the kernel is trying to remove from page cache
245 *
246 * This must be called only on pages that have been verified to be in the page
247 * cache and locked. It will never put the page into the free list, the caller
248 * has a reference on the page.
249 */
250void delete_from_page_cache(struct page *page)
1da177e4 251{
83929372 252 struct address_space *mapping = page_mapping(page);
c4843a75 253 unsigned long flags;
6072d13c 254 void (*freepage)(struct page *);
1da177e4 255
cd7619d6 256 BUG_ON(!PageLocked(page));
1da177e4 257
6072d13c 258 freepage = mapping->a_ops->freepage;
c4843a75 259
c4843a75 260 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 261 __delete_from_page_cache(page, NULL);
c4843a75 262 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
263
264 if (freepage)
265 freepage(page);
83929372
KS
266
267 if (PageTransHuge(page) && !PageHuge(page)) {
268 page_ref_sub(page, HPAGE_PMD_NR);
269 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
270 } else {
271 put_page(page);
272 }
97cecb5a
MK
273}
274EXPORT_SYMBOL(delete_from_page_cache);
275
d72d9e2a 276int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
277{
278 int ret = 0;
279 /* Check for outstanding write errors */
7fcbbaf1
JA
280 if (test_bit(AS_ENOSPC, &mapping->flags) &&
281 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 282 ret = -ENOSPC;
7fcbbaf1
JA
283 if (test_bit(AS_EIO, &mapping->flags) &&
284 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
285 ret = -EIO;
286 return ret;
287}
d72d9e2a 288EXPORT_SYMBOL(filemap_check_errors);
865ffef3 289
1da177e4 290/**
485bb99b 291 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
292 * @mapping: address space structure to write
293 * @start: offset in bytes where the range starts
469eb4d0 294 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 295 * @sync_mode: enable synchronous operation
1da177e4 296 *
485bb99b
RD
297 * Start writeback against all of a mapping's dirty pages that lie
298 * within the byte offsets <start, end> inclusive.
299 *
1da177e4 300 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 301 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
302 * these two operations is that if a dirty page/buffer is encountered, it must
303 * be waited upon, and not just skipped over.
304 */
ebcf28e1
AM
305int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
306 loff_t end, int sync_mode)
1da177e4
LT
307{
308 int ret;
309 struct writeback_control wbc = {
310 .sync_mode = sync_mode,
05fe478d 311 .nr_to_write = LONG_MAX,
111ebb6e
OH
312 .range_start = start,
313 .range_end = end,
1da177e4
LT
314 };
315
316 if (!mapping_cap_writeback_dirty(mapping))
317 return 0;
318
b16b1deb 319 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 320 ret = do_writepages(mapping, &wbc);
b16b1deb 321 wbc_detach_inode(&wbc);
1da177e4
LT
322 return ret;
323}
324
325static inline int __filemap_fdatawrite(struct address_space *mapping,
326 int sync_mode)
327{
111ebb6e 328 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
329}
330
331int filemap_fdatawrite(struct address_space *mapping)
332{
333 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
334}
335EXPORT_SYMBOL(filemap_fdatawrite);
336
f4c0a0fd 337int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 338 loff_t end)
1da177e4
LT
339{
340 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
341}
f4c0a0fd 342EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 343
485bb99b
RD
344/**
345 * filemap_flush - mostly a non-blocking flush
346 * @mapping: target address_space
347 *
1da177e4
LT
348 * This is a mostly non-blocking flush. Not suitable for data-integrity
349 * purposes - I/O may not be started against all dirty pages.
350 */
351int filemap_flush(struct address_space *mapping)
352{
353 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
354}
355EXPORT_SYMBOL(filemap_flush);
356
aa750fd7
JN
357static int __filemap_fdatawait_range(struct address_space *mapping,
358 loff_t start_byte, loff_t end_byte)
1da177e4 359{
09cbfeaf
KS
360 pgoff_t index = start_byte >> PAGE_SHIFT;
361 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
362 struct pagevec pvec;
363 int nr_pages;
aa750fd7 364 int ret = 0;
1da177e4 365
94004ed7 366 if (end_byte < start_byte)
865ffef3 367 goto out;
1da177e4
LT
368
369 pagevec_init(&pvec, 0);
1da177e4
LT
370 while ((index <= end) &&
371 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
372 PAGECACHE_TAG_WRITEBACK,
373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
374 unsigned i;
375
376 for (i = 0; i < nr_pages; i++) {
377 struct page *page = pvec.pages[i];
378
379 /* until radix tree lookup accepts end_index */
380 if (page->index > end)
381 continue;
382
383 wait_on_page_writeback(page);
212260aa 384 if (TestClearPageError(page))
1da177e4
LT
385 ret = -EIO;
386 }
387 pagevec_release(&pvec);
388 cond_resched();
389 }
865ffef3 390out:
aa750fd7
JN
391 return ret;
392}
393
394/**
395 * filemap_fdatawait_range - wait for writeback to complete
396 * @mapping: address space structure to wait for
397 * @start_byte: offset in bytes where the range starts
398 * @end_byte: offset in bytes where the range ends (inclusive)
399 *
400 * Walk the list of under-writeback pages of the given address space
401 * in the given range and wait for all of them. Check error status of
402 * the address space and return it.
403 *
404 * Since the error status of the address space is cleared by this function,
405 * callers are responsible for checking the return value and handling and/or
406 * reporting the error.
407 */
408int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
409 loff_t end_byte)
410{
411 int ret, ret2;
412
413 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
414 ret2 = filemap_check_errors(mapping);
415 if (!ret)
416 ret = ret2;
1da177e4
LT
417
418 return ret;
419}
d3bccb6f
JK
420EXPORT_SYMBOL(filemap_fdatawait_range);
421
aa750fd7
JN
422/**
423 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
424 * @mapping: address space structure to wait for
425 *
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Unlike filemap_fdatawait(), this function
428 * does not clear error status of the address space.
429 *
430 * Use this function if callers don't handle errors themselves. Expected
431 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
432 * fsfreeze(8)
433 */
434void filemap_fdatawait_keep_errors(struct address_space *mapping)
435{
436 loff_t i_size = i_size_read(mapping->host);
437
438 if (i_size == 0)
439 return;
440
441 __filemap_fdatawait_range(mapping, 0, i_size - 1);
442}
443
1da177e4 444/**
485bb99b 445 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 446 * @mapping: address space structure to wait for
485bb99b
RD
447 *
448 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
449 * and wait for all of them. Check error status of the address space
450 * and return it.
451 *
452 * Since the error status of the address space is cleared by this function,
453 * callers are responsible for checking the return value and handling and/or
454 * reporting the error.
1da177e4
LT
455 */
456int filemap_fdatawait(struct address_space *mapping)
457{
458 loff_t i_size = i_size_read(mapping->host);
459
460 if (i_size == 0)
461 return 0;
462
94004ed7 463 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
464}
465EXPORT_SYMBOL(filemap_fdatawait);
466
467int filemap_write_and_wait(struct address_space *mapping)
468{
28fd1298 469 int err = 0;
1da177e4 470
7f6d5b52
RZ
471 if ((!dax_mapping(mapping) && mapping->nrpages) ||
472 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
473 err = filemap_fdatawrite(mapping);
474 /*
475 * Even if the above returned error, the pages may be
476 * written partially (e.g. -ENOSPC), so we wait for it.
477 * But the -EIO is special case, it may indicate the worst
478 * thing (e.g. bug) happened, so we avoid waiting for it.
479 */
480 if (err != -EIO) {
481 int err2 = filemap_fdatawait(mapping);
482 if (!err)
483 err = err2;
484 }
865ffef3
DM
485 } else {
486 err = filemap_check_errors(mapping);
1da177e4 487 }
28fd1298 488 return err;
1da177e4 489}
28fd1298 490EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 491
485bb99b
RD
492/**
493 * filemap_write_and_wait_range - write out & wait on a file range
494 * @mapping: the address_space for the pages
495 * @lstart: offset in bytes where the range starts
496 * @lend: offset in bytes where the range ends (inclusive)
497 *
469eb4d0
AM
498 * Write out and wait upon file offsets lstart->lend, inclusive.
499 *
500 * Note that `lend' is inclusive (describes the last byte to be written) so
501 * that this function can be used to write to the very end-of-file (end = -1).
502 */
1da177e4
LT
503int filemap_write_and_wait_range(struct address_space *mapping,
504 loff_t lstart, loff_t lend)
505{
28fd1298 506 int err = 0;
1da177e4 507
7f6d5b52
RZ
508 if ((!dax_mapping(mapping) && mapping->nrpages) ||
509 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
510 err = __filemap_fdatawrite_range(mapping, lstart, lend,
511 WB_SYNC_ALL);
512 /* See comment of filemap_write_and_wait() */
513 if (err != -EIO) {
94004ed7
CH
514 int err2 = filemap_fdatawait_range(mapping,
515 lstart, lend);
28fd1298
OH
516 if (!err)
517 err = err2;
518 }
865ffef3
DM
519 } else {
520 err = filemap_check_errors(mapping);
1da177e4 521 }
28fd1298 522 return err;
1da177e4 523}
f6995585 524EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 525
ef6a3c63
MS
526/**
527 * replace_page_cache_page - replace a pagecache page with a new one
528 * @old: page to be replaced
529 * @new: page to replace with
530 * @gfp_mask: allocation mode
531 *
532 * This function replaces a page in the pagecache with a new one. On
533 * success it acquires the pagecache reference for the new page and
534 * drops it for the old page. Both the old and new pages must be
535 * locked. This function does not add the new page to the LRU, the
536 * caller must do that.
537 *
538 * The remove + add is atomic. The only way this function can fail is
539 * memory allocation failure.
540 */
541int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
542{
543 int error;
ef6a3c63 544
309381fe
SL
545 VM_BUG_ON_PAGE(!PageLocked(old), old);
546 VM_BUG_ON_PAGE(!PageLocked(new), new);
547 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 548
ef6a3c63
MS
549 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
550 if (!error) {
551 struct address_space *mapping = old->mapping;
552 void (*freepage)(struct page *);
c4843a75 553 unsigned long flags;
ef6a3c63
MS
554
555 pgoff_t offset = old->index;
556 freepage = mapping->a_ops->freepage;
557
09cbfeaf 558 get_page(new);
ef6a3c63
MS
559 new->mapping = mapping;
560 new->index = offset;
561
c4843a75 562 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 563 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
564 error = radix_tree_insert(&mapping->page_tree, offset, new);
565 BUG_ON(error);
566 mapping->nrpages++;
4165b9b4
MH
567
568 /*
569 * hugetlb pages do not participate in page cache accounting.
