mm: simplify lock_page_memcg()
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
127424c8 271#ifndef CONFIG_SLOB
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
127424c8 323#endif /* !CONFIG_SLOB */
a8964b9b 324
f64c3f54 325static struct mem_cgroup_per_zone *
e231875b 326mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 327{
e231875b
JZ
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
54f72fe0 331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
332}
333
ad7fa852
TH
334/**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
ad7fa852
TH
344 */
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346{
347 struct mem_cgroup *memcg;
348
ad7fa852
TH
349 memcg = page->mem_cgroup;
350
9e10a130 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
352 memcg = root_mem_cgroup;
353
ad7fa852
TH
354 return &memcg->css;
355}
356
2fc04524
VD
357/**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370ino_t page_cgroup_ino(struct page *page)
371{
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383}
384
f64c3f54 385static struct mem_cgroup_per_zone *
e231875b 386mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 387{
97a6c37b
JW
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
f64c3f54 390
e231875b 391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
392}
393
bb4cc1a8
AM
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_node_zone(int nid, int zid)
396{
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398}
399
400static struct mem_cgroup_tree_per_zone *
401soft_limit_tree_from_page(struct page *page)
402{
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407}
408
cf2c8127
JW
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439}
440
cf2c8127
JW
441static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
cf2c8127
JW
450static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 452{
0a31bc97
JW
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 456 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 457 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
458}
459
3e32cb2e
JW
460static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461{
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470}
bb4cc1a8
AM
471
472static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473{
3e32cb2e 474 unsigned long excess;
bb4cc1a8
AM
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 477
e231875b 478 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 484 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 485 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
0a31bc97
JW
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
494 /* if on-tree, remove it */
495 if (mz->on_tree)
cf2c8127 496 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
cf2c8127 501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 502 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
503 }
504 }
505}
506
507static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508{
bb4cc1a8 509 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
bb4cc1a8 512
e231875b
JZ
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 517 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
518 }
519 }
520}
521
522static struct mem_cgroup_per_zone *
523__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
cf2c8127 540 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 541 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 542 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
543 goto retry;
544done:
545 return mz;
546}
547
548static struct mem_cgroup_per_zone *
549mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550{
551 struct mem_cgroup_per_zone *mz;
552
0a31bc97 553 spin_lock_irq(&mctz->lock);
bb4cc1a8 554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 555 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
556 return mz;
557}
558
711d3d2c 559/*
484ebb3b
GT
560 * Return page count for single (non recursive) @memcg.
561 *
711d3d2c
KH
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 567 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 577 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
578 * implemented.
579 */
484ebb3b
GT
580static unsigned long
581mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 582{
7a159cc9 583 long val = 0;
c62b1a3b 584 int cpu;
c62b1a3b 585
484ebb3b 586 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 587 for_each_possible_cpu(cpu)
c0ff4b85 588 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
c62b1a3b
KH
595 return val;
596}
597
c0ff4b85 598static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
599 enum mem_cgroup_events_index idx)
600{
601 unsigned long val = 0;
602 int cpu;
603
733a572e 604 for_each_possible_cpu(cpu)
c0ff4b85 605 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
606 return val;
607}
608
c0ff4b85 609static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 610 struct page *page,
f627c2f5 611 bool compound, int nr_pages)
d52aa412 612{
b2402857
KH
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
0a31bc97 617 if (PageAnon(page))
b2402857 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 619 nr_pages);
d52aa412 620 else
b2402857 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 622 nr_pages);
55e462b0 623
f627c2f5
KS
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
f627c2f5 628 }
b070e65c 629
e401f176
KH
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
c0ff4b85 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 633 else {
c0ff4b85 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
635 nr_pages = -nr_pages; /* for event */
636 }
e401f176 637
13114716 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
639}
640
e231875b
JZ
641static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
fa9add64
HD
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
3f58a829 1028 */
fa9add64
HD
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
3f58a829
MK
1031{
1032 struct mem_cgroup_per_zone *mz;
fa9add64 1033 unsigned long *lru_size;
3f58a829
MK
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
fa9add64
HD
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1042}
544122e5 1043
2314b42d 1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1045{
2314b42d 1046 struct mem_cgroup *task_memcg;
158e0a2d 1047 struct task_struct *p;
ffbdccf5 1048 bool ret;
4c4a2214 1049
158e0a2d 1050 p = find_lock_task_mm(task);
de077d22 1051 if (p) {
2314b42d 1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
ffbdccf5 1060 rcu_read_lock();
2314b42d
JW
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
ffbdccf5 1063 rcu_read_unlock();
de077d22 1064 }
2314b42d
JW
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
4c4a2214
DR
1067 return ret;
1068}
1069
19942822 1070/**
9d11ea9f 1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1072 * @memcg: the memory cgroup
19942822 1073 *
9d11ea9f 1074 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1075 * pages.
19942822 1076 */
c0ff4b85 1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1078{
3e32cb2e
JW
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
9d11ea9f 1082
3e32cb2e 1083 count = page_counter_read(&memcg->memory);
4db0c3c2 1084 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1085 if (count < limit)
1086 margin = limit - count;
1087
7941d214 1088 if (do_memsw_account()) {
3e32cb2e 1089 count = page_counter_read(&memcg->memsw);
4db0c3c2 1090 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
e61734c5 1154 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1155 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1156 struct mem_cgroup *iter;
1157 unsigned int i;
e222432b 1158
08088cb9 1159 mutex_lock(&oom_info_lock);
e222432b
BS
1160 rcu_read_lock();
1161
2415b9f5
BV
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
e61734c5 1170 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1171 pr_cont("\n");
e222432b 1172
e222432b
BS
1173 rcu_read_unlock();
1174
3e32cb2e
JW
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1192 continue;
484ebb3b 1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
08088cb9 1203 mutex_unlock(&oom_info_lock);
e222432b
BS
1204}
1205
81d39c20
KH
1206/*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
c0ff4b85 1210static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1211{
1212 int num = 0;
7d74b06f
KH
1213 struct mem_cgroup *iter;
1214
c0ff4b85 1215 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1216 num++;
81d39c20
KH
1217 return num;
1218}
1219
a63d83f4
DR
1220/*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
3e32cb2e 1223static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1224{
3e32cb2e 1225 unsigned long limit;
f3e8eb70 1226
3e32cb2e 1227 limit = memcg->memory.limit;
9a5a8f19 1228 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1229 unsigned long memsw_limit;
37e84351 1230 unsigned long swap_limit;
9a5a8f19 1231
3e32cb2e 1232 memsw_limit = memcg->memsw.limit;
37e84351
VD
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1236 }
9a5a8f19 1237 return limit;
a63d83f4
DR
1238}
1239
19965460
DR
1240static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
9cbb78bb 1242{
6e0fc46d
DR
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
6e0fc46d 1248 };
9cbb78bb
DR
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
dc56401f
JW
1255 mutex_lock(&oom_lock);
1256
876aafbf 1257 /*
465adcf1
DR
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
876aafbf 1261 */
d003f371 1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1263 mark_oom_victim(current);
dc56401f 1264 goto unlock;
876aafbf
DR
1265 }
1266
6e0fc46d 1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1269 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1270 struct css_task_iter it;
9cbb78bb
DR
1271 struct task_struct *task;
1272
72ec7029
TH
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
72ec7029 1286 css_task_iter_end(&it);
9cbb78bb
DR
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
dc56401f 1290 goto unlock;
9cbb78bb
DR
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
9cbb78bb 1307 }
72ec7029 1308 css_task_iter_end(&it);
9cbb78bb
DR
1309 }
1310
dc56401f
JW
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
dc56401f
JW
1315 }
1316unlock:
1317 mutex_unlock(&oom_lock);
9cbb78bb
DR
1318}
1319
ae6e71d3
MC
1320#if MAX_NUMNODES > 1
1321
4d0c066d
KH
1322/**
1323 * test_mem_cgroup_node_reclaimable
dad7557e 1324 * @memcg: the target memcg
4d0c066d
KH
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
c0ff4b85 1332static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1333 int nid, bool noswap)
1334{
c0ff4b85 1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
c0ff4b85 1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1340 return true;
1341 return false;
1342
1343}
889976db
YH
1344
1345/*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
c0ff4b85 1351static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int nid;
453a9bf3
KH
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
c0ff4b85 1358 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1359 return;
c0ff4b85 1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1361 return;
1362
889976db 1363 /* make a nodemask where this memcg uses memory from */
31aaea4a 1364 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1365
31aaea4a 1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1367
c0ff4b85
R
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
889976db 1370 }
453a9bf3 1371
c0ff4b85
R
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1374}
1375
1376/*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
c0ff4b85 1388int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1389{
1390 int node;
1391
c0ff4b85
R
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
889976db 1394
c0ff4b85 1395 node = next_node(node, memcg->scan_nodes);
889976db 1396 if (node == MAX_NUMNODES)
c0ff4b85 1397 node = first_node(memcg->scan_nodes);
889976db
YH
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
c0ff4b85 1407 memcg->last_scanned_node = node;
889976db
YH
1408 return node;
1409}
889976db 1410#else
c0ff4b85 1411int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1412{
1413 return 0;
1414}
1415#endif
1416
0608f43d
AM
1417static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421{
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
3e32cb2e 1432 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
0608f43d
AM
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
3e32cb2e 1461 if (!soft_limit_excess(root_memcg))
0608f43d 1462 break;
6d61ef40 1463 }
0608f43d
AM
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
6d61ef40
BS
1466}
1467
0056f4e6
JW
1468#ifdef CONFIG_LOCKDEP
1469static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471};
1472#endif
1473
fb2a6fc5
JW
1474static DEFINE_SPINLOCK(memcg_oom_lock);
1475
867578cb
KH
1476/*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
fb2a6fc5 1480static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1481{
79dfdacc 1482 struct mem_cgroup *iter, *failed = NULL;
a636b327 1483
fb2a6fc5
JW
1484 spin_lock(&memcg_oom_lock);
1485
9f3a0d09 1486 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1487 if (iter->oom_lock) {
79dfdacc
MH
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
79dfdacc 1492 failed = iter;
9f3a0d09
JW
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
23751be0
JW
1495 } else
1496 iter->oom_lock = true;
7d74b06f 1497 }
867578cb 1498
fb2a6fc5
JW
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
79dfdacc 1510 }
0056f4e6
JW
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
a636b327 1517}
0b7f569e 1518
fb2a6fc5 1519static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1520{
7d74b06f
KH
1521 struct mem_cgroup *iter;
1522
fb2a6fc5 1523 spin_lock(&memcg_oom_lock);
0056f4e6 1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1525 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1526 iter->oom_lock = false;
fb2a6fc5 1527 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1528}
1529
c0ff4b85 1530static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1531{
1532 struct mem_cgroup *iter;
1533
c2b42d3c 1534 spin_lock(&memcg_oom_lock);
c0ff4b85 1535 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1538}
1539
c0ff4b85 1540static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1541{
1542 struct mem_cgroup *iter;
1543
867578cb
KH
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1547 */
c2b42d3c 1548 spin_lock(&memcg_oom_lock);
c0ff4b85 1549 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1553}
1554
867578cb
KH
1555static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
dc98df5a 1557struct oom_wait_info {
d79154bb 1558 struct mem_cgroup *memcg;
dc98df5a
KH
1559 wait_queue_t wait;
1560};
1561
1562static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564{
d79154bb
HD
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1570 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1571
2314b42d
JW
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1574 return 0;
dc98df5a
KH
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576}
1577
c0ff4b85 1578static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1579{
c2b42d3c
TH
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
f4b90b70 1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1590}
1591
3812c8c8 1592static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1593{
626ebc41 1594 if (!current->memcg_may_oom)
3812c8c8 1595 return;
867578cb 1596 /*
49426420
JW
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
867578cb 1609 */
49426420 1610 css_get(&memcg->css);
626ebc41
TH
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
3812c8c8
JW
1614}
1615
1616/**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1618 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1619 *
49426420
JW
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
3812c8c8 1622 *
49426420 1623 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1628 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1631 * completed, %false otherwise.
3812c8c8 1632 */
49426420 1633bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1634{
626ebc41 1635 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1636 struct oom_wait_info owait;
49426420 1637 bool locked;
3812c8c8
JW
1638
1639 /* OOM is global, do not handle */
3812c8c8 1640 if (!memcg)
49426420 1641 return false;
3812c8c8 1642
c32b3cbe 1643 if (!handle || oom_killer_disabled)
49426420 1644 goto cleanup;
3812c8c8
JW
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1651
3812c8c8 1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
49426420 1665 } else {
3812c8c8 1666 schedule();
49426420
JW
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
fb2a6fc5
JW
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
49426420 1680cleanup:
626ebc41 1681 current->memcg_in_oom = NULL;
3812c8c8 1682 css_put(&memcg->css);
867578cb 1683 return true;
0b7f569e
KH
1684}
1685
d7365e78 1686/**
81f8c3a4
JW
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
32047e2a 1689 *
81f8c3a4
JW
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1692 */
62cccb8c 1693void lock_page_memcg(struct page *page)
89c06bd5
KH
1694{
1695 struct mem_cgroup *memcg;
6de22619 1696 unsigned long flags;
89c06bd5 1697
6de22619
JW
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
6de22619 1702 */
d7365e78
JW
1703 rcu_read_lock();
1704
1705 if (mem_cgroup_disabled())
62cccb8c 1706 return;
89c06bd5 1707again:
1306a85a 1708 memcg = page->mem_cgroup;
29833315 1709 if (unlikely(!memcg))
62cccb8c 1710 return;
d7365e78 1711
bdcbb659 1712 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1713 return;
89c06bd5 1714
6de22619 1715 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1716 if (memcg != page->mem_cgroup) {
6de22619 1717 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1718 goto again;
1719 }
6de22619
JW
1720
1721 /*
1722 * When charge migration first begins, we can have locked and
1723 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1724 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1725 */
1726 memcg->move_lock_task = current;
1727 memcg->move_lock_flags = flags;
d7365e78 1728
62cccb8c 1729 return;
89c06bd5 1730}
81f8c3a4 1731EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1732
d7365e78 1733/**
81f8c3a4 1734 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1735 * @page: the page
d7365e78 1736 */
62cccb8c 1737void unlock_page_memcg(struct page *page)
89c06bd5 1738{
62cccb8c
JW
1739 struct mem_cgroup *memcg = page->mem_cgroup;
1740
6de22619
JW
1741 if (memcg && memcg->move_lock_task == current) {
1742 unsigned long flags = memcg->move_lock_flags;
1743
1744 memcg->move_lock_task = NULL;
1745 memcg->move_lock_flags = 0;
1746
1747 spin_unlock_irqrestore(&memcg->move_lock, flags);
1748 }
89c06bd5 1749
d7365e78 1750 rcu_read_unlock();
89c06bd5 1751}
81f8c3a4 1752EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1753
cdec2e42
KH
1754/*
1755 * size of first charge trial. "32" comes from vmscan.c's magic value.
1756 * TODO: maybe necessary to use big numbers in big irons.
1757 */
7ec99d62 1758#define CHARGE_BATCH 32U
cdec2e42
KH
1759struct memcg_stock_pcp {
1760 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1761 unsigned int nr_pages;
cdec2e42 1762 struct work_struct work;
26fe6168 1763 unsigned long flags;
a0db00fc 1764#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1765};
1766static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1767static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1768
a0956d54
SS
1769/**
1770 * consume_stock: Try to consume stocked charge on this cpu.
1771 * @memcg: memcg to consume from.
1772 * @nr_pages: how many pages to charge.
1773 *
1774 * The charges will only happen if @memcg matches the current cpu's memcg
1775 * stock, and at least @nr_pages are available in that stock. Failure to
1776 * service an allocation will refill the stock.
1777 *
1778 * returns true if successful, false otherwise.
cdec2e42 1779 */
a0956d54 1780static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1781{
1782 struct memcg_stock_pcp *stock;
3e32cb2e 1783 bool ret = false;
cdec2e42 1784
a0956d54 1785 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1786 return ret;
a0956d54 1787
cdec2e42 1788 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1789 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1790 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1791 ret = true;
1792 }
cdec2e42
KH
1793 put_cpu_var(memcg_stock);
1794 return ret;
1795}
1796
1797/*
3e32cb2e 1798 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1799 */
1800static void drain_stock(struct memcg_stock_pcp *stock)
1801{
1802 struct mem_cgroup *old = stock->cached;
1803
11c9ea4e 1804 if (stock->nr_pages) {
3e32cb2e 1805 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1806 if (do_memsw_account())
3e32cb2e 1807 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1808 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1809 stock->nr_pages = 0;
cdec2e42
KH
1810 }
1811 stock->cached = NULL;
cdec2e42
KH
1812}
1813
1814/*
1815 * This must be called under preempt disabled or must be called by
1816 * a thread which is pinned to local cpu.
1817 */
1818static void drain_local_stock(struct work_struct *dummy)
1819{
7c8e0181 1820 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1821 drain_stock(stock);
26fe6168 1822 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1823}
1824
1825/*
3e32cb2e 1826 * Cache charges(val) to local per_cpu area.
