tracing: extend sched_pi_setprio
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
118
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageTail(page), page);
121 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
122
123 if (shadow) {
124 mapping->nrexceptional += nr;
125 /*
126 * Make sure the nrexceptional update is committed before
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
130 */
131 smp_wmb();
132 }
133 mapping->nrpages -= nr;
134
135 for (i = 0; i < nr; i++) {
136 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137 page->index + i, shadow);
138 if (!node) {
139 VM_BUG_ON_PAGE(nr != 1, page);
140 return;
141 }
142
143 workingset_node_pages_dec(node);
144 if (shadow)
145 workingset_node_shadows_inc(node);
146 else
147 if (__radix_tree_delete_node(&mapping->page_tree, node))
148 continue;
149
150 /*
151 * Track node that only contains shadow entries. DAX mappings
152 * contain no shadow entries and may contain other exceptional
153 * entries so skip those.
154 *
155 * Avoid acquiring the list_lru lock if already tracked.
156 * The list_empty() test is safe as node->private_list is
157 * protected by mapping->tree_lock.
158 */
159 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160 list_empty(&node->private_list)) {
161 node->private_data = mapping;
162 list_lru_add(&workingset_shadow_nodes,
163 &node->private_list);
164 }
165 }
166 }
167
168 /*
169 * Delete a page from the page cache and free it. Caller has to make
170 * sure the page is locked and that nobody else uses it - or that usage
171 * is safe. The caller must hold the mapping's tree_lock.
172 */
173 void __delete_from_page_cache(struct page *page, void *shadow)
174 {
175 struct address_space *mapping = page->mapping;
176 int nr = hpage_nr_pages(page);
177
178 trace_mm_filemap_delete_from_page_cache(page);
179 /*
180 * if we're uptodate, flush out into the cleancache, otherwise
181 * invalidate any existing cleancache entries. We can't leave
182 * stale data around in the cleancache once our page is gone
183 */
184 if (PageUptodate(page) && PageMappedToDisk(page))
185 cleancache_put_page(page);
186 else
187 cleancache_invalidate_page(mapping, page);
188
189 VM_BUG_ON_PAGE(PageTail(page), page);
190 VM_BUG_ON_PAGE(page_mapped(page), page);
191 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
192 int mapcount;
193
194 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
195 current->comm, page_to_pfn(page));
196 dump_page(page, "still mapped when deleted");
197 dump_stack();
198 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
199
200 mapcount = page_mapcount(page);
201 if (mapping_exiting(mapping) &&
202 page_count(page) >= mapcount + 2) {
203 /*
204 * All vmas have already been torn down, so it's
205 * a good bet that actually the page is unmapped,
206 * and we'd prefer not to leak it: if we're wrong,
207 * some other bad page check should catch it later.
208 */
209 page_mapcount_reset(page);
210 page_ref_sub(page, mapcount);
211 }
212 }
213
214 page_cache_tree_delete(mapping, page, shadow);
215
216 page->mapping = NULL;
217 /* Leave page->index set: truncation lookup relies upon it */
218
219 /* hugetlb pages do not participate in page cache accounting. */
220 if (!PageHuge(page))
221 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
222 if (PageSwapBacked(page)) {
223 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
224 if (PageTransHuge(page))
225 __dec_node_page_state(page, NR_SHMEM_THPS);
226 } else {
227 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
228 }
229
230 /*
231 * At this point page must be either written or cleaned by truncate.
232 * Dirty page here signals a bug and loss of unwritten data.
233 *
234 * This fixes dirty accounting after removing the page entirely but
235 * leaves PageDirty set: it has no effect for truncated page and
236 * anyway will be cleared before returning page into buddy allocator.
237 */
238 if (WARN_ON_ONCE(PageDirty(page)))
239 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
240 }
241
242 /**
243 * delete_from_page_cache - delete page from page cache
244 * @page: the page which the kernel is trying to remove from page cache
245 *
246 * This must be called only on pages that have been verified to be in the page
247 * cache and locked. It will never put the page into the free list, the caller
248 * has a reference on the page.
249 */
250 void delete_from_page_cache(struct page *page)
251 {
252 struct address_space *mapping = page_mapping(page);
253 unsigned long flags;
254 void (*freepage)(struct page *);
255
256 BUG_ON(!PageLocked(page));
257
258 freepage = mapping->a_ops->freepage;
259
260 spin_lock_irqsave(&mapping->tree_lock, flags);
261 __delete_from_page_cache(page, NULL);
262 spin_unlock_irqrestore(&mapping->tree_lock, flags);
263
264 if (freepage)
265 freepage(page);
266
267 if (PageTransHuge(page) && !PageHuge(page)) {
268 page_ref_sub(page, HPAGE_PMD_NR);
269 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
270 } else {
271 put_page(page);
272 }
273 }
274 EXPORT_SYMBOL(delete_from_page_cache);
275
276 int filemap_check_errors(struct address_space *mapping)
277 {
278 int ret = 0;
279 /* Check for outstanding write errors */
280 if (test_bit(AS_ENOSPC, &mapping->flags) &&
281 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_bit(AS_EIO, &mapping->flags) &&
284 test_and_clear_bit(AS_EIO, &mapping->flags))
285 ret = -EIO;
286 return ret;
287 }
288 EXPORT_SYMBOL(filemap_check_errors);
289
290 /**
291 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
292 * @mapping: address space structure to write
293 * @start: offset in bytes where the range starts
294 * @end: offset in bytes where the range ends (inclusive)
295 * @sync_mode: enable synchronous operation
296 *
297 * Start writeback against all of a mapping's dirty pages that lie
298 * within the byte offsets <start, end> inclusive.
299 *
300 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
301 * opposed to a regular memory cleansing writeback. The difference between
302 * these two operations is that if a dirty page/buffer is encountered, it must
303 * be waited upon, and not just skipped over.
304 */
305 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
306 loff_t end, int sync_mode)
307 {
308 int ret;
309 struct writeback_control wbc = {
310 .sync_mode = sync_mode,
311 .nr_to_write = LONG_MAX,
312 .range_start = start,
313 .range_end = end,
314 };
315
316 if (!mapping_cap_writeback_dirty(mapping))
317 return 0;
318
319 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
320 ret = do_writepages(mapping, &wbc);
321 wbc_detach_inode(&wbc);
322 return ret;
323 }
324
325 static inline int __filemap_fdatawrite(struct address_space *mapping,
326 int sync_mode)
327 {
328 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
329 }
330
331 int filemap_fdatawrite(struct address_space *mapping)
332 {
333 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
334 }
335 EXPORT_SYMBOL(filemap_fdatawrite);
336
337 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338 loff_t end)
339 {
340 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
341 }
342 EXPORT_SYMBOL(filemap_fdatawrite_range);
343
344 /**
345 * filemap_flush - mostly a non-blocking flush
346 * @mapping: target address_space
347 *
348 * This is a mostly non-blocking flush. Not suitable for data-integrity
349 * purposes - I/O may not be started against all dirty pages.
350 */
351 int filemap_flush(struct address_space *mapping)
352 {
353 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
354 }
355 EXPORT_SYMBOL(filemap_flush);
356
357 static int __filemap_fdatawait_range(struct address_space *mapping,
358 loff_t start_byte, loff_t end_byte)
359 {
360 pgoff_t index = start_byte >> PAGE_SHIFT;
361 pgoff_t end = end_byte >> PAGE_SHIFT;
362 struct pagevec pvec;
363 int nr_pages;
364 int ret = 0;
365
366 if (end_byte < start_byte)
367 goto out;
368
369 pagevec_init(&pvec, 0);
370 while ((index <= end) &&
371 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
372 PAGECACHE_TAG_WRITEBACK,
373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
374 unsigned i;
375
376 for (i = 0; i < nr_pages; i++) {
377 struct page *page = pvec.pages[i];
378
379 /* until radix tree lookup accepts end_index */
380 if (page->index > end)
381 continue;
382
383 wait_on_page_writeback(page);
384 if (TestClearPageError(page))
385 ret = -EIO;
386 }
387 pagevec_release(&pvec);
388 cond_resched();
389 }
390 out:
391 return ret;
392 }
393
394 /**
395 * filemap_fdatawait_range - wait for writeback to complete
396 * @mapping: address space structure to wait for
397 * @start_byte: offset in bytes where the range starts
398 * @end_byte: offset in bytes where the range ends (inclusive)
399 *
400 * Walk the list of under-writeback pages of the given address space
401 * in the given range and wait for all of them. Check error status of
402 * the address space and return it.
403 *
404 * Since the error status of the address space is cleared by this function,
405 * callers are responsible for checking the return value and handling and/or
406 * reporting the error.
407 */
408 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
409 loff_t end_byte)
410 {
411 int ret, ret2;
412
413 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
414 ret2 = filemap_check_errors(mapping);
415 if (!ret)
416 ret = ret2;
417
418 return ret;
419 }
420 EXPORT_SYMBOL(filemap_fdatawait_range);
421
422 /**
423 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
424 * @mapping: address space structure to wait for
425 *
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Unlike filemap_fdatawait(), this function
428 * does not clear error status of the address space.
429 *
430 * Use this function if callers don't handle errors themselves. Expected
431 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
432 * fsfreeze(8)
433 */
434 void filemap_fdatawait_keep_errors(struct address_space *mapping)
435 {
436 loff_t i_size = i_size_read(mapping->host);
437
438 if (i_size == 0)
439 return;
440
441 __filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443
444 /**
445 * filemap_fdatawait - wait for all under-writeback pages to complete
446 * @mapping: address space structure to wait for
447 *
448 * Walk the list of under-writeback pages of the given address space
449 * and wait for all of them. Check error status of the address space
450 * and return it.
451 *
452 * Since the error status of the address space is cleared by this function,
453 * callers are responsible for checking the return value and handling and/or
454 * reporting the error.
455 */
456 int filemap_fdatawait(struct address_space *mapping)
457 {
458 loff_t i_size = i_size_read(mapping->host);
459
460 if (i_size == 0)
461 return 0;
462
463 return filemap_fdatawait_range(mapping, 0, i_size - 1);
464 }
465 EXPORT_SYMBOL(filemap_fdatawait);
466
467 int filemap_write_and_wait(struct address_space *mapping)
468 {
469 int err = 0;
470
471 if ((!dax_mapping(mapping) && mapping->nrpages) ||
472 (dax_mapping(mapping) && mapping->nrexceptional)) {
473 err = filemap_fdatawrite(mapping);
474 /*
475 * Even if the above returned error, the pages may be
476 * written partially (e.g. -ENOSPC), so we wait for it.
477 * But the -EIO is special case, it may indicate the worst
478 * thing (e.g. bug) happened, so we avoid waiting for it.