570 */
571 if (!PageHuge(new))
11fb9989 572 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 573 if (PageSwapBacked(new))
11fb9989 574 __inc_node_page_state(new, NR_SHMEM);
c4843a75 575 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 576 mem_cgroup_migrate(old, new);
ef6a3c63
MS
577 radix_tree_preload_end();
578 if (freepage)
579 freepage(old);
09cbfeaf 580 put_page(old);
ef6a3c63
MS
581 }
582
583 return error;
584}
585EXPORT_SYMBOL_GPL(replace_page_cache_page);
586
0cd6144a 587static int page_cache_tree_insert(struct address_space *mapping,
a528910e 588 struct page *page, void **shadowp)
0cd6144a 589{
449dd698 590 struct radix_tree_node *node;
0cd6144a
JW
591 void **slot;
592 int error;
593
e6145236 594 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
449dd698
JW
595 &node, &slot);
596 if (error)
597 return error;
598 if (*slot) {
0cd6144a
JW
599 void *p;
600
601 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602 if (!radix_tree_exceptional_entry(p))
603 return -EEXIST;
f9fe48be 604
f9fe48be 605 mapping->nrexceptional--;
4f622938
JK
606 if (!dax_mapping(mapping)) {
607 if (shadowp)
608 *shadowp = p;
609 if (node)
610 workingset_node_shadows_dec(node);
611 } else {
612 /* DAX can replace empty locked entry with a hole */
613 WARN_ON_ONCE(p !=
614 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
615 RADIX_DAX_ENTRY_LOCK));
616 /* DAX accounts exceptional entries as normal pages */
617 if (node)
618 workingset_node_pages_dec(node);
ac401cc7
JK
619 /* Wakeup waiters for exceptional entry lock */
620 dax_wake_mapping_entry_waiter(mapping, page->index,
621 false);
4f622938 622 }
0cd6144a 623 }
449dd698
JW
624 radix_tree_replace_slot(slot, page);
625 mapping->nrpages++;
626 if (node) {
627 workingset_node_pages_inc(node);
628 /*
629 * Don't track node that contains actual pages.
630 *
631 * Avoid acquiring the list_lru lock if already
632 * untracked. The list_empty() test is safe as
633 * node->private_list is protected by
634 * mapping->tree_lock.
635 */
636 if (!list_empty(&node->private_list))
637 list_lru_del(&workingset_shadow_nodes,
638 &node->private_list);
639 }
640 return 0;
0cd6144a
JW
641}
642
a528910e
JW
643static int __add_to_page_cache_locked(struct page *page,
644 struct address_space *mapping,
645 pgoff_t offset, gfp_t gfp_mask,
646 void **shadowp)
1da177e4 647{
00501b53
JW
648 int huge = PageHuge(page);
649 struct mem_cgroup *memcg;
e286781d
NP
650 int error;
651
309381fe
SL
652 VM_BUG_ON_PAGE(!PageLocked(page), page);
653 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 654
00501b53
JW
655 if (!huge) {
656 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 657 gfp_mask, &memcg, false);
00501b53
JW
658 if (error)
659 return error;
660 }
1da177e4 661
5e4c0d97 662 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 663 if (error) {
00501b53 664 if (!huge)
f627c2f5 665 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
666 return error;
667 }
668
09cbfeaf 669 get_page(page);
66a0c8ee
KS
670 page->mapping = mapping;
671 page->index = offset;
672
673 spin_lock_irq(&mapping->tree_lock);
a528910e 674 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
675 radix_tree_preload_end();
676 if (unlikely(error))
677 goto err_insert;
4165b9b4
MH
678
679 /* hugetlb pages do not participate in page cache accounting. */
680 if (!huge)
11fb9989 681 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 682 spin_unlock_irq(&mapping->tree_lock);
00501b53 683 if (!huge)
f627c2f5 684 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
685 trace_mm_filemap_add_to_page_cache(page);
686 return 0;
687err_insert:
688 page->mapping = NULL;
689 /* Leave page->index set: truncation relies upon it */
690 spin_unlock_irq(&mapping->tree_lock);
00501b53 691 if (!huge)
f627c2f5 692 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 693 put_page(page);
1da177e4
LT
694 return error;
695}
a528910e
JW
696
697/**
698 * add_to_page_cache_locked - add a locked page to the pagecache
699 * @page: page to add
700 * @mapping: the page's address_space
701 * @offset: page index
702 * @gfp_mask: page allocation mode
703 *
704 * This function is used to add a page to the pagecache. It must be locked.
705 * This function does not add the page to the LRU. The caller must do that.
706 */
707int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
708 pgoff_t offset, gfp_t gfp_mask)
709{
710 return __add_to_page_cache_locked(page, mapping, offset,
711 gfp_mask, NULL);
712}
e286781d 713EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
714
715int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 716 pgoff_t offset, gfp_t gfp_mask)
1da177e4 717{
a528910e 718 void *shadow = NULL;
4f98a2fe
RR
719 int ret;
720
48c935ad 721 __SetPageLocked(page);
a528910e
JW
722 ret = __add_to_page_cache_locked(page, mapping, offset,
723 gfp_mask, &shadow);
724 if (unlikely(ret))
48c935ad 725 __ClearPageLocked(page);
a528910e
JW
726 else {
727 /*
728 * The page might have been evicted from cache only
729 * recently, in which case it should be activated like
730 * any other repeatedly accessed page.
f0281a00
RR
731 * The exception is pages getting rewritten; evicting other
732 * data from the working set, only to cache data that will
733 * get overwritten with something else, is a waste of memory.
a528910e 734 */
f0281a00
RR
735 if (!(gfp_mask & __GFP_WRITE) &&
736 shadow && workingset_refault(shadow)) {
a528910e
JW
737 SetPageActive(page);
738 workingset_activation(page);
739 } else
740 ClearPageActive(page);
741 lru_cache_add(page);
742 }
1da177e4
LT
743 return ret;
744}
18bc0bbd 745EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 746
44110fe3 747#ifdef CONFIG_NUMA
2ae88149 748struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 749{
c0ff7453
MX
750 int n;
751 struct page *page;
752
44110fe3 753 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
754 unsigned int cpuset_mems_cookie;
755 do {
d26914d1 756 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 757 n = cpuset_mem_spread_node();
96db800f 758 page = __alloc_pages_node(n, gfp, 0);
d26914d1 759 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 760
c0ff7453 761 return page;
44110fe3 762 }
2ae88149 763 return alloc_pages(gfp, 0);
44110fe3 764}
2ae88149 765EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
766#endif
767
1da177e4
LT
768/*
769 * In order to wait for pages to become available there must be
770 * waitqueues associated with pages. By using a hash table of
771 * waitqueues where the bucket discipline is to maintain all
772 * waiters on the same queue and wake all when any of the pages
773 * become available, and for the woken contexts to check to be
774 * sure the appropriate page became available, this saves space
775 * at a cost of "thundering herd" phenomena during rare hash
776 * collisions.
777 */
a4796e37 778wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
779{
780 const struct zone *zone = page_zone(page);
781
782 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
783}
a4796e37 784EXPORT_SYMBOL(page_waitqueue);
1da177e4 785
920c7a5d 786void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
787{
788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790 if (test_bit(bit_nr, &page->flags))
74316201 791 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
792 TASK_UNINTERRUPTIBLE);
793}
794EXPORT_SYMBOL(wait_on_page_bit);
795
f62e00cc
KM
796int wait_on_page_bit_killable(struct page *page, int bit_nr)
797{
798 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799
800 if (!test_bit(bit_nr, &page->flags))
801 return 0;
802
803 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 804 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
805}
806
cbbce822
N
807int wait_on_page_bit_killable_timeout(struct page *page,
808 int bit_nr, unsigned long timeout)
809{
810 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812 wait.key.timeout = jiffies + timeout;
813 if (!test_bit(bit_nr, &page->flags))
814 return 0;
815 return __wait_on_bit(page_waitqueue(page), &wait,
816 bit_wait_io_timeout, TASK_KILLABLE);
817}
818EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
819
385e1ca5
DH
820/**
821 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
822 * @page: Page defining the wait queue of interest
823 * @waiter: Waiter to add to the queue
385e1ca5
DH
824 *
825 * Add an arbitrary @waiter to the wait queue for the nominated @page.
826 */
827void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
828{
829 wait_queue_head_t *q = page_waitqueue(page);
830 unsigned long flags;
831
832 spin_lock_irqsave(&q->lock, flags);
833 __add_wait_queue(q, waiter);
834 spin_unlock_irqrestore(&q->lock, flags);
835}
836EXPORT_SYMBOL_GPL(add_page_wait_queue);
837
1da177e4 838/**
485bb99b 839 * unlock_page - unlock a locked page
1da177e4
LT
840 * @page: the page
841 *
842 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
843 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 844 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
845 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
846 *
8413ac9d
NP
847 * The mb is necessary to enforce ordering between the clear_bit and the read
848 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 849 */
920c7a5d 850void unlock_page(struct page *page)
1da177e4 851{
48c935ad 852 page = compound_head(page);
309381fe 853 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 854 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 855 smp_mb__after_atomic();
1da177e4
LT
856 wake_up_page(page, PG_locked);
857}
858EXPORT_SYMBOL(unlock_page);
859
485bb99b
RD
860/**
861 * end_page_writeback - end writeback against a page
862 * @page: the page
1da177e4
LT
863 */
864void end_page_writeback(struct page *page)
865{
888cf2db
MG
866 /*
867 * TestClearPageReclaim could be used here but it is an atomic
868 * operation and overkill in this particular case. Failing to
869 * shuffle a page marked for immediate reclaim is too mild to
870 * justify taking an atomic operation penalty at the end of
871 * ever page writeback.
872 */
873 if (PageReclaim(page)) {
874 ClearPageReclaim(page);
ac6aadb2 875 rotate_reclaimable_page(page);
888cf2db 876 }
ac6aadb2
MS
877
878 if (!test_clear_page_writeback(page))
879 BUG();
880
4e857c58 881 smp_mb__after_atomic();
1da177e4
LT
882 wake_up_page(page, PG_writeback);
883}
884EXPORT_SYMBOL(end_page_writeback);
885
57d99845
MW
886/*
887 * After completing I/O on a page, call this routine to update the page
888 * flags appropriately
889 */
c11f0c0b 890void page_endio(struct page *page, bool is_write, int err)
57d99845 891{
c11f0c0b 892 if (!is_write) {
57d99845
MW
893 if (!err) {
894 SetPageUptodate(page);
895 } else {
896 ClearPageUptodate(page);
897 SetPageError(page);
898 }
899 unlock_page(page);
abf54548 900 } else {
57d99845
MW
901 if (err) {
902 SetPageError(page);
903 if (page->mapping)
904 mapping_set_error(page->mapping, err);
905 }
906 end_page_writeback(page);
907 }
908}
909EXPORT_SYMBOL_GPL(page_endio);
910
485bb99b
RD
911/**
912 * __lock_page - get a lock on the page, assuming we need to sleep to get it
913 * @page: the page to lock
1da177e4 914 */
920c7a5d 915void __lock_page(struct page *page)
1da177e4 916{
48c935ad
KS
917 struct page *page_head = compound_head(page);
918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 919
48c935ad 920 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
921 TASK_UNINTERRUPTIBLE);
922}
923EXPORT_SYMBOL(__lock_page);
924
b5606c2d 925int __lock_page_killable(struct page *page)
2687a356 926{
48c935ad
KS
927 struct page *page_head = compound_head(page);
928 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 929
48c935ad 930 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 931 bit_wait_io, TASK_KILLABLE);
2687a356 932}
18bc0bbd 933EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 934
9a95f3cf
PC
935/*
936 * Return values:
937 * 1 - page is locked; mmap_sem is still held.
938 * 0 - page is not locked.
939 * mmap_sem has been released (up_read()), unless flags had both
940 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
941 * which case mmap_sem is still held.