320cc51d 1827 * This will be consumed by consume_stock() function, later.
cdec2e42 1828 */
c0ff4b85 1829static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1830{
1831 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1832
c0ff4b85 1833 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1834 drain_stock(stock);
c0ff4b85 1835 stock->cached = memcg;
cdec2e42 1836 }
11c9ea4e 1837 stock->nr_pages += nr_pages;
cdec2e42
KH
1838 put_cpu_var(memcg_stock);
1839}
1840
1841/*
c0ff4b85 1842 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1843 * of the hierarchy under it.
cdec2e42 1844 */
6d3d6aa2 1845static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1846{
26fe6168 1847 int cpu, curcpu;
d38144b7 1848
6d3d6aa2
JW
1849 /* If someone's already draining, avoid adding running more workers. */
1850 if (!mutex_trylock(&percpu_charge_mutex))
1851 return;
cdec2e42 1852 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1853 get_online_cpus();
5af12d0e 1854 curcpu = get_cpu();
cdec2e42
KH
1855 for_each_online_cpu(cpu) {
1856 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1857 struct mem_cgroup *memcg;
26fe6168 1858
c0ff4b85
R
1859 memcg = stock->cached;
1860 if (!memcg || !stock->nr_pages)
26fe6168 1861 continue;
2314b42d 1862 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1863 continue;
d1a05b69
MH
1864 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1865 if (cpu == curcpu)
1866 drain_local_stock(&stock->work);
1867 else
1868 schedule_work_on(cpu, &stock->work);
1869 }
cdec2e42 1870 }
5af12d0e 1871 put_cpu();
f894ffa8 1872 put_online_cpus();
9f50fad6 1873 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1874}
1875
0db0628d 1876static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1877 unsigned long action,
1878 void *hcpu)
1879{
1880 int cpu = (unsigned long)hcpu;
1881 struct memcg_stock_pcp *stock;
1882
619d094b 1883 if (action == CPU_ONLINE)
1489ebad 1884 return NOTIFY_OK;
1489ebad 1885
d833049b 1886 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1887 return NOTIFY_OK;
711d3d2c 1888
cdec2e42
KH
1889 stock = &per_cpu(memcg_stock, cpu);
1890 drain_stock(stock);
1891 return NOTIFY_OK;
1892}
1893
f7e1cb6e
JW
1894static void reclaim_high(struct mem_cgroup *memcg,
1895 unsigned int nr_pages,
1896 gfp_t gfp_mask)
1897{
1898 do {
1899 if (page_counter_read(&memcg->memory) <= memcg->high)
1900 continue;
1901 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1902 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1903 } while ((memcg = parent_mem_cgroup(memcg)));
1904}
1905
1906static void high_work_func(struct work_struct *work)
1907{
1908 struct mem_cgroup *memcg;
1909
1910 memcg = container_of(work, struct mem_cgroup, high_work);
1911 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912}
1913
b23afb93
TH
1914/*
1915 * Scheduled by try_charge() to be executed from the userland return path
1916 * and reclaims memory over the high limit.
1917 */
1918void mem_cgroup_handle_over_high(void)
1919{
1920 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1921 struct mem_cgroup *memcg;
b23afb93
TH
1922
1923 if (likely(!nr_pages))
1924 return;
1925
f7e1cb6e
JW
1926 memcg = get_mem_cgroup_from_mm(current->mm);
1927 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1928 css_put(&memcg->css);
1929 current->memcg_nr_pages_over_high = 0;
1930}
1931
00501b53
JW
1932static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1933 unsigned int nr_pages)
8a9f3ccd 1934{
7ec99d62 1935 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1936 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1937 struct mem_cgroup *mem_over_limit;
3e32cb2e 1938 struct page_counter *counter;
6539cc05 1939 unsigned long nr_reclaimed;
b70a2a21
JW
1940 bool may_swap = true;
1941 bool drained = false;
a636b327 1942
ce00a967 1943 if (mem_cgroup_is_root(memcg))
10d53c74 1944 return 0;
6539cc05 1945retry:
b6b6cc72 1946 if (consume_stock(memcg, nr_pages))
10d53c74 1947 return 0;
8a9f3ccd 1948
7941d214 1949 if (!do_memsw_account() ||
6071ca52
JW
1950 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1951 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1952 goto done_restock;
7941d214 1953 if (do_memsw_account())
3e32cb2e
JW
1954 page_counter_uncharge(&memcg->memsw, batch);
1955 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1956 } else {
3e32cb2e 1957 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1958 may_swap = false;
3fbe7244 1959 }
7a81b88c 1960
6539cc05
JW
1961 if (batch > nr_pages) {
1962 batch = nr_pages;
1963 goto retry;
1964 }
6d61ef40 1965
06b078fc
JW
1966 /*
1967 * Unlike in global OOM situations, memcg is not in a physical
1968 * memory shortage. Allow dying and OOM-killed tasks to
1969 * bypass the last charges so that they can exit quickly and
1970 * free their memory.
1971 */
1972 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1973 fatal_signal_pending(current) ||
1974 current->flags & PF_EXITING))
10d53c74 1975 goto force;
06b078fc
JW
1976
1977 if (unlikely(task_in_memcg_oom(current)))
1978 goto nomem;
1979
d0164adc 1980 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1981 goto nomem;
4b534334 1982
241994ed
JW
1983 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1984
b70a2a21
JW
1985 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1986 gfp_mask, may_swap);
6539cc05 1987
61e02c74 1988 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1989 goto retry;
28c34c29 1990
b70a2a21 1991 if (!drained) {
6d3d6aa2 1992 drain_all_stock(mem_over_limit);
b70a2a21
JW
1993 drained = true;
1994 goto retry;
1995 }
1996
28c34c29
JW
1997 if (gfp_mask & __GFP_NORETRY)
1998 goto nomem;
6539cc05
JW
1999 /*
2000 * Even though the limit is exceeded at this point, reclaim
2001 * may have been able to free some pages. Retry the charge
2002 * before killing the task.
2003 *
2004 * Only for regular pages, though: huge pages are rather
2005 * unlikely to succeed so close to the limit, and we fall back
2006 * to regular pages anyway in case of failure.
2007 */
61e02c74 2008 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2009 goto retry;
2010 /*
2011 * At task move, charge accounts can be doubly counted. So, it's
2012 * better to wait until the end of task_move if something is going on.
2013 */
2014 if (mem_cgroup_wait_acct_move(mem_over_limit))
2015 goto retry;
2016
9b130619
JW
2017 if (nr_retries--)
2018 goto retry;
2019
06b078fc 2020 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2021 goto force;
06b078fc 2022
6539cc05 2023 if (fatal_signal_pending(current))
10d53c74 2024 goto force;
6539cc05 2025
241994ed
JW
2026 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2027
3608de07
JM
2028 mem_cgroup_oom(mem_over_limit, gfp_mask,
2029 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2030nomem:
6d1fdc48 2031 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2032 return -ENOMEM;
10d53c74
TH
2033force:
2034 /*
2035 * The allocation either can't fail or will lead to more memory
2036 * being freed very soon. Allow memory usage go over the limit
2037 * temporarily by force charging it.
2038 */
2039 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2040 if (do_memsw_account())
10d53c74
TH
2041 page_counter_charge(&memcg->memsw, nr_pages);
2042 css_get_many(&memcg->css, nr_pages);
2043
2044 return 0;
6539cc05
JW
2045
2046done_restock:
e8ea14cc 2047 css_get_many(&memcg->css, batch);
6539cc05
JW
2048 if (batch > nr_pages)
2049 refill_stock(memcg, batch - nr_pages);
b23afb93 2050
241994ed 2051 /*
b23afb93
TH
2052 * If the hierarchy is above the normal consumption range, schedule
2053 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2054 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2055 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2056 * not recorded as it most likely matches current's and won't
2057 * change in the meantime. As high limit is checked again before
2058 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2059 */
2060 do {
b23afb93 2061 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2062 /* Don't bother a random interrupted task */
2063 if (in_interrupt()) {
2064 schedule_work(&memcg->high_work);
2065 break;
2066 }
9516a18a 2067 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2068 set_notify_resume(current);
2069 break;
2070 }
241994ed 2071 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2072
2073 return 0;
7a81b88c 2074}
8a9f3ccd 2075
00501b53 2076static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2077{
ce00a967
JW
2078 if (mem_cgroup_is_root(memcg))
2079 return;
2080
3e32cb2e 2081 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2082 if (do_memsw_account())
3e32cb2e 2083 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2084
e8ea14cc 2085 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2086}
2087
0a31bc97
JW
2088static void lock_page_lru(struct page *page, int *isolated)
2089{
2090 struct zone *zone = page_zone(page);
2091
2092 spin_lock_irq(&zone->lru_lock);
2093 if (PageLRU(page)) {
2094 struct lruvec *lruvec;
2095
2096 lruvec = mem_cgroup_page_lruvec(page, zone);
2097 ClearPageLRU(page);
2098 del_page_from_lru_list(page, lruvec, page_lru(page));
2099 *isolated = 1;
2100 } else
2101 *isolated = 0;
2102}
2103
2104static void unlock_page_lru(struct page *page, int isolated)
2105{
2106 struct zone *zone = page_zone(page);
2107
2108 if (isolated) {
2109 struct lruvec *lruvec;
2110
2111 lruvec = mem_cgroup_page_lruvec(page, zone);
2112 VM_BUG_ON_PAGE(PageLRU(page), page);
2113 SetPageLRU(page);
2114 add_page_to_lru_list(page, lruvec, page_lru(page));
2115 }
2116 spin_unlock_irq(&zone->lru_lock);
2117}
2118
00501b53 2119static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2120 bool lrucare)
7a81b88c 2121{
0a31bc97 2122 int isolated;
9ce70c02 2123
1306a85a 2124 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2125
2126 /*
2127 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2128 * may already be on some other mem_cgroup's LRU. Take care of it.
2129 */
0a31bc97
JW
2130 if (lrucare)
2131 lock_page_lru(page, &isolated);
9ce70c02 2132
0a31bc97
JW
2133 /*
2134 * Nobody should be changing or seriously looking at
1306a85a 2135 * page->mem_cgroup at this point:
0a31bc97
JW
2136 *
2137 * - the page is uncharged
2138 *
2139 * - the page is off-LRU
2140 *
2141 * - an anonymous fault has exclusive page access, except for
2142 * a locked page table
2143 *
2144 * - a page cache insertion, a swapin fault, or a migration
2145 * have the page locked
2146 */
1306a85a 2147 page->mem_cgroup = memcg;
9ce70c02 2148
0a31bc97
JW
2149 if (lrucare)
2150 unlock_page_lru(page, isolated);
7a81b88c 2151}
66e1707b 2152
127424c8 2153#ifndef CONFIG_SLOB
f3bb3043 2154static int memcg_alloc_cache_id(void)
55007d84 2155{
f3bb3043
VD
2156 int id, size;
2157 int err;
2158
dbcf73e2 2159 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2160 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2161 if (id < 0)
2162 return id;
55007d84 2163
dbcf73e2 2164 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2165 return id;
2166
2167 /*
2168 * There's no space for the new id in memcg_caches arrays,
2169 * so we have to grow them.
2170 */
05257a1a 2171 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2172
2173 size = 2 * (id + 1);
55007d84
GC
2174 if (size < MEMCG_CACHES_MIN_SIZE)
2175 size = MEMCG_CACHES_MIN_SIZE;
2176 else if (size > MEMCG_CACHES_MAX_SIZE)
2177 size = MEMCG_CACHES_MAX_SIZE;
2178
f3bb3043 2179 err = memcg_update_all_caches(size);
60d3fd32
VD
2180 if (!err)
2181 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2182 if (!err)
2183 memcg_nr_cache_ids = size;
2184
2185 up_write(&memcg_cache_ids_sem);
2186
f3bb3043 2187 if (err) {
dbcf73e2 2188 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2189 return err;
2190 }
2191 return id;
2192}
2193
2194static void memcg_free_cache_id(int id)
2195{
dbcf73e2 2196 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2197}
2198
d5b3cf71 2199struct memcg_kmem_cache_create_work {
5722d094
VD
2200 struct mem_cgroup *memcg;
2201 struct kmem_cache *cachep;
2202 struct work_struct work;
2203};
2204
d5b3cf71 2205static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2206{
d5b3cf71
VD
2207 struct memcg_kmem_cache_create_work *cw =
2208 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2209 struct mem_cgroup *memcg = cw->memcg;
2210 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2211
d5b3cf71 2212 memcg_create_kmem_cache(memcg, cachep);
bd673145 2213
5722d094 2214 css_put(&memcg->css);
d7f25f8a
GC
2215 kfree(cw);
2216}
2217
2218/*
2219 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2220 */
d5b3cf71
VD
2221static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 struct kmem_cache *cachep)
d7f25f8a 2223{
d5b3cf71 2224 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2225
776ed0f0 2226 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2227 if (!cw)
d7f25f8a 2228 return;
8135be5a
VD
2229
2230 css_get(&memcg->css);
d7f25f8a
GC
2231
2232 cw->memcg = memcg;
2233 cw->cachep = cachep;
d5b3cf71 2234 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2235
d7f25f8a
GC
2236 schedule_work(&cw->work);
2237}
2238
d5b3cf71
VD
2239static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2240 struct kmem_cache *cachep)
0e9d92f2
GC
2241{
2242 /*
2243 * We need to stop accounting when we kmalloc, because if the
2244 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2245 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2246 *
2247 * However, it is better to enclose the whole function. Depending on
2248 * the debugging options enabled, INIT_WORK(), for instance, can
2249 * trigger an allocation. This too, will make us recurse. Because at
2250 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2251 * the safest choice is to do it like this, wrapping the whole function.
2252 */
6f185c29 2253 current->memcg_kmem_skip_account = 1;
d5b3cf71 2254 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2255 current->memcg_kmem_skip_account = 0;
0e9d92f2 2256}
c67a8a68 2257
d7f25f8a
GC
2258/*
2259 * Return the kmem_cache we're supposed to use for a slab allocation.
2260 * We try to use the current memcg's version of the cache.
2261 *
2262 * If the cache does not exist yet, if we are the first user of it,
2263 * we either create it immediately, if possible, or create it asynchronously
2264 * in a workqueue.
2265 * In the latter case, we will let the current allocation go through with
2266 * the original cache.
2267 *
2268 * Can't be called in interrupt context or from kernel threads.
2269 * This function needs to be called with rcu_read_lock() held.
2270 */
230e9fc2 2271struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2272{
2273 struct mem_cgroup *memcg;
959c8963 2274 struct kmem_cache *memcg_cachep;
2a4db7eb 2275 int kmemcg_id;
d7f25f8a 2276
f7ce3190 2277 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2278
230e9fc2
VD
2279 if (cachep->flags & SLAB_ACCOUNT)
2280 gfp |= __GFP_ACCOUNT;
2281
2282 if (!(gfp & __GFP_ACCOUNT))
2283 return cachep;
2284
9d100c5e 2285 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2286 return cachep;
2287
8135be5a 2288 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2289 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2290 if (kmemcg_id < 0)
ca0dde97 2291 goto out;
d7f25f8a 2292
2a4db7eb 2293 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2294 if (likely(memcg_cachep))
2295 return memcg_cachep;
ca0dde97
LZ
2296
2297 /*
2298 * If we are in a safe context (can wait, and not in interrupt
2299 * context), we could be be predictable and return right away.
2300 * This would guarantee that the allocation being performed
2301 * already belongs in the new cache.
2302 *
2303 * However, there are some clashes that can arrive from locking.
2304 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2305 * memcg_create_kmem_cache, this means no further allocation
2306 * could happen with the slab_mutex held. So it's better to
2307 * defer everything.
ca0dde97 2308 */
d5b3cf71 2309 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2310out:
8135be5a 2311 css_put(&memcg->css);
ca0dde97 2312 return cachep;
d7f25f8a 2313}
d7f25f8a 2314
8135be5a
VD
2315void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2316{
2317 if (!is_root_cache(cachep))
f7ce3190 2318 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2319}
2320
f3ccb2c4
VD
2321int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2322 struct mem_cgroup *memcg)
7ae1e1d0 2323{
f3ccb2c4
VD
2324 unsigned int nr_pages = 1 << order;
2325 struct page_counter *counter;
7ae1e1d0
GC
2326 int ret;
2327
567e9ab2 2328 if (!memcg_kmem_online(memcg))
d05e83a6 2329 return 0;
6d42c232 2330
f3ccb2c4 2331 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2332 if (ret)
f3ccb2c4 2333 return ret;
52c29b04
JW
2334
2335 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2336 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2337 cancel_charge(memcg, nr_pages);
2338 return -ENOMEM;
7ae1e1d0
GC
2339 }
2340
f3ccb2c4 2341 page->mem_cgroup = memcg;
7ae1e1d0 2342
f3ccb2c4 2343 return 0;
7ae1e1d0
GC
2344}
2345
f3ccb2c4 2346int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2347{
f3ccb2c4
VD
2348 struct mem_cgroup *memcg;
2349 int ret;
7ae1e1d0 2350
f3ccb2c4
VD
2351 memcg = get_mem_cgroup_from_mm(current->mm);
2352 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2353 css_put(&memcg->css);
d05e83a6 2354 return ret;
7ae1e1d0
GC
2355}
2356
d05e83a6 2357void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2358{
1306a85a 2359 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2360 unsigned int nr_pages = 1 << order;
7ae1e1d0 2361
7ae1e1d0
GC
2362 if (!memcg)
2363 return;
2364
309381fe 2365 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2366
52c29b04
JW
2367 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2368 page_counter_uncharge(&memcg->kmem, nr_pages);
2369
f3ccb2c4 2370 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2371 if (do_memsw_account())
f3ccb2c4 2372 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2373
1306a85a 2374 page->mem_cgroup = NULL;
f3ccb2c4 2375 css_put_many(&memcg->css, nr_pages);
60d3fd32 2376}
127424c8 2377#endif /* !CONFIG_SLOB */
7ae1e1d0 2378
ca3e0214
KH
2379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2380
ca3e0214
KH
2381/*
2382 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2383 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2384 */
e94c8a9c 2385void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2386{
e94c8a9c 2387 int i;
ca3e0214 2388
3d37c4a9
KH
2389 if (mem_cgroup_disabled())
2390 return;
b070e65c 2391
29833315 2392 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2393 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2394
1306a85a 2395 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2396 HPAGE_PMD_NR);
ca3e0214 2397}
12d27107 2398#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2399
c255a458 2400#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2401static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2402 bool charge)
d13d1443 2403{
0a31bc97
JW
2404 int val = (charge) ? 1 : -1;
2405 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2406}
02491447
DN
2407
2408/**
2409 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2410 * @entry: swap entry to be moved
2411 * @from: mem_cgroup which the entry is moved from
2412 * @to: mem_cgroup which the entry is moved to
2413 *
2414 * It succeeds only when the swap_cgroup's record for this entry is the same
2415 * as the mem_cgroup's id of @from.
2416 *
2417 * Returns 0 on success, -EINVAL on failure.
2418 *
3e32cb2e 2419 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2420 * both res and memsw, and called css_get().