479 */
480 if (err != -EIO) {
481 int err2 = filemap_fdatawait(mapping);
482 if (!err)
483 err = err2;
484 }
485 } else {
486 err = filemap_check_errors(mapping);
487 }
488 return err;
489 }
490 EXPORT_SYMBOL(filemap_write_and_wait);
491
492 /**
493 * filemap_write_and_wait_range - write out & wait on a file range
494 * @mapping: the address_space for the pages
495 * @lstart: offset in bytes where the range starts
496 * @lend: offset in bytes where the range ends (inclusive)
497 *
498 * Write out and wait upon file offsets lstart->lend, inclusive.
499 *
500 * Note that `lend' is inclusive (describes the last byte to be written) so
501 * that this function can be used to write to the very end-of-file (end = -1).
502 */
503 int filemap_write_and_wait_range(struct address_space *mapping,
504 loff_t lstart, loff_t lend)
505 {
506 int err = 0;
507
508 if ((!dax_mapping(mapping) && mapping->nrpages) ||
509 (dax_mapping(mapping) && mapping->nrexceptional)) {
510 err = __filemap_fdatawrite_range(mapping, lstart, lend,
511 WB_SYNC_ALL);
512 /* See comment of filemap_write_and_wait() */
513 if (err != -EIO) {
514 int err2 = filemap_fdatawait_range(mapping,
515 lstart, lend);
516 if (!err)
517 err = err2;
518 }
519 } else {
520 err = filemap_check_errors(mapping);
521 }
522 return err;
523 }
524 EXPORT_SYMBOL(filemap_write_and_wait_range);
525
526 /**
527 * replace_page_cache_page - replace a pagecache page with a new one
528 * @old: page to be replaced
529 * @new: page to replace with
530 * @gfp_mask: allocation mode
531 *
532 * This function replaces a page in the pagecache with a new one. On
533 * success it acquires the pagecache reference for the new page and
534 * drops it for the old page. Both the old and new pages must be
535 * locked. This function does not add the new page to the LRU, the
536 * caller must do that.
537 *
538 * The remove + add is atomic. The only way this function can fail is
539 * memory allocation failure.
540 */
541 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
542 {
543 int error;
544
545 VM_BUG_ON_PAGE(!PageLocked(old), old);
546 VM_BUG_ON_PAGE(!PageLocked(new), new);
547 VM_BUG_ON_PAGE(new->mapping, new);
548
549 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
550 if (!error) {
551 struct address_space *mapping = old->mapping;
552 void (*freepage)(struct page *);
553 unsigned long flags;
554
555 pgoff_t offset = old->index;
556 freepage = mapping->a_ops->freepage;
557
558 get_page(new);
559 new->mapping = mapping;
560 new->index = offset;
561
562 spin_lock_irqsave(&mapping->tree_lock, flags);
563 __delete_from_page_cache(old, NULL);
564 error = radix_tree_insert(&mapping->page_tree, offset, new);
565 BUG_ON(error);
566 mapping->nrpages++;
567
568 /*
569 * hugetlb pages do not participate in page cache accounting.
570 */
571 if (!PageHuge(new))
572 __inc_node_page_state(new, NR_FILE_PAGES);
573 if (PageSwapBacked(new))
574 __inc_node_page_state(new, NR_SHMEM);
575 spin_unlock_irqrestore(&mapping->tree_lock, flags);
576 mem_cgroup_migrate(old, new);
577 radix_tree_preload_end();
578 if (freepage)
579 freepage(old);
580 put_page(old);
581 }
582
583 return error;
584 }
585 EXPORT_SYMBOL_GPL(replace_page_cache_page);
586
587 static int page_cache_tree_insert(struct address_space *mapping,
588 struct page *page, void **shadowp)
589 {
590 struct radix_tree_node *node;
591 void **slot;
592 int error;
593
594 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
595 &node, &slot);
596 if (error)
597 return error;
598 if (*slot) {
599 void *p;
600
601 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
602 if (!radix_tree_exceptional_entry(p))
603 return -EEXIST;
604
605 mapping->nrexceptional--;
606 if (!dax_mapping(mapping)) {
607 if (shadowp)
608 *shadowp = p;
609 if (node)
610 workingset_node_shadows_dec(node);
611 } else {
612 /* DAX can replace empty locked entry with a hole */
613 WARN_ON_ONCE(p !=
614 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
615 RADIX_DAX_ENTRY_LOCK));
616 /* DAX accounts exceptional entries as normal pages */
617 if (node)
618 workingset_node_pages_dec(node);
619 /* Wakeup waiters for exceptional entry lock */
620 dax_wake_mapping_entry_waiter(mapping, page->index,
621 false);
622 }
623 }
624 radix_tree_replace_slot(slot, page);
625 mapping->nrpages++;
626 if (node) {
627 workingset_node_pages_inc(node);
628 /*
629 * Don't track node that contains actual pages.
630 *
631 * Avoid acquiring the list_lru lock if already
632 * untracked. The list_empty() test is safe as
633 * node->private_list is protected by
634 * mapping->tree_lock.
635 */
636 if (!list_empty(&node->private_list))
637 list_lru_del(&workingset_shadow_nodes,
638 &node->private_list);
639 }
640 return 0;
641 }
642
643 static int __add_to_page_cache_locked(struct page *page,
644 struct address_space *mapping,
645 pgoff_t offset, gfp_t gfp_mask,
646 void **shadowp)
647 {
648 int huge = PageHuge(page);
649 struct mem_cgroup *memcg;
650 int error;
651
652 VM_BUG_ON_PAGE(!PageLocked(page), page);
653 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
654
655 if (!huge) {
656 error = mem_cgroup_try_charge(page, current->mm,
657 gfp_mask, &memcg, false);
658 if (error)
659 return error;
660 }
661
662 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
663 if (error) {
664 if (!huge)
665 mem_cgroup_cancel_charge(page, memcg, false);
666 return error;
667 }
668
669 get_page(page);
670 page->mapping = mapping;
671 page->index = offset;
672
673 spin_lock_irq(&mapping->tree_lock);
674 error = page_cache_tree_insert(mapping, page, shadowp);
675 radix_tree_preload_end();
676 if (unlikely(error))
677 goto err_insert;
678
679 /* hugetlb pages do not participate in page cache accounting. */
680 if (!huge)
681 __inc_node_page_state(page, NR_FILE_PAGES);
682 spin_unlock_irq(&mapping->tree_lock);
683 if (!huge)
684 mem_cgroup_commit_charge(page, memcg, false, false);
685 trace_mm_filemap_add_to_page_cache(page);
686 return 0;
687 err_insert:
688 page->mapping = NULL;
689 /* Leave page->index set: truncation relies upon it */
690 spin_unlock_irq(&mapping->tree_lock);
691 if (!huge)
692 mem_cgroup_cancel_charge(page, memcg, false);
693 put_page(page);
694 return error;
695 }
696
697 /**
698 * add_to_page_cache_locked - add a locked page to the pagecache
699 * @page: page to add
700 * @mapping: the page's address_space
701 * @offset: page index
702 * @gfp_mask: page allocation mode
703 *
704 * This function is used to add a page to the pagecache. It must be locked.
705 * This function does not add the page to the LRU. The caller must do that.
706 */
707 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
708 pgoff_t offset, gfp_t gfp_mask)
709 {
710 return __add_to_page_cache_locked(page, mapping, offset,
711 gfp_mask, NULL);
712 }
713 EXPORT_SYMBOL(add_to_page_cache_locked);
714
715 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
716 pgoff_t offset, gfp_t gfp_mask)
717 {
718 void *shadow = NULL;
719 int ret;
720
721 __SetPageLocked(page);
722 ret = __add_to_page_cache_locked(page, mapping, offset,
723 gfp_mask, &shadow);
724 if (unlikely(ret))
725 __ClearPageLocked(page);
726 else {
727 /*
728 * The page might have been evicted from cache only
729 * recently, in which case it should be activated like
730 * any other repeatedly accessed page.
731 * The exception is pages getting rewritten; evicting other
732 * data from the working set, only to cache data that will
733 * get overwritten with something else, is a waste of memory.
734 */
735 if (!(gfp_mask & __GFP_WRITE) &&
736 shadow && workingset_refault(shadow)) {
737 SetPageActive(page);
738 workingset_activation(page);
739 } else
740 ClearPageActive(page);
741 lru_cache_add(page);
742 }
743 return ret;
744 }
745 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
746
747 #ifdef CONFIG_NUMA
748 struct page *__page_cache_alloc(gfp_t gfp)
749 {
750 int n;
751 struct page *page;
752
753 if (cpuset_do_page_mem_spread()) {
754 unsigned int cpuset_mems_cookie;
755 do {
756 cpuset_mems_cookie = read_mems_allowed_begin();
757 n = cpuset_mem_spread_node();
758 page = __alloc_pages_node(n, gfp, 0);
759 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
760
761 return page;
762 }
763 return alloc_pages(gfp, 0);
764 }
765 EXPORT_SYMBOL(__page_cache_alloc);
766 #endif
767
768 /*
769 * In order to wait for pages to become available there must be
770 * waitqueues associated with pages. By using a hash table of
771 * waitqueues where the bucket discipline is to maintain all
772 * waiters on the same queue and wake all when any of the pages
773 * become available, and for the woken contexts to check to be
774 * sure the appropriate page became available, this saves space
775 * at a cost of "thundering herd" phenomena during rare hash
776 * collisions.
777 */
778 wait_queue_head_t *page_waitqueue(struct page *page)
779 {
780 const struct zone *zone = page_zone(page);
781
782 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
783 }
784 EXPORT_SYMBOL(page_waitqueue);
785
786 void wait_on_page_bit(struct page *page, int bit_nr)
787 {
788 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
789
790 if (test_bit(bit_nr, &page->flags))
791 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
792 TASK_UNINTERRUPTIBLE);
793 }
794 EXPORT_SYMBOL(wait_on_page_bit);
795
796 int wait_on_page_bit_killable(struct page *page, int bit_nr)
797 {
798 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
799
800 if (!test_bit(bit_nr, &page->flags))
801 return 0;
802
803 return __wait_on_bit(page_waitqueue(page), &wait,
804 bit_wait_io, TASK_KILLABLE);
805 }
806
807 int wait_on_page_bit_killable_timeout(struct page *page,
808 int bit_nr, unsigned long timeout)
809 {
810 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
811
812 wait.key.timeout = jiffies + timeout;
813 if (!test_bit(bit_nr, &page->flags))
814 return 0;
815 return __wait_on_bit(page_waitqueue(page), &wait,
816 bit_wait_io_timeout, TASK_KILLABLE);
817 }
818 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
819
820 /**
821 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
822 * @page: Page defining the wait queue of interest
823 * @waiter: Waiter to add to the queue
824 *
825 * Add an arbitrary @waiter to the wait queue for the nominated @page.