942 *
943 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
944 * with the page locked and the mmap_sem unperturbed.
945 */
d065bd81
ML
946int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
947 unsigned int flags)
948{
37b23e05
KM
949 if (flags & FAULT_FLAG_ALLOW_RETRY) {
950 /*
951 * CAUTION! In this case, mmap_sem is not released
952 * even though return 0.
953 */
954 if (flags & FAULT_FLAG_RETRY_NOWAIT)
955 return 0;
956
957 up_read(&mm->mmap_sem);
958 if (flags & FAULT_FLAG_KILLABLE)
959 wait_on_page_locked_killable(page);
960 else
318b275f 961 wait_on_page_locked(page);
d065bd81 962 return 0;
37b23e05
KM
963 } else {
964 if (flags & FAULT_FLAG_KILLABLE) {
965 int ret;
966
967 ret = __lock_page_killable(page);
968 if (ret) {
969 up_read(&mm->mmap_sem);
970 return 0;
971 }
972 } else
973 __lock_page(page);
974 return 1;
d065bd81
ML
975 }
976}
977
e7b563bb
JW
978/**
979 * page_cache_next_hole - find the next hole (not-present entry)
980 * @mapping: mapping
981 * @index: index
982 * @max_scan: maximum range to search
983 *
984 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
985 * lowest indexed hole.
986 *
987 * Returns: the index of the hole if found, otherwise returns an index
988 * outside of the set specified (in which case 'return - index >=
989 * max_scan' will be true). In rare cases of index wrap-around, 0 will
990 * be returned.
991 *
992 * page_cache_next_hole may be called under rcu_read_lock. However,
993 * like radix_tree_gang_lookup, this will not atomically search a
994 * snapshot of the tree at a single point in time. For example, if a
995 * hole is created at index 5, then subsequently a hole is created at
996 * index 10, page_cache_next_hole covering both indexes may return 10
997 * if called under rcu_read_lock.
998 */
999pgoff_t page_cache_next_hole(struct address_space *mapping,
1000 pgoff_t index, unsigned long max_scan)
1001{
1002 unsigned long i;
1003
1004 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1005 struct page *page;
1006
1007 page = radix_tree_lookup(&mapping->page_tree, index);
1008 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1009 break;
1010 index++;
1011 if (index == 0)
1012 break;
1013 }
1014
1015 return index;
1016}
1017EXPORT_SYMBOL(page_cache_next_hole);
1018
1019/**
1020 * page_cache_prev_hole - find the prev hole (not-present entry)
1021 * @mapping: mapping
1022 * @index: index
1023 * @max_scan: maximum range to search
1024 *
1025 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1026 * the first hole.
1027 *
1028 * Returns: the index of the hole if found, otherwise returns an index
1029 * outside of the set specified (in which case 'index - return >=
1030 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1031 * will be returned.
1032 *
1033 * page_cache_prev_hole may be called under rcu_read_lock. However,
1034 * like radix_tree_gang_lookup, this will not atomically search a
1035 * snapshot of the tree at a single point in time. For example, if a
1036 * hole is created at index 10, then subsequently a hole is created at
1037 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038 * called under rcu_read_lock.
1039 */
1040pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041 pgoff_t index, unsigned long max_scan)
1042{
1043 unsigned long i;
1044
1045 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1046 struct page *page;
1047
1048 page = radix_tree_lookup(&mapping->page_tree, index);
1049 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1050 break;
1051 index--;
1052 if (index == ULONG_MAX)
1053 break;
1054 }
1055
1056 return index;
1057}
1058EXPORT_SYMBOL(page_cache_prev_hole);
1059
485bb99b 1060/**
0cd6144a 1061 * find_get_entry - find and get a page cache entry
485bb99b 1062 * @mapping: the address_space to search
0cd6144a
JW
1063 * @offset: the page cache index
1064 *
1065 * Looks up the page cache slot at @mapping & @offset. If there is a
1066 * page cache page, it is returned with an increased refcount.
485bb99b 1067 *
139b6a6f
JW
1068 * If the slot holds a shadow entry of a previously evicted page, or a
1069 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1070 *
1071 * Otherwise, %NULL is returned.
1da177e4 1072 */
0cd6144a 1073struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1074{
a60637c8 1075 void **pagep;
83929372 1076 struct page *head, *page;
1da177e4 1077
a60637c8
NP
1078 rcu_read_lock();
1079repeat:
1080 page = NULL;
1081 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1082 if (pagep) {
1083 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1084 if (unlikely(!page))
1085 goto out;
a2c16d6c 1086 if (radix_tree_exception(page)) {
8079b1c8
HD
1087 if (radix_tree_deref_retry(page))
1088 goto repeat;
1089 /*
139b6a6f
JW
1090 * A shadow entry of a recently evicted page,
1091 * or a swap entry from shmem/tmpfs. Return
1092 * it without attempting to raise page count.
8079b1c8
HD
1093 */
1094 goto out;
a2c16d6c 1095 }
83929372
KS
1096
1097 head = compound_head(page);
1098 if (!page_cache_get_speculative(head))
1099 goto repeat;
1100
1101 /* The page was split under us? */
1102 if (compound_head(page) != head) {
1103 put_page(head);
a60637c8 1104 goto repeat;
83929372 1105 }
a60637c8
NP
1106
1107 /*
1108 * Has the page moved?
1109 * This is part of the lockless pagecache protocol. See
1110 * include/linux/pagemap.h for details.
1111 */
1112 if (unlikely(page != *pagep)) {
83929372 1113 put_page(head);
a60637c8
NP
1114 goto repeat;
1115 }
1116 }
27d20fdd 1117out:
a60637c8
NP
1118 rcu_read_unlock();
1119
1da177e4
LT
1120 return page;
1121}
0cd6144a 1122EXPORT_SYMBOL(find_get_entry);
1da177e4 1123
0cd6144a
JW
1124/**
1125 * find_lock_entry - locate, pin and lock a page cache entry
1126 * @mapping: the address_space to search
1127 * @offset: the page cache index
1128 *
1129 * Looks up the page cache slot at @mapping & @offset. If there is a
1130 * page cache page, it is returned locked and with an increased
1131 * refcount.
1132 *
139b6a6f
JW
1133 * If the slot holds a shadow entry of a previously evicted page, or a
1134 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1135 *
1136 * Otherwise, %NULL is returned.
1137 *
1138 * find_lock_entry() may sleep.
1139 */
1140struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1141{
1142 struct page *page;
1143
1da177e4 1144repeat:
0cd6144a 1145 page = find_get_entry(mapping, offset);
a2c16d6c 1146 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1147 lock_page(page);
1148 /* Has the page been truncated? */
83929372 1149 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1150 unlock_page(page);
09cbfeaf 1151 put_page(page);
a60637c8 1152 goto repeat;
1da177e4 1153 }
83929372 1154 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1155 }
1da177e4
LT
1156 return page;
1157}
0cd6144a
JW
1158EXPORT_SYMBOL(find_lock_entry);
1159
1160/**
2457aec6 1161 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1162 * @mapping: the address_space to search
1163 * @offset: the page index
2457aec6 1164 * @fgp_flags: PCG flags
45f87de5 1165 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1166 *
2457aec6 1167 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1168 *
75325189 1169 * PCG flags modify how the page is returned.
0cd6144a 1170 *
2457aec6
MG
1171 * FGP_ACCESSED: the page will be marked accessed
1172 * FGP_LOCK: Page is return locked
1173 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1174 * @gfp_mask and added to the page cache and the VM's LRU
1175 * list. The page is returned locked and with an increased
1176 * refcount. Otherwise, %NULL is returned.
1da177e4 1177 *
2457aec6
MG
1178 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1180 *
2457aec6 1181 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1182 */
2457aec6 1183struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1184 int fgp_flags, gfp_t gfp_mask)
1da177e4 1185{
eb2be189 1186 struct page *page;
2457aec6 1187
1da177e4 1188repeat:
2457aec6
MG
1189 page = find_get_entry(mapping, offset);
1190 if (radix_tree_exceptional_entry(page))
1191 page = NULL;
1192 if (!page)
1193 goto no_page;
1194
1195 if (fgp_flags & FGP_LOCK) {
1196 if (fgp_flags & FGP_NOWAIT) {
1197 if (!trylock_page(page)) {
09cbfeaf 1198 put_page(page);
2457aec6
MG
1199 return NULL;
1200 }
1201 } else {
1202 lock_page(page);
1203 }
1204
1205 /* Has the page been truncated? */
1206 if (unlikely(page->mapping != mapping)) {
1207 unlock_page(page);
09cbfeaf 1208 put_page(page);
2457aec6
MG
1209 goto repeat;
1210 }
1211 VM_BUG_ON_PAGE(page->index != offset, page);
1212 }
1213
1214 if (page && (fgp_flags & FGP_ACCESSED))
1215 mark_page_accessed(page);
1216
1217no_page:
1218 if (!page && (fgp_flags & FGP_CREAT)) {
1219 int err;
1220 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1221 gfp_mask |= __GFP_WRITE;
1222 if (fgp_flags & FGP_NOFS)
1223 gfp_mask &= ~__GFP_FS;
2457aec6 1224
45f87de5 1225 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1226 if (!page)
1227 return NULL;
2457aec6
MG
1228
1229 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230 fgp_flags |= FGP_LOCK;
1231
eb39d618 1232 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1233 if (fgp_flags & FGP_ACCESSED)
eb39d618 1234 __SetPageReferenced(page);
2457aec6 1235
45f87de5
MH
1236 err = add_to_page_cache_lru(page, mapping, offset,
1237 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1238 if (unlikely(err)) {
09cbfeaf 1239 put_page(page);
eb2be189
NP
1240 page = NULL;
1241 if (err == -EEXIST)
1242 goto repeat;
1da177e4 1243 }
1da177e4 1244 }
2457aec6 1245
1da177e4
LT
1246 return page;
1247}
2457aec6 1248EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1249
0cd6144a
JW
1250/**
1251 * find_get_entries - gang pagecache lookup
1252 * @mapping: The address_space to search
1253 * @start: The starting page cache index
1254 * @nr_entries: The maximum number of entries
1255 * @entries: Where the resulting entries are placed
1256 * @indices: The cache indices corresponding to the entries in @entries
1257 *
1258 * find_get_entries() will search for and return a group of up to
1259 * @nr_entries entries in the mapping. The entries are placed at
1260 * @entries. find_get_entries() takes a reference against any actual
1261 * pages it returns.
1262 *
1263 * The search returns a group of mapping-contiguous page cache entries
1264 * with ascending indexes. There may be holes in the indices due to
1265 * not-present pages.
1266 *
139b6a6f
JW
1267 * Any shadow entries of evicted pages, or swap entries from
1268 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1269 *
1270 * find_get_entries() returns the number of pages and shadow entries
1271 * which were found.