2421 */
2422static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2423 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2424{
2425 unsigned short old_id, new_id;
2426
34c00c31
LZ
2427 old_id = mem_cgroup_id(from);
2428 new_id = mem_cgroup_id(to);
02491447
DN
2429
2430 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2431 mem_cgroup_swap_statistics(from, false);
483c30b5 2432 mem_cgroup_swap_statistics(to, true);
02491447
DN
2433 return 0;
2434 }
2435 return -EINVAL;
2436}
2437#else
2438static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2439 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2440{
2441 return -EINVAL;
2442}
8c7c6e34 2443#endif
d13d1443 2444
3e32cb2e 2445static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2446
d38d2a75 2447static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2448 unsigned long limit)
628f4235 2449{
3e32cb2e
JW
2450 unsigned long curusage;
2451 unsigned long oldusage;
2452 bool enlarge = false;
81d39c20 2453 int retry_count;
3e32cb2e 2454 int ret;
81d39c20
KH
2455
2456 /*
2457 * For keeping hierarchical_reclaim simple, how long we should retry
2458 * is depends on callers. We set our retry-count to be function
2459 * of # of children which we should visit in this loop.
2460 */
3e32cb2e
JW
2461 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2462 mem_cgroup_count_children(memcg);
81d39c20 2463
3e32cb2e 2464 oldusage = page_counter_read(&memcg->memory);
628f4235 2465
3e32cb2e 2466 do {
628f4235
KH
2467 if (signal_pending(current)) {
2468 ret = -EINTR;
2469 break;
2470 }
3e32cb2e
JW
2471
2472 mutex_lock(&memcg_limit_mutex);
2473 if (limit > memcg->memsw.limit) {
2474 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2475 ret = -EINVAL;
628f4235
KH
2476 break;
2477 }
3e32cb2e
JW
2478 if (limit > memcg->memory.limit)
2479 enlarge = true;
2480 ret = page_counter_limit(&memcg->memory, limit);
2481 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2482
2483 if (!ret)
2484 break;
2485
b70a2a21
JW
2486 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2487
3e32cb2e 2488 curusage = page_counter_read(&memcg->memory);
81d39c20 2489 /* Usage is reduced ? */
f894ffa8 2490 if (curusage >= oldusage)
81d39c20
KH
2491 retry_count--;
2492 else
2493 oldusage = curusage;
3e32cb2e
JW
2494 } while (retry_count);
2495
3c11ecf4
KH
2496 if (!ret && enlarge)
2497 memcg_oom_recover(memcg);
14797e23 2498
8c7c6e34
KH
2499 return ret;
2500}
2501
338c8431 2502static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2503 unsigned long limit)
8c7c6e34 2504{
3e32cb2e
JW
2505 unsigned long curusage;
2506 unsigned long oldusage;
2507 bool enlarge = false;
81d39c20 2508 int retry_count;
3e32cb2e 2509 int ret;
8c7c6e34 2510
81d39c20 2511 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2512 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2513 mem_cgroup_count_children(memcg);
2514
2515 oldusage = page_counter_read(&memcg->memsw);
2516
2517 do {
8c7c6e34
KH
2518 if (signal_pending(current)) {
2519 ret = -EINTR;
2520 break;
2521 }
3e32cb2e
JW
2522
2523 mutex_lock(&memcg_limit_mutex);
2524 if (limit < memcg->memory.limit) {
2525 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2526 ret = -EINVAL;
8c7c6e34
KH
2527 break;
2528 }
3e32cb2e
JW
2529 if (limit > memcg->memsw.limit)
2530 enlarge = true;
2531 ret = page_counter_limit(&memcg->memsw, limit);
2532 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2533
2534 if (!ret)
2535 break;
2536
b70a2a21
JW
2537 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2538
3e32cb2e 2539 curusage = page_counter_read(&memcg->memsw);
81d39c20 2540 /* Usage is reduced ? */
8c7c6e34 2541 if (curusage >= oldusage)
628f4235 2542 retry_count--;
81d39c20
KH
2543 else
2544 oldusage = curusage;
3e32cb2e
JW
2545 } while (retry_count);
2546
3c11ecf4
KH
2547 if (!ret && enlarge)
2548 memcg_oom_recover(memcg);
3e32cb2e 2549
628f4235
KH
2550 return ret;
2551}
2552
0608f43d
AM
2553unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2554 gfp_t gfp_mask,
2555 unsigned long *total_scanned)
2556{
2557 unsigned long nr_reclaimed = 0;
2558 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2559 unsigned long reclaimed;
2560 int loop = 0;
2561 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2562 unsigned long excess;
0608f43d
AM
2563 unsigned long nr_scanned;
2564
2565 if (order > 0)
2566 return 0;
2567
2568 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2569 /*
2570 * This loop can run a while, specially if mem_cgroup's continuously
2571 * keep exceeding their soft limit and putting the system under
2572 * pressure
2573 */
2574 do {
2575 if (next_mz)
2576 mz = next_mz;
2577 else
2578 mz = mem_cgroup_largest_soft_limit_node(mctz);
2579 if (!mz)
2580 break;
2581
2582 nr_scanned = 0;
2583 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2584 gfp_mask, &nr_scanned);
2585 nr_reclaimed += reclaimed;
2586 *total_scanned += nr_scanned;
0a31bc97 2587 spin_lock_irq(&mctz->lock);
bc2f2e7f 2588 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2589
2590 /*
2591 * If we failed to reclaim anything from this memory cgroup
2592 * it is time to move on to the next cgroup
2593 */
2594 next_mz = NULL;
bc2f2e7f
VD
2595 if (!reclaimed)
2596 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2597
3e32cb2e 2598 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2599 /*
2600 * One school of thought says that we should not add
2601 * back the node to the tree if reclaim returns 0.
2602 * But our reclaim could return 0, simply because due
2603 * to priority we are exposing a smaller subset of
2604 * memory to reclaim from. Consider this as a longer
2605 * term TODO.
2606 */
2607 /* If excess == 0, no tree ops */
cf2c8127 2608 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2609 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2610 css_put(&mz->memcg->css);
2611 loop++;
2612 /*
2613 * Could not reclaim anything and there are no more
2614 * mem cgroups to try or we seem to be looping without
2615 * reclaiming anything.
2616 */
2617 if (!nr_reclaimed &&
2618 (next_mz == NULL ||
2619 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2620 break;
2621 } while (!nr_reclaimed);
2622 if (next_mz)
2623 css_put(&next_mz->memcg->css);
2624 return nr_reclaimed;
2625}
2626
ea280e7b
TH
2627/*
2628 * Test whether @memcg has children, dead or alive. Note that this
2629 * function doesn't care whether @memcg has use_hierarchy enabled and
2630 * returns %true if there are child csses according to the cgroup
2631 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2632 */
b5f99b53
GC
2633static inline bool memcg_has_children(struct mem_cgroup *memcg)
2634{
ea280e7b
TH
2635 bool ret;
2636
ea280e7b
TH
2637 rcu_read_lock();
2638 ret = css_next_child(NULL, &memcg->css);
2639 rcu_read_unlock();
2640 return ret;
b5f99b53
GC
2641}
2642
c26251f9
MH
2643/*
2644 * Reclaims as many pages from the given memcg as possible and moves
2645 * the rest to the parent.
2646 *
2647 * Caller is responsible for holding css reference for memcg.
2648 */
2649static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2650{
2651 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2652
c1e862c1
KH
2653 /* we call try-to-free pages for make this cgroup empty */
2654 lru_add_drain_all();
f817ed48 2655 /* try to free all pages in this cgroup */
3e32cb2e 2656 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2657 int progress;
c1e862c1 2658
c26251f9
MH
2659 if (signal_pending(current))
2660 return -EINTR;
2661
b70a2a21
JW
2662 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2663 GFP_KERNEL, true);
c1e862c1 2664 if (!progress) {
f817ed48 2665 nr_retries--;
c1e862c1 2666 /* maybe some writeback is necessary */
8aa7e847 2667 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2668 }
f817ed48
KH
2669
2670 }
ab5196c2
MH
2671
2672 return 0;
cc847582
KH
2673}
2674
6770c64e
TH
2675static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2676 char *buf, size_t nbytes,
2677 loff_t off)
c1e862c1 2678{
6770c64e 2679 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2680
d8423011
MH
2681 if (mem_cgroup_is_root(memcg))
2682 return -EINVAL;
6770c64e 2683 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2684}
2685
182446d0
TH
2686static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2687 struct cftype *cft)
18f59ea7 2688{
182446d0 2689 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2690}
2691
182446d0
TH
2692static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2693 struct cftype *cft, u64 val)
18f59ea7
BS
2694{
2695 int retval = 0;
182446d0 2696 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2697 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2698
567fb435 2699 if (memcg->use_hierarchy == val)
0b8f73e1 2700 return 0;
567fb435 2701
18f59ea7 2702 /*
af901ca1 2703 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2704 * in the child subtrees. If it is unset, then the change can
2705 * occur, provided the current cgroup has no children.
2706 *
2707 * For the root cgroup, parent_mem is NULL, we allow value to be
2708 * set if there are no children.
2709 */
c0ff4b85 2710 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2711 (val == 1 || val == 0)) {
ea280e7b 2712 if (!memcg_has_children(memcg))
c0ff4b85 2713 memcg->use_hierarchy = val;
18f59ea7
BS
2714 else
2715 retval = -EBUSY;
2716 } else
2717 retval = -EINVAL;
567fb435 2718
18f59ea7
BS
2719 return retval;
2720}
2721
3e32cb2e
JW
2722static unsigned long tree_stat(struct mem_cgroup *memcg,
2723 enum mem_cgroup_stat_index idx)
ce00a967
JW
2724{
2725 struct mem_cgroup *iter;
484ebb3b 2726 unsigned long val = 0;
ce00a967 2727
ce00a967
JW
2728 for_each_mem_cgroup_tree(iter, memcg)
2729 val += mem_cgroup_read_stat(iter, idx);
2730
ce00a967
JW
2731 return val;
2732}
2733
587d9f72
JW
2734static unsigned long tree_events(struct mem_cgroup *memcg,
2735 enum mem_cgroup_events_index idx)
2736{
2737 struct mem_cgroup *iter;
2738 unsigned long val = 0;
2739
2740 for_each_mem_cgroup_tree(iter, memcg)
2741 val += mem_cgroup_read_events(iter, idx);
2742
2743 return val;
2744}
2745
6f646156 2746static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2747{
c12176d3 2748 unsigned long val;
ce00a967 2749
3e32cb2e
JW
2750 if (mem_cgroup_is_root(memcg)) {
2751 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2752 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2753 if (swap)
2754 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2755 } else {
ce00a967 2756 if (!swap)
3e32cb2e 2757 val = page_counter_read(&memcg->memory);
ce00a967 2758 else
3e32cb2e 2759 val = page_counter_read(&memcg->memsw);
ce00a967 2760 }
c12176d3 2761 return val;
ce00a967
JW
2762}
2763
3e32cb2e
JW
2764enum {
2765 RES_USAGE,
2766 RES_LIMIT,
2767 RES_MAX_USAGE,
2768 RES_FAILCNT,
2769 RES_SOFT_LIMIT,
2770};
ce00a967 2771
791badbd 2772static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2773 struct cftype *cft)
8cdea7c0 2774{
182446d0 2775 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2776 struct page_counter *counter;
af36f906 2777
3e32cb2e 2778 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2779 case _MEM:
3e32cb2e
JW
2780 counter = &memcg->memory;
2781 break;
8c7c6e34 2782 case _MEMSWAP:
3e32cb2e
JW
2783 counter = &memcg->memsw;
2784 break;
510fc4e1 2785 case _KMEM:
3e32cb2e 2786 counter = &memcg->kmem;
510fc4e1 2787 break;
d55f90bf 2788 case _TCP:
0db15298 2789 counter = &memcg->tcpmem;
d55f90bf 2790 break;
8c7c6e34
KH
2791 default:
2792 BUG();
8c7c6e34 2793 }
3e32cb2e
JW
2794
2795 switch (MEMFILE_ATTR(cft->private)) {
2796 case RES_USAGE:
2797 if (counter == &memcg->memory)
c12176d3 2798 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2799 if (counter == &memcg->memsw)
c12176d3 2800 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2801 return (u64)page_counter_read(counter) * PAGE_SIZE;
2802 case RES_LIMIT:
2803 return (u64)counter->limit * PAGE_SIZE;
2804 case RES_MAX_USAGE:
2805 return (u64)counter->watermark * PAGE_SIZE;
2806 case RES_FAILCNT:
2807 return counter->failcnt;
2808 case RES_SOFT_LIMIT:
2809 return (u64)memcg->soft_limit * PAGE_SIZE;
2810 default:
2811 BUG();
2812 }
8cdea7c0 2813}
510fc4e1 2814
127424c8 2815#ifndef CONFIG_SLOB
567e9ab2 2816static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2817{
d6441637
VD
2818 int memcg_id;
2819
2a4db7eb 2820 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2821 BUG_ON(memcg->kmem_state);
d6441637 2822
f3bb3043 2823 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2824 if (memcg_id < 0)
2825 return memcg_id;
d6441637 2826
ef12947c 2827 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2828 /*
567e9ab2 2829 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2830 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2831 * guarantee no one starts accounting before all call sites are
2832 * patched.
2833 */
900a38f0 2834 memcg->kmemcg_id = memcg_id;
567e9ab2 2835 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2836
2837 return 0;
d6441637
VD
2838}
2839
0b8f73e1
JW
2840static int memcg_propagate_kmem(struct mem_cgroup *parent,
2841 struct mem_cgroup *memcg)
510fc4e1 2842{
55007d84 2843 int ret = 0;
55007d84 2844
8c0145b6 2845 mutex_lock(&memcg_limit_mutex);
55007d84 2846 /*
567e9ab2
JW
2847 * If the parent cgroup is not kmem-online now, it cannot be
2848 * onlined after this point, because it has at least one child
2849 * already.
55007d84 2850 */
04823c83
VD
2851 if (memcg_kmem_online(parent) ||
2852 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
567e9ab2 2853 ret = memcg_online_kmem(memcg);
8c0145b6 2854 mutex_unlock(&memcg_limit_mutex);
55007d84 2855 return ret;
510fc4e1 2856}
8e0a8912 2857
8e0a8912
JW
2858static void memcg_offline_kmem(struct mem_cgroup *memcg)
2859{
2860 struct cgroup_subsys_state *css;
2861 struct mem_cgroup *parent, *child;
2862 int kmemcg_id;
2863
2864 if (memcg->kmem_state != KMEM_ONLINE)
2865 return;
2866 /*
2867 * Clear the online state before clearing memcg_caches array
2868 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2869 * guarantees that no cache will be created for this cgroup
2870 * after we are done (see memcg_create_kmem_cache()).
2871 */
2872 memcg->kmem_state = KMEM_ALLOCATED;
2873
2874 memcg_deactivate_kmem_caches(memcg);
2875
2876 kmemcg_id = memcg->kmemcg_id;
2877 BUG_ON(kmemcg_id < 0);
2878
2879 parent = parent_mem_cgroup(memcg);
2880 if (!parent)
2881 parent = root_mem_cgroup;
2882
2883 /*
2884 * Change kmemcg_id of this cgroup and all its descendants to the
2885 * parent's id, and then move all entries from this cgroup's list_lrus
2886 * to ones of the parent. After we have finished, all list_lrus
2887 * corresponding to this cgroup are guaranteed to remain empty. The
2888 * ordering is imposed by list_lru_node->lock taken by
2889 * memcg_drain_all_list_lrus().
2890 */
2891 css_for_each_descendant_pre(css, &memcg->css) {
2892 child = mem_cgroup_from_css(css);
2893 BUG_ON(child->kmemcg_id != kmemcg_id);
2894 child->kmemcg_id = parent->kmemcg_id;
2895 if (!memcg->use_hierarchy)
2896 break;
2897 }
2898 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2899
2900 memcg_free_cache_id(kmemcg_id);
2901}
2902
2903static void memcg_free_kmem(struct mem_cgroup *memcg)
2904{
0b8f73e1
JW
2905 /* css_alloc() failed, offlining didn't happen */
2906 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2907 memcg_offline_kmem(memcg);
2908
8e0a8912
JW
2909 if (memcg->kmem_state == KMEM_ALLOCATED) {
2910 memcg_destroy_kmem_caches(memcg);
2911 static_branch_dec(&memcg_kmem_enabled_key);
2912 WARN_ON(page_counter_read(&memcg->kmem));
2913 }
8e0a8912 2914}
d6441637 2915#else
0b8f73e1
JW
2916static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2917{
2918 return 0;
2919}
2920static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2921{
2922 return 0;
2923}
2924static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925{
2926}
2927static void memcg_free_kmem(struct mem_cgroup *memcg)
2928{
2929}
2930#endif /* !CONFIG_SLOB */
2931
d6441637 2932static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2933 unsigned long limit)
d6441637 2934{
0b8f73e1 2935 int ret = 0;
127424c8
JW
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 /* Top-level cgroup doesn't propagate from root */
2939 if (!memcg_kmem_online(memcg)) {
0b8f73e1
JW
2940 if (cgroup_is_populated(memcg->css.cgroup) ||
2941 (memcg->use_hierarchy && memcg_has_children(memcg)))
2942 ret = -EBUSY;
2943 if (ret)
2944 goto out;
127424c8
JW
2945 ret = memcg_online_kmem(memcg);
2946 if (ret)
2947 goto out;
2948 }
2949 ret = page_counter_limit(&memcg->kmem, limit);
2950out:
2951 mutex_unlock(&memcg_limit_mutex);
2952 return ret;
d6441637 2953}
510fc4e1 2954
d55f90bf
VD
2955static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2956{
2957 int ret;
2958
2959 mutex_lock(&memcg_limit_mutex);
2960
0db15298 2961 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2962 if (ret)
2963 goto out;
2964
0db15298 2965 if (!memcg->tcpmem_active) {
d55f90bf
VD
2966 /*
2967 * The active flag needs to be written after the static_key
2968 * update. This is what guarantees that the socket activation
2969 * function is the last one to run. See sock_update_memcg() for
2970 * details, and note that we don't mark any socket as belonging
2971 * to this memcg until that flag is up.
2972 *
2973 * We need to do this, because static_keys will span multiple
2974 * sites, but we can't control their order. If we mark a socket
2975 * as accounted, but the accounting functions are not patched in
2976 * yet, we'll lose accounting.
2977 *
2978 * We never race with the readers in sock_update_memcg(),
2979 * because when this value change, the code to process it is not
2980 * patched in yet.