826 */
827 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
828 {
829 wait_queue_head_t *q = page_waitqueue(page);
830 unsigned long flags;
831
832 spin_lock_irqsave(&q->lock, flags);
833 __add_wait_queue(q, waiter);
834 spin_unlock_irqrestore(&q->lock, flags);
835 }
836 EXPORT_SYMBOL_GPL(add_page_wait_queue);
837
838 /**
839 * unlock_page - unlock a locked page
840 * @page: the page
841 *
842 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
843 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
844 * mechanism between PageLocked pages and PageWriteback pages is shared.
845 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
846 *
847 * The mb is necessary to enforce ordering between the clear_bit and the read
848 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
849 */
850 void unlock_page(struct page *page)
851 {
852 page = compound_head(page);
853 VM_BUG_ON_PAGE(!PageLocked(page), page);
854 clear_bit_unlock(PG_locked, &page->flags);
855 smp_mb__after_atomic();
856 wake_up_page(page, PG_locked);
857 }
858 EXPORT_SYMBOL(unlock_page);
859
860 /**
861 * end_page_writeback - end writeback against a page
862 * @page: the page
863 */
864 void end_page_writeback(struct page *page)
865 {
866 /*
867 * TestClearPageReclaim could be used here but it is an atomic
868 * operation and overkill in this particular case. Failing to
869 * shuffle a page marked for immediate reclaim is too mild to
870 * justify taking an atomic operation penalty at the end of
871 * ever page writeback.
872 */
873 if (PageReclaim(page)) {
874 ClearPageReclaim(page);
875 rotate_reclaimable_page(page);
876 }
877
878 if (!test_clear_page_writeback(page))
879 BUG();
880
881 smp_mb__after_atomic();
882 wake_up_page(page, PG_writeback);
883 }
884 EXPORT_SYMBOL(end_page_writeback);
885
886 /*
887 * After completing I/O on a page, call this routine to update the page
888 * flags appropriately
889 */
890 void page_endio(struct page *page, bool is_write, int err)
891 {
892 if (!is_write) {
893 if (!err) {
894 SetPageUptodate(page);
895 } else {
896 ClearPageUptodate(page);
897 SetPageError(page);
898 }
899 unlock_page(page);
900 } else {
901 if (err) {
902 SetPageError(page);
903 if (page->mapping)
904 mapping_set_error(page->mapping, err);
905 }
906 end_page_writeback(page);
907 }
908 }
909 EXPORT_SYMBOL_GPL(page_endio);
910
911 /**
912 * __lock_page - get a lock on the page, assuming we need to sleep to get it
913 * @page: the page to lock
914 */
915 void __lock_page(struct page *page)
916 {
917 struct page *page_head = compound_head(page);
918 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
919
920 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
921 TASK_UNINTERRUPTIBLE);
922 }
923 EXPORT_SYMBOL(__lock_page);
924
925 int __lock_page_killable(struct page *page)
926 {
927 struct page *page_head = compound_head(page);
928 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
929
930 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
931 bit_wait_io, TASK_KILLABLE);
932 }
933 EXPORT_SYMBOL_GPL(__lock_page_killable);
934
935 /*
936 * Return values:
937 * 1 - page is locked; mmap_sem is still held.
938 * 0 - page is not locked.
939 * mmap_sem has been released (up_read()), unless flags had both
940 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
941 * which case mmap_sem is still held.
942 *
943 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
944 * with the page locked and the mmap_sem unperturbed.
945 */
946 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
947 unsigned int flags)
948 {
949 if (flags & FAULT_FLAG_ALLOW_RETRY) {
950 /*
951 * CAUTION! In this case, mmap_sem is not released
952 * even though return 0.
953 */
954 if (flags & FAULT_FLAG_RETRY_NOWAIT)
955 return 0;
956
957 up_read(&mm->mmap_sem);
958 if (flags & FAULT_FLAG_KILLABLE)
959 wait_on_page_locked_killable(page);
960 else
961 wait_on_page_locked(page);
962 return 0;
963 } else {
964 if (flags & FAULT_FLAG_KILLABLE) {
965 int ret;
966
967 ret = __lock_page_killable(page);
968 if (ret) {
969 up_read(&mm->mmap_sem);
970 return 0;
971 }
972 } else
973 __lock_page(page);
974 return 1;
975 }
976 }
977
978 /**
979 * page_cache_next_hole - find the next hole (not-present entry)
980 * @mapping: mapping
981 * @index: index
982 * @max_scan: maximum range to search
983 *
984 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
985 * lowest indexed hole.
986 *
987 * Returns: the index of the hole if found, otherwise returns an index
988 * outside of the set specified (in which case 'return - index >=
989 * max_scan' will be true). In rare cases of index wrap-around, 0 will
990 * be returned.
991 *
992 * page_cache_next_hole may be called under rcu_read_lock. However,
993 * like radix_tree_gang_lookup, this will not atomically search a
994 * snapshot of the tree at a single point in time. For example, if a
995 * hole is created at index 5, then subsequently a hole is created at
996 * index 10, page_cache_next_hole covering both indexes may return 10
997 * if called under rcu_read_lock.
998 */
999 pgoff_t page_cache_next_hole(struct address_space *mapping,
1000 pgoff_t index, unsigned long max_scan)
1001 {
1002 unsigned long i;
1003
1004 for (i = 0; i < max_scan; i++) {
1005 struct page *page;
1006
1007 page = radix_tree_lookup(&mapping->page_tree, index);
1008 if (!page || radix_tree_exceptional_entry(page))
1009 break;
1010 index++;
1011 if (index == 0)
1012 break;
1013 }
1014
1015 return index;
1016 }
1017 EXPORT_SYMBOL(page_cache_next_hole);
1018
1019 /**
1020 * page_cache_prev_hole - find the prev hole (not-present entry)
1021 * @mapping: mapping
1022 * @index: index
1023 * @max_scan: maximum range to search
1024 *
1025 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1026 * the first hole.
1027 *
1028 * Returns: the index of the hole if found, otherwise returns an index
1029 * outside of the set specified (in which case 'index - return >=
1030 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1031 * will be returned.
1032 *
1033 * page_cache_prev_hole may be called under rcu_read_lock. However,
1034 * like radix_tree_gang_lookup, this will not atomically search a
1035 * snapshot of the tree at a single point in time. For example, if a
1036 * hole is created at index 10, then subsequently a hole is created at
1037 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1038 * called under rcu_read_lock.
1039 */
1040 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1041 pgoff_t index, unsigned long max_scan)
1042 {
1043 unsigned long i;
1044
1045 for (i = 0; i < max_scan; i++) {
1046 struct page *page;
1047
1048 page = radix_tree_lookup(&mapping->page_tree, index);
1049 if (!page || radix_tree_exceptional_entry(page))
1050 break;
1051 index--;
1052 if (index == ULONG_MAX)
1053 break;
1054 }
1055
1056 return index;
1057 }
1058 EXPORT_SYMBOL(page_cache_prev_hole);
1059
1060 /**
1061 * find_get_entry - find and get a page cache entry
1062 * @mapping: the address_space to search
1063 * @offset: the page cache index
1064 *
1065 * Looks up the page cache slot at @mapping & @offset. If there is a
1066 * page cache page, it is returned with an increased refcount.
1067 *
1068 * If the slot holds a shadow entry of a previously evicted page, or a
1069 * swap entry from shmem/tmpfs, it is returned.
1070 *
1071 * Otherwise, %NULL is returned.
1072 */
1073 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1074 {
1075 void **pagep;
1076 struct page *head, *page;
1077
1078 rcu_read_lock();
1079 repeat:
1080 page = NULL;
1081 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1082 if (pagep) {
1083 page = radix_tree_deref_slot(pagep);
1084 if (unlikely(!page))
1085 goto out;
1086 if (radix_tree_exception(page)) {
1087 if (radix_tree_deref_retry(page))
1088 goto repeat;
1089 /*
1090 * A shadow entry of a recently evicted page,
1091 * or a swap entry from shmem/tmpfs. Return
1092 * it without attempting to raise page count.
1093 */
1094 goto out;
1095 }
1096
1097 head = compound_head(page);
1098 if (!page_cache_get_speculative(head))
1099 goto repeat;
1100
1101 /* The page was split under us? */
1102 if (compound_head(page) != head) {
1103 put_page(head);
1104 goto repeat;
1105 }
1106
1107 /*
1108 * Has the page moved?
1109 * This is part of the lockless pagecache protocol. See
1110 * include/linux/pagemap.h for details.
1111 */
1112 if (unlikely(page != *pagep)) {
1113 put_page(head);
1114 goto repeat;
1115 }
1116 }
1117 out:
1118 rcu_read_unlock();
1119
1120 return page;
1121 }
1122 EXPORT_SYMBOL(find_get_entry);
1123
1124 /**
1125 * find_lock_entry - locate, pin and lock a page cache entry
1126 * @mapping: the address_space to search
1127 * @offset: the page cache index
1128 *
1129 * Looks up the page cache slot at @mapping & @offset. If there is a
1130 * page cache page, it is returned locked and with an increased
1131 * refcount.
1132 *
1133 * If the slot holds a shadow entry of a previously evicted page, or a
1134 * swap entry from shmem/tmpfs, it is returned.
1135 *
1136 * Otherwise, %NULL is returned.
1137 *
1138 * find_lock_entry() may sleep.
1139 */
1140 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1141 {
1142 struct page *page;
1143
1144 repeat:
1145 page = find_get_entry(mapping, offset);
1146 if (page && !radix_tree_exception(page)) {
1147 lock_page(page);
1148 /* Has the page been truncated? */
1149 if (unlikely(page_mapping(page) != mapping)) {
1150 unlock_page(page);
1151 put_page(page);
1152 goto repeat;
1153 }
1154 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1155 }
1156 return page;
1157 }
1158 EXPORT_SYMBOL(find_lock_entry);
1159
1160 /**
1161 * pagecache_get_page - find and get a page reference
1162 * @mapping: the address_space to search
1163 * @offset: the page index
1164 * @fgp_flags: PCG flags
1165 * @gfp_mask: gfp mask to use for the page cache data page allocation
1166 *
1167 * Looks up the page cache slot at @mapping & @offset.
1168 *
1169 * PCG flags modify how the page is returned.
1170 *
1171 * FGP_ACCESSED: the page will be marked accessed
1172 * FGP_LOCK: Page is return locked
1173 * FGP_CREAT: If page is not present then a new page is allocated using
1174 * @gfp_mask and added to the page cache and the VM's LRU
1175 * list. The page is returned locked and with an increased
1176 * refcount. Otherwise, %NULL is returned.
1177 *
1178 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1179 * if the GFP flags specified for FGP_CREAT are atomic.