1272 */
1273unsigned find_get_entries(struct address_space *mapping,
1274 pgoff_t start, unsigned int nr_entries,
1275 struct page **entries, pgoff_t *indices)
1276{
1277 void **slot;
1278 unsigned int ret = 0;
1279 struct radix_tree_iter iter;
1280
1281 if (!nr_entries)
1282 return 0;
1283
1284 rcu_read_lock();
0cd6144a 1285 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1286 struct page *head, *page;
0cd6144a
JW
1287repeat:
1288 page = radix_tree_deref_slot(slot);
1289 if (unlikely(!page))
1290 continue;
1291 if (radix_tree_exception(page)) {
2cf938aa
MW
1292 if (radix_tree_deref_retry(page)) {
1293 slot = radix_tree_iter_retry(&iter);
1294 continue;
1295 }
0cd6144a 1296 /*
f9fe48be
RZ
1297 * A shadow entry of a recently evicted page, a swap
1298 * entry from shmem/tmpfs or a DAX entry. Return it
1299 * without attempting to raise page count.
0cd6144a
JW
1300 */
1301 goto export;
1302 }
83929372
KS
1303
1304 head = compound_head(page);
1305 if (!page_cache_get_speculative(head))
1306 goto repeat;
1307
1308 /* The page was split under us? */
1309 if (compound_head(page) != head) {
1310 put_page(head);
0cd6144a 1311 goto repeat;
83929372 1312 }
0cd6144a
JW
1313
1314 /* Has the page moved? */
1315 if (unlikely(page != *slot)) {
83929372 1316 put_page(head);
0cd6144a
JW
1317 goto repeat;
1318 }
1319export:
1320 indices[ret] = iter.index;
1321 entries[ret] = page;
1322 if (++ret == nr_entries)
1323 break;
1324 }
1325 rcu_read_unlock();
1326 return ret;
1327}
1328
1da177e4
LT
1329/**
1330 * find_get_pages - gang pagecache lookup
1331 * @mapping: The address_space to search
1332 * @start: The starting page index
1333 * @nr_pages: The maximum number of pages
1334 * @pages: Where the resulting pages are placed
1335 *
1336 * find_get_pages() will search for and return a group of up to
1337 * @nr_pages pages in the mapping. The pages are placed at @pages.
1338 * find_get_pages() takes a reference against the returned pages.
1339 *
1340 * The search returns a group of mapping-contiguous pages with ascending
1341 * indexes. There may be holes in the indices due to not-present pages.
1342 *
1343 * find_get_pages() returns the number of pages which were found.
1344 */
1345unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346 unsigned int nr_pages, struct page **pages)
1347{
0fc9d104
KK
1348 struct radix_tree_iter iter;
1349 void **slot;
1350 unsigned ret = 0;
1351
1352 if (unlikely(!nr_pages))
1353 return 0;
a60637c8
NP
1354
1355 rcu_read_lock();
0fc9d104 1356 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1357 struct page *head, *page;
a60637c8 1358repeat:
0fc9d104 1359 page = radix_tree_deref_slot(slot);
a60637c8
NP
1360 if (unlikely(!page))
1361 continue;
9d8aa4ea 1362
a2c16d6c 1363 if (radix_tree_exception(page)) {
8079b1c8 1364 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1365 slot = radix_tree_iter_retry(&iter);
1366 continue;
8079b1c8 1367 }
a2c16d6c 1368 /*
139b6a6f
JW
1369 * A shadow entry of a recently evicted page,
1370 * or a swap entry from shmem/tmpfs. Skip
1371 * over it.
a2c16d6c 1372 */
8079b1c8 1373 continue;
27d20fdd 1374 }
a60637c8 1375
83929372
KS
1376 head = compound_head(page);
1377 if (!page_cache_get_speculative(head))
1378 goto repeat;
1379
1380 /* The page was split under us? */
1381 if (compound_head(page) != head) {
1382 put_page(head);
a60637c8 1383 goto repeat;
83929372 1384 }
a60637c8
NP
1385
1386 /* Has the page moved? */
0fc9d104 1387 if (unlikely(page != *slot)) {
83929372 1388 put_page(head);
a60637c8
NP
1389 goto repeat;
1390 }
1da177e4 1391
a60637c8 1392 pages[ret] = page;
0fc9d104
KK
1393 if (++ret == nr_pages)
1394 break;
a60637c8 1395 }
5b280c0c 1396
a60637c8 1397 rcu_read_unlock();
1da177e4
LT
1398 return ret;
1399}
1400
ebf43500
JA
1401/**
1402 * find_get_pages_contig - gang contiguous pagecache lookup
1403 * @mapping: The address_space to search
1404 * @index: The starting page index
1405 * @nr_pages: The maximum number of pages
1406 * @pages: Where the resulting pages are placed
1407 *
1408 * find_get_pages_contig() works exactly like find_get_pages(), except
1409 * that the returned number of pages are guaranteed to be contiguous.
1410 *
1411 * find_get_pages_contig() returns the number of pages which were found.
1412 */
1413unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414 unsigned int nr_pages, struct page **pages)
1415{
0fc9d104
KK
1416 struct radix_tree_iter iter;
1417 void **slot;
1418 unsigned int ret = 0;
1419
1420 if (unlikely(!nr_pages))
1421 return 0;
a60637c8
NP
1422
1423 rcu_read_lock();
0fc9d104 1424 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1425 struct page *head, *page;
a60637c8 1426repeat:
0fc9d104
KK
1427 page = radix_tree_deref_slot(slot);
1428 /* The hole, there no reason to continue */
a60637c8 1429 if (unlikely(!page))
0fc9d104 1430 break;
9d8aa4ea 1431
a2c16d6c 1432 if (radix_tree_exception(page)) {
8079b1c8 1433 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1434 slot = radix_tree_iter_retry(&iter);
1435 continue;
8079b1c8 1436 }
a2c16d6c 1437 /*
139b6a6f
JW
1438 * A shadow entry of a recently evicted page,
1439 * or a swap entry from shmem/tmpfs. Stop
1440 * looking for contiguous pages.
a2c16d6c 1441 */
8079b1c8 1442 break;
a2c16d6c 1443 }
ebf43500 1444
83929372
KS
1445 head = compound_head(page);
1446 if (!page_cache_get_speculative(head))
1447 goto repeat;
1448
1449 /* The page was split under us? */
1450 if (compound_head(page) != head) {
1451 put_page(head);
a60637c8 1452 goto repeat;
83929372 1453 }
a60637c8
NP
1454
1455 /* Has the page moved? */
0fc9d104 1456 if (unlikely(page != *slot)) {
83929372 1457 put_page(head);
a60637c8
NP
1458 goto repeat;
1459 }
1460
9cbb4cb2
NP
1461 /*
1462 * must check mapping and index after taking the ref.
1463 * otherwise we can get both false positives and false
1464 * negatives, which is just confusing to the caller.
1465 */
83929372 1466 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1467 put_page(page);
9cbb4cb2
NP
1468 break;
1469 }
1470
a60637c8 1471 pages[ret] = page;
0fc9d104
KK
1472 if (++ret == nr_pages)
1473 break;
ebf43500 1474 }
a60637c8
NP
1475 rcu_read_unlock();
1476 return ret;
ebf43500 1477}
ef71c15c 1478EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1479
485bb99b
RD
1480/**
1481 * find_get_pages_tag - find and return pages that match @tag
1482 * @mapping: the address_space to search
1483 * @index: the starting page index
1484 * @tag: the tag index
1485 * @nr_pages: the maximum number of pages
1486 * @pages: where the resulting pages are placed
1487 *
1da177e4 1488 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1489 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1490 */
1491unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492 int tag, unsigned int nr_pages, struct page **pages)
1493{
0fc9d104
KK
1494 struct radix_tree_iter iter;
1495 void **slot;
1496 unsigned ret = 0;
1497
1498 if (unlikely(!nr_pages))
1499 return 0;
a60637c8
NP
1500
1501 rcu_read_lock();
0fc9d104
KK
1502 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503 &iter, *index, tag) {
83929372 1504 struct page *head, *page;
a60637c8 1505repeat:
0fc9d104 1506 page = radix_tree_deref_slot(slot);
a60637c8
NP
1507 if (unlikely(!page))
1508 continue;
9d8aa4ea 1509
a2c16d6c 1510 if (radix_tree_exception(page)) {
8079b1c8 1511 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1512 slot = radix_tree_iter_retry(&iter);
1513 continue;
8079b1c8 1514 }
a2c16d6c 1515 /*
139b6a6f
JW
1516 * A shadow entry of a recently evicted page.
1517 *
1518 * Those entries should never be tagged, but
1519 * this tree walk is lockless and the tags are
1520 * looked up in bulk, one radix tree node at a
1521 * time, so there is a sizable window for page
1522 * reclaim to evict a page we saw tagged.
1523 *
1524 * Skip over it.
a2c16d6c 1525 */
139b6a6f 1526 continue;
a2c16d6c 1527 }
a60637c8 1528
83929372
KS
1529 head = compound_head(page);
1530 if (!page_cache_get_speculative(head))
a60637c8
NP
1531 goto repeat;
1532
83929372
KS
1533 /* The page was split under us? */
1534 if (compound_head(page) != head) {
1535 put_page(head);
1536 goto repeat;
1537 }
1538
a60637c8 1539 /* Has the page moved? */
0fc9d104 1540 if (unlikely(page != *slot)) {
83929372 1541 put_page(head);
a60637c8
NP
1542 goto repeat;
1543 }
1544
1545 pages[ret] = page;
0fc9d104
KK
1546 if (++ret == nr_pages)
1547 break;
a60637c8 1548 }
5b280c0c 1549
a60637c8 1550 rcu_read_unlock();
1da177e4 1551
1da177e4
LT
1552 if (ret)
1553 *index = pages[ret - 1]->index + 1;
a60637c8 1554
1da177e4
LT
1555 return ret;
1556}
ef71c15c 1557EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1558
7e7f7749
RZ
1559/**
1560 * find_get_entries_tag - find and return entries that match @tag
1561 * @mapping: the address_space to search
1562 * @start: the starting page cache index
1563 * @tag: the tag index
1564 * @nr_entries: the maximum number of entries
1565 * @entries: where the resulting entries are placed
1566 * @indices: the cache indices corresponding to the entries in @entries
1567 *
1568 * Like find_get_entries, except we only return entries which are tagged with
1569 * @tag.
1570 */
1571unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572 int tag, unsigned int nr_entries,
1573 struct page **entries, pgoff_t *indices)
1574{
1575 void **slot;
1576 unsigned int ret = 0;
1577 struct radix_tree_iter iter;
1578
1579 if (!nr_entries)
1580 return 0;
1581
1582 rcu_read_lock();
7e7f7749
RZ
1583 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584 &iter, start, tag) {
83929372 1585 struct page *head, *page;
7e7f7749
RZ
1586repeat:
1587 page = radix_tree_deref_slot(slot);
1588 if (unlikely(!page))
1589 continue;
1590 if (radix_tree_exception(page)) {
1591 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1592 slot = radix_tree_iter_retry(&iter);
1593 continue;
7e7f7749
RZ
1594 }
1595
1596 /*
1597 * A shadow entry of a recently evicted page, a swap
1598 * entry from shmem/tmpfs or a DAX entry. Return it
1599 * without attempting to raise page count.