2981 */
2982 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2983 memcg->tcpmem_active = true;
d55f90bf
VD
2984 }
2985out:
2986 mutex_unlock(&memcg_limit_mutex);
2987 return ret;
2988}
d55f90bf 2989
628f4235
KH
2990/*
2991 * The user of this function is...
2992 * RES_LIMIT.
2993 */
451af504
TH
2994static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2995 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2996{
451af504 2997 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2998 unsigned long nr_pages;
628f4235
KH
2999 int ret;
3000
451af504 3001 buf = strstrip(buf);
650c5e56 3002 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3003 if (ret)
3004 return ret;
af36f906 3005
3e32cb2e 3006 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3007 case RES_LIMIT:
4b3bde4c
BS
3008 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3009 ret = -EINVAL;
3010 break;
3011 }
3e32cb2e
JW
3012 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3013 case _MEM:
3014 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3015 break;
3e32cb2e
JW
3016 case _MEMSWAP:
3017 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3018 break;
3e32cb2e
JW
3019 case _KMEM:
3020 ret = memcg_update_kmem_limit(memcg, nr_pages);
3021 break;
d55f90bf
VD
3022 case _TCP:
3023 ret = memcg_update_tcp_limit(memcg, nr_pages);
3024 break;
3e32cb2e 3025 }
296c81d8 3026 break;
3e32cb2e
JW
3027 case RES_SOFT_LIMIT:
3028 memcg->soft_limit = nr_pages;
3029 ret = 0;
628f4235
KH
3030 break;
3031 }
451af504 3032 return ret ?: nbytes;
8cdea7c0
BS
3033}
3034
6770c64e
TH
3035static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3036 size_t nbytes, loff_t off)
c84872e1 3037{
6770c64e 3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3039 struct page_counter *counter;
c84872e1 3040
3e32cb2e
JW
3041 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3042 case _MEM:
3043 counter = &memcg->memory;
3044 break;
3045 case _MEMSWAP:
3046 counter = &memcg->memsw;
3047 break;
3048 case _KMEM:
3049 counter = &memcg->kmem;
3050 break;
d55f90bf 3051 case _TCP:
0db15298 3052 counter = &memcg->tcpmem;
d55f90bf 3053 break;
3e32cb2e
JW
3054 default:
3055 BUG();
3056 }
af36f906 3057
3e32cb2e 3058 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3059 case RES_MAX_USAGE:
3e32cb2e 3060 page_counter_reset_watermark(counter);
29f2a4da
PE
3061 break;
3062 case RES_FAILCNT:
3e32cb2e 3063 counter->failcnt = 0;
29f2a4da 3064 break;
3e32cb2e
JW
3065 default:
3066 BUG();
29f2a4da 3067 }
f64c3f54 3068
6770c64e 3069 return nbytes;
c84872e1
PE
3070}
3071
182446d0 3072static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3073 struct cftype *cft)
3074{
182446d0 3075 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3076}
3077
02491447 3078#ifdef CONFIG_MMU
182446d0 3079static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3080 struct cftype *cft, u64 val)
3081{
182446d0 3082 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3083
1dfab5ab 3084 if (val & ~MOVE_MASK)
7dc74be0 3085 return -EINVAL;
ee5e8472 3086
7dc74be0 3087 /*
ee5e8472
GC
3088 * No kind of locking is needed in here, because ->can_attach() will
3089 * check this value once in the beginning of the process, and then carry
3090 * on with stale data. This means that changes to this value will only
3091 * affect task migrations starting after the change.
7dc74be0 3092 */
c0ff4b85 3093 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3094 return 0;
3095}
02491447 3096#else
182446d0 3097static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3098 struct cftype *cft, u64 val)
3099{
3100 return -ENOSYS;
3101}
3102#endif
7dc74be0 3103
406eb0c9 3104#ifdef CONFIG_NUMA
2da8ca82 3105static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3106{
25485de6
GT
3107 struct numa_stat {
3108 const char *name;
3109 unsigned int lru_mask;
3110 };
3111
3112 static const struct numa_stat stats[] = {
3113 { "total", LRU_ALL },
3114 { "file", LRU_ALL_FILE },
3115 { "anon", LRU_ALL_ANON },
3116 { "unevictable", BIT(LRU_UNEVICTABLE) },
3117 };
3118 const struct numa_stat *stat;
406eb0c9 3119 int nid;
25485de6 3120 unsigned long nr;
2da8ca82 3121 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3122
25485de6
GT
3123 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3125 seq_printf(m, "%s=%lu", stat->name, nr);
3126 for_each_node_state(nid, N_MEMORY) {
3127 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3128 stat->lru_mask);
3129 seq_printf(m, " N%d=%lu", nid, nr);
3130 }
3131 seq_putc(m, '\n');
406eb0c9 3132 }
406eb0c9 3133
071aee13
YH
3134 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3135 struct mem_cgroup *iter;
3136
3137 nr = 0;
3138 for_each_mem_cgroup_tree(iter, memcg)
3139 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3140 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3141 for_each_node_state(nid, N_MEMORY) {
3142 nr = 0;
3143 for_each_mem_cgroup_tree(iter, memcg)
3144 nr += mem_cgroup_node_nr_lru_pages(
3145 iter, nid, stat->lru_mask);
3146 seq_printf(m, " N%d=%lu", nid, nr);
3147 }
3148 seq_putc(m, '\n');
406eb0c9 3149 }
406eb0c9 3150
406eb0c9
YH
3151 return 0;
3152}
3153#endif /* CONFIG_NUMA */
3154
2da8ca82 3155static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3156{
2da8ca82 3157 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3158 unsigned long memory, memsw;
af7c4b0e
JW
3159 struct mem_cgroup *mi;
3160 unsigned int i;
406eb0c9 3161
0ca44b14
GT
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3163 MEM_CGROUP_STAT_NSTATS);
3164 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3165 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3166 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3167
af7c4b0e 3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3169 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3170 continue;
484ebb3b 3171 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3172 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3173 }
7b854121 3174
af7c4b0e
JW
3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3176 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3177 mem_cgroup_read_events(memcg, i));
3178
3179 for (i = 0; i < NR_LRU_LISTS; i++)
3180 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3181 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3182
14067bb3 3183 /* Hierarchical information */
3e32cb2e
JW
3184 memory = memsw = PAGE_COUNTER_MAX;
3185 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3186 memory = min(memory, mi->memory.limit);
3187 memsw = min(memsw, mi->memsw.limit);
fee7b548 3188 }
3e32cb2e
JW
3189 seq_printf(m, "hierarchical_memory_limit %llu\n",
3190 (u64)memory * PAGE_SIZE);
7941d214 3191 if (do_memsw_account())
3e32cb2e
JW
3192 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3193 (u64)memsw * PAGE_SIZE);
7f016ee8 3194
af7c4b0e 3195 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3196 unsigned long long val = 0;
af7c4b0e 3197
7941d214 3198 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3199 continue;
af7c4b0e
JW
3200 for_each_mem_cgroup_tree(mi, memcg)
3201 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3202 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3203 }
3204
3205 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3206 unsigned long long val = 0;
3207
3208 for_each_mem_cgroup_tree(mi, memcg)
3209 val += mem_cgroup_read_events(mi, i);
3210 seq_printf(m, "total_%s %llu\n",
3211 mem_cgroup_events_names[i], val);
3212 }
3213
3214 for (i = 0; i < NR_LRU_LISTS; i++) {
3215 unsigned long long val = 0;
3216
3217 for_each_mem_cgroup_tree(mi, memcg)
3218 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3220 }
14067bb3 3221
7f016ee8 3222#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3223 {
3224 int nid, zid;
3225 struct mem_cgroup_per_zone *mz;
89abfab1 3226 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3227 unsigned long recent_rotated[2] = {0, 0};
3228 unsigned long recent_scanned[2] = {0, 0};
3229
3230 for_each_online_node(nid)
3231 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3232 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3233 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3234
89abfab1
HD
3235 recent_rotated[0] += rstat->recent_rotated[0];
3236 recent_rotated[1] += rstat->recent_rotated[1];
3237 recent_scanned[0] += rstat->recent_scanned[0];
3238 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3239 }
78ccf5b5
JW
3240 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3241 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3242 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3243 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3244 }
3245#endif
3246
d2ceb9b7
KH
3247 return 0;
3248}
3249
182446d0
TH
3250static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3251 struct cftype *cft)
a7885eb8 3252{
182446d0 3253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3254
1f4c025b 3255 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3256}
3257
182446d0
TH
3258static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3259 struct cftype *cft, u64 val)
a7885eb8 3260{
182446d0 3261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3262
3dae7fec 3263 if (val > 100)
a7885eb8
KM
3264 return -EINVAL;
3265
14208b0e 3266 if (css->parent)
3dae7fec
JW
3267 memcg->swappiness = val;
3268 else
3269 vm_swappiness = val;
068b38c1 3270
a7885eb8
KM
3271 return 0;
3272}
3273
2e72b634
KS
3274static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3275{
3276 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3277 unsigned long usage;
2e72b634
KS
3278 int i;
3279
3280 rcu_read_lock();
3281 if (!swap)
2c488db2 3282 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3283 else
2c488db2 3284 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3285
3286 if (!t)
3287 goto unlock;
3288
ce00a967 3289 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3290
3291 /*
748dad36 3292 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3293 * If it's not true, a threshold was crossed after last
3294 * call of __mem_cgroup_threshold().
3295 */
5407a562 3296 i = t->current_threshold;
2e72b634
KS
3297
3298 /*
3299 * Iterate backward over array of thresholds starting from
3300 * current_threshold and check if a threshold is crossed.
3301 * If none of thresholds below usage is crossed, we read
3302 * only one element of the array here.
3303 */
3304 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3305 eventfd_signal(t->entries[i].eventfd, 1);
3306
3307 /* i = current_threshold + 1 */
3308 i++;
3309
3310 /*
3311 * Iterate forward over array of thresholds starting from
3312 * current_threshold+1 and check if a threshold is crossed.
3313 * If none of thresholds above usage is crossed, we read
3314 * only one element of the array here.
3315 */
3316 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3317 eventfd_signal(t->entries[i].eventfd, 1);
3318
3319 /* Update current_threshold */
5407a562 3320 t->current_threshold = i - 1;
2e72b634
KS
3321unlock:
3322 rcu_read_unlock();
3323}
3324
3325static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3326{
ad4ca5f4
KS
3327 while (memcg) {
3328 __mem_cgroup_threshold(memcg, false);
7941d214 3329 if (do_memsw_account())
ad4ca5f4
KS
3330 __mem_cgroup_threshold(memcg, true);
3331
3332 memcg = parent_mem_cgroup(memcg);
3333 }
2e72b634
KS
3334}
3335
3336static int compare_thresholds(const void *a, const void *b)
3337{
3338 const struct mem_cgroup_threshold *_a = a;
3339 const struct mem_cgroup_threshold *_b = b;
3340
2bff24a3
GT
3341 if (_a->threshold > _b->threshold)
3342 return 1;
3343
3344 if (_a->threshold < _b->threshold)
3345 return -1;
3346
3347 return 0;
2e72b634
KS
3348}
3349
c0ff4b85 3350static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3351{
3352 struct mem_cgroup_eventfd_list *ev;
3353
2bcf2e92
MH
3354 spin_lock(&memcg_oom_lock);
3355
c0ff4b85 3356 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3357 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3358
3359 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3360 return 0;
3361}
3362
c0ff4b85 3363static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3364{
7d74b06f
KH
3365 struct mem_cgroup *iter;
3366
c0ff4b85 3367 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3368 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3369}
3370
59b6f873 3371static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3372 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3373{
2c488db2
KS
3374 struct mem_cgroup_thresholds *thresholds;
3375 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3376 unsigned long threshold;
3377 unsigned long usage;
2c488db2 3378 int i, size, ret;
2e72b634 3379
650c5e56 3380 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3381 if (ret)
3382 return ret;
3383
3384 mutex_lock(&memcg->thresholds_lock);
2c488db2 3385
05b84301 3386 if (type == _MEM) {
2c488db2 3387 thresholds = &memcg->thresholds;
ce00a967 3388 usage = mem_cgroup_usage(memcg, false);
05b84301 3389 } else if (type == _MEMSWAP) {
2c488db2 3390 thresholds = &memcg->memsw_thresholds;
ce00a967 3391 usage = mem_cgroup_usage(memcg, true);
05b84301 3392 } else
2e72b634
KS
3393 BUG();
3394
2e72b634 3395 /* Check if a threshold crossed before adding a new one */
2c488db2 3396 if (thresholds->primary)
2e72b634
KS
3397 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3398
2c488db2 3399 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3400
3401 /* Allocate memory for new array of thresholds */
2c488db2 3402 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3403 GFP_KERNEL);
2c488db2 3404 if (!new) {
2e72b634
KS
3405 ret = -ENOMEM;
3406 goto unlock;
3407 }
2c488db2 3408 new->size = size;
2e72b634
KS
3409
3410 /* Copy thresholds (if any) to new array */
2c488db2
KS
3411 if (thresholds->primary) {
3412 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3413 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3414 }
3415
2e72b634 3416 /* Add new threshold */
2c488db2
KS
3417 new->entries[size - 1].eventfd = eventfd;
3418 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3419
3420 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3421 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3422 compare_thresholds, NULL);
3423
3424 /* Find current threshold */
2c488db2 3425 new->current_threshold = -1;
2e72b634 3426 for (i = 0; i < size; i++) {
748dad36 3427 if (new->entries[i].threshold <= usage) {
2e72b634 3428 /*
2c488db2
KS
3429 * new->current_threshold will not be used until
3430 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3431 * it here.
3432 */
2c488db2 3433 ++new->current_threshold;
748dad36
SZ
3434 } else
3435 break;
2e72b634
KS
3436 }
3437
2c488db2
KS
3438 /* Free old spare buffer and save old primary buffer as spare */
3439 kfree(thresholds->spare);
3440 thresholds->spare = thresholds->primary;
3441
3442 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3443
907860ed 3444 /* To be sure that nobody uses thresholds */
2e72b634
KS
3445 synchronize_rcu();
3446
2e72b634
KS
3447unlock:
3448 mutex_unlock(&memcg->thresholds_lock);
3449
3450 return ret;
3451}
3452
59b6f873 3453static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3454 struct eventfd_ctx *eventfd, const char *args)
3455{
59b6f873 3456 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3457}
3458
59b6f873 3459static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3460 struct eventfd_ctx *eventfd, const char *args)
3461{
59b6f873 3462 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3463}
3464
59b6f873 3465static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3466 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3467{
2c488db2
KS
3468 struct mem_cgroup_thresholds *thresholds;
3469 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3470 unsigned long usage;
2c488db2 3471 int i, j, size;
2e72b634
KS
3472
3473 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3474
3475 if (type == _MEM) {
2c488db2 3476 thresholds = &memcg->thresholds;
ce00a967 3477 usage = mem_cgroup_usage(memcg, false);
05b84301 3478 } else if (type == _MEMSWAP) {
2c488db2 3479 thresholds = &memcg->memsw_thresholds;
ce00a967 3480 usage = mem_cgroup_usage(memcg, true);
05b84301 3481 } else
2e72b634
KS
3482 BUG();
3483
371528ca
AV
3484 if (!thresholds->primary)
3485 goto unlock;
3486
2e72b634
KS
3487 /* Check if a threshold crossed before removing */
3488 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3489
3490 /* Calculate new number of threshold */
2c488db2
KS
3491 size = 0;
3492 for (i = 0; i < thresholds->primary->size; i++) {
3493 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3494 size++;
3495 }
3496
2c488db2 3497 new = thresholds->spare;
907860ed 3498
2e72b634
KS
3499 /* Set thresholds array to NULL if we don't have thresholds */
3500 if (!size) {
2c488db2
KS
3501 kfree(new);
3502 new = NULL;
907860ed 3503 goto swap_buffers;
2e72b634
KS
3504 }
3505
2c488db2 3506 new->size = size;
2e72b634
KS
3507
3508 /* Copy thresholds and find current threshold */
2c488db2
KS
3509 new->current_threshold = -1;
3510 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3511 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3512 continue;
3513
2c488db2 3514 new->entries[j] = thresholds->primary->entries[i];
748dad36 3515 if (new->entries[j].threshold <= usage) {
2e72b634 3516 /*
2c488db2 3517 * new->current_threshold will not be used
2e72b634
KS
3518 * until rcu_assign_pointer(), so it's safe to increment
3519 * it here.