1180 *
1181 * If there is a page cache page, it is returned with an increased refcount.
1182 */
1183 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1184 int fgp_flags, gfp_t gfp_mask)
1185 {
1186 struct page *page;
1187
1188 repeat:
1189 page = find_get_entry(mapping, offset);
1190 if (radix_tree_exceptional_entry(page))
1191 page = NULL;
1192 if (!page)
1193 goto no_page;
1194
1195 if (fgp_flags & FGP_LOCK) {
1196 if (fgp_flags & FGP_NOWAIT) {
1197 if (!trylock_page(page)) {
1198 put_page(page);
1199 return NULL;
1200 }
1201 } else {
1202 lock_page(page);
1203 }
1204
1205 /* Has the page been truncated? */
1206 if (unlikely(page->mapping != mapping)) {
1207 unlock_page(page);
1208 put_page(page);
1209 goto repeat;
1210 }
1211 VM_BUG_ON_PAGE(page->index != offset, page);
1212 }
1213
1214 if (page && (fgp_flags & FGP_ACCESSED))
1215 mark_page_accessed(page);
1216
1217 no_page:
1218 if (!page && (fgp_flags & FGP_CREAT)) {
1219 int err;
1220 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1221 gfp_mask |= __GFP_WRITE;
1222 if (fgp_flags & FGP_NOFS)
1223 gfp_mask &= ~__GFP_FS;
1224
1225 page = __page_cache_alloc(gfp_mask);
1226 if (!page)
1227 return NULL;
1228
1229 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1230 fgp_flags |= FGP_LOCK;
1231
1232 /* Init accessed so avoid atomic mark_page_accessed later */
1233 if (fgp_flags & FGP_ACCESSED)
1234 __SetPageReferenced(page);
1235
1236 err = add_to_page_cache_lru(page, mapping, offset,
1237 gfp_mask & GFP_RECLAIM_MASK);
1238 if (unlikely(err)) {
1239 put_page(page);
1240 page = NULL;
1241 if (err == -EEXIST)
1242 goto repeat;
1243 }
1244 }
1245
1246 return page;
1247 }
1248 EXPORT_SYMBOL(pagecache_get_page);
1249
1250 /**
1251 * find_get_entries - gang pagecache lookup
1252 * @mapping: The address_space to search
1253 * @start: The starting page cache index
1254 * @nr_entries: The maximum number of entries
1255 * @entries: Where the resulting entries are placed
1256 * @indices: The cache indices corresponding to the entries in @entries
1257 *
1258 * find_get_entries() will search for and return a group of up to
1259 * @nr_entries entries in the mapping. The entries are placed at
1260 * @entries. find_get_entries() takes a reference against any actual
1261 * pages it returns.
1262 *
1263 * The search returns a group of mapping-contiguous page cache entries
1264 * with ascending indexes. There may be holes in the indices due to
1265 * not-present pages.
1266 *
1267 * Any shadow entries of evicted pages, or swap entries from
1268 * shmem/tmpfs, are included in the returned array.
1269 *
1270 * find_get_entries() returns the number of pages and shadow entries
1271 * which were found.
1272 */
1273 unsigned find_get_entries(struct address_space *mapping,
1274 pgoff_t start, unsigned int nr_entries,
1275 struct page **entries, pgoff_t *indices)
1276 {
1277 void **slot;
1278 unsigned int ret = 0;
1279 struct radix_tree_iter iter;
1280
1281 if (!nr_entries)
1282 return 0;
1283
1284 rcu_read_lock();
1285 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1286 struct page *head, *page;
1287 repeat:
1288 page = radix_tree_deref_slot(slot);
1289 if (unlikely(!page))
1290 continue;
1291 if (radix_tree_exception(page)) {
1292 if (radix_tree_deref_retry(page)) {
1293 slot = radix_tree_iter_retry(&iter);
1294 continue;
1295 }
1296 /*
1297 * A shadow entry of a recently evicted page, a swap
1298 * entry from shmem/tmpfs or a DAX entry. Return it
1299 * without attempting to raise page count.
1300 */
1301 goto export;
1302 }
1303
1304 head = compound_head(page);
1305 if (!page_cache_get_speculative(head))
1306 goto repeat;
1307
1308 /* The page was split under us? */
1309 if (compound_head(page) != head) {
1310 put_page(head);
1311 goto repeat;
1312 }
1313
1314 /* Has the page moved? */
1315 if (unlikely(page != *slot)) {
1316 put_page(head);
1317 goto repeat;
1318 }
1319 export:
1320 indices[ret] = iter.index;
1321 entries[ret] = page;
1322 if (++ret == nr_entries)
1323 break;
1324 }
1325 rcu_read_unlock();
1326 return ret;
1327 }
1328
1329 /**
1330 * find_get_pages - gang pagecache lookup
1331 * @mapping: The address_space to search
1332 * @start: The starting page index
1333 * @nr_pages: The maximum number of pages
1334 * @pages: Where the resulting pages are placed
1335 *
1336 * find_get_pages() will search for and return a group of up to
1337 * @nr_pages pages in the mapping. The pages are placed at @pages.
1338 * find_get_pages() takes a reference against the returned pages.
1339 *
1340 * The search returns a group of mapping-contiguous pages with ascending
1341 * indexes. There may be holes in the indices due to not-present pages.
1342 *
1343 * find_get_pages() returns the number of pages which were found.
1344 */
1345 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1346 unsigned int nr_pages, struct page **pages)
1347 {
1348 struct radix_tree_iter iter;
1349 void **slot;
1350 unsigned ret = 0;
1351
1352 if (unlikely(!nr_pages))
1353 return 0;
1354
1355 rcu_read_lock();
1356 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1357 struct page *head, *page;
1358 repeat:
1359 page = radix_tree_deref_slot(slot);
1360 if (unlikely(!page))
1361 continue;
1362
1363 if (radix_tree_exception(page)) {
1364 if (radix_tree_deref_retry(page)) {
1365 slot = radix_tree_iter_retry(&iter);
1366 continue;
1367 }
1368 /*
1369 * A shadow entry of a recently evicted page,
1370 * or a swap entry from shmem/tmpfs. Skip
1371 * over it.
1372 */
1373 continue;
1374 }
1375
1376 head = compound_head(page);
1377 if (!page_cache_get_speculative(head))
1378 goto repeat;
1379
1380 /* The page was split under us? */
1381 if (compound_head(page) != head) {
1382 put_page(head);
1383 goto repeat;
1384 }
1385
1386 /* Has the page moved? */
1387 if (unlikely(page != *slot)) {
1388 put_page(head);
1389 goto repeat;
1390 }
1391
1392 pages[ret] = page;
1393 if (++ret == nr_pages)
1394 break;
1395 }
1396
1397 rcu_read_unlock();
1398 return ret;
1399 }
1400
1401 /**
1402 * find_get_pages_contig - gang contiguous pagecache lookup
1403 * @mapping: The address_space to search
1404 * @index: The starting page index
1405 * @nr_pages: The maximum number of pages
1406 * @pages: Where the resulting pages are placed
1407 *
1408 * find_get_pages_contig() works exactly like find_get_pages(), except
1409 * that the returned number of pages are guaranteed to be contiguous.
1410 *
1411 * find_get_pages_contig() returns the number of pages which were found.
1412 */
1413 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1414 unsigned int nr_pages, struct page **pages)
1415 {
1416 struct radix_tree_iter iter;
1417 void **slot;
1418 unsigned int ret = 0;
1419
1420 if (unlikely(!nr_pages))
1421 return 0;
1422
1423 rcu_read_lock();
1424 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1425 struct page *head, *page;
1426 repeat:
1427 page = radix_tree_deref_slot(slot);
1428 /* The hole, there no reason to continue */
1429 if (unlikely(!page))
1430 break;
1431
1432 if (radix_tree_exception(page)) {
1433 if (radix_tree_deref_retry(page)) {
1434 slot = radix_tree_iter_retry(&iter);
1435 continue;
1436 }
1437 /*
1438 * A shadow entry of a recently evicted page,
1439 * or a swap entry from shmem/tmpfs. Stop
1440 * looking for contiguous pages.
1441 */
1442 break;
1443 }
1444
1445 head = compound_head(page);
1446 if (!page_cache_get_speculative(head))
1447 goto repeat;
1448
1449 /* The page was split under us? */
1450 if (compound_head(page) != head) {
1451 put_page(head);
1452 goto repeat;
1453 }
1454
1455 /* Has the page moved? */
1456 if (unlikely(page != *slot)) {
1457 put_page(head);
1458 goto repeat;
1459 }
1460
1461 /*
1462 * must check mapping and index after taking the ref.
1463 * otherwise we can get both false positives and false
1464 * negatives, which is just confusing to the caller.
1465 */
1466 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1467 put_page(page);
1468 break;
1469 }
1470
1471 pages[ret] = page;
1472 if (++ret == nr_pages)
1473 break;
1474 }
1475 rcu_read_unlock();
1476 return ret;
1477 }
1478 EXPORT_SYMBOL(find_get_pages_contig);
1479
1480 /**
1481 * find_get_pages_tag - find and return pages that match @tag
1482 * @mapping: the address_space to search
1483 * @index: the starting page index
1484 * @tag: the tag index
1485 * @nr_pages: the maximum number of pages
1486 * @pages: where the resulting pages are placed
1487 *
1488 * Like find_get_pages, except we only return pages which are tagged with
1489 * @tag. We update @index to index the next page for the traversal.
1490 */
1491 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1492 int tag, unsigned int nr_pages, struct page **pages)
1493 {
1494 struct radix_tree_iter iter;
1495 void **slot;
1496 unsigned ret = 0;
1497
1498 if (unlikely(!nr_pages))
1499 return 0;
1500
1501 rcu_read_lock();
1502 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1503 &iter, *index, tag) {
1504 struct page *head, *page;
1505 repeat:
1506 page = radix_tree_deref_slot(slot);
1507 if (unlikely(!page))
1508 continue;
1509
1510 if (radix_tree_exception(page)) {
1511 if (radix_tree_deref_retry(page)) {
1512 slot = radix_tree_iter_retry(&iter);
1513 continue;
1514 }
1515 /*
1516 * A shadow entry of a recently evicted page.
1517 *
1518 * Those entries should never be tagged, but
1519 * this tree walk is lockless and the tags are
1520 * looked up in bulk, one radix tree node at a
1521 * time, so there is a sizable window for page
1522 * reclaim to evict a page we saw tagged.
1523 *
1524 * Skip over it.