1600 */
1601 goto export;
1602 }
83929372
KS
1603
1604 head = compound_head(page);
1605 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1606 goto repeat;
1607
83929372
KS
1608 /* The page was split under us? */
1609 if (compound_head(page) != head) {
1610 put_page(head);
1611 goto repeat;
1612 }
1613
7e7f7749
RZ
1614 /* Has the page moved? */
1615 if (unlikely(page != *slot)) {
83929372 1616 put_page(head);
7e7f7749
RZ
1617 goto repeat;
1618 }
1619export:
1620 indices[ret] = iter.index;
1621 entries[ret] = page;
1622 if (++ret == nr_entries)
1623 break;
1624 }
1625 rcu_read_unlock();
1626 return ret;
1627}
1628EXPORT_SYMBOL(find_get_entries_tag);
1629
76d42bd9
WF
1630/*
1631 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632 * a _large_ part of the i/o request. Imagine the worst scenario:
1633 *
1634 * ---R__________________________________________B__________
1635 * ^ reading here ^ bad block(assume 4k)
1636 *
1637 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638 * => failing the whole request => read(R) => read(R+1) =>
1639 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1642 *
1643 * It is going insane. Fix it by quickly scaling down the readahead size.
1644 */
1645static void shrink_readahead_size_eio(struct file *filp,
1646 struct file_ra_state *ra)
1647{
76d42bd9 1648 ra->ra_pages /= 4;
76d42bd9
WF
1649}
1650
485bb99b 1651/**
36e78914 1652 * do_generic_file_read - generic file read routine
485bb99b
RD
1653 * @filp: the file to read
1654 * @ppos: current file position
6e58e79d
AV
1655 * @iter: data destination
1656 * @written: already copied
485bb99b 1657 *
1da177e4 1658 * This is a generic file read routine, and uses the
485bb99b 1659 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1660 *
1661 * This is really ugly. But the goto's actually try to clarify some
1662 * of the logic when it comes to error handling etc.
1da177e4 1663 */
6e58e79d
AV
1664static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665 struct iov_iter *iter, ssize_t written)
1da177e4 1666{
36e78914 1667 struct address_space *mapping = filp->f_mapping;
1da177e4 1668 struct inode *inode = mapping->host;
36e78914 1669 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1670 pgoff_t index;
1671 pgoff_t last_index;
1672 pgoff_t prev_index;
1673 unsigned long offset; /* offset into pagecache page */
ec0f1637 1674 unsigned int prev_offset;
6e58e79d 1675 int error = 0;
1da177e4 1676
09cbfeaf
KS
1677 index = *ppos >> PAGE_SHIFT;
1678 prev_index = ra->prev_pos >> PAGE_SHIFT;
1679 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681 offset = *ppos & ~PAGE_MASK;
1da177e4 1682
1da177e4
LT
1683 for (;;) {
1684 struct page *page;
57f6b96c 1685 pgoff_t end_index;
a32ea1e1 1686 loff_t isize;
1da177e4
LT
1687 unsigned long nr, ret;
1688
1da177e4 1689 cond_resched();
1da177e4
LT
1690find_page:
1691 page = find_get_page(mapping, index);
3ea89ee8 1692 if (!page) {
cf914a7d 1693 page_cache_sync_readahead(mapping,
7ff81078 1694 ra, filp,
3ea89ee8
FW
1695 index, last_index - index);
1696 page = find_get_page(mapping, index);
1697 if (unlikely(page == NULL))
1698 goto no_cached_page;
1699 }
1700 if (PageReadahead(page)) {
cf914a7d 1701 page_cache_async_readahead(mapping,
7ff81078 1702 ra, filp, page,
3ea89ee8 1703 index, last_index - index);
1da177e4 1704 }
8ab22b9a 1705 if (!PageUptodate(page)) {
ebded027
MG
1706 /*
1707 * See comment in do_read_cache_page on why
1708 * wait_on_page_locked is used to avoid unnecessarily
1709 * serialisations and why it's safe.
1710 */
dc18a70d
BVA
1711 error = wait_on_page_locked_killable(page);
1712 if (unlikely(error))
1713 goto readpage_error;
ebded027
MG
1714 if (PageUptodate(page))
1715 goto page_ok;
1716
09cbfeaf 1717 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1718 !mapping->a_ops->is_partially_uptodate)
1719 goto page_not_up_to_date;
529ae9aa 1720 if (!trylock_page(page))
8ab22b9a 1721 goto page_not_up_to_date;
8d056cb9
DH
1722 /* Did it get truncated before we got the lock? */
1723 if (!page->mapping)
1724 goto page_not_up_to_date_locked;
8ab22b9a 1725 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1726 offset, iter->count))
8ab22b9a
HH
1727 goto page_not_up_to_date_locked;
1728 unlock_page(page);
1729 }
1da177e4 1730page_ok:
a32ea1e1
N
1731 /*
1732 * i_size must be checked after we know the page is Uptodate.
1733 *
1734 * Checking i_size after the check allows us to calculate
1735 * the correct value for "nr", which means the zero-filled
1736 * part of the page is not copied back to userspace (unless
1737 * another truncate extends the file - this is desired though).
1738 */
1739
1740 isize = i_size_read(inode);
09cbfeaf 1741 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1742 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1743 put_page(page);
a32ea1e1
N
1744 goto out;
1745 }
1746
1747 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1748 nr = PAGE_SIZE;
a32ea1e1 1749 if (index == end_index) {
09cbfeaf 1750 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1751 if (nr <= offset) {
09cbfeaf 1752 put_page(page);
a32ea1e1
N
1753 goto out;
1754 }
1755 }
1756 nr = nr - offset;
1da177e4
LT
1757
1758 /* If users can be writing to this page using arbitrary
1759 * virtual addresses, take care about potential aliasing
1760 * before reading the page on the kernel side.
1761 */
1762 if (mapping_writably_mapped(mapping))
1763 flush_dcache_page(page);
1764
1765 /*
ec0f1637
JK
1766 * When a sequential read accesses a page several times,
1767 * only mark it as accessed the first time.
1da177e4 1768 */
ec0f1637 1769 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1770 mark_page_accessed(page);
1771 prev_index = index;
1772
1773 /*
1774 * Ok, we have the page, and it's up-to-date, so
1775 * now we can copy it to user space...
1da177e4 1776 */
6e58e79d
AV
1777
1778 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1779 offset += ret;
09cbfeaf
KS
1780 index += offset >> PAGE_SHIFT;
1781 offset &= ~PAGE_MASK;
6ce745ed 1782 prev_offset = offset;
1da177e4 1783
09cbfeaf 1784 put_page(page);
6e58e79d
AV
1785 written += ret;
1786 if (!iov_iter_count(iter))
1787 goto out;
1788 if (ret < nr) {
1789 error = -EFAULT;
1790 goto out;
1791 }
1792 continue;
1da177e4
LT
1793
1794page_not_up_to_date:
1795 /* Get exclusive access to the page ... */
85462323
ON
1796 error = lock_page_killable(page);
1797 if (unlikely(error))
1798 goto readpage_error;
1da177e4 1799
8ab22b9a 1800page_not_up_to_date_locked:
da6052f7 1801 /* Did it get truncated before we got the lock? */
1da177e4
LT
1802 if (!page->mapping) {
1803 unlock_page(page);
09cbfeaf 1804 put_page(page);
1da177e4
LT
1805 continue;
1806 }
1807
1808 /* Did somebody else fill it already? */
1809 if (PageUptodate(page)) {
1810 unlock_page(page);
1811 goto page_ok;
1812 }
1813
1814readpage:
91803b49
JM
1815 /*
1816 * A previous I/O error may have been due to temporary
1817 * failures, eg. multipath errors.
1818 * PG_error will be set again if readpage fails.
1819 */
1820 ClearPageError(page);
1da177e4
LT
1821 /* Start the actual read. The read will unlock the page. */
1822 error = mapping->a_ops->readpage(filp, page);
1823
994fc28c
ZB
1824 if (unlikely(error)) {
1825 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1826 put_page(page);
6e58e79d 1827 error = 0;
994fc28c
ZB
1828 goto find_page;
1829 }
1da177e4 1830 goto readpage_error;
994fc28c 1831 }
1da177e4
LT
1832
1833 if (!PageUptodate(page)) {
85462323
ON
1834 error = lock_page_killable(page);
1835 if (unlikely(error))
1836 goto readpage_error;
1da177e4
LT
1837 if (!PageUptodate(page)) {
1838 if (page->mapping == NULL) {
1839 /*
2ecdc82e 1840 * invalidate_mapping_pages got it
1da177e4
LT
1841 */
1842 unlock_page(page);
09cbfeaf 1843 put_page(page);
1da177e4
LT
1844 goto find_page;
1845 }
1846 unlock_page(page);
7ff81078 1847 shrink_readahead_size_eio(filp, ra);
85462323
ON
1848 error = -EIO;
1849 goto readpage_error;
1da177e4
LT
1850 }
1851 unlock_page(page);
1852 }
1853
1da177e4
LT
1854 goto page_ok;
1855
1856readpage_error:
1857 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1858 put_page(page);
1da177e4
LT
1859 goto out;
1860
1861no_cached_page:
1862 /*
1863 * Ok, it wasn't cached, so we need to create a new
1864 * page..
1865 */
eb2be189
NP
1866 page = page_cache_alloc_cold(mapping);
1867 if (!page) {
6e58e79d 1868 error = -ENOMEM;
eb2be189 1869 goto out;
1da177e4 1870 }
6afdb859 1871 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1872 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1873 if (error) {
09cbfeaf 1874 put_page(page);
6e58e79d
AV
1875 if (error == -EEXIST) {
1876 error = 0;
1da177e4 1877 goto find_page;
6e58e79d 1878 }
1da177e4
LT
1879 goto out;
1880 }
1da177e4
LT
1881 goto readpage;
1882 }
1883
1884out:
7ff81078 1885 ra->prev_pos = prev_index;
09cbfeaf 1886 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 1887 ra->prev_pos |= prev_offset;
1da177e4 1888
09cbfeaf 1889 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 1890 file_accessed(filp);
6e58e79d 1891 return written ? written : error;
1da177e4
LT
1892}
1893
485bb99b 1894/**
6abd2322 1895 * generic_file_read_iter - generic filesystem read routine
485bb99b 1896 * @iocb: kernel I/O control block
6abd2322 1897 * @iter: destination for the data read
485bb99b 1898 *
6abd2322 1899 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1900 * that can use the page cache directly.
1901 */
1902ssize_t
ed978a81 1903generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1904{
ed978a81 1905 struct file *file = iocb->ki_filp;
cb66a7a1 1906 ssize_t retval = 0;
e7080a43
NS
1907 size_t count = iov_iter_count(iter);
1908
1909 if (!count)
1910 goto out; /* skip atime */
1da177e4 1911
2ba48ce5 1912 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1913 struct address_space *mapping = file->f_mapping;
1914 struct inode *inode = mapping->host;
543ade1f 1915 loff_t size;
1da177e4 1916
1da177e4 1917 size = i_size_read(inode);
c64fb5c7
CH
1918 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1919 iocb->ki_pos + count - 1);
9fe55eea 1920 if (!retval) {
ed978a81 1921 struct iov_iter data = *iter;
c8b8e32d 1922 retval = mapping->a_ops->direct_IO(iocb, &data);
9fe55eea 1923 }
d8d3d94b 1924
9fe55eea 1925 if (retval > 0) {
c64fb5c7 1926 iocb->ki_pos += retval;
ed978a81 1927 iov_iter_advance(iter, retval);
9fe55eea 1928 }
66f998f6 1929
9fe55eea
SW
1930 /*
1931 * Btrfs can have a short DIO read if we encounter
1932 * compressed extents, so if there was an error, or if
1933 * we've already read everything we wanted to, or if
1934 * there was a short read because we hit EOF, go ahead
1935 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1936 * the rest of the read. Buffered reads will not work for
1937 * DAX files, so don't bother trying.