3520 */
2c488db2 3521 ++new->current_threshold;
2e72b634
KS
3522 }
3523 j++;
3524 }
3525
907860ed 3526swap_buffers:
2c488db2
KS
3527 /* Swap primary and spare array */
3528 thresholds->spare = thresholds->primary;
8c757763 3529
2c488db2 3530 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3531
907860ed 3532 /* To be sure that nobody uses thresholds */
2e72b634 3533 synchronize_rcu();
6611d8d7
MC
3534
3535 /* If all events are unregistered, free the spare array */
3536 if (!new) {
3537 kfree(thresholds->spare);
3538 thresholds->spare = NULL;
3539 }
371528ca 3540unlock:
2e72b634 3541 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3542}
c1e862c1 3543
59b6f873 3544static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3545 struct eventfd_ctx *eventfd)
3546{
59b6f873 3547 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3548}
3549
59b6f873 3550static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3551 struct eventfd_ctx *eventfd)
3552{
59b6f873 3553 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3554}
3555
59b6f873 3556static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3557 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3558{
9490ff27 3559 struct mem_cgroup_eventfd_list *event;
9490ff27 3560
9490ff27
KH
3561 event = kmalloc(sizeof(*event), GFP_KERNEL);
3562 if (!event)
3563 return -ENOMEM;
3564
1af8efe9 3565 spin_lock(&memcg_oom_lock);
9490ff27
KH
3566
3567 event->eventfd = eventfd;
3568 list_add(&event->list, &memcg->oom_notify);
3569
3570 /* already in OOM ? */
c2b42d3c 3571 if (memcg->under_oom)
9490ff27 3572 eventfd_signal(eventfd, 1);
1af8efe9 3573 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3574
3575 return 0;
3576}
3577
59b6f873 3578static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3579 struct eventfd_ctx *eventfd)
9490ff27 3580{
9490ff27 3581 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3582
1af8efe9 3583 spin_lock(&memcg_oom_lock);
9490ff27 3584
c0ff4b85 3585 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3586 if (ev->eventfd == eventfd) {
3587 list_del(&ev->list);
3588 kfree(ev);
3589 }
3590 }
3591
1af8efe9 3592 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3593}
3594
2da8ca82 3595static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3596{
2da8ca82 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3598
791badbd 3599 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3600 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3601 return 0;
3602}
3603
182446d0 3604static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3605 struct cftype *cft, u64 val)
3606{
182446d0 3607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3608
3609 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3610 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3611 return -EINVAL;
3612
c0ff4b85 3613 memcg->oom_kill_disable = val;
4d845ebf 3614 if (!val)
c0ff4b85 3615 memcg_oom_recover(memcg);
3dae7fec 3616
3c11ecf4
KH
3617 return 0;
3618}
3619
52ebea74
TH
3620#ifdef CONFIG_CGROUP_WRITEBACK
3621
3622struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3623{
3624 return &memcg->cgwb_list;
3625}
3626
841710aa
TH
3627static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3628{
3629 return wb_domain_init(&memcg->cgwb_domain, gfp);
3630}
3631
3632static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3633{
3634 wb_domain_exit(&memcg->cgwb_domain);
3635}
3636
2529bb3a
TH
3637static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3638{
3639 wb_domain_size_changed(&memcg->cgwb_domain);
3640}
3641
841710aa
TH
3642struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3643{
3644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3645
3646 if (!memcg->css.parent)
3647 return NULL;
3648
3649 return &memcg->cgwb_domain;
3650}
3651
c2aa723a
TH
3652/**
3653 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3654 * @wb: bdi_writeback in question
c5edf9cd
TH
3655 * @pfilepages: out parameter for number of file pages
3656 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3657 * @pdirty: out parameter for number of dirty pages
3658 * @pwriteback: out parameter for number of pages under writeback
3659 *
c5edf9cd
TH
3660 * Determine the numbers of file, headroom, dirty, and writeback pages in
3661 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3662 * is a bit more involved.
c2aa723a 3663 *
c5edf9cd
TH
3664 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3665 * headroom is calculated as the lowest headroom of itself and the
3666 * ancestors. Note that this doesn't consider the actual amount of
3667 * available memory in the system. The caller should further cap
3668 * *@pheadroom accordingly.
c2aa723a 3669 */
c5edf9cd
TH
3670void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3671 unsigned long *pheadroom, unsigned long *pdirty,
3672 unsigned long *pwriteback)
c2aa723a
TH
3673{
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3675 struct mem_cgroup *parent;
c2aa723a
TH
3676
3677 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3678
3679 /* this should eventually include NR_UNSTABLE_NFS */
3680 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3681 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3682 (1 << LRU_ACTIVE_FILE));
3683 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3684
c2aa723a
TH
3685 while ((parent = parent_mem_cgroup(memcg))) {
3686 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3687 unsigned long used = page_counter_read(&memcg->memory);
3688
c5edf9cd 3689 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3690 memcg = parent;
3691 }
c2aa723a
TH
3692}
3693
841710aa
TH
3694#else /* CONFIG_CGROUP_WRITEBACK */
3695
3696static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697{
3698 return 0;
3699}
3700
3701static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702{
3703}
3704
2529bb3a
TH
3705static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3706{
3707}
3708
52ebea74
TH
3709#endif /* CONFIG_CGROUP_WRITEBACK */
3710
3bc942f3
TH
3711/*
3712 * DO NOT USE IN NEW FILES.
3713 *
3714 * "cgroup.event_control" implementation.
3715 *
3716 * This is way over-engineered. It tries to support fully configurable
3717 * events for each user. Such level of flexibility is completely
3718 * unnecessary especially in the light of the planned unified hierarchy.
3719 *
3720 * Please deprecate this and replace with something simpler if at all
3721 * possible.
3722 */
3723
79bd9814
TH
3724/*
3725 * Unregister event and free resources.
3726 *
3727 * Gets called from workqueue.
3728 */
3bc942f3 3729static void memcg_event_remove(struct work_struct *work)
79bd9814 3730{
3bc942f3
TH
3731 struct mem_cgroup_event *event =
3732 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3733 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3734
3735 remove_wait_queue(event->wqh, &event->wait);
3736
59b6f873 3737 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3738
3739 /* Notify userspace the event is going away. */
3740 eventfd_signal(event->eventfd, 1);
3741
3742 eventfd_ctx_put(event->eventfd);
3743 kfree(event);
59b6f873 3744 css_put(&memcg->css);
79bd9814
TH
3745}
3746
3747/*
3748 * Gets called on POLLHUP on eventfd when user closes it.
3749 *
3750 * Called with wqh->lock held and interrupts disabled.
3751 */
3bc942f3
TH
3752static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3753 int sync, void *key)
79bd9814 3754{
3bc942f3
TH
3755 struct mem_cgroup_event *event =
3756 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3757 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3758 unsigned long flags = (unsigned long)key;
3759
3760 if (flags & POLLHUP) {
3761 /*
3762 * If the event has been detached at cgroup removal, we
3763 * can simply return knowing the other side will cleanup
3764 * for us.
3765 *
3766 * We can't race against event freeing since the other
3767 * side will require wqh->lock via remove_wait_queue(),
3768 * which we hold.
3769 */
fba94807 3770 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3771 if (!list_empty(&event->list)) {
3772 list_del_init(&event->list);
3773 /*
3774 * We are in atomic context, but cgroup_event_remove()
3775 * may sleep, so we have to call it in workqueue.
3776 */
3777 schedule_work(&event->remove);
3778 }
fba94807 3779 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3780 }
3781
3782 return 0;
3783}
3784
3bc942f3 3785static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3786 wait_queue_head_t *wqh, poll_table *pt)
3787{
3bc942f3
TH
3788 struct mem_cgroup_event *event =
3789 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3790
3791 event->wqh = wqh;
3792 add_wait_queue(wqh, &event->wait);
3793}
3794
3795/*
3bc942f3
TH
3796 * DO NOT USE IN NEW FILES.
3797 *
79bd9814
TH
3798 * Parse input and register new cgroup event handler.
3799 *
3800 * Input must be in format '<event_fd> <control_fd> <args>'.
3801 * Interpretation of args is defined by control file implementation.
3802 */
451af504
TH
3803static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3804 char *buf, size_t nbytes, loff_t off)
79bd9814 3805{
451af504 3806 struct cgroup_subsys_state *css = of_css(of);
fba94807 3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3808 struct mem_cgroup_event *event;
79bd9814
TH
3809 struct cgroup_subsys_state *cfile_css;
3810 unsigned int efd, cfd;
3811 struct fd efile;
3812 struct fd cfile;
fba94807 3813 const char *name;
79bd9814
TH
3814 char *endp;
3815 int ret;
3816
451af504
TH
3817 buf = strstrip(buf);
3818
3819 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3820 if (*endp != ' ')
3821 return -EINVAL;
451af504 3822 buf = endp + 1;
79bd9814 3823
451af504 3824 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3825 if ((*endp != ' ') && (*endp != '\0'))
3826 return -EINVAL;
451af504 3827 buf = endp + 1;
79bd9814
TH
3828
3829 event = kzalloc(sizeof(*event), GFP_KERNEL);
3830 if (!event)
3831 return -ENOMEM;
3832
59b6f873 3833 event->memcg = memcg;
79bd9814 3834 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3835 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3836 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3837 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3838
3839 efile = fdget(efd);
3840 if (!efile.file) {
3841 ret = -EBADF;
3842 goto out_kfree;
3843 }
3844
3845 event->eventfd = eventfd_ctx_fileget(efile.file);
3846 if (IS_ERR(event->eventfd)) {
3847 ret = PTR_ERR(event->eventfd);
3848 goto out_put_efile;
3849 }
3850
3851 cfile = fdget(cfd);
3852 if (!cfile.file) {
3853 ret = -EBADF;
3854 goto out_put_eventfd;
3855 }
3856
3857 /* the process need read permission on control file */
3858 /* AV: shouldn't we check that it's been opened for read instead? */
3859 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3860 if (ret < 0)
3861 goto out_put_cfile;
3862
fba94807
TH
3863 /*
3864 * Determine the event callbacks and set them in @event. This used
3865 * to be done via struct cftype but cgroup core no longer knows
3866 * about these events. The following is crude but the whole thing
3867 * is for compatibility anyway.
3bc942f3
TH
3868 *
3869 * DO NOT ADD NEW FILES.
fba94807 3870 */
b583043e 3871 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3872
3873 if (!strcmp(name, "memory.usage_in_bytes")) {
3874 event->register_event = mem_cgroup_usage_register_event;
3875 event->unregister_event = mem_cgroup_usage_unregister_event;
3876 } else if (!strcmp(name, "memory.oom_control")) {
3877 event->register_event = mem_cgroup_oom_register_event;
3878 event->unregister_event = mem_cgroup_oom_unregister_event;
3879 } else if (!strcmp(name, "memory.pressure_level")) {
3880 event->register_event = vmpressure_register_event;
3881 event->unregister_event = vmpressure_unregister_event;
3882 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3883 event->register_event = memsw_cgroup_usage_register_event;
3884 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3885 } else {
3886 ret = -EINVAL;
3887 goto out_put_cfile;
3888 }
3889
79bd9814 3890 /*
b5557c4c
TH
3891 * Verify @cfile should belong to @css. Also, remaining events are
3892 * automatically removed on cgroup destruction but the removal is
3893 * asynchronous, so take an extra ref on @css.
79bd9814 3894 */
b583043e 3895 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3896 &memory_cgrp_subsys);
79bd9814 3897 ret = -EINVAL;
5a17f543 3898 if (IS_ERR(cfile_css))
79bd9814 3899 goto out_put_cfile;
5a17f543
TH
3900 if (cfile_css != css) {
3901 css_put(cfile_css);
79bd9814 3902 goto out_put_cfile;
5a17f543 3903 }
79bd9814 3904
451af504 3905 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3906 if (ret)
3907 goto out_put_css;
3908
3909 efile.file->f_op->poll(efile.file, &event->pt);
3910
fba94807
TH
3911 spin_lock(&memcg->event_list_lock);
3912 list_add(&event->list, &memcg->event_list);
3913 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3914
3915 fdput(cfile);
3916 fdput(efile);
3917
451af504 3918 return nbytes;
79bd9814
TH
3919
3920out_put_css:
b5557c4c 3921 css_put(css);
79bd9814
TH
3922out_put_cfile:
3923 fdput(cfile);
3924out_put_eventfd:
3925 eventfd_ctx_put(event->eventfd);
3926out_put_efile:
3927 fdput(efile);
3928out_kfree:
3929 kfree(event);
3930
3931 return ret;
3932}
3933
241994ed 3934static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3935 {
0eea1030 3936 .name = "usage_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3938 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3939 },
c84872e1
PE
3940 {
3941 .name = "max_usage_in_bytes",
8c7c6e34 3942 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3943 .write = mem_cgroup_reset,
791badbd 3944 .read_u64 = mem_cgroup_read_u64,
c84872e1 3945 },
8cdea7c0 3946 {
0eea1030 3947 .name = "limit_in_bytes",
8c7c6e34 3948 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3949 .write = mem_cgroup_write,
791badbd 3950 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3951 },
296c81d8
BS
3952 {
3953 .name = "soft_limit_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3955 .write = mem_cgroup_write,
791badbd 3956 .read_u64 = mem_cgroup_read_u64,
296c81d8 3957 },
8cdea7c0
BS
3958 {
3959 .name = "failcnt",
8c7c6e34 3960 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3961 .write = mem_cgroup_reset,
791badbd 3962 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3963 },
d2ceb9b7
KH
3964 {
3965 .name = "stat",
2da8ca82 3966 .seq_show = memcg_stat_show,
d2ceb9b7 3967 },
c1e862c1
KH
3968 {
3969 .name = "force_empty",
6770c64e 3970 .write = mem_cgroup_force_empty_write,
c1e862c1 3971 },
18f59ea7
BS
3972 {
3973 .name = "use_hierarchy",
3974 .write_u64 = mem_cgroup_hierarchy_write,
3975 .read_u64 = mem_cgroup_hierarchy_read,
3976 },
79bd9814 3977 {
3bc942f3 3978 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3979 .write = memcg_write_event_control,
7dbdb199 3980 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3981 },
a7885eb8
KM
3982 {
3983 .name = "swappiness",
3984 .read_u64 = mem_cgroup_swappiness_read,
3985 .write_u64 = mem_cgroup_swappiness_write,
3986 },
7dc74be0
DN
3987 {
3988 .name = "move_charge_at_immigrate",
3989 .read_u64 = mem_cgroup_move_charge_read,
3990 .write_u64 = mem_cgroup_move_charge_write,
3991 },
9490ff27
KH
3992 {
3993 .name = "oom_control",
2da8ca82 3994 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3995 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3997 },
70ddf637
AV
3998 {
3999 .name = "pressure_level",
70ddf637 4000 },
406eb0c9
YH
4001#ifdef CONFIG_NUMA
4002 {
4003 .name = "numa_stat",
2da8ca82 4004 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4005 },
4006#endif
510fc4e1
GC
4007 {
4008 .name = "kmem.limit_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4010 .write = mem_cgroup_write,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4016 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4017 },
4018 {
4019 .name = "kmem.failcnt",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4021 .write = mem_cgroup_reset,
791badbd 4022 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4023 },
4024 {
4025 .name = "kmem.max_usage_in_bytes",
4026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4027 .write = mem_cgroup_reset,
791badbd 4028 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4029 },
749c5415
GC
4030#ifdef CONFIG_SLABINFO
4031 {
4032 .name = "kmem.slabinfo",
b047501c
VD
4033 .seq_start = slab_start,
4034 .seq_next = slab_next,
4035 .seq_stop = slab_stop,
4036 .seq_show = memcg_slab_show,
749c5415
GC
4037 },
4038#endif
d55f90bf
VD
4039 {
4040 .name = "kmem.tcp.limit_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4042 .write = mem_cgroup_write,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 {
4051 .name = "kmem.tcp.failcnt",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4053 .write = mem_cgroup_reset,
4054 .read_u64 = mem_cgroup_read_u64,
4055 },
4056 {
4057 .name = "kmem.tcp.max_usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4059 .write = mem_cgroup_reset,
4060 .read_u64 = mem_cgroup_read_u64,
4061 },
6bc10349 4062 { }, /* terminate */
af36f906 4063};
8c7c6e34 4064
c0ff4b85 4065static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4066{
4067 struct mem_cgroup_per_node *pn;
1ecaab2b 4068 struct mem_cgroup_per_zone *mz;
41e3355d 4069 int zone, tmp = node;
1ecaab2b
KH
4070 /*
4071 * This routine is called against possible nodes.
4072 * But it's BUG to call kmalloc() against offline node.
4073 *
4074 * TODO: this routine can waste much memory for nodes which will
4075 * never be onlined. It's better to use memory hotplug callback
4076 * function.
4077 */
41e3355d
KH
4078 if (!node_state(node, N_NORMAL_MEMORY))
4079 tmp = -1;
17295c88 4080 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4081 if (!pn)
4082 return 1;
1ecaab2b 4083
1ecaab2b
KH
4084 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4085 mz = &pn->zoneinfo[zone];
bea8c150 4086 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4087 mz->usage_in_excess = 0;
4088 mz->on_tree = false;
d79154bb 4089 mz->memcg = memcg;
1ecaab2b 4090 }
54f72fe0 4091 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4092 return 0;
4093}
4094
c0ff4b85 4095static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4096{
54f72fe0 4097 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4098}
4099
0b8f73e1 4100static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4101{
c8b2a36f 4102 int node;
59927fb9 4103
0b8f73e1 4104 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4105 for_each_node(node)
4106 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4107 free_percpu(memcg->stat);
8ff69e2c 4108 kfree(memcg);
59927fb9 4109}
3afe36b1 4110
0b8f73e1 4111static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4112{
d142e3e6 4113 struct mem_cgroup *memcg;
0b8f73e1 4114 size_t size;
6d12e2d8 4115 int node;
8cdea7c0 4116
0b8f73e1
JW
4117 size = sizeof(struct mem_cgroup);
4118 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4119
4120 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4121 if (!memcg)
0b8f73e1
JW
4122 return NULL;
4123
4124 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4125 if (!memcg->stat)
4126 goto fail;
78fb7466 4127
3ed28fa1 4128 for_each_node(node)
c0ff4b85 4129 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4130 goto fail;
f64c3f54 4131
0b8f73e1
JW
4132 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4133 goto fail;
28dbc4b6 4134
f7e1cb6e 4135 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4136 memcg->last_scanned_node = MAX_NUMNODES;
4137 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4138 mutex_init(&memcg->thresholds_lock);
4139 spin_lock_init(&memcg->move_lock);
70ddf637 4140 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4141 INIT_LIST_HEAD(&memcg->event_list);
4142 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4143 memcg->socket_pressure = jiffies;
127424c8 4144#ifndef CONFIG_SLOB
900a38f0 4145 memcg->kmemcg_id = -1;
900a38f0 4146#endif
52ebea74
TH
4147#ifdef CONFIG_CGROUP_WRITEBACK
4148 INIT_LIST_HEAD(&memcg->cgwb_list);
4149#endif
0b8f73e1
JW
4150 return memcg;
4151fail:
4152 mem_cgroup_free(memcg);
4153 return NULL;
d142e3e6
GC
4154}
4155
0b8f73e1
JW
4156static struct cgroup_subsys_state * __ref
4157mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4158{
0b8f73e1
JW
4159 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4160 struct mem_cgroup *memcg;
4161 long error = -ENOMEM;
d142e3e6 4162
0b8f73e1
JW
4163 memcg = mem_cgroup_alloc();
4164 if (!memcg)
4165 return ERR_PTR(error);
d142e3e6 4166
0b8f73e1
JW
4167 memcg->high = PAGE_COUNTER_MAX;
4168 memcg->soft_limit = PAGE_COUNTER_MAX;
4169 if (parent) {
4170 memcg->swappiness = mem_cgroup_swappiness(parent);
4171 memcg->oom_kill_disable = parent->oom_kill_disable;
4172 }
4173 if (parent && parent->use_hierarchy) {
4174 memcg->use_hierarchy = true;
3e32cb2e 4175 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4176 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4177 page_counter_init(&memcg->memsw, &parent->memsw);
4178 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4179 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4180 } else {
3e32cb2e 4181 page_counter_init(&memcg->memory, NULL);
37e84351 4182 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4183 page_counter_init(&memcg->memsw, NULL);
4184 page_counter_init(&memcg->kmem, NULL);
0db15298 4185 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4186 /*
4187 * Deeper hierachy with use_hierarchy == false doesn't make
4188 * much sense so let cgroup subsystem know about this
4189 * unfortunate state in our controller.