1525 */
1526 continue;
1527 }
1528
1529 head = compound_head(page);
1530 if (!page_cache_get_speculative(head))
1531 goto repeat;
1532
1533 /* The page was split under us? */
1534 if (compound_head(page) != head) {
1535 put_page(head);
1536 goto repeat;
1537 }
1538
1539 /* Has the page moved? */
1540 if (unlikely(page != *slot)) {
1541 put_page(head);
1542 goto repeat;
1543 }
1544
1545 pages[ret] = page;
1546 if (++ret == nr_pages)
1547 break;
1548 }
1549
1550 rcu_read_unlock();
1551
1552 if (ret)
1553 *index = pages[ret - 1]->index + 1;
1554
1555 return ret;
1556 }
1557 EXPORT_SYMBOL(find_get_pages_tag);
1558
1559 /**
1560 * find_get_entries_tag - find and return entries that match @tag
1561 * @mapping: the address_space to search
1562 * @start: the starting page cache index
1563 * @tag: the tag index
1564 * @nr_entries: the maximum number of entries
1565 * @entries: where the resulting entries are placed
1566 * @indices: the cache indices corresponding to the entries in @entries
1567 *
1568 * Like find_get_entries, except we only return entries which are tagged with
1569 * @tag.
1570 */
1571 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1572 int tag, unsigned int nr_entries,
1573 struct page **entries, pgoff_t *indices)
1574 {
1575 void **slot;
1576 unsigned int ret = 0;
1577 struct radix_tree_iter iter;
1578
1579 if (!nr_entries)
1580 return 0;
1581
1582 rcu_read_lock();
1583 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1584 &iter, start, tag) {
1585 struct page *head, *page;
1586 repeat:
1587 page = radix_tree_deref_slot(slot);
1588 if (unlikely(!page))
1589 continue;
1590 if (radix_tree_exception(page)) {
1591 if (radix_tree_deref_retry(page)) {
1592 slot = radix_tree_iter_retry(&iter);
1593 continue;
1594 }
1595
1596 /*
1597 * A shadow entry of a recently evicted page, a swap
1598 * entry from shmem/tmpfs or a DAX entry. Return it
1599 * without attempting to raise page count.
1600 */
1601 goto export;
1602 }
1603
1604 head = compound_head(page);
1605 if (!page_cache_get_speculative(head))
1606 goto repeat;
1607
1608 /* The page was split under us? */
1609 if (compound_head(page) != head) {
1610 put_page(head);
1611 goto repeat;
1612 }
1613
1614 /* Has the page moved? */
1615 if (unlikely(page != *slot)) {
1616 put_page(head);
1617 goto repeat;
1618 }
1619 export:
1620 indices[ret] = iter.index;
1621 entries[ret] = page;
1622 if (++ret == nr_entries)
1623 break;
1624 }
1625 rcu_read_unlock();
1626 return ret;
1627 }
1628 EXPORT_SYMBOL(find_get_entries_tag);
1629
1630 /*
1631 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1632 * a _large_ part of the i/o request. Imagine the worst scenario:
1633 *
1634 * ---R__________________________________________B__________
1635 * ^ reading here ^ bad block(assume 4k)
1636 *
1637 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1638 * => failing the whole request => read(R) => read(R+1) =>
1639 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1640 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1641 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1642 *
1643 * It is going insane. Fix it by quickly scaling down the readahead size.
1644 */
1645 static void shrink_readahead_size_eio(struct file *filp,
1646 struct file_ra_state *ra)
1647 {
1648 ra->ra_pages /= 4;
1649 }
1650
1651 /**
1652 * do_generic_file_read - generic file read routine
1653 * @filp: the file to read
1654 * @ppos: current file position
1655 * @iter: data destination
1656 * @written: already copied
1657 *
1658 * This is a generic file read routine, and uses the
1659 * mapping->a_ops->readpage() function for the actual low-level stuff.
1660 *
1661 * This is really ugly. But the goto's actually try to clarify some
1662 * of the logic when it comes to error handling etc.
1663 */
1664 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1665 struct iov_iter *iter, ssize_t written)
1666 {
1667 struct address_space *mapping = filp->f_mapping;
1668 struct inode *inode = mapping->host;
1669 struct file_ra_state *ra = &filp->f_ra;
1670 pgoff_t index;
1671 pgoff_t last_index;
1672 pgoff_t prev_index;
1673 unsigned long offset; /* offset into pagecache page */
1674 unsigned int prev_offset;
1675 int error = 0;
1676
1677 index = *ppos >> PAGE_SHIFT;
1678 prev_index = ra->prev_pos >> PAGE_SHIFT;
1679 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1680 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1681 offset = *ppos & ~PAGE_MASK;
1682
1683 for (;;) {
1684 struct page *page;
1685 pgoff_t end_index;
1686 loff_t isize;
1687 unsigned long nr, ret;
1688
1689 cond_resched();
1690 find_page:
1691 page = find_get_page(mapping, index);
1692 if (!page) {
1693 page_cache_sync_readahead(mapping,
1694 ra, filp,
1695 index, last_index - index);
1696 page = find_get_page(mapping, index);
1697 if (unlikely(page == NULL))
1698 goto no_cached_page;
1699 }
1700 if (PageReadahead(page)) {
1701 page_cache_async_readahead(mapping,
1702 ra, filp, page,
1703 index, last_index - index);
1704 }
1705 if (!PageUptodate(page)) {
1706 /*
1707 * See comment in do_read_cache_page on why
1708 * wait_on_page_locked is used to avoid unnecessarily
1709 * serialisations and why it's safe.
1710 */
1711 error = wait_on_page_locked_killable(page);
1712 if (unlikely(error))
1713 goto readpage_error;
1714 if (PageUptodate(page))
1715 goto page_ok;
1716
1717 if (inode->i_blkbits == PAGE_SHIFT ||
1718 !mapping->a_ops->is_partially_uptodate)
1719 goto page_not_up_to_date;
1720 if (!trylock_page(page))
1721 goto page_not_up_to_date;
1722 /* Did it get truncated before we got the lock? */
1723 if (!page->mapping)
1724 goto page_not_up_to_date_locked;
1725 if (!mapping->a_ops->is_partially_uptodate(page,
1726 offset, iter->count))
1727 goto page_not_up_to_date_locked;
1728 unlock_page(page);
1729 }
1730 page_ok:
1731 /*
1732 * i_size must be checked after we know the page is Uptodate.
1733 *
1734 * Checking i_size after the check allows us to calculate
1735 * the correct value for "nr", which means the zero-filled
1736 * part of the page is not copied back to userspace (unless
1737 * another truncate extends the file - this is desired though).
1738 */
1739
1740 isize = i_size_read(inode);
1741 end_index = (isize - 1) >> PAGE_SHIFT;
1742 if (unlikely(!isize || index > end_index)) {
1743 put_page(page);
1744 goto out;
1745 }
1746
1747 /* nr is the maximum number of bytes to copy from this page */
1748 nr = PAGE_SIZE;
1749 if (index == end_index) {
1750 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1751 if (nr <= offset) {
1752 put_page(page);
1753 goto out;
1754 }
1755 }
1756 nr = nr - offset;
1757
1758 /* If users can be writing to this page using arbitrary
1759 * virtual addresses, take care about potential aliasing
1760 * before reading the page on the kernel side.
1761 */
1762 if (mapping_writably_mapped(mapping))
1763 flush_dcache_page(page);
1764
1765 /*
1766 * When a sequential read accesses a page several times,
1767 * only mark it as accessed the first time.
1768 */
1769 if (prev_index != index || offset != prev_offset)
1770 mark_page_accessed(page);
1771 prev_index = index;
1772
1773 /*
1774 * Ok, we have the page, and it's up-to-date, so
1775 * now we can copy it to user space...
1776 */
1777
1778 ret = copy_page_to_iter(page, offset, nr, iter);
1779 offset += ret;
1780 index += offset >> PAGE_SHIFT;
1781 offset &= ~PAGE_MASK;
1782 prev_offset = offset;
1783
1784 put_page(page);
1785 written += ret;
1786 if (!iov_iter_count(iter))
1787 goto out;
1788 if (ret < nr) {
1789 error = -EFAULT;
1790 goto out;
1791 }
1792 continue;
1793
1794 page_not_up_to_date:
1795 /* Get exclusive access to the page ... */
1796 error = lock_page_killable(page);
1797 if (unlikely(error))
1798 goto readpage_error;
1799
1800 page_not_up_to_date_locked:
1801 /* Did it get truncated before we got the lock? */
1802 if (!page->mapping) {
1803 unlock_page(page);
1804 put_page(page);
1805 continue;
1806 }
1807
1808 /* Did somebody else fill it already? */
1809 if (PageUptodate(page)) {
1810 unlock_page(page);
1811 goto page_ok;
1812 }
1813
1814 readpage:
1815 /*
1816 * A previous I/O error may have been due to temporary
1817 * failures, eg. multipath errors.
1818 * PG_error will be set again if readpage fails.
1819 */
1820 ClearPageError(page);
1821 /* Start the actual read. The read will unlock the page. */
1822 error = mapping->a_ops->readpage(filp, page);
1823
1824 if (unlikely(error)) {
1825 if (error == AOP_TRUNCATED_PAGE) {
1826 put_page(page);
1827 error = 0;
1828 goto find_page;
1829 }
1830 goto readpage_error;
1831 }
1832
1833 if (!PageUptodate(page)) {
1834 error = lock_page_killable(page);
1835 if (unlikely(error))
1836 goto readpage_error;
1837 if (!PageUptodate(page)) {
1838 if (page->mapping == NULL) {
1839 /*
1840 * invalidate_mapping_pages got it
1841 */
1842 unlock_page(page);
1843 put_page(page);
1844 goto find_page;
1845 }
1846 unlock_page(page);
1847 shrink_readahead_size_eio(filp, ra);
1848 error = -EIO;
1849 goto readpage_error;
1850 }
1851 unlock_page(page);
1852 }
1853
1854 goto page_ok;
1855
1856 readpage_error:
1857 /* UHHUH! A synchronous read error occurred. Report it */
1858 put_page(page);
1859 goto out;
1860
1861 no_cached_page:
1862 /*
1863 * Ok, it wasn't cached, so we need to create a new
1864 * page..
1865 */
1866 page = page_cache_alloc_cold(mapping);
1867 if (!page) {
1868 error = -ENOMEM;
1869 goto out;
1870 }
1871 error = add_to_page_cache_lru(page, mapping, index,
1872 mapping_gfp_constraint(mapping, GFP_KERNEL));
1873 if (error) {
1874 put_page(page);
1875 if (error == -EEXIST) {
1876 error = 0;
1877 goto find_page;
1878 }
1879 goto out;
1880 }
1881 goto readpage;
1882 }
1883
1884 out:
1885 ra->prev_pos = prev_index;
1886 ra->prev_pos <<= PAGE_SHIFT;
1887 ra->prev_pos |= prev_offset;
1888
1889 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1890 file_accessed(filp);
1891 return written ? written : error;
1892 }
1893
1894 /**
1895 * generic_file_read_iter - generic filesystem read routine
1896 * @iocb: kernel I/O control block
1897 * @iter: destination for the data read
1898 *
1899 * This is the "read_iter()" routine for all filesystems
1900 * that can use the page cache directly.