9fe55eea 1938 */
c64fb5c7 1939 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
fbbbad4b 1940 IS_DAX(inode)) {
ed978a81 1941 file_accessed(file);
9fe55eea 1942 goto out;
0e0bcae3 1943 }
1da177e4
LT
1944 }
1945
c64fb5c7 1946 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
1947out:
1948 return retval;
1949}
ed978a81 1950EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1951
1da177e4 1952#ifdef CONFIG_MMU
485bb99b
RD
1953/**
1954 * page_cache_read - adds requested page to the page cache if not already there
1955 * @file: file to read
1956 * @offset: page index
62eb320a 1957 * @gfp_mask: memory allocation flags
485bb99b 1958 *
1da177e4
LT
1959 * This adds the requested page to the page cache if it isn't already there,
1960 * and schedules an I/O to read in its contents from disk.
1961 */
c20cd45e 1962static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1963{
1964 struct address_space *mapping = file->f_mapping;
99dadfdd 1965 struct page *page;
994fc28c 1966 int ret;
1da177e4 1967
994fc28c 1968 do {
c20cd45e 1969 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1970 if (!page)
1971 return -ENOMEM;
1972
c20cd45e 1973 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1974 if (ret == 0)
1975 ret = mapping->a_ops->readpage(file, page);
1976 else if (ret == -EEXIST)
1977 ret = 0; /* losing race to add is OK */
1da177e4 1978
09cbfeaf 1979 put_page(page);
1da177e4 1980
994fc28c 1981 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1982
994fc28c 1983 return ret;
1da177e4
LT
1984}
1985
1986#define MMAP_LOTSAMISS (100)
1987
ef00e08e
LT
1988/*
1989 * Synchronous readahead happens when we don't even find
1990 * a page in the page cache at all.
1991 */
1992static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1993 struct file_ra_state *ra,
1994 struct file *file,
1995 pgoff_t offset)
1996{
ef00e08e
LT
1997 struct address_space *mapping = file->f_mapping;
1998
1999 /* If we don't want any read-ahead, don't bother */
64363aad 2000 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2001 return;
275b12bf
WF
2002 if (!ra->ra_pages)
2003 return;
ef00e08e 2004
64363aad 2005 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2006 page_cache_sync_readahead(mapping, ra, file, offset,
2007 ra->ra_pages);
ef00e08e
LT
2008 return;
2009 }
2010
207d04ba
AK
2011 /* Avoid banging the cache line if not needed */
2012 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2013 ra->mmap_miss++;
2014
2015 /*
2016 * Do we miss much more than hit in this file? If so,
2017 * stop bothering with read-ahead. It will only hurt.
2018 */
2019 if (ra->mmap_miss > MMAP_LOTSAMISS)
2020 return;
2021
d30a1100
WF
2022 /*
2023 * mmap read-around
2024 */
600e19af
RG
2025 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2026 ra->size = ra->ra_pages;
2027 ra->async_size = ra->ra_pages / 4;
275b12bf 2028 ra_submit(ra, mapping, file);
ef00e08e
LT
2029}
2030
2031/*
2032 * Asynchronous readahead happens when we find the page and PG_readahead,
2033 * so we want to possibly extend the readahead further..
2034 */
2035static void do_async_mmap_readahead(struct vm_area_struct *vma,
2036 struct file_ra_state *ra,
2037 struct file *file,
2038 struct page *page,
2039 pgoff_t offset)
2040{
2041 struct address_space *mapping = file->f_mapping;
2042
2043 /* If we don't want any read-ahead, don't bother */
64363aad 2044 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2045 return;
2046 if (ra->mmap_miss > 0)
2047 ra->mmap_miss--;
2048 if (PageReadahead(page))
2fad6f5d
WF
2049 page_cache_async_readahead(mapping, ra, file,
2050 page, offset, ra->ra_pages);
ef00e08e
LT
2051}
2052
485bb99b 2053/**
54cb8821 2054 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2055 * @vma: vma in which the fault was taken
2056 * @vmf: struct vm_fault containing details of the fault
485bb99b 2057 *
54cb8821 2058 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2059 * mapped memory region to read in file data during a page fault.
2060 *
2061 * The goto's are kind of ugly, but this streamlines the normal case of having
2062 * it in the page cache, and handles the special cases reasonably without
2063 * having a lot of duplicated code.
9a95f3cf
PC
2064 *
2065 * vma->vm_mm->mmap_sem must be held on entry.
2066 *
2067 * If our return value has VM_FAULT_RETRY set, it's because
2068 * lock_page_or_retry() returned 0.
2069 * The mmap_sem has usually been released in this case.
2070 * See __lock_page_or_retry() for the exception.
2071 *
2072 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2073 * has not been released.
2074 *
2075 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2076 */
d0217ac0 2077int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2078{
2079 int error;
54cb8821 2080 struct file *file = vma->vm_file;
1da177e4
LT
2081 struct address_space *mapping = file->f_mapping;
2082 struct file_ra_state *ra = &file->f_ra;
2083 struct inode *inode = mapping->host;
ef00e08e 2084 pgoff_t offset = vmf->pgoff;
1da177e4 2085 struct page *page;
99e3e53f 2086 loff_t size;
83c54070 2087 int ret = 0;
1da177e4 2088
09cbfeaf
KS
2089 size = round_up(i_size_read(inode), PAGE_SIZE);
2090 if (offset >= size >> PAGE_SHIFT)
5307cc1a 2091 return VM_FAULT_SIGBUS;
1da177e4 2092
1da177e4 2093 /*
49426420 2094 * Do we have something in the page cache already?
1da177e4 2095 */
ef00e08e 2096 page = find_get_page(mapping, offset);
45cac65b 2097 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2098 /*
ef00e08e
LT
2099 * We found the page, so try async readahead before
2100 * waiting for the lock.
1da177e4 2101 */
ef00e08e 2102 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2103 } else if (!page) {
ef00e08e
LT
2104 /* No page in the page cache at all */
2105 do_sync_mmap_readahead(vma, ra, file, offset);
2106 count_vm_event(PGMAJFAULT);
456f998e 2107 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2108 ret = VM_FAULT_MAJOR;
2109retry_find:
b522c94d 2110 page = find_get_page(mapping, offset);
1da177e4
LT
2111 if (!page)
2112 goto no_cached_page;
2113 }
2114
d88c0922 2115 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
09cbfeaf 2116 put_page(page);
d065bd81 2117 return ret | VM_FAULT_RETRY;
d88c0922 2118 }
b522c94d
ML
2119
2120 /* Did it get truncated? */
2121 if (unlikely(page->mapping != mapping)) {
2122 unlock_page(page);
2123 put_page(page);
2124 goto retry_find;
2125 }
309381fe 2126 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2127
1da177e4 2128 /*
d00806b1
NP
2129 * We have a locked page in the page cache, now we need to check
2130 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2131 */
d00806b1 2132 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2133 goto page_not_uptodate;
2134
ef00e08e
LT
2135 /*
2136 * Found the page and have a reference on it.
2137 * We must recheck i_size under page lock.
2138 */
09cbfeaf
KS
2139 size = round_up(i_size_read(inode), PAGE_SIZE);
2140 if (unlikely(offset >= size >> PAGE_SHIFT)) {
d00806b1 2141 unlock_page(page);
09cbfeaf 2142 put_page(page);
5307cc1a 2143 return VM_FAULT_SIGBUS;
d00806b1
NP
2144 }
2145
d0217ac0 2146 vmf->page = page;
83c54070 2147 return ret | VM_FAULT_LOCKED;
1da177e4 2148
1da177e4
LT
2149no_cached_page:
2150 /*
2151 * We're only likely to ever get here if MADV_RANDOM is in
2152 * effect.
2153 */
c20cd45e 2154 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2155
2156 /*
2157 * The page we want has now been added to the page cache.
2158 * In the unlikely event that someone removed it in the
2159 * meantime, we'll just come back here and read it again.
2160 */
2161 if (error >= 0)
2162 goto retry_find;
2163
2164 /*
2165 * An error return from page_cache_read can result if the
2166 * system is low on memory, or a problem occurs while trying
2167 * to schedule I/O.
2168 */
2169 if (error == -ENOMEM)
d0217ac0
NP
2170 return VM_FAULT_OOM;
2171 return VM_FAULT_SIGBUS;
1da177e4
LT
2172
2173page_not_uptodate:
1da177e4
LT
2174 /*
2175 * Umm, take care of errors if the page isn't up-to-date.
2176 * Try to re-read it _once_. We do this synchronously,
2177 * because there really aren't any performance issues here
2178 * and we need to check for errors.
2179 */
1da177e4 2180 ClearPageError(page);
994fc28c 2181 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2182 if (!error) {
2183 wait_on_page_locked(page);
2184 if (!PageUptodate(page))
2185 error = -EIO;
2186 }
09cbfeaf 2187 put_page(page);
d00806b1
NP
2188
2189 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2190 goto retry_find;
1da177e4 2191
d00806b1 2192 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2193 shrink_readahead_size_eio(file, ra);
d0217ac0 2194 return VM_FAULT_SIGBUS;
54cb8821
NP
2195}
2196EXPORT_SYMBOL(filemap_fault);
2197
bae473a4
KS
2198void filemap_map_pages(struct fault_env *fe,
2199 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2200{
2201 struct radix_tree_iter iter;
2202 void **slot;
bae473a4 2203 struct file *file = fe->vma->vm_file;
f1820361 2204 struct address_space *mapping = file->f_mapping;
bae473a4 2205 pgoff_t last_pgoff = start_pgoff;
f1820361 2206 loff_t size;
83929372 2207 struct page *head, *page;
f1820361
KS
2208
2209 rcu_read_lock();
bae473a4
KS
2210 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2211 start_pgoff) {
2212 if (iter.index > end_pgoff)
f1820361
KS
2213 break;
2214repeat:
2215 page = radix_tree_deref_slot(slot);
2216 if (unlikely(!page))
2217 goto next;
2218 if (radix_tree_exception(page)) {
2cf938aa
MW
2219 if (radix_tree_deref_retry(page)) {
2220 slot = radix_tree_iter_retry(&iter);
2221 continue;
2222 }
2223 goto next;
f1820361
KS
2224 }
2225
83929372
KS
2226 head = compound_head(page);
2227 if (!page_cache_get_speculative(head))
f1820361
KS
2228 goto repeat;
2229
83929372
KS
2230 /* The page was split under us? */
2231 if (compound_head(page) != head) {
2232 put_page(head);
2233 goto repeat;
2234 }
2235
f1820361
KS
2236 /* Has the page moved? */
2237 if (unlikely(page != *slot)) {
83929372 2238 put_page(head);
f1820361
KS
2239 goto repeat;
2240 }
2241
2242 if (!PageUptodate(page) ||
2243 PageReadahead(page) ||
2244 PageHWPoison(page))
2245 goto skip;
2246 if (!trylock_page(page))
2247 goto skip;
2248
2249 if (page->mapping != mapping || !PageUptodate(page))
2250 goto unlock;
2251
09cbfeaf
KS
2252 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2253 if (page->index >= size >> PAGE_SHIFT)
f1820361
KS
2254 goto unlock;
2255
f1820361
KS
2256 if (file->f_ra.mmap_miss > 0)
2257 file->f_ra.mmap_miss--;
7267ec00
KS
2258
2259 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2260 if (fe->pte)
2261 fe->pte += iter.index - last_pgoff;
2262 last_pgoff = iter.index;
2263 if (alloc_set_pte(fe, NULL, page))
2264 goto unlock;
f1820361
KS
2265 unlock_page(page);
2266 goto next;
2267unlock:
2268 unlock_page(page);
2269skip:
09cbfeaf 2270 put_page(page);
f1820361 2271next:
7267ec00
KS
2272 /* Huge page is mapped? No need to proceed. */
2273 if (pmd_trans_huge(*fe->pmd))
2274 break;
bae473a4 2275 if (iter.index == end_pgoff)
f1820361
KS
2276 break;
2277 }
2278 rcu_read_unlock();
2279}
2280EXPORT_SYMBOL(filemap_map_pages);
2281
4fcf1c62
JK
2282int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2283{
2284 struct page *page = vmf->page;
496ad9aa 2285 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2286 int ret = VM_FAULT_LOCKED;
2287
14da9200 2288 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2289 file_update_time(vma->vm_file);
2290 lock_page(page);
2291 if (page->mapping != inode->i_mapping) {
2292 unlock_page(page);
2293 ret = VM_FAULT_NOPAGE;
2294 goto out;
2295 }
14da9200
JK
2296 /*
2297 * We mark the page dirty already here so that when freeze is in
2298 * progress, we are guaranteed that writeback during freezing will
2299 * see the dirty page and writeprotect it again.