4190 */
d142e3e6 4191 if (parent != root_mem_cgroup)
073219e9 4192 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4193 }
d6441637 4194
0b8f73e1
JW
4195 /* The following stuff does not apply to the root */
4196 if (!parent) {
4197 root_mem_cgroup = memcg;
4198 return &memcg->css;
4199 }
4200
4201 error = memcg_propagate_kmem(parent, memcg);
4202 if (error)
4203 goto fail;
127424c8 4204
f7e1cb6e 4205 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4206 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4207
0b8f73e1
JW
4208 return &memcg->css;
4209fail:
4210 mem_cgroup_free(memcg);
4211 return NULL;
4212}
4213
4214static int
4215mem_cgroup_css_online(struct cgroup_subsys_state *css)
4216{
4217 if (css->id > MEM_CGROUP_ID_MAX)
4218 return -ENOSPC;
2f7dd7a4
JW
4219
4220 return 0;
8cdea7c0
BS
4221}
4222
eb95419b 4223static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4224{
eb95419b 4225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4226 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4227
4228 /*
4229 * Unregister events and notify userspace.
4230 * Notify userspace about cgroup removing only after rmdir of cgroup
4231 * directory to avoid race between userspace and kernelspace.
4232 */
fba94807
TH
4233 spin_lock(&memcg->event_list_lock);
4234 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4235 list_del_init(&event->list);
4236 schedule_work(&event->remove);
4237 }
fba94807 4238 spin_unlock(&memcg->event_list_lock);
ec64f515 4239
567e9ab2 4240 memcg_offline_kmem(memcg);
52ebea74 4241 wb_memcg_offline(memcg);
df878fb0
KH
4242}
4243
6df38689
VD
4244static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4245{
4246 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4247
4248 invalidate_reclaim_iterators(memcg);
4249}
4250
eb95419b 4251static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4252{
eb95419b 4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4254
f7e1cb6e 4255 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4256 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4257
0db15298 4258 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4259 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4260
0b8f73e1
JW
4261 vmpressure_cleanup(&memcg->vmpressure);
4262 cancel_work_sync(&memcg->high_work);
4263 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4264 memcg_free_kmem(memcg);
0b8f73e1 4265 mem_cgroup_free(memcg);
8cdea7c0
BS
4266}
4267
1ced953b
TH
4268/**
4269 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4270 * @css: the target css
4271 *
4272 * Reset the states of the mem_cgroup associated with @css. This is
4273 * invoked when the userland requests disabling on the default hierarchy
4274 * but the memcg is pinned through dependency. The memcg should stop
4275 * applying policies and should revert to the vanilla state as it may be
4276 * made visible again.
4277 *
4278 * The current implementation only resets the essential configurations.
4279 * This needs to be expanded to cover all the visible parts.
4280 */
4281static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4282{
4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4284
3e32cb2e
JW
4285 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4286 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4287 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4288 memcg->low = 0;
4289 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4290 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4291 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4292}
4293
02491447 4294#ifdef CONFIG_MMU
7dc74be0 4295/* Handlers for move charge at task migration. */
854ffa8d 4296static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4297{
05b84301 4298 int ret;
9476db97 4299
d0164adc
MG
4300 /* Try a single bulk charge without reclaim first, kswapd may wake */
4301 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4302 if (!ret) {
854ffa8d 4303 mc.precharge += count;
854ffa8d
DN
4304 return ret;
4305 }
9476db97
JW
4306
4307 /* Try charges one by one with reclaim */
854ffa8d 4308 while (count--) {
00501b53 4309 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4310 if (ret)
38c5d72f 4311 return ret;
854ffa8d 4312 mc.precharge++;
9476db97 4313 cond_resched();
854ffa8d 4314 }
9476db97 4315 return 0;
4ffef5fe
DN
4316}
4317
4318/**
8d32ff84 4319 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4320 * @vma: the vma the pte to be checked belongs
4321 * @addr: the address corresponding to the pte to be checked
4322 * @ptent: the pte to be checked
02491447 4323 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4324 *
4325 * Returns
4326 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4327 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4328 * move charge. if @target is not NULL, the page is stored in target->page
4329 * with extra refcnt got(Callers should handle it).
02491447
DN
4330 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4331 * target for charge migration. if @target is not NULL, the entry is stored
4332 * in target->ent.
4ffef5fe
DN
4333 *
4334 * Called with pte lock held.
4335 */
4ffef5fe
DN
4336union mc_target {
4337 struct page *page;
02491447 4338 swp_entry_t ent;
4ffef5fe
DN
4339};
4340
4ffef5fe 4341enum mc_target_type {
8d32ff84 4342 MC_TARGET_NONE = 0,
4ffef5fe 4343 MC_TARGET_PAGE,
02491447 4344 MC_TARGET_SWAP,
4ffef5fe
DN
4345};
4346
90254a65
DN
4347static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4348 unsigned long addr, pte_t ptent)
4ffef5fe 4349{
90254a65 4350 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4351
90254a65
DN
4352 if (!page || !page_mapped(page))
4353 return NULL;
4354 if (PageAnon(page)) {
1dfab5ab 4355 if (!(mc.flags & MOVE_ANON))
90254a65 4356 return NULL;
1dfab5ab
JW
4357 } else {
4358 if (!(mc.flags & MOVE_FILE))
4359 return NULL;
4360 }
90254a65
DN
4361 if (!get_page_unless_zero(page))
4362 return NULL;
4363
4364 return page;
4365}
4366
4b91355e 4367#ifdef CONFIG_SWAP
90254a65
DN
4368static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4369 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4370{
90254a65
DN
4371 struct page *page = NULL;
4372 swp_entry_t ent = pte_to_swp_entry(ptent);
4373
1dfab5ab 4374 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4375 return NULL;
4b91355e
KH
4376 /*
4377 * Because lookup_swap_cache() updates some statistics counter,
4378 * we call find_get_page() with swapper_space directly.
4379 */
33806f06 4380 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4381 if (do_memsw_account())
90254a65
DN
4382 entry->val = ent.val;
4383
4384 return page;
4385}
4b91355e
KH
4386#else
4387static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4388 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4389{
4390 return NULL;
4391}
4392#endif
90254a65 4393
87946a72
DN
4394static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4395 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4396{
4397 struct page *page = NULL;
87946a72
DN
4398 struct address_space *mapping;
4399 pgoff_t pgoff;
4400
4401 if (!vma->vm_file) /* anonymous vma */
4402 return NULL;
1dfab5ab 4403 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4404 return NULL;
4405
87946a72 4406 mapping = vma->vm_file->f_mapping;
0661a336 4407 pgoff = linear_page_index(vma, addr);
87946a72
DN
4408
4409 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4410#ifdef CONFIG_SWAP
4411 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4412 if (shmem_mapping(mapping)) {
4413 page = find_get_entry(mapping, pgoff);
4414 if (radix_tree_exceptional_entry(page)) {
4415 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4416 if (do_memsw_account())
139b6a6f
JW
4417 *entry = swp;
4418 page = find_get_page(swap_address_space(swp), swp.val);
4419 }
4420 } else
4421 page = find_get_page(mapping, pgoff);
4422#else
4423 page = find_get_page(mapping, pgoff);
aa3b1895 4424#endif
87946a72
DN
4425 return page;
4426}
4427
b1b0deab
CG
4428/**
4429 * mem_cgroup_move_account - move account of the page
4430 * @page: the page
4431 * @nr_pages: number of regular pages (>1 for huge pages)
4432 * @from: mem_cgroup which the page is moved from.
4433 * @to: mem_cgroup which the page is moved to. @from != @to.
4434 *
3ac808fd 4435 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4436 *
4437 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4438 * from old cgroup.
4439 */
4440static int mem_cgroup_move_account(struct page *page,
f627c2f5 4441 bool compound,
b1b0deab
CG
4442 struct mem_cgroup *from,
4443 struct mem_cgroup *to)
4444{
4445 unsigned long flags;
f627c2f5 4446 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4447 int ret;
c4843a75 4448 bool anon;
b1b0deab
CG
4449
4450 VM_BUG_ON(from == to);
4451 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4452 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4453
4454 /*
6a93ca8f 4455 * Prevent mem_cgroup_migrate() from looking at
45637bab 4456 * page->mem_cgroup of its source page while we change it.
b1b0deab 4457 */
f627c2f5 4458 ret = -EBUSY;
b1b0deab
CG
4459 if (!trylock_page(page))
4460 goto out;
4461
4462 ret = -EINVAL;
4463 if (page->mem_cgroup != from)
4464 goto out_unlock;
4465
c4843a75
GT
4466 anon = PageAnon(page);
4467
b1b0deab
CG
4468 spin_lock_irqsave(&from->move_lock, flags);
4469
c4843a75 4470 if (!anon && page_mapped(page)) {
b1b0deab
CG
4471 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4472 nr_pages);
4473 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4474 nr_pages);
4475 }
4476
c4843a75
GT
4477 /*
4478 * move_lock grabbed above and caller set from->moving_account, so
4479 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4480 * So mapping should be stable for dirty pages.
4481 */
4482 if (!anon && PageDirty(page)) {
4483 struct address_space *mapping = page_mapping(page);
4484
4485 if (mapping_cap_account_dirty(mapping)) {
4486 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4487 nr_pages);
4488 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4489 nr_pages);
4490 }
4491 }
4492
b1b0deab
CG
4493 if (PageWriteback(page)) {
4494 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4495 nr_pages);
4496 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4497 nr_pages);
4498 }
4499
4500 /*
4501 * It is safe to change page->mem_cgroup here because the page
4502 * is referenced, charged, and isolated - we can't race with
4503 * uncharging, charging, migration, or LRU putback.
4504 */
4505
4506 /* caller should have done css_get */
4507 page->mem_cgroup = to;
4508 spin_unlock_irqrestore(&from->move_lock, flags);
4509
4510 ret = 0;
4511
4512 local_irq_disable();
f627c2f5 4513 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4514 memcg_check_events(to, page);
f627c2f5 4515 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4516 memcg_check_events(from, page);
4517 local_irq_enable();
4518out_unlock:
4519 unlock_page(page);
4520out:
4521 return ret;
4522}
4523
8d32ff84 4524static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4525 unsigned long addr, pte_t ptent, union mc_target *target)
4526{
4527 struct page *page = NULL;
8d32ff84 4528 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4529 swp_entry_t ent = { .val = 0 };
4530
4531 if (pte_present(ptent))
4532 page = mc_handle_present_pte(vma, addr, ptent);
4533 else if (is_swap_pte(ptent))
4534 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4535 else if (pte_none(ptent))
87946a72 4536 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4537
4538 if (!page && !ent.val)
8d32ff84 4539 return ret;
02491447 4540 if (page) {
02491447 4541 /*
0a31bc97 4542 * Do only loose check w/o serialization.
1306a85a 4543 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4544 * not under LRU exclusion.
02491447 4545 */
1306a85a 4546 if (page->mem_cgroup == mc.from) {
02491447
DN
4547 ret = MC_TARGET_PAGE;
4548 if (target)
4549 target->page = page;
4550 }
4551 if (!ret || !target)
4552 put_page(page);
4553 }
90254a65
DN
4554 /* There is a swap entry and a page doesn't exist or isn't charged */
4555 if (ent.val && !ret &&
34c00c31 4556 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4557 ret = MC_TARGET_SWAP;
4558 if (target)
4559 target->ent = ent;
4ffef5fe 4560 }
4ffef5fe
DN
4561 return ret;
4562}
4563
12724850
NH
4564#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4565/*
4566 * We don't consider swapping or file mapped pages because THP does not
4567 * support them for now.
4568 * Caller should make sure that pmd_trans_huge(pmd) is true.
4569 */
4570static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4571 unsigned long addr, pmd_t pmd, union mc_target *target)
4572{
4573 struct page *page = NULL;
12724850
NH
4574 enum mc_target_type ret = MC_TARGET_NONE;
4575
4576 page = pmd_page(pmd);
309381fe 4577 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4578 if (!(mc.flags & MOVE_ANON))
12724850 4579 return ret;
1306a85a 4580 if (page->mem_cgroup == mc.from) {
12724850
NH
4581 ret = MC_TARGET_PAGE;
4582 if (target) {
4583 get_page(page);
4584 target->page = page;
4585 }
4586 }
4587 return ret;
4588}
4589#else
4590static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4591 unsigned long addr, pmd_t pmd, union mc_target *target)
4592{
4593 return MC_TARGET_NONE;
4594}
4595#endif
4596
4ffef5fe
DN
4597static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4598 unsigned long addr, unsigned long end,
4599 struct mm_walk *walk)
4600{
26bcd64a 4601 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4602 pte_t *pte;
4603 spinlock_t *ptl;
4604
b6ec57f4
KS
4605 ptl = pmd_trans_huge_lock(pmd, vma);
4606 if (ptl) {
12724850
NH
4607 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4608 mc.precharge += HPAGE_PMD_NR;
bf929152 4609 spin_unlock(ptl);
1a5a9906 4610 return 0;
12724850 4611 }
03319327 4612
45f83cef
AA
4613 if (pmd_trans_unstable(pmd))
4614 return 0;
4ffef5fe
DN
4615 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4616 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4617 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4618 mc.precharge++; /* increment precharge temporarily */
4619 pte_unmap_unlock(pte - 1, ptl);
4620 cond_resched();
4621
7dc74be0
DN
4622 return 0;
4623}
4624
4ffef5fe
DN
4625static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4626{
4627 unsigned long precharge;
4ffef5fe 4628
26bcd64a
NH
4629 struct mm_walk mem_cgroup_count_precharge_walk = {
4630 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4631 .mm = mm,
4632 };
dfe076b0 4633 down_read(&mm->mmap_sem);
26bcd64a 4634 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4635 up_read(&mm->mmap_sem);
4ffef5fe
DN
4636
4637 precharge = mc.precharge;
4638 mc.precharge = 0;
4639
4640 return precharge;
4641}
4642
4ffef5fe
DN
4643static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4644{
dfe076b0
DN
4645 unsigned long precharge = mem_cgroup_count_precharge(mm);
4646
4647 VM_BUG_ON(mc.moving_task);
4648 mc.moving_task = current;
4649 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4650}
4651
dfe076b0
DN
4652/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4653static void __mem_cgroup_clear_mc(void)
4ffef5fe 4654{
2bd9bb20
KH
4655 struct mem_cgroup *from = mc.from;
4656 struct mem_cgroup *to = mc.to;
4657
4ffef5fe 4658 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4659 if (mc.precharge) {
00501b53 4660 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4661 mc.precharge = 0;
4662 }
4663 /*
4664 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4665 * we must uncharge here.
4666 */
4667 if (mc.moved_charge) {
00501b53 4668 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4669 mc.moved_charge = 0;
4ffef5fe 4670 }
483c30b5
DN
4671 /* we must fixup refcnts and charges */
4672 if (mc.moved_swap) {
483c30b5 4673 /* uncharge swap account from the old cgroup */
ce00a967 4674 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4675 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4676
05b84301 4677 /*
3e32cb2e
JW
4678 * we charged both to->memory and to->memsw, so we
4679 * should uncharge to->memory.
05b84301 4680 */
ce00a967 4681 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4682 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4683
e8ea14cc 4684 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4685
4050377b 4686 /* we've already done css_get(mc.to) */
483c30b5
DN
4687 mc.moved_swap = 0;
4688 }
dfe076b0
DN
4689 memcg_oom_recover(from);
4690 memcg_oom_recover(to);
4691 wake_up_all(&mc.waitq);
4692}
4693
4694static void mem_cgroup_clear_mc(void)
4695{
dfe076b0
DN
4696 /*
4697 * we must clear moving_task before waking up waiters at the end of
4698 * task migration.
4699 */
4700 mc.moving_task = NULL;
4701 __mem_cgroup_clear_mc();
2bd9bb20 4702 spin_lock(&mc.lock);
4ffef5fe
DN
4703 mc.from = NULL;
4704 mc.to = NULL;
2bd9bb20 4705 spin_unlock(&mc.lock);
4ffef5fe
DN
4706}
4707
1f7dd3e5 4708static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4709{
1f7dd3e5 4710 struct cgroup_subsys_state *css;
eed67d75 4711 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4712 struct mem_cgroup *from;
4530eddb 4713 struct task_struct *leader, *p;
9f2115f9 4714 struct mm_struct *mm;
1dfab5ab 4715 unsigned long move_flags;
9f2115f9 4716 int ret = 0;
7dc74be0 4717
1f7dd3e5
TH
4718 /* charge immigration isn't supported on the default hierarchy */
4719 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4720 return 0;
4721
4530eddb
TH
4722 /*
4723 * Multi-process migrations only happen on the default hierarchy
4724 * where charge immigration is not used. Perform charge
4725 * immigration if @tset contains a leader and whine if there are
4726 * multiple.
4727 */
4728 p = NULL;
1f7dd3e5 4729 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4730 WARN_ON_ONCE(p);
4731 p = leader;
1f7dd3e5 4732 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4733 }
4734 if (!p)
4735 return 0;
4736
1f7dd3e5
TH
4737 /*
4738 * We are now commited to this value whatever it is. Changes in this
4739 * tunable will only affect upcoming migrations, not the current one.
4740 * So we need to save it, and keep it going.