1901 */
1902 ssize_t
1903 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1904 {
1905 struct file *file = iocb->ki_filp;
1906 ssize_t retval = 0;
1907 size_t count = iov_iter_count(iter);
1908
1909 if (!count)
1910 goto out; /* skip atime */
1911
1912 if (iocb->ki_flags & IOCB_DIRECT) {
1913 struct address_space *mapping = file->f_mapping;
1914 struct inode *inode = mapping->host;
1915 loff_t size;
1916
1917 size = i_size_read(inode);
1918 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1919 iocb->ki_pos + count - 1);
1920 if (!retval) {
1921 struct iov_iter data = *iter;
1922 retval = mapping->a_ops->direct_IO(iocb, &data);
1923 }
1924
1925 if (retval > 0) {
1926 iocb->ki_pos += retval;
1927 iov_iter_advance(iter, retval);
1928 }
1929
1930 /*
1931 * Btrfs can have a short DIO read if we encounter
1932 * compressed extents, so if there was an error, or if
1933 * we've already read everything we wanted to, or if
1934 * there was a short read because we hit EOF, go ahead
1935 * and return. Otherwise fallthrough to buffered io for
1936 * the rest of the read. Buffered reads will not work for
1937 * DAX files, so don't bother trying.
1938 */
1939 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1940 IS_DAX(inode)) {
1941 file_accessed(file);
1942 goto out;
1943 }
1944 }
1945
1946 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1947 out:
1948 return retval;
1949 }
1950 EXPORT_SYMBOL(generic_file_read_iter);
1951
1952 #ifdef CONFIG_MMU
1953 /**
1954 * page_cache_read - adds requested page to the page cache if not already there
1955 * @file: file to read
1956 * @offset: page index
1957 * @gfp_mask: memory allocation flags
1958 *
1959 * This adds the requested page to the page cache if it isn't already there,
1960 * and schedules an I/O to read in its contents from disk.
1961 */
1962 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1963 {
1964 struct address_space *mapping = file->f_mapping;
1965 struct page *page;
1966 int ret;
1967
1968 do {
1969 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1970 if (!page)
1971 return -ENOMEM;
1972
1973 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1974 if (ret == 0)
1975 ret = mapping->a_ops->readpage(file, page);
1976 else if (ret == -EEXIST)
1977 ret = 0; /* losing race to add is OK */
1978
1979 put_page(page);
1980
1981 } while (ret == AOP_TRUNCATED_PAGE);
1982
1983 return ret;
1984 }
1985
1986 #define MMAP_LOTSAMISS (100)
1987
1988 /*
1989 * Synchronous readahead happens when we don't even find
1990 * a page in the page cache at all.
1991 */
1992 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1993 struct file_ra_state *ra,
1994 struct file *file,
1995 pgoff_t offset)
1996 {
1997 struct address_space *mapping = file->f_mapping;
1998
1999 /* If we don't want any read-ahead, don't bother */
2000 if (vma->vm_flags & VM_RAND_READ)
2001 return;
2002 if (!ra->ra_pages)
2003 return;
2004
2005 if (vma->vm_flags & VM_SEQ_READ) {
2006 page_cache_sync_readahead(mapping, ra, file, offset,
2007 ra->ra_pages);
2008 return;
2009 }
2010
2011 /* Avoid banging the cache line if not needed */
2012 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2013 ra->mmap_miss++;
2014
2015 /*
2016 * Do we miss much more than hit in this file? If so,
2017 * stop bothering with read-ahead. It will only hurt.
2018 */
2019 if (ra->mmap_miss > MMAP_LOTSAMISS)
2020 return;
2021
2022 /*
2023 * mmap read-around
2024 */
2025 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2026 ra->size = ra->ra_pages;
2027 ra->async_size = ra->ra_pages / 4;
2028 ra_submit(ra, mapping, file);
2029 }
2030
2031 /*
2032 * Asynchronous readahead happens when we find the page and PG_readahead,
2033 * so we want to possibly extend the readahead further..
2034 */
2035 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2036 struct file_ra_state *ra,
2037 struct file *file,
2038 struct page *page,
2039 pgoff_t offset)
2040 {
2041 struct address_space *mapping = file->f_mapping;
2042
2043 /* If we don't want any read-ahead, don't bother */
2044 if (vma->vm_flags & VM_RAND_READ)
2045 return;
2046 if (ra->mmap_miss > 0)
2047 ra->mmap_miss--;
2048 if (PageReadahead(page))
2049 page_cache_async_readahead(mapping, ra, file,
2050 page, offset, ra->ra_pages);
2051 }
2052
2053 /**
2054 * filemap_fault - read in file data for page fault handling
2055 * @vma: vma in which the fault was taken
2056 * @vmf: struct vm_fault containing details of the fault
2057 *
2058 * filemap_fault() is invoked via the vma operations vector for a
2059 * mapped memory region to read in file data during a page fault.
2060 *
2061 * The goto's are kind of ugly, but this streamlines the normal case of having
2062 * it in the page cache, and handles the special cases reasonably without
2063 * having a lot of duplicated code.
2064 *
2065 * vma->vm_mm->mmap_sem must be held on entry.
2066 *
2067 * If our return value has VM_FAULT_RETRY set, it's because
2068 * lock_page_or_retry() returned 0.
2069 * The mmap_sem has usually been released in this case.
2070 * See __lock_page_or_retry() for the exception.
2071 *
2072 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2073 * has not been released.
2074 *
2075 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2076 */
2077 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2078 {
2079 int error;
2080 struct file *file = vma->vm_file;
2081 struct address_space *mapping = file->f_mapping;
2082 struct file_ra_state *ra = &file->f_ra;
2083 struct inode *inode = mapping->host;
2084 pgoff_t offset = vmf->pgoff;
2085 struct page *page;
2086 loff_t size;
2087 int ret = 0;
2088
2089 size = round_up(i_size_read(inode), PAGE_SIZE);
2090 if (offset >= size >> PAGE_SHIFT)
2091 return VM_FAULT_SIGBUS;
2092
2093 /*
2094 * Do we have something in the page cache already?
2095 */
2096 page = find_get_page(mapping, offset);
2097 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2098 /*
2099 * We found the page, so try async readahead before
2100 * waiting for the lock.
2101 */
2102 do_async_mmap_readahead(vma, ra, file, page, offset);
2103 } else if (!page) {
2104 /* No page in the page cache at all */
2105 do_sync_mmap_readahead(vma, ra, file, offset);
2106 count_vm_event(PGMAJFAULT);
2107 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2108 ret = VM_FAULT_MAJOR;
2109 retry_find:
2110 page = find_get_page(mapping, offset);
2111 if (!page)
2112 goto no_cached_page;
2113 }
2114
2115 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2116 put_page(page);
2117 return ret | VM_FAULT_RETRY;
2118 }
2119
2120 /* Did it get truncated? */
2121 if (unlikely(page->mapping != mapping)) {
2122 unlock_page(page);
2123 put_page(page);
2124 goto retry_find;
2125 }
2126 VM_BUG_ON_PAGE(page->index != offset, page);
2127
2128 /*
2129 * We have a locked page in the page cache, now we need to check
2130 * that it's up-to-date. If not, it is going to be due to an error.
2131 */
2132 if (unlikely(!PageUptodate(page)))
2133 goto page_not_uptodate;
2134
2135 /*
2136 * Found the page and have a reference on it.
2137 * We must recheck i_size under page lock.
2138 */
2139 size = round_up(i_size_read(inode), PAGE_SIZE);
2140 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2141 unlock_page(page);
2142 put_page(page);
2143 return VM_FAULT_SIGBUS;
2144 }
2145
2146 vmf->page = page;
2147 return ret | VM_FAULT_LOCKED;
2148
2149 no_cached_page:
2150 /*
2151 * We're only likely to ever get here if MADV_RANDOM is in
2152 * effect.
2153 */
2154 error = page_cache_read(file, offset, vmf->gfp_mask);
2155
2156 /*
2157 * The page we want has now been added to the page cache.
2158 * In the unlikely event that someone removed it in the
2159 * meantime, we'll just come back here and read it again.
2160 */
2161 if (error >= 0)
2162 goto retry_find;
2163
2164 /*
2165 * An error return from page_cache_read can result if the
2166 * system is low on memory, or a problem occurs while trying
2167 * to schedule I/O.
2168 */
2169 if (error == -ENOMEM)
2170 return VM_FAULT_OOM;
2171 return VM_FAULT_SIGBUS;
2172
2173 page_not_uptodate:
2174 /*
2175 * Umm, take care of errors if the page isn't up-to-date.
2176 * Try to re-read it _once_. We do this synchronously,
2177 * because there really aren't any performance issues here
2178 * and we need to check for errors.