2300 */
2301 set_page_dirty(page);
1d1d1a76 2302 wait_for_stable_page(page);
4fcf1c62 2303out:
14da9200 2304 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2305 return ret;
2306}
2307EXPORT_SYMBOL(filemap_page_mkwrite);
2308
f0f37e2f 2309const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2310 .fault = filemap_fault,
f1820361 2311 .map_pages = filemap_map_pages,
4fcf1c62 2312 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2313};
2314
2315/* This is used for a general mmap of a disk file */
2316
2317int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2318{
2319 struct address_space *mapping = file->f_mapping;
2320
2321 if (!mapping->a_ops->readpage)
2322 return -ENOEXEC;
2323 file_accessed(file);
2324 vma->vm_ops = &generic_file_vm_ops;
2325 return 0;
2326}
1da177e4
LT
2327
2328/*
2329 * This is for filesystems which do not implement ->writepage.
2330 */
2331int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2332{
2333 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2334 return -EINVAL;
2335 return generic_file_mmap(file, vma);
2336}
2337#else
2338int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2339{
2340 return -ENOSYS;
2341}
2342int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2343{
2344 return -ENOSYS;
2345}
2346#endif /* CONFIG_MMU */
2347
2348EXPORT_SYMBOL(generic_file_mmap);
2349EXPORT_SYMBOL(generic_file_readonly_mmap);
2350
67f9fd91
SL
2351static struct page *wait_on_page_read(struct page *page)
2352{
2353 if (!IS_ERR(page)) {
2354 wait_on_page_locked(page);
2355 if (!PageUptodate(page)) {
09cbfeaf 2356 put_page(page);
67f9fd91
SL
2357 page = ERR_PTR(-EIO);
2358 }
2359 }
2360 return page;
2361}
2362
32b63529 2363static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2364 pgoff_t index,
5e5358e7 2365 int (*filler)(void *, struct page *),
0531b2aa
LT
2366 void *data,
2367 gfp_t gfp)
1da177e4 2368{
eb2be189 2369 struct page *page;
1da177e4
LT
2370 int err;
2371repeat:
2372 page = find_get_page(mapping, index);
2373 if (!page) {
0531b2aa 2374 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2375 if (!page)
2376 return ERR_PTR(-ENOMEM);
e6f67b8c 2377 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2378 if (unlikely(err)) {
09cbfeaf 2379 put_page(page);
eb2be189
NP
2380 if (err == -EEXIST)
2381 goto repeat;
1da177e4 2382 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2383 return ERR_PTR(err);
2384 }
32b63529
MG
2385
2386filler:
1da177e4
LT
2387 err = filler(data, page);
2388 if (err < 0) {
09cbfeaf 2389 put_page(page);
32b63529 2390 return ERR_PTR(err);
1da177e4 2391 }
1da177e4 2392
32b63529
MG
2393 page = wait_on_page_read(page);
2394 if (IS_ERR(page))
2395 return page;
2396 goto out;
2397 }
1da177e4
LT
2398 if (PageUptodate(page))
2399 goto out;
2400
ebded027
MG
2401 /*
2402 * Page is not up to date and may be locked due one of the following
2403 * case a: Page is being filled and the page lock is held
2404 * case b: Read/write error clearing the page uptodate status
2405 * case c: Truncation in progress (page locked)
2406 * case d: Reclaim in progress
2407 *
2408 * Case a, the page will be up to date when the page is unlocked.
2409 * There is no need to serialise on the page lock here as the page
2410 * is pinned so the lock gives no additional protection. Even if the
2411 * the page is truncated, the data is still valid if PageUptodate as
2412 * it's a race vs truncate race.
2413 * Case b, the page will not be up to date
2414 * Case c, the page may be truncated but in itself, the data may still
2415 * be valid after IO completes as it's a read vs truncate race. The
2416 * operation must restart if the page is not uptodate on unlock but
2417 * otherwise serialising on page lock to stabilise the mapping gives
2418 * no additional guarantees to the caller as the page lock is
2419 * released before return.
2420 * Case d, similar to truncation. If reclaim holds the page lock, it
2421 * will be a race with remove_mapping that determines if the mapping
2422 * is valid on unlock but otherwise the data is valid and there is
2423 * no need to serialise with page lock.
2424 *
2425 * As the page lock gives no additional guarantee, we optimistically
2426 * wait on the page to be unlocked and check if it's up to date and
2427 * use the page if it is. Otherwise, the page lock is required to
2428 * distinguish between the different cases. The motivation is that we
2429 * avoid spurious serialisations and wakeups when multiple processes
2430 * wait on the same page for IO to complete.
2431 */
2432 wait_on_page_locked(page);
2433 if (PageUptodate(page))
2434 goto out;
2435
2436 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2437 lock_page(page);
ebded027
MG
2438
2439 /* Case c or d, restart the operation */
1da177e4
LT
2440 if (!page->mapping) {
2441 unlock_page(page);
09cbfeaf 2442 put_page(page);
32b63529 2443 goto repeat;
1da177e4 2444 }
ebded027
MG
2445
2446 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2447 if (PageUptodate(page)) {
2448 unlock_page(page);
2449 goto out;
2450 }
32b63529
MG
2451 goto filler;
2452
c855ff37 2453out:
6fe6900e
NP
2454 mark_page_accessed(page);
2455 return page;
2456}
0531b2aa
LT
2457
2458/**
67f9fd91 2459 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2460 * @mapping: the page's address_space
2461 * @index: the page index
2462 * @filler: function to perform the read
5e5358e7 2463 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2464 *
0531b2aa 2465 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2466 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2467 *
2468 * If the page does not get brought uptodate, return -EIO.
2469 */
67f9fd91 2470struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2471 pgoff_t index,
5e5358e7 2472 int (*filler)(void *, struct page *),
0531b2aa
LT
2473 void *data)
2474{
2475 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2476}
67f9fd91 2477EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2478
2479/**
2480 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2481 * @mapping: the page's address_space
2482 * @index: the page index
2483 * @gfp: the page allocator flags to use if allocating
2484 *
2485 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2486 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2487 *
2488 * If the page does not get brought uptodate, return -EIO.
2489 */
2490struct page *read_cache_page_gfp(struct address_space *mapping,
2491 pgoff_t index,
2492 gfp_t gfp)
2493{
2494 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2495
67f9fd91 2496 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2497}
2498EXPORT_SYMBOL(read_cache_page_gfp);
2499
1da177e4
LT
2500/*
2501 * Performs necessary checks before doing a write
2502 *
485bb99b 2503 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2504 * Returns appropriate error code that caller should return or
2505 * zero in case that write should be allowed.
2506 */
3309dd04 2507inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2508{
3309dd04 2509 struct file *file = iocb->ki_filp;
1da177e4 2510 struct inode *inode = file->f_mapping->host;
59e99e5b 2511 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2512 loff_t pos;
1da177e4 2513
3309dd04
AV
2514 if (!iov_iter_count(from))
2515 return 0;
1da177e4 2516
0fa6b005 2517 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2518 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2519 iocb->ki_pos = i_size_read(inode);
1da177e4 2520
3309dd04 2521 pos = iocb->ki_pos;
1da177e4 2522
0fa6b005 2523 if (limit != RLIM_INFINITY) {
3309dd04 2524 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2525 send_sig(SIGXFSZ, current, 0);
2526 return -EFBIG;
1da177e4 2527 }
3309dd04 2528 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2529 }
2530
2531 /*
2532 * LFS rule
2533 */
3309dd04 2534 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2535 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2536 if (pos >= MAX_NON_LFS)
1da177e4 2537 return -EFBIG;
3309dd04 2538 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2539 }
2540
2541 /*
2542 * Are we about to exceed the fs block limit ?
2543 *
2544 * If we have written data it becomes a short write. If we have
2545 * exceeded without writing data we send a signal and return EFBIG.
2546 * Linus frestrict idea will clean these up nicely..
2547 */
3309dd04
AV
2548 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2549 return -EFBIG;
1da177e4 2550
3309dd04
AV
2551 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2552 return iov_iter_count(from);
1da177e4
LT
2553}
2554EXPORT_SYMBOL(generic_write_checks);
2555
afddba49
NP
2556int pagecache_write_begin(struct file *file, struct address_space *mapping,
2557 loff_t pos, unsigned len, unsigned flags,
2558 struct page **pagep, void **fsdata)
2559{
2560 const struct address_space_operations *aops = mapping->a_ops;
2561
4e02ed4b 2562 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2563 pagep, fsdata);
afddba49
NP
2564}
2565EXPORT_SYMBOL(pagecache_write_begin);
2566
2567int pagecache_write_end(struct file *file, struct address_space *mapping,
2568 loff_t pos, unsigned len, unsigned copied,
2569 struct page *page, void *fsdata)
2570{
2571 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2572
4e02ed4b 2573 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2574}
2575EXPORT_SYMBOL(pagecache_write_end);
2576
1da177e4 2577ssize_t
1af5bb49 2578generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2579{
2580 struct file *file = iocb->ki_filp;
2581 struct address_space *mapping = file->f_mapping;
2582 struct inode *inode = mapping->host;
1af5bb49 2583 loff_t pos = iocb->ki_pos;
1da177e4 2584 ssize_t written;
a969e903
CH
2585 size_t write_len;
2586 pgoff_t end;
26978b8b 2587 struct iov_iter data;
1da177e4 2588
0c949334 2589 write_len = iov_iter_count(from);
09cbfeaf 2590 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2591
48b47c56 2592 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2593 if (written)
2594 goto out;
2595
2596 /*
2597 * After a write we want buffered reads to be sure to go to disk to get
2598 * the new data. We invalidate clean cached page from the region we're
2599 * about to write. We do this *before* the write so that we can return
6ccfa806 2600 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2601 */
2602 if (mapping->nrpages) {
2603 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2604 pos >> PAGE_SHIFT, end);
6ccfa806
HH
2605 /*
2606 * If a page can not be invalidated, return 0 to fall back
2607 * to buffered write.