4741 */
4742 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4743 if (!move_flags)
4744 return 0;
4745
9f2115f9
TH
4746 from = mem_cgroup_from_task(p);
4747
4748 VM_BUG_ON(from == memcg);
4749
4750 mm = get_task_mm(p);
4751 if (!mm)
4752 return 0;
4753 /* We move charges only when we move a owner of the mm */
4754 if (mm->owner == p) {
4755 VM_BUG_ON(mc.from);
4756 VM_BUG_ON(mc.to);
4757 VM_BUG_ON(mc.precharge);
4758 VM_BUG_ON(mc.moved_charge);
4759 VM_BUG_ON(mc.moved_swap);
4760
4761 spin_lock(&mc.lock);
4762 mc.from = from;
4763 mc.to = memcg;
4764 mc.flags = move_flags;
4765 spin_unlock(&mc.lock);
4766 /* We set mc.moving_task later */
4767
4768 ret = mem_cgroup_precharge_mc(mm);
4769 if (ret)
4770 mem_cgroup_clear_mc();
7dc74be0 4771 }
9f2115f9 4772 mmput(mm);
7dc74be0
DN
4773 return ret;
4774}
4775
1f7dd3e5 4776static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4777{
4e2f245d
JW
4778 if (mc.to)
4779 mem_cgroup_clear_mc();
7dc74be0
DN
4780}
4781
4ffef5fe
DN
4782static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4783 unsigned long addr, unsigned long end,
4784 struct mm_walk *walk)
7dc74be0 4785{
4ffef5fe 4786 int ret = 0;
26bcd64a 4787 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4788 pte_t *pte;
4789 spinlock_t *ptl;
12724850
NH
4790 enum mc_target_type target_type;
4791 union mc_target target;
4792 struct page *page;
4ffef5fe 4793
b6ec57f4
KS
4794 ptl = pmd_trans_huge_lock(pmd, vma);
4795 if (ptl) {
62ade86a 4796 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4797 spin_unlock(ptl);
12724850
NH
4798 return 0;
4799 }
4800 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4801 if (target_type == MC_TARGET_PAGE) {
4802 page = target.page;
4803 if (!isolate_lru_page(page)) {
f627c2f5 4804 if (!mem_cgroup_move_account(page, true,
1306a85a 4805 mc.from, mc.to)) {
12724850
NH
4806 mc.precharge -= HPAGE_PMD_NR;
4807 mc.moved_charge += HPAGE_PMD_NR;
4808 }
4809 putback_lru_page(page);
4810 }
4811 put_page(page);
4812 }
bf929152 4813 spin_unlock(ptl);
1a5a9906 4814 return 0;
12724850
NH
4815 }
4816
45f83cef
AA
4817 if (pmd_trans_unstable(pmd))
4818 return 0;
4ffef5fe
DN
4819retry:
4820 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4821 for (; addr != end; addr += PAGE_SIZE) {
4822 pte_t ptent = *(pte++);
02491447 4823 swp_entry_t ent;
4ffef5fe
DN
4824
4825 if (!mc.precharge)
4826 break;
4827
8d32ff84 4828 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4829 case MC_TARGET_PAGE:
4830 page = target.page;
53f9263b
KS
4831 /*
4832 * We can have a part of the split pmd here. Moving it
4833 * can be done but it would be too convoluted so simply
4834 * ignore such a partial THP and keep it in original
4835 * memcg. There should be somebody mapping the head.
4836 */
4837 if (PageTransCompound(page))
4838 goto put;
4ffef5fe
DN
4839 if (isolate_lru_page(page))
4840 goto put;
f627c2f5
KS
4841 if (!mem_cgroup_move_account(page, false,
4842 mc.from, mc.to)) {
4ffef5fe 4843 mc.precharge--;
854ffa8d
DN
4844 /* we uncharge from mc.from later. */
4845 mc.moved_charge++;
4ffef5fe
DN
4846 }
4847 putback_lru_page(page);
8d32ff84 4848put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4849 put_page(page);
4850 break;
02491447
DN
4851 case MC_TARGET_SWAP:
4852 ent = target.ent;
e91cbb42 4853 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4854 mc.precharge--;
483c30b5
DN
4855 /* we fixup refcnts and charges later. */
4856 mc.moved_swap++;
4857 }
02491447 4858 break;
4ffef5fe
DN
4859 default:
4860 break;
4861 }
4862 }
4863 pte_unmap_unlock(pte - 1, ptl);
4864 cond_resched();
4865
4866 if (addr != end) {
4867 /*
4868 * We have consumed all precharges we got in can_attach().
4869 * We try charge one by one, but don't do any additional
4870 * charges to mc.to if we have failed in charge once in attach()
4871 * phase.
4872 */
854ffa8d 4873 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4874 if (!ret)
4875 goto retry;
4876 }
4877
4878 return ret;
4879}
4880
4881static void mem_cgroup_move_charge(struct mm_struct *mm)
4882{
26bcd64a
NH
4883 struct mm_walk mem_cgroup_move_charge_walk = {
4884 .pmd_entry = mem_cgroup_move_charge_pte_range,
4885 .mm = mm,
4886 };
4ffef5fe
DN
4887
4888 lru_add_drain_all();
312722cb 4889 /*
81f8c3a4
JW
4890 * Signal lock_page_memcg() to take the memcg's move_lock
4891 * while we're moving its pages to another memcg. Then wait
4892 * for already started RCU-only updates to finish.
312722cb
JW
4893 */
4894 atomic_inc(&mc.from->moving_account);
4895 synchronize_rcu();
dfe076b0
DN
4896retry:
4897 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4898 /*
4899 * Someone who are holding the mmap_sem might be waiting in
4900 * waitq. So we cancel all extra charges, wake up all waiters,
4901 * and retry. Because we cancel precharges, we might not be able
4902 * to move enough charges, but moving charge is a best-effort
4903 * feature anyway, so it wouldn't be a big problem.
4904 */
4905 __mem_cgroup_clear_mc();
4906 cond_resched();
4907 goto retry;
4908 }
26bcd64a
NH
4909 /*
4910 * When we have consumed all precharges and failed in doing
4911 * additional charge, the page walk just aborts.
4912 */
4913 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4914 up_read(&mm->mmap_sem);
312722cb 4915 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4916}
4917
1f7dd3e5 4918static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4919{
1f7dd3e5
TH
4920 struct cgroup_subsys_state *css;
4921 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4922 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4923
dfe076b0 4924 if (mm) {
a433658c
KM
4925 if (mc.to)
4926 mem_cgroup_move_charge(mm);
dfe076b0
DN
4927 mmput(mm);
4928 }
a433658c
KM
4929 if (mc.to)
4930 mem_cgroup_clear_mc();
67e465a7 4931}
5cfb80a7 4932#else /* !CONFIG_MMU */
1f7dd3e5 4933static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4934{
4935 return 0;
4936}
1f7dd3e5 4937static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4938{
4939}
1f7dd3e5 4940static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4941{
4942}
4943#endif
67e465a7 4944
f00baae7
TH
4945/*
4946 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4947 * to verify whether we're attached to the default hierarchy on each mount
4948 * attempt.
f00baae7 4949 */
eb95419b 4950static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4951{
4952 /*
aa6ec29b 4953 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4954 * guarantees that @root doesn't have any children, so turning it
4955 * on for the root memcg is enough.
4956 */
9e10a130 4957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4958 root_mem_cgroup->use_hierarchy = true;
4959 else
4960 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4961}
4962
241994ed
JW
4963static u64 memory_current_read(struct cgroup_subsys_state *css,
4964 struct cftype *cft)
4965{
f5fc3c5d
JW
4966 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4967
4968 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4969}
4970
4971static int memory_low_show(struct seq_file *m, void *v)
4972{
4973 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4974 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4975
4976 if (low == PAGE_COUNTER_MAX)
d2973697 4977 seq_puts(m, "max\n");
241994ed
JW
4978 else
4979 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4980
4981 return 0;
4982}
4983
4984static ssize_t memory_low_write(struct kernfs_open_file *of,
4985 char *buf, size_t nbytes, loff_t off)
4986{
4987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4988 unsigned long low;
4989 int err;
4990
4991 buf = strstrip(buf);
d2973697 4992 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4993 if (err)
4994 return err;
4995
4996 memcg->low = low;
4997
4998 return nbytes;
4999}
5000
5001static int memory_high_show(struct seq_file *m, void *v)
5002{
5003 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5004 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5005
5006 if (high == PAGE_COUNTER_MAX)
d2973697 5007 seq_puts(m, "max\n");
241994ed
JW
5008 else
5009 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5010
5011 return 0;
5012}
5013
5014static ssize_t memory_high_write(struct kernfs_open_file *of,
5015 char *buf, size_t nbytes, loff_t off)
5016{
5017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5018 unsigned long high;
5019 int err;
5020
5021 buf = strstrip(buf);
d2973697 5022 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5023 if (err)
5024 return err;
5025
5026 memcg->high = high;
5027
2529bb3a 5028 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5029 return nbytes;
5030}
5031
5032static int memory_max_show(struct seq_file *m, void *v)
5033{
5034 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5035 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5036
5037 if (max == PAGE_COUNTER_MAX)
d2973697 5038 seq_puts(m, "max\n");
241994ed
JW
5039 else
5040 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5041
5042 return 0;
5043}
5044
5045static ssize_t memory_max_write(struct kernfs_open_file *of,
5046 char *buf, size_t nbytes, loff_t off)
5047{
5048 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5049 unsigned long max;
5050 int err;
5051
5052 buf = strstrip(buf);
d2973697 5053 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5054 if (err)
5055 return err;
5056
5057 err = mem_cgroup_resize_limit(memcg, max);
5058 if (err)
5059 return err;
5060
2529bb3a 5061 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5062 return nbytes;
5063}
5064
5065static int memory_events_show(struct seq_file *m, void *v)
5066{
5067 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5068
5069 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5070 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5071 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5072 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5073
5074 return 0;
5075}
5076
587d9f72
JW
5077static int memory_stat_show(struct seq_file *m, void *v)
5078{
5079 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5080 int i;
5081
5082 /*
5083 * Provide statistics on the state of the memory subsystem as
5084 * well as cumulative event counters that show past behavior.
5085 *
5086 * This list is ordered following a combination of these gradients:
5087 * 1) generic big picture -> specifics and details
5088 * 2) reflecting userspace activity -> reflecting kernel heuristics
5089 *
5090 * Current memory state:
5091 */
5092
5093 seq_printf(m, "anon %llu\n",
5094 (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
5095 seq_printf(m, "file %llu\n",
5096 (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
b2807f07
JW
5097 seq_printf(m, "sock %llu\n",
5098 (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
587d9f72
JW
5099
5100 seq_printf(m, "file_mapped %llu\n",
5101 (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
5102 PAGE_SIZE);
5103 seq_printf(m, "file_dirty %llu\n",
5104 (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
5105 PAGE_SIZE);
5106 seq_printf(m, "file_writeback %llu\n",
5107 (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
5108 PAGE_SIZE);
5109
5110 for (i = 0; i < NR_LRU_LISTS; i++) {
5111 struct mem_cgroup *mi;
5112 unsigned long val = 0;
5113
5114 for_each_mem_cgroup_tree(mi, memcg)
5115 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5116 seq_printf(m, "%s %llu\n",
5117 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5118 }
5119
5120 /* Accumulated memory events */
5121
5122 seq_printf(m, "pgfault %lu\n",
5123 tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
5124 seq_printf(m, "pgmajfault %lu\n",
5125 tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));
5126
5127 return 0;
5128}
5129
241994ed
JW
5130static struct cftype memory_files[] = {
5131 {
5132 .name = "current",
f5fc3c5d 5133 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5134 .read_u64 = memory_current_read,
5135 },
5136 {
5137 .name = "low",
5138 .flags = CFTYPE_NOT_ON_ROOT,
5139 .seq_show = memory_low_show,
5140 .write = memory_low_write,
5141 },
5142 {
5143 .name = "high",
5144 .flags = CFTYPE_NOT_ON_ROOT,
5145 .seq_show = memory_high_show,
5146 .write = memory_high_write,
5147 },
5148 {
5149 .name = "max",
5150 .flags = CFTYPE_NOT_ON_ROOT,
5151 .seq_show = memory_max_show,
5152 .write = memory_max_write,
5153 },
5154 {
5155 .name = "events",
5156 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5157 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5158 .seq_show = memory_events_show,
5159 },
587d9f72
JW
5160 {
5161 .name = "stat",
5162 .flags = CFTYPE_NOT_ON_ROOT,
5163 .seq_show = memory_stat_show,
5164 },
241994ed
JW
5165 { } /* terminate */
5166};
5167
073219e9 5168struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5169 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5170 .css_online = mem_cgroup_css_online,
92fb9748 5171 .css_offline = mem_cgroup_css_offline,
6df38689 5172 .css_released = mem_cgroup_css_released,
92fb9748 5173 .css_free = mem_cgroup_css_free,
1ced953b 5174 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5175 .can_attach = mem_cgroup_can_attach,
5176 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5177 .attach = mem_cgroup_move_task,
f00baae7 5178 .bind = mem_cgroup_bind,
241994ed
JW
5179 .dfl_cftypes = memory_files,
5180 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5181 .early_init = 0,
8cdea7c0 5182};
c077719b 5183
241994ed
JW
5184/**
5185 * mem_cgroup_low - check if memory consumption is below the normal range
5186 * @root: the highest ancestor to consider
5187 * @memcg: the memory cgroup to check
5188 *
5189 * Returns %true if memory consumption of @memcg, and that of all
5190 * configurable ancestors up to @root, is below the normal range.
5191 */
5192bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5193{
5194 if (mem_cgroup_disabled())
5195 return false;
5196
5197 /*
5198 * The toplevel group doesn't have a configurable range, so
5199 * it's never low when looked at directly, and it is not
5200 * considered an ancestor when assessing the hierarchy.
5201 */
5202
5203 if (memcg == root_mem_cgroup)
5204 return false;
5205
4e54dede 5206 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5207 return false;
5208
5209 while (memcg != root) {
5210 memcg = parent_mem_cgroup(memcg);
5211
5212 if (memcg == root_mem_cgroup)
5213 break;
5214
4e54dede 5215 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5216 return false;
5217 }
5218 return true;
5219}
5220
00501b53
JW
5221/**
5222 * mem_cgroup_try_charge - try charging a page
5223 * @page: page to charge
5224 * @mm: mm context of the victim
5225 * @gfp_mask: reclaim mode
5226 * @memcgp: charged memcg return
5227 *
5228 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5229 * pages according to @gfp_mask if necessary.
5230 *
5231 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5232 * Otherwise, an error code is returned.
5233 *
5234 * After page->mapping has been set up, the caller must finalize the
5235 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5236 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5237 */
5238int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5239 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5240 bool compound)
00501b53
JW
5241{
5242 struct mem_cgroup *memcg = NULL;
f627c2f5 5243 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5244 int ret = 0;
5245
5246 if (mem_cgroup_disabled())
5247 goto out;
5248
5249 if (PageSwapCache(page)) {
00501b53
JW
5250 /*
5251 * Every swap fault against a single page tries to charge the
5252 * page, bail as early as possible. shmem_unuse() encounters
5253 * already charged pages, too. The USED bit is protected by
5254 * the page lock, which serializes swap cache removal, which
5255 * in turn serializes uncharging.
5256 */
e993d905 5257 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5258 if (page->mem_cgroup)
00501b53 5259 goto out;
e993d905 5260
37e84351 5261 if (do_swap_account) {
e993d905
VD
5262 swp_entry_t ent = { .val = page_private(page), };
5263 unsigned short id = lookup_swap_cgroup_id(ent);
5264
5265 rcu_read_lock();
5266 memcg = mem_cgroup_from_id(id);
5267 if (memcg && !css_tryget_online(&memcg->css))
5268 memcg = NULL;
5269 rcu_read_unlock();
5270 }
00501b53
JW
5271 }
5272
00501b53
JW
5273 if (!memcg)
5274 memcg = get_mem_cgroup_from_mm(mm);
5275
5276 ret = try_charge(memcg, gfp_mask, nr_pages);
5277
5278 css_put(&memcg->css);
00501b53
JW
5279out:
5280 *memcgp = memcg;
5281 return ret;
5282}
5283
5284/**
5285 * mem_cgroup_commit_charge - commit a page charge
5286 * @page: page to charge
5287 * @memcg: memcg to charge the page to
5288 * @lrucare: page might be on LRU already
5289 *
5290 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5291 * after page->mapping has been set up. This must happen atomically
5292 * as part of the page instantiation, i.e. under the page table lock
5293 * for anonymous pages, under the page lock for page and swap cache.
5294 *
5295 * In addition, the page must not be on the LRU during the commit, to
5296 * prevent racing with task migration. If it might be, use @lrucare.
5297 *
5298 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5299 */
5300void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5301 bool lrucare, bool compound)
00501b53 5302{
f627c2f5 5303 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5304
5305 VM_BUG_ON_PAGE(!page->mapping, page);
5306 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5307
5308 if (mem_cgroup_disabled())
5309 return;
5310 /*
5311 * Swap faults will attempt to charge the same page multiple
5312 * times. But reuse_swap_page() might have removed the page
5313 * from swapcache already, so we can't check PageSwapCache().
5314 */
5315 if (!memcg)
5316 return;
5317
6abb5a86
JW
5318 commit_charge(page, memcg, lrucare);
5319
6abb5a86 5320 local_irq_disable();
f627c2f5 5321 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5322 memcg_check_events(memcg, page);
5323 local_irq_enable();
00501b53 5324
7941d214 5325 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5326 swp_entry_t entry = { .val = page_private(page) };
5327 /*
5328 * The swap entry might not get freed for a long time,
5329 * let's not wait for it. The page already received a
5330 * memory+swap charge, drop the swap entry duplicate.
5331 */
5332 mem_cgroup_uncharge_swap(entry);
5333 }
5334}
5335
5336/**
5337 * mem_cgroup_cancel_charge - cancel a page charge
5338 * @page: page to charge
5339 * @memcg: memcg to charge the page to
5340 *
5341 * Cancel a charge transaction started by mem_cgroup_try_charge().
5342 */
f627c2f5
KS
5343void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5344 bool compound)
00501b53 5345{
f627c2f5 5346 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5347
5348 if (mem_cgroup_disabled())
5349 return;
5350 /*
5351 * Swap faults will attempt to charge the same page multiple
5352 * times. But reuse_swap_page() might have removed the page
5353 * from swapcache already, so we can't check PageSwapCache().