2179 */
2180 ClearPageError(page);
2181 error = mapping->a_ops->readpage(file, page);
2182 if (!error) {
2183 wait_on_page_locked(page);
2184 if (!PageUptodate(page))
2185 error = -EIO;
2186 }
2187 put_page(page);
2188
2189 if (!error || error == AOP_TRUNCATED_PAGE)
2190 goto retry_find;
2191
2192 /* Things didn't work out. Return zero to tell the mm layer so. */
2193 shrink_readahead_size_eio(file, ra);
2194 return VM_FAULT_SIGBUS;
2195 }
2196 EXPORT_SYMBOL(filemap_fault);
2197
2198 void filemap_map_pages(struct fault_env *fe,
2199 pgoff_t start_pgoff, pgoff_t end_pgoff)
2200 {
2201 struct radix_tree_iter iter;
2202 void **slot;
2203 struct file *file = fe->vma->vm_file;
2204 struct address_space *mapping = file->f_mapping;
2205 pgoff_t last_pgoff = start_pgoff;
2206 loff_t size;
2207 struct page *head, *page;
2208
2209 rcu_read_lock();
2210 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2211 start_pgoff) {
2212 if (iter.index > end_pgoff)
2213 break;
2214 repeat:
2215 page = radix_tree_deref_slot(slot);
2216 if (unlikely(!page))
2217 goto next;
2218 if (radix_tree_exception(page)) {
2219 if (radix_tree_deref_retry(page)) {
2220 slot = radix_tree_iter_retry(&iter);
2221 continue;
2222 }
2223 goto next;
2224 }
2225
2226 head = compound_head(page);
2227 if (!page_cache_get_speculative(head))
2228 goto repeat;
2229
2230 /* The page was split under us? */
2231 if (compound_head(page) != head) {
2232 put_page(head);
2233 goto repeat;
2234 }
2235
2236 /* Has the page moved? */
2237 if (unlikely(page != *slot)) {
2238 put_page(head);
2239 goto repeat;
2240 }
2241
2242 if (!PageUptodate(page) ||
2243 PageReadahead(page) ||
2244 PageHWPoison(page))
2245 goto skip;
2246 if (!trylock_page(page))
2247 goto skip;
2248
2249 if (page->mapping != mapping || !PageUptodate(page))
2250 goto unlock;
2251
2252 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2253 if (page->index >= size >> PAGE_SHIFT)
2254 goto unlock;
2255
2256 if (file->f_ra.mmap_miss > 0)
2257 file->f_ra.mmap_miss--;
2258
2259 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2260 if (fe->pte)
2261 fe->pte += iter.index - last_pgoff;
2262 last_pgoff = iter.index;
2263 if (alloc_set_pte(fe, NULL, page))
2264 goto unlock;
2265 unlock_page(page);
2266 goto next;
2267 unlock:
2268 unlock_page(page);
2269 skip:
2270 put_page(page);
2271 next:
2272 /* Huge page is mapped? No need to proceed. */
2273 if (pmd_trans_huge(*fe->pmd))
2274 break;
2275 if (iter.index == end_pgoff)
2276 break;
2277 }
2278 rcu_read_unlock();
2279 }
2280 EXPORT_SYMBOL(filemap_map_pages);
2281
2282 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2283 {
2284 struct page *page = vmf->page;
2285 struct inode *inode = file_inode(vma->vm_file);
2286 int ret = VM_FAULT_LOCKED;
2287
2288 sb_start_pagefault(inode->i_sb);
2289 file_update_time(vma->vm_file);
2290 lock_page(page);
2291 if (page->mapping != inode->i_mapping) {
2292 unlock_page(page);
2293 ret = VM_FAULT_NOPAGE;
2294 goto out;
2295 }
2296 /*
2297 * We mark the page dirty already here so that when freeze is in
2298 * progress, we are guaranteed that writeback during freezing will
2299 * see the dirty page and writeprotect it again.
2300 */
2301 set_page_dirty(page);
2302 wait_for_stable_page(page);
2303 out:
2304 sb_end_pagefault(inode->i_sb);
2305 return ret;
2306 }
2307 EXPORT_SYMBOL(filemap_page_mkwrite);
2308
2309 const struct vm_operations_struct generic_file_vm_ops = {
2310 .fault = filemap_fault,
2311 .map_pages = filemap_map_pages,
2312 .page_mkwrite = filemap_page_mkwrite,
2313 };
2314
2315 /* This is used for a general mmap of a disk file */
2316
2317 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2318 {
2319 struct address_space *mapping = file->f_mapping;
2320
2321 if (!mapping->a_ops->readpage)
2322 return -ENOEXEC;
2323 file_accessed(file);
2324 vma->vm_ops = &generic_file_vm_ops;
2325 return 0;
2326 }
2327
2328 /*
2329 * This is for filesystems which do not implement ->writepage.
2330 */
2331 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2332 {
2333 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2334 return -EINVAL;
2335 return generic_file_mmap(file, vma);
2336 }
2337 #else
2338 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2339 {
2340 return -ENOSYS;
2341 }
2342 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2343 {
2344 return -ENOSYS;
2345 }
2346 #endif /* CONFIG_MMU */
2347
2348 EXPORT_SYMBOL(generic_file_mmap);
2349 EXPORT_SYMBOL(generic_file_readonly_mmap);
2350
2351 static struct page *wait_on_page_read(struct page *page)
2352 {
2353 if (!IS_ERR(page)) {
2354 wait_on_page_locked(page);
2355 if (!PageUptodate(page)) {
2356 put_page(page);
2357 page = ERR_PTR(-EIO);
2358 }
2359 }
2360 return page;
2361 }
2362
2363 static struct page *do_read_cache_page(struct address_space *mapping,
2364 pgoff_t index,
2365 int (*filler)(void *, struct page *),
2366 void *data,
2367 gfp_t gfp)
2368 {
2369 struct page *page;
2370 int err;
2371 repeat:
2372 page = find_get_page(mapping, index);
2373 if (!page) {
2374 page = __page_cache_alloc(gfp | __GFP_COLD);
2375 if (!page)
2376 return ERR_PTR(-ENOMEM);
2377 err = add_to_page_cache_lru(page, mapping, index, gfp);
2378 if (unlikely(err)) {
2379 put_page(page);
2380 if (err == -EEXIST)
2381 goto repeat;
2382 /* Presumably ENOMEM for radix tree node */
2383 return ERR_PTR(err);
2384 }
2385
2386 filler:
2387 err = filler(data, page);
2388 if (err < 0) {
2389 put_page(page);
2390 return ERR_PTR(err);
2391 }
2392
2393 page = wait_on_page_read(page);
2394 if (IS_ERR(page))
2395 return page;
2396 goto out;
2397 }
2398 if (PageUptodate(page))
2399 goto out;
2400
2401 /*
2402 * Page is not up to date and may be locked due one of the following
2403 * case a: Page is being filled and the page lock is held
2404 * case b: Read/write error clearing the page uptodate status
2405 * case c: Truncation in progress (page locked)
2406 * case d: Reclaim in progress
2407 *
2408 * Case a, the page will be up to date when the page is unlocked.
2409 * There is no need to serialise on the page lock here as the page
2410 * is pinned so the lock gives no additional protection. Even if the
2411 * the page is truncated, the data is still valid if PageUptodate as
2412 * it's a race vs truncate race.
2413 * Case b, the page will not be up to date
2414 * Case c, the page may be truncated but in itself, the data may still
2415 * be valid after IO completes as it's a read vs truncate race. The
2416 * operation must restart if the page is not uptodate on unlock but
2417 * otherwise serialising on page lock to stabilise the mapping gives
2418 * no additional guarantees to the caller as the page lock is
2419 * released before return.
2420 * Case d, similar to truncation. If reclaim holds the page lock, it
2421 * will be a race with remove_mapping that determines if the mapping
2422 * is valid on unlock but otherwise the data is valid and there is
2423 * no need to serialise with page lock.
2424 *
2425 * As the page lock gives no additional guarantee, we optimistically
2426 * wait on the page to be unlocked and check if it's up to date and
2427 * use the page if it is. Otherwise, the page lock is required to
2428 * distinguish between the different cases. The motivation is that we
2429 * avoid spurious serialisations and wakeups when multiple processes
2430 * wait on the same page for IO to complete.
2431 */
2432 wait_on_page_locked(page);
2433 if (PageUptodate(page))
2434 goto out;
2435
2436 /* Distinguish between all the cases under the safety of the lock */
2437 lock_page(page);
2438
2439 /* Case c or d, restart the operation */
2440 if (!page->mapping) {
2441 unlock_page(page);
2442 put_page(page);
2443 goto repeat;
2444 }
2445
2446 /* Someone else locked and filled the page in a very small window */
2447 if (PageUptodate(page)) {
2448 unlock_page(page);
2449 goto out;
2450 }
2451 goto filler;
2452
2453 out:
2454 mark_page_accessed(page);
2455 return page;
2456 }
2457
2458 /**
2459 * read_cache_page - read into page cache, fill it if needed
2460 * @mapping: the page's address_space
2461 * @index: the page index
2462 * @filler: function to perform the read
2463 * @data: first arg to filler(data, page) function, often left as NULL
2464 *
2465 * Read into the page cache. If a page already exists, and PageUptodate() is
2466 * not set, try to fill the page and wait for it to become unlocked.
2467 *
2468 * If the page does not get brought uptodate, return -EIO.
2469 */
2470 struct page *read_cache_page(struct address_space *mapping,
2471 pgoff_t index,
2472 int (*filler)(void *, struct page *),
2473 void *data)
2474 {
2475 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2476 }
2477 EXPORT_SYMBOL(read_cache_page);
2478
2479 /**
2480 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2481 * @mapping: the page's address_space
2482 * @index: the page index
2483 * @gfp: the page allocator flags to use if allocating
2484 *
2485 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2486 * any new page allocations done using the specified allocation flags.
2487 *
2488 * If the page does not get brought uptodate, return -EIO.
2489 */
2490 struct page *read_cache_page_gfp(struct address_space *mapping,
2491 pgoff_t index,
2492 gfp_t gfp)
2493 {
2494 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2495
2496 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2497 }
2498 EXPORT_SYMBOL(read_cache_page_gfp);
2499
2500 /*
2501 * Performs necessary checks before doing a write
2502 *
2503 * Can adjust writing position or amount of bytes to write.
2504 * Returns appropriate error code that caller should return or
2505 * zero in case that write should be allowed.
2506 */
2507 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2508 {
2509 struct file *file = iocb->ki_filp;
2510 struct inode *inode = file->f_mapping->host;
2511 unsigned long limit = rlimit(RLIMIT_FSIZE);
2512 loff_t pos;
2513
2514 if (!iov_iter_count(from))
2515 return 0;
2516
2517 /* FIXME: this is for backwards compatibility with 2.4 */
2518 if (iocb->ki_flags & IOCB_APPEND)
2519 iocb->ki_pos = i_size_read(inode);
2520
2521 pos = iocb->ki_pos;
2522
2523 if (limit != RLIM_INFINITY) {
2524 if (iocb->ki_pos >= limit) {
2525 send_sig(SIGXFSZ, current, 0);
2526 return -EFBIG;
2527 }
2528 iov_iter_truncate(from, limit - (unsigned long)pos);
2529 }
2530
2531 /*
2532 * LFS rule
2533 */
2534 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2535 !(file->f_flags & O_LARGEFILE))) {
2536 if (pos >= MAX_NON_LFS)
2537 return -EFBIG;
2538 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2539 }
2540
2541 /*
2542 * Are we about to exceed the fs block limit ?
2543 *
2544 * If we have written data it becomes a short write. If we have
2545 * exceeded without writing data we send a signal and return EFBIG.
2546 * Linus frestrict idea will clean these up nicely..