2608 */
2609 if (written) {
2610 if (written == -EBUSY)
2611 return 0;
a969e903 2612 goto out;
6ccfa806 2613 }
a969e903
CH
2614 }
2615
26978b8b 2616 data = *from;
c8b8e32d 2617 written = mapping->a_ops->direct_IO(iocb, &data);
a969e903
CH
2618
2619 /*
2620 * Finally, try again to invalidate clean pages which might have been
2621 * cached by non-direct readahead, or faulted in by get_user_pages()
2622 * if the source of the write was an mmap'ed region of the file
2623 * we're writing. Either one is a pretty crazy thing to do,
2624 * so we don't support it 100%. If this invalidation
2625 * fails, tough, the write still worked...
2626 */
2627 if (mapping->nrpages) {
2628 invalidate_inode_pages2_range(mapping,
09cbfeaf 2629 pos >> PAGE_SHIFT, end);
a969e903
CH
2630 }
2631
1da177e4 2632 if (written > 0) {
0116651c 2633 pos += written;
f8579f86 2634 iov_iter_advance(from, written);
0116651c
NK
2635 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2636 i_size_write(inode, pos);
1da177e4
LT
2637 mark_inode_dirty(inode);
2638 }
5cb6c6c7 2639 iocb->ki_pos = pos;
1da177e4 2640 }
a969e903 2641out:
1da177e4
LT
2642 return written;
2643}
2644EXPORT_SYMBOL(generic_file_direct_write);
2645
eb2be189
NP
2646/*
2647 * Find or create a page at the given pagecache position. Return the locked
2648 * page. This function is specifically for buffered writes.
2649 */
54566b2c
NP
2650struct page *grab_cache_page_write_begin(struct address_space *mapping,
2651 pgoff_t index, unsigned flags)
eb2be189 2652{
eb2be189 2653 struct page *page;
bbddabe2 2654 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2655
54566b2c 2656 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2657 fgp_flags |= FGP_NOFS;
2658
2659 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2660 mapping_gfp_mask(mapping));
c585a267 2661 if (page)
2457aec6 2662 wait_for_stable_page(page);
eb2be189 2663
eb2be189
NP
2664 return page;
2665}
54566b2c 2666EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2667
3b93f911 2668ssize_t generic_perform_write(struct file *file,
afddba49
NP
2669 struct iov_iter *i, loff_t pos)
2670{
2671 struct address_space *mapping = file->f_mapping;
2672 const struct address_space_operations *a_ops = mapping->a_ops;
2673 long status = 0;
2674 ssize_t written = 0;
674b892e
NP
2675 unsigned int flags = 0;
2676
2677 /*
2678 * Copies from kernel address space cannot fail (NFSD is a big user).
2679 */
777eda2c 2680 if (!iter_is_iovec(i))
674b892e 2681 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2682
2683 do {
2684 struct page *page;
afddba49
NP
2685 unsigned long offset; /* Offset into pagecache page */
2686 unsigned long bytes; /* Bytes to write to page */
2687 size_t copied; /* Bytes copied from user */
2688 void *fsdata;
2689
09cbfeaf
KS
2690 offset = (pos & (PAGE_SIZE - 1));
2691 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2692 iov_iter_count(i));
2693
2694again:
00a3d660
LT
2695 /*
2696 * Bring in the user page that we will copy from _first_.
2697 * Otherwise there's a nasty deadlock on copying from the
2698 * same page as we're writing to, without it being marked
2699 * up-to-date.
2700 *
2701 * Not only is this an optimisation, but it is also required
2702 * to check that the address is actually valid, when atomic
2703 * usercopies are used, below.
2704 */
2705 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2706 status = -EFAULT;
2707 break;
2708 }
2709
296291cd
JK
2710 if (fatal_signal_pending(current)) {
2711 status = -EINTR;
2712 break;
2713 }
2714
674b892e 2715 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2716 &page, &fsdata);
2457aec6 2717 if (unlikely(status < 0))
afddba49
NP
2718 break;
2719
931e80e4 2720 if (mapping_writably_mapped(mapping))
2721 flush_dcache_page(page);
00a3d660 2722
afddba49 2723 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2724 flush_dcache_page(page);
2725
2726 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2727 page, fsdata);
2728 if (unlikely(status < 0))
2729 break;
2730 copied = status;
2731
2732 cond_resched();
2733
124d3b70 2734 iov_iter_advance(i, copied);
afddba49
NP
2735 if (unlikely(copied == 0)) {
2736 /*
2737 * If we were unable to copy any data at all, we must
2738 * fall back to a single segment length write.
2739 *
2740 * If we didn't fallback here, we could livelock
2741 * because not all segments in the iov can be copied at
2742 * once without a pagefault.
2743 */
09cbfeaf 2744 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2745 iov_iter_single_seg_count(i));
2746 goto again;
2747 }
afddba49
NP
2748 pos += copied;
2749 written += copied;
2750
2751 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2752 } while (iov_iter_count(i));
2753
2754 return written ? written : status;
2755}
3b93f911 2756EXPORT_SYMBOL(generic_perform_write);
1da177e4 2757
e4dd9de3 2758/**
8174202b 2759 * __generic_file_write_iter - write data to a file
e4dd9de3 2760 * @iocb: IO state structure (file, offset, etc.)
8174202b 2761 * @from: iov_iter with data to write
e4dd9de3
JK
2762 *
2763 * This function does all the work needed for actually writing data to a
2764 * file. It does all basic checks, removes SUID from the file, updates
2765 * modification times and calls proper subroutines depending on whether we
2766 * do direct IO or a standard buffered write.
2767 *
2768 * It expects i_mutex to be grabbed unless we work on a block device or similar
2769 * object which does not need locking at all.
2770 *
2771 * This function does *not* take care of syncing data in case of O_SYNC write.
2772 * A caller has to handle it. This is mainly due to the fact that we want to
2773 * avoid syncing under i_mutex.
2774 */
8174202b 2775ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2776{
2777 struct file *file = iocb->ki_filp;
fb5527e6 2778 struct address_space * mapping = file->f_mapping;
1da177e4 2779 struct inode *inode = mapping->host;
3b93f911 2780 ssize_t written = 0;
1da177e4 2781 ssize_t err;
3b93f911 2782 ssize_t status;
1da177e4 2783
1da177e4 2784 /* We can write back this queue in page reclaim */
de1414a6 2785 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2786 err = file_remove_privs(file);
1da177e4
LT
2787 if (err)
2788 goto out;
2789
c3b2da31
JB
2790 err = file_update_time(file);
2791 if (err)
2792 goto out;
1da177e4 2793
2ba48ce5 2794 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2795 loff_t pos, endbyte;
fb5527e6 2796
1af5bb49 2797 written = generic_file_direct_write(iocb, from);
1da177e4 2798 /*
fbbbad4b
MW
2799 * If the write stopped short of completing, fall back to
2800 * buffered writes. Some filesystems do this for writes to
2801 * holes, for example. For DAX files, a buffered write will
2802 * not succeed (even if it did, DAX does not handle dirty
2803 * page-cache pages correctly).
1da177e4 2804 */
0b8def9d 2805 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2806 goto out;
2807
0b8def9d 2808 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2809 /*
3b93f911 2810 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2811 * then we want to return the number of bytes which were
2812 * direct-written, or the error code if that was zero. Note
2813 * that this differs from normal direct-io semantics, which
2814 * will return -EFOO even if some bytes were written.
2815 */
60bb4529 2816 if (unlikely(status < 0)) {
3b93f911 2817 err = status;
fb5527e6
JM
2818 goto out;
2819 }
fb5527e6
JM
2820 /*
2821 * We need to ensure that the page cache pages are written to
2822 * disk and invalidated to preserve the expected O_DIRECT
2823 * semantics.
2824 */
3b93f911 2825 endbyte = pos + status - 1;
0b8def9d 2826 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2827 if (err == 0) {
0b8def9d 2828 iocb->ki_pos = endbyte + 1;
3b93f911 2829 written += status;
fb5527e6 2830 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2831 pos >> PAGE_SHIFT,
2832 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2833 } else {
2834 /*
2835 * We don't know how much we wrote, so just return
2836 * the number of bytes which were direct-written
2837 */
2838 }
2839 } else {
0b8def9d
AV
2840 written = generic_perform_write(file, from, iocb->ki_pos);
2841 if (likely(written > 0))
2842 iocb->ki_pos += written;
fb5527e6 2843 }
1da177e4
LT
2844out:
2845 current->backing_dev_info = NULL;
2846 return written ? written : err;
2847}
8174202b 2848EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2849
e4dd9de3 2850/**
8174202b 2851 * generic_file_write_iter - write data to a file
e4dd9de3 2852 * @iocb: IO state structure
8174202b 2853 * @from: iov_iter with data to write
e4dd9de3 2854 *
8174202b 2855 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2856 * filesystems. It takes care of syncing the file in case of O_SYNC file
2857 * and acquires i_mutex as needed.
2858 */
8174202b 2859ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2860{
2861 struct file *file = iocb->ki_filp;
148f948b 2862 struct inode *inode = file->f_mapping->host;
1da177e4 2863 ssize_t ret;
1da177e4 2864
5955102c 2865 inode_lock(inode);
3309dd04
AV
2866 ret = generic_write_checks(iocb, from);
2867 if (ret > 0)
5f380c7f 2868 ret = __generic_file_write_iter(iocb, from);
5955102c 2869 inode_unlock(inode);
1da177e4 2870
e2592217
CH
2871 if (ret > 0)
2872 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2873 return ret;
2874}
8174202b 2875EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2876
cf9a2ae8
DH
2877/**
2878 * try_to_release_page() - release old fs-specific metadata on a page
2879 *
2880 * @page: the page which the kernel is trying to free
2881 * @gfp_mask: memory allocation flags (and I/O mode)
2882 *
2883 * The address_space is to try to release any data against the page
2884 * (presumably at page->private). If the release was successful, return `1'.
2885 * Otherwise return zero.
2886 *
266cf658
DH
2887 * This may also be called if PG_fscache is set on a page, indicating that the
2888 * page is known to the local caching routines.
2889 *
cf9a2ae8 2890 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2891 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2892 *
cf9a2ae8
DH
2893 */
2894int try_to_release_page(struct page *page, gfp_t gfp_mask)
2895{
2896 struct address_space * const mapping = page->mapping;
2897
2898 BUG_ON(!PageLocked(page));
2899 if (PageWriteback(page))
2900 return 0;
2901
2902 if (mapping && mapping->a_ops->releasepage)
2903 return mapping->a_ops->releasepage(page, gfp_mask);
2904 return try_to_free_buffers(page);
2905}
2906
2907EXPORT_SYMBOL(try_to_release_page);
This page took 1.172894 seconds and 5 git commands to generate.