2547 */
2548 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2549 return -EFBIG;
2550
2551 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2552 return iov_iter_count(from);
2553 }
2554 EXPORT_SYMBOL(generic_write_checks);
2555
2556 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2557 loff_t pos, unsigned len, unsigned flags,
2558 struct page **pagep, void **fsdata)
2559 {
2560 const struct address_space_operations *aops = mapping->a_ops;
2561
2562 return aops->write_begin(file, mapping, pos, len, flags,
2563 pagep, fsdata);
2564 }
2565 EXPORT_SYMBOL(pagecache_write_begin);
2566
2567 int pagecache_write_end(struct file *file, struct address_space *mapping,
2568 loff_t pos, unsigned len, unsigned copied,
2569 struct page *page, void *fsdata)
2570 {
2571 const struct address_space_operations *aops = mapping->a_ops;
2572
2573 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2574 }
2575 EXPORT_SYMBOL(pagecache_write_end);
2576
2577 ssize_t
2578 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2579 {
2580 struct file *file = iocb->ki_filp;
2581 struct address_space *mapping = file->f_mapping;
2582 struct inode *inode = mapping->host;
2583 loff_t pos = iocb->ki_pos;
2584 ssize_t written;
2585 size_t write_len;
2586 pgoff_t end;
2587 struct iov_iter data;
2588
2589 write_len = iov_iter_count(from);
2590 end = (pos + write_len - 1) >> PAGE_SHIFT;
2591
2592 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2593 if (written)
2594 goto out;
2595
2596 /*
2597 * After a write we want buffered reads to be sure to go to disk to get
2598 * the new data. We invalidate clean cached page from the region we're
2599 * about to write. We do this *before* the write so that we can return
2600 * without clobbering -EIOCBQUEUED from ->direct_IO().
2601 */
2602 if (mapping->nrpages) {
2603 written = invalidate_inode_pages2_range(mapping,
2604 pos >> PAGE_SHIFT, end);
2605 /*
2606 * If a page can not be invalidated, return 0 to fall back
2607 * to buffered write.
2608 */
2609 if (written) {
2610 if (written == -EBUSY)
2611 return 0;
2612 goto out;
2613 }
2614 }
2615
2616 data = *from;
2617 written = mapping->a_ops->direct_IO(iocb, &data);
2618
2619 /*
2620 * Finally, try again to invalidate clean pages which might have been
2621 * cached by non-direct readahead, or faulted in by get_user_pages()
2622 * if the source of the write was an mmap'ed region of the file
2623 * we're writing. Either one is a pretty crazy thing to do,
2624 * so we don't support it 100%. If this invalidation
2625 * fails, tough, the write still worked...
2626 */
2627 if (mapping->nrpages) {
2628 invalidate_inode_pages2_range(mapping,
2629 pos >> PAGE_SHIFT, end);
2630 }
2631
2632 if (written > 0) {
2633 pos += written;
2634 iov_iter_advance(from, written);
2635 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2636 i_size_write(inode, pos);
2637 mark_inode_dirty(inode);
2638 }
2639 iocb->ki_pos = pos;
2640 }
2641 out:
2642 return written;
2643 }
2644 EXPORT_SYMBOL(generic_file_direct_write);
2645
2646 /*
2647 * Find or create a page at the given pagecache position. Return the locked
2648 * page. This function is specifically for buffered writes.
2649 */
2650 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2651 pgoff_t index, unsigned flags)
2652 {
2653 struct page *page;
2654 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2655
2656 if (flags & AOP_FLAG_NOFS)
2657 fgp_flags |= FGP_NOFS;
2658
2659 page = pagecache_get_page(mapping, index, fgp_flags,
2660 mapping_gfp_mask(mapping));
2661 if (page)
2662 wait_for_stable_page(page);
2663
2664 return page;
2665 }
2666 EXPORT_SYMBOL(grab_cache_page_write_begin);
2667
2668 ssize_t generic_perform_write(struct file *file,
2669 struct iov_iter *i, loff_t pos)
2670 {
2671 struct address_space *mapping = file->f_mapping;
2672 const struct address_space_operations *a_ops = mapping->a_ops;
2673 long status = 0;
2674 ssize_t written = 0;
2675 unsigned int flags = 0;
2676
2677 /*
2678 * Copies from kernel address space cannot fail (NFSD is a big user).
2679 */
2680 if (!iter_is_iovec(i))
2681 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2682
2683 do {
2684 struct page *page;
2685 unsigned long offset; /* Offset into pagecache page */
2686 unsigned long bytes; /* Bytes to write to page */
2687 size_t copied; /* Bytes copied from user */
2688 void *fsdata;
2689
2690 offset = (pos & (PAGE_SIZE - 1));
2691 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2692 iov_iter_count(i));
2693
2694 again:
2695 /*
2696 * Bring in the user page that we will copy from _first_.
2697 * Otherwise there's a nasty deadlock on copying from the
2698 * same page as we're writing to, without it being marked
2699 * up-to-date.
2700 *
2701 * Not only is this an optimisation, but it is also required
2702 * to check that the address is actually valid, when atomic
2703 * usercopies are used, below.
2704 */
2705 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2706 status = -EFAULT;
2707 break;
2708 }
2709
2710 if (fatal_signal_pending(current)) {
2711 status = -EINTR;
2712 break;
2713 }
2714
2715 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2716 &page, &fsdata);
2717 if (unlikely(status < 0))
2718 break;
2719
2720 if (mapping_writably_mapped(mapping))
2721 flush_dcache_page(page);
2722
2723 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2724 flush_dcache_page(page);
2725
2726 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2727 page, fsdata);
2728 if (unlikely(status < 0))
2729 break;
2730 copied = status;
2731
2732 cond_resched();
2733
2734 iov_iter_advance(i, copied);
2735 if (unlikely(copied == 0)) {
2736 /*
2737 * If we were unable to copy any data at all, we must
2738 * fall back to a single segment length write.
2739 *
2740 * If we didn't fallback here, we could livelock
2741 * because not all segments in the iov can be copied at
2742 * once without a pagefault.
2743 */
2744 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2745 iov_iter_single_seg_count(i));
2746 goto again;
2747 }
2748 pos += copied;
2749 written += copied;
2750
2751 balance_dirty_pages_ratelimited(mapping);
2752 } while (iov_iter_count(i));
2753
2754 return written ? written : status;
2755 }
2756 EXPORT_SYMBOL(generic_perform_write);
2757
2758 /**
2759 * __generic_file_write_iter - write data to a file
2760 * @iocb: IO state structure (file, offset, etc.)
2761 * @from: iov_iter with data to write
2762 *
2763 * This function does all the work needed for actually writing data to a
2764 * file. It does all basic checks, removes SUID from the file, updates
2765 * modification times and calls proper subroutines depending on whether we
2766 * do direct IO or a standard buffered write.
2767 *
2768 * It expects i_mutex to be grabbed unless we work on a block device or similar
2769 * object which does not need locking at all.
2770 *
2771 * This function does *not* take care of syncing data in case of O_SYNC write.
2772 * A caller has to handle it. This is mainly due to the fact that we want to
2773 * avoid syncing under i_mutex.
2774 */
2775 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2776 {
2777 struct file *file = iocb->ki_filp;
2778 struct address_space * mapping = file->f_mapping;
2779 struct inode *inode = mapping->host;
2780 ssize_t written = 0;
2781 ssize_t err;
2782 ssize_t status;
2783
2784 /* We can write back this queue in page reclaim */
2785 current->backing_dev_info = inode_to_bdi(inode);
2786 err = file_remove_privs(file);
2787 if (err)
2788 goto out;
2789
2790 err = file_update_time(file);
2791 if (err)
2792 goto out;
2793
2794 if (iocb->ki_flags & IOCB_DIRECT) {
2795 loff_t pos, endbyte;
2796
2797 written = generic_file_direct_write(iocb, from);
2798 /*
2799 * If the write stopped short of completing, fall back to
2800 * buffered writes. Some filesystems do this for writes to
2801 * holes, for example. For DAX files, a buffered write will
2802 * not succeed (even if it did, DAX does not handle dirty
2803 * page-cache pages correctly).
2804 */
2805 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2806 goto out;
2807
2808 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2809 /*
2810 * If generic_perform_write() returned a synchronous error
2811 * then we want to return the number of bytes which were
2812 * direct-written, or the error code if that was zero. Note
2813 * that this differs from normal direct-io semantics, which
2814 * will return -EFOO even if some bytes were written.
2815 */
2816 if (unlikely(status < 0)) {
2817 err = status;
2818 goto out;
2819 }
2820 /*
2821 * We need to ensure that the page cache pages are written to
2822 * disk and invalidated to preserve the expected O_DIRECT
2823 * semantics.
2824 */
2825 endbyte = pos + status - 1;
2826 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2827 if (err == 0) {
2828 iocb->ki_pos = endbyte + 1;
2829 written += status;
2830 invalidate_mapping_pages(mapping,
2831 pos >> PAGE_SHIFT,
2832 endbyte >> PAGE_SHIFT);
2833 } else {
2834 /*
2835 * We don't know how much we wrote, so just return
2836 * the number of bytes which were direct-written
2837 */
2838 }
2839 } else {
2840 written = generic_perform_write(file, from, iocb->ki_pos);
2841 if (likely(written > 0))
2842 iocb->ki_pos += written;
2843 }
2844 out:
2845 current->backing_dev_info = NULL;
2846 return written ? written : err;
2847 }
2848 EXPORT_SYMBOL(__generic_file_write_iter);
2849
2850 /**
2851 * generic_file_write_iter - write data to a file
2852 * @iocb: IO state structure
2853 * @from: iov_iter with data to write
2854 *
2855 * This is a wrapper around __generic_file_write_iter() to be used by most
2856 * filesystems. It takes care of syncing the file in case of O_SYNC file
2857 * and acquires i_mutex as needed.
2858 */
2859 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2860 {
2861 struct file *file = iocb->ki_filp;
2862 struct inode *inode = file->f_mapping->host;
2863 ssize_t ret;
2864
2865 inode_lock(inode);
2866 ret = generic_write_checks(iocb, from);
2867 if (ret > 0)
2868 ret = __generic_file_write_iter(iocb, from);
2869 inode_unlock(inode);
2870
2871 if (ret > 0)
2872 ret = generic_write_sync(iocb, ret);
2873 return ret;
2874 }
2875 EXPORT_SYMBOL(generic_file_write_iter);
2876
2877 /**
2878 * try_to_release_page() - release old fs-specific metadata on a page
2879 *
2880 * @page: the page which the kernel is trying to free
2881 * @gfp_mask: memory allocation flags (and I/O mode)
2882 *
2883 * The address_space is to try to release any data against the page
2884 * (presumably at page->private). If the release was successful, return `1'.
2885 * Otherwise return zero.
2886 *
2887 * This may also be called if PG_fscache is set on a page, indicating that the
2888 * page is known to the local caching routines.
2889 *
2890 * The @gfp_mask argument specifies whether I/O may be performed to release
2891 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2892 *
2893 */
2894 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2895 {
2896 struct address_space * const mapping = page->mapping;
2897
2898 BUG_ON(!PageLocked(page));
2899 if (PageWriteback(page))
2900 return 0;
2901
2902 if (mapping && mapping->a_ops->releasepage)
2903 return mapping->a_ops->releasepage(page, gfp_mask);
2904 return try_to_free_buffers(page);
2905 }
2906
2907 EXPORT_SYMBOL(try_to_release_page);
This page took 0.094596 seconds and 5 git commands to generate.