5354 */
5355 if (!memcg)
5356 return;
5357
00501b53
JW
5358 cancel_charge(memcg, nr_pages);
5359}
5360
747db954 5361static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5362 unsigned long nr_anon, unsigned long nr_file,
5363 unsigned long nr_huge, struct page *dummy_page)
5364{
18eca2e6 5365 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5366 unsigned long flags;
5367
ce00a967 5368 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5369 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5370 if (do_memsw_account())
18eca2e6 5371 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5372 memcg_oom_recover(memcg);
5373 }
747db954
JW
5374
5375 local_irq_save(flags);
5376 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5377 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5378 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5379 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5380 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5381 memcg_check_events(memcg, dummy_page);
5382 local_irq_restore(flags);
e8ea14cc
JW
5383
5384 if (!mem_cgroup_is_root(memcg))
18eca2e6 5385 css_put_many(&memcg->css, nr_pages);
747db954
JW
5386}
5387
5388static void uncharge_list(struct list_head *page_list)
5389{
5390 struct mem_cgroup *memcg = NULL;
747db954
JW
5391 unsigned long nr_anon = 0;
5392 unsigned long nr_file = 0;
5393 unsigned long nr_huge = 0;
5394 unsigned long pgpgout = 0;
747db954
JW
5395 struct list_head *next;
5396 struct page *page;
5397
5398 next = page_list->next;
5399 do {
5400 unsigned int nr_pages = 1;
747db954
JW
5401
5402 page = list_entry(next, struct page, lru);
5403 next = page->lru.next;
5404
5405 VM_BUG_ON_PAGE(PageLRU(page), page);
5406 VM_BUG_ON_PAGE(page_count(page), page);
5407
1306a85a 5408 if (!page->mem_cgroup)
747db954
JW
5409 continue;
5410
5411 /*
5412 * Nobody should be changing or seriously looking at
1306a85a 5413 * page->mem_cgroup at this point, we have fully
29833315 5414 * exclusive access to the page.
747db954
JW
5415 */
5416
1306a85a 5417 if (memcg != page->mem_cgroup) {
747db954 5418 if (memcg) {
18eca2e6
JW
5419 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5420 nr_huge, page);
5421 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5422 }
1306a85a 5423 memcg = page->mem_cgroup;
747db954
JW
5424 }
5425
5426 if (PageTransHuge(page)) {
5427 nr_pages <<= compound_order(page);
5428 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5429 nr_huge += nr_pages;
5430 }
5431
5432 if (PageAnon(page))
5433 nr_anon += nr_pages;
5434 else
5435 nr_file += nr_pages;
5436
1306a85a 5437 page->mem_cgroup = NULL;
747db954
JW
5438
5439 pgpgout++;
5440 } while (next != page_list);
5441
5442 if (memcg)
18eca2e6
JW
5443 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5444 nr_huge, page);
747db954
JW
5445}
5446
0a31bc97
JW
5447/**
5448 * mem_cgroup_uncharge - uncharge a page
5449 * @page: page to uncharge
5450 *
5451 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5452 * mem_cgroup_commit_charge().
5453 */
5454void mem_cgroup_uncharge(struct page *page)
5455{
0a31bc97
JW
5456 if (mem_cgroup_disabled())
5457 return;
5458
747db954 5459 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5460 if (!page->mem_cgroup)
0a31bc97
JW
5461 return;
5462
747db954
JW
5463 INIT_LIST_HEAD(&page->lru);
5464 uncharge_list(&page->lru);
5465}
0a31bc97 5466
747db954
JW
5467/**
5468 * mem_cgroup_uncharge_list - uncharge a list of page
5469 * @page_list: list of pages to uncharge
5470 *
5471 * Uncharge a list of pages previously charged with
5472 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5473 */
5474void mem_cgroup_uncharge_list(struct list_head *page_list)
5475{
5476 if (mem_cgroup_disabled())
5477 return;
0a31bc97 5478
747db954
JW
5479 if (!list_empty(page_list))
5480 uncharge_list(page_list);
0a31bc97
JW
5481}
5482
5483/**
6a93ca8f
JW
5484 * mem_cgroup_migrate - charge a page's replacement
5485 * @oldpage: currently circulating page
5486 * @newpage: replacement page
0a31bc97 5487 *
6a93ca8f
JW
5488 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5489 * be uncharged upon free.
0a31bc97
JW
5490 *
5491 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5492 * Either or both pages might be on the LRU already.
0a31bc97 5493 */
6a93ca8f 5494void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5495{
29833315 5496 struct mem_cgroup *memcg;
44b7a8d3
JW
5497 unsigned int nr_pages;
5498 bool compound;
0a31bc97
JW
5499
5500 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5501 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5502 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5503 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5504 newpage);
0a31bc97
JW
5505
5506 if (mem_cgroup_disabled())
5507 return;
5508
5509 /* Page cache replacement: new page already charged? */
1306a85a 5510 if (newpage->mem_cgroup)
0a31bc97
JW
5511 return;
5512
45637bab 5513 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5514 memcg = oldpage->mem_cgroup;
29833315 5515 if (!memcg)
0a31bc97
JW
5516 return;
5517
44b7a8d3
JW
5518 /* Force-charge the new page. The old one will be freed soon */
5519 compound = PageTransHuge(newpage);
5520 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5521
5522 page_counter_charge(&memcg->memory, nr_pages);
5523 if (do_memsw_account())
5524 page_counter_charge(&memcg->memsw, nr_pages);
5525 css_get_many(&memcg->css, nr_pages);
0a31bc97 5526
45637bab 5527 commit_charge(newpage, memcg, true);
44b7a8d3
JW
5528
5529 local_irq_disable();
5530 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5531 memcg_check_events(memcg, newpage);
5532 local_irq_enable();
0a31bc97
JW
5533}
5534
ef12947c 5535DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5536EXPORT_SYMBOL(memcg_sockets_enabled_key);
5537
5538void sock_update_memcg(struct sock *sk)
5539{
5540 struct mem_cgroup *memcg;
5541
5542 /* Socket cloning can throw us here with sk_cgrp already
5543 * filled. It won't however, necessarily happen from
5544 * process context. So the test for root memcg given
5545 * the current task's memcg won't help us in this case.
5546 *
5547 * Respecting the original socket's memcg is a better
5548 * decision in this case.
5549 */
5550 if (sk->sk_memcg) {
5551 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5552 css_get(&sk->sk_memcg->css);
5553 return;
5554 }
5555
5556 rcu_read_lock();
5557 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5558 if (memcg == root_mem_cgroup)
5559 goto out;
0db15298 5560 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5561 goto out;
f7e1cb6e 5562 if (css_tryget_online(&memcg->css))
11092087 5563 sk->sk_memcg = memcg;
f7e1cb6e 5564out:
11092087
JW
5565 rcu_read_unlock();
5566}
5567EXPORT_SYMBOL(sock_update_memcg);
5568
5569void sock_release_memcg(struct sock *sk)
5570{
5571 WARN_ON(!sk->sk_memcg);
5572 css_put(&sk->sk_memcg->css);
5573}
5574
5575/**
5576 * mem_cgroup_charge_skmem - charge socket memory
5577 * @memcg: memcg to charge
5578 * @nr_pages: number of pages to charge
5579 *
5580 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5581 * @memcg's configured limit, %false if the charge had to be forced.
5582 */
5583bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5584{
f7e1cb6e 5585 gfp_t gfp_mask = GFP_KERNEL;
11092087 5586
f7e1cb6e 5587 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5588 struct page_counter *fail;
f7e1cb6e 5589
0db15298
JW
5590 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5591 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5592 return true;
5593 }
0db15298
JW
5594 page_counter_charge(&memcg->tcpmem, nr_pages);
5595 memcg->tcpmem_pressure = 1;
f7e1cb6e 5596 return false;
11092087 5597 }
d886f4e4 5598
f7e1cb6e
JW
5599 /* Don't block in the packet receive path */
5600 if (in_softirq())
5601 gfp_mask = GFP_NOWAIT;
5602
b2807f07
JW
5603 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5604
f7e1cb6e
JW
5605 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5606 return true;
5607
5608 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5609 return false;
5610}
5611
5612/**
5613 * mem_cgroup_uncharge_skmem - uncharge socket memory
5614 * @memcg - memcg to uncharge
5615 * @nr_pages - number of pages to uncharge
5616 */
5617void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5618{
f7e1cb6e 5619 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5620 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5621 return;
5622 }
d886f4e4 5623
b2807f07
JW
5624 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5625
f7e1cb6e
JW
5626 page_counter_uncharge(&memcg->memory, nr_pages);
5627 css_put_many(&memcg->css, nr_pages);
11092087
JW
5628}
5629
f7e1cb6e
JW
5630static int __init cgroup_memory(char *s)
5631{
5632 char *token;
5633
5634 while ((token = strsep(&s, ",")) != NULL) {
5635 if (!*token)
5636 continue;
5637 if (!strcmp(token, "nosocket"))
5638 cgroup_memory_nosocket = true;
04823c83
VD
5639 if (!strcmp(token, "nokmem"))
5640 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5641 }
5642 return 0;
5643}
5644__setup("cgroup.memory=", cgroup_memory);
11092087 5645
2d11085e 5646/*
1081312f
MH
5647 * subsys_initcall() for memory controller.
5648 *
5649 * Some parts like hotcpu_notifier() have to be initialized from this context
5650 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5651 * everything that doesn't depend on a specific mem_cgroup structure should
5652 * be initialized from here.
2d11085e
MH
5653 */
5654static int __init mem_cgroup_init(void)
5655{
95a045f6
JW
5656 int cpu, node;
5657
2d11085e 5658 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5659
5660 for_each_possible_cpu(cpu)
5661 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5662 drain_local_stock);
5663
5664 for_each_node(node) {
5665 struct mem_cgroup_tree_per_node *rtpn;
5666 int zone;
5667
5668 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5669 node_online(node) ? node : NUMA_NO_NODE);
5670
5671 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5672 struct mem_cgroup_tree_per_zone *rtpz;
5673
5674 rtpz = &rtpn->rb_tree_per_zone[zone];
5675 rtpz->rb_root = RB_ROOT;
5676 spin_lock_init(&rtpz->lock);
5677 }
5678 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5679 }
5680
2d11085e
MH
5681 return 0;
5682}
5683subsys_initcall(mem_cgroup_init);
21afa38e
JW
5684
5685#ifdef CONFIG_MEMCG_SWAP
5686/**
5687 * mem_cgroup_swapout - transfer a memsw charge to swap
5688 * @page: page whose memsw charge to transfer
5689 * @entry: swap entry to move the charge to
5690 *
5691 * Transfer the memsw charge of @page to @entry.
5692 */
5693void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5694{
5695 struct mem_cgroup *memcg;
5696 unsigned short oldid;
5697
5698 VM_BUG_ON_PAGE(PageLRU(page), page);
5699 VM_BUG_ON_PAGE(page_count(page), page);
5700
7941d214 5701 if (!do_memsw_account())
21afa38e
JW
5702 return;
5703
5704 memcg = page->mem_cgroup;
5705
5706 /* Readahead page, never charged */
5707 if (!memcg)
5708 return;
5709
5710 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5711 VM_BUG_ON_PAGE(oldid, page);
5712 mem_cgroup_swap_statistics(memcg, true);
5713
5714 page->mem_cgroup = NULL;
5715
5716 if (!mem_cgroup_is_root(memcg))
5717 page_counter_uncharge(&memcg->memory, 1);
5718
ce9ce665
SAS
5719 /*
5720 * Interrupts should be disabled here because the caller holds the
5721 * mapping->tree_lock lock which is taken with interrupts-off. It is
5722 * important here to have the interrupts disabled because it is the
5723 * only synchronisation we have for udpating the per-CPU variables.
5724 */
5725 VM_BUG_ON(!irqs_disabled());
f627c2f5 5726 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5727 memcg_check_events(memcg, page);
5728}
5729
37e84351
VD
5730/*
5731 * mem_cgroup_try_charge_swap - try charging a swap entry
5732 * @page: page being added to swap
5733 * @entry: swap entry to charge
5734 *
5735 * Try to charge @entry to the memcg that @page belongs to.
5736 *
5737 * Returns 0 on success, -ENOMEM on failure.
5738 */
5739int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5740{
5741 struct mem_cgroup *memcg;
5742 struct page_counter *counter;
5743 unsigned short oldid;
5744
5745 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5746 return 0;
5747
5748 memcg = page->mem_cgroup;
5749
5750 /* Readahead page, never charged */
5751 if (!memcg)
5752 return 0;
5753
5754 if (!mem_cgroup_is_root(memcg) &&
5755 !page_counter_try_charge(&memcg->swap, 1, &counter))
5756 return -ENOMEM;
5757
5758 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5759 VM_BUG_ON_PAGE(oldid, page);
5760 mem_cgroup_swap_statistics(memcg, true);
5761
5762 css_get(&memcg->css);
5763 return 0;
5764}
5765
21afa38e
JW
5766/**
5767 * mem_cgroup_uncharge_swap - uncharge a swap entry
5768 * @entry: swap entry to uncharge
5769 *
37e84351 5770 * Drop the swap charge associated with @entry.
21afa38e
JW
5771 */
5772void mem_cgroup_uncharge_swap(swp_entry_t entry)
5773{
5774 struct mem_cgroup *memcg;
5775 unsigned short id;
5776
37e84351 5777 if (!do_swap_account)
21afa38e
JW
5778 return;
5779
5780 id = swap_cgroup_record(entry, 0);
5781 rcu_read_lock();
adbe427b 5782 memcg = mem_cgroup_from_id(id);
21afa38e 5783 if (memcg) {
37e84351
VD
5784 if (!mem_cgroup_is_root(memcg)) {
5785 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5786 page_counter_uncharge(&memcg->swap, 1);
5787 else
5788 page_counter_uncharge(&memcg->memsw, 1);
5789 }
21afa38e
JW
5790 mem_cgroup_swap_statistics(memcg, false);
5791 css_put(&memcg->css);
5792 }
5793 rcu_read_unlock();
5794}
5795
d8b38438
VD
5796long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5797{
5798 long nr_swap_pages = get_nr_swap_pages();
5799
5800 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5801 return nr_swap_pages;
5802 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5803 nr_swap_pages = min_t(long, nr_swap_pages,
5804 READ_ONCE(memcg->swap.limit) -
5805 page_counter_read(&memcg->swap));
5806 return nr_swap_pages;
5807}
5808
5ccc5aba
VD
5809bool mem_cgroup_swap_full(struct page *page)
5810{
5811 struct mem_cgroup *memcg;
5812
5813 VM_BUG_ON_PAGE(!PageLocked(page), page);
5814
5815 if (vm_swap_full())
5816 return true;
5817 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5818 return false;
5819
5820 memcg = page->mem_cgroup;
5821 if (!memcg)
5822 return false;
5823
5824 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5825 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5826 return true;
5827
5828 return false;
5829}
5830
21afa38e
JW
5831/* for remember boot option*/
5832#ifdef CONFIG_MEMCG_SWAP_ENABLED
5833static int really_do_swap_account __initdata = 1;
5834#else
5835static int really_do_swap_account __initdata;
5836#endif
5837
5838static int __init enable_swap_account(char *s)
5839{
5840 if (!strcmp(s, "1"))
5841 really_do_swap_account = 1;
5842 else if (!strcmp(s, "0"))
5843 really_do_swap_account = 0;
5844 return 1;
5845}
5846__setup("swapaccount=", enable_swap_account);
5847
37e84351
VD
5848static u64 swap_current_read(struct cgroup_subsys_state *css,
5849 struct cftype *cft)
5850{
5851 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5852
5853 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5854}
5855
5856static int swap_max_show(struct seq_file *m, void *v)
5857{
5858 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5859 unsigned long max = READ_ONCE(memcg->swap.limit);
5860
5861 if (max == PAGE_COUNTER_MAX)
5862 seq_puts(m, "max\n");
5863 else
5864 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5865
5866 return 0;
5867}
5868
5869static ssize_t swap_max_write(struct kernfs_open_file *of,
5870 char *buf, size_t nbytes, loff_t off)
5871{
5872 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5873 unsigned long max;
5874 int err;
5875
5876 buf = strstrip(buf);
5877 err = page_counter_memparse(buf, "max", &max);
5878 if (err)
5879 return err;
5880
5881 mutex_lock(&memcg_limit_mutex);
5882 err = page_counter_limit(&memcg->swap, max);
5883 mutex_unlock(&memcg_limit_mutex);
5884 if (err)
5885 return err;
5886
5887 return nbytes;
5888}
5889
5890static struct cftype swap_files[] = {
5891 {
5892 .name = "swap.current",
5893 .flags = CFTYPE_NOT_ON_ROOT,
5894 .read_u64 = swap_current_read,
5895 },
5896 {
5897 .name = "swap.max",
5898 .flags = CFTYPE_NOT_ON_ROOT,
5899 .seq_show = swap_max_show,
5900 .write = swap_max_write,
5901 },
5902 { } /* terminate */
5903};
5904
21afa38e
JW
5905static struct cftype memsw_cgroup_files[] = {
5906 {
5907 .name = "memsw.usage_in_bytes",
5908 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5909 .read_u64 = mem_cgroup_read_u64,
5910 },
5911 {
5912 .name = "memsw.max_usage_in_bytes",
5913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5914 .write = mem_cgroup_reset,
5915 .read_u64 = mem_cgroup_read_u64,
5916 },
5917 {
5918 .name = "memsw.limit_in_bytes",
5919 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5920 .write = mem_cgroup_write,
5921 .read_u64 = mem_cgroup_read_u64,
5922 },
5923 {
5924 .name = "memsw.failcnt",
5925 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5926 .write = mem_cgroup_reset,
5927 .read_u64 = mem_cgroup_read_u64,
5928 },
5929 { }, /* terminate */
5930};
5931
5932static int __init mem_cgroup_swap_init(void)
5933{
5934 if (!mem_cgroup_disabled() && really_do_swap_account) {
5935 do_swap_account = 1;
37e84351
VD
5936 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5937 swap_files));
21afa38e
JW
5938 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5939 memsw_cgroup_files));
5940 }
5941 return 0;
5942}
5943subsys_initcall(mem_cgroup_swap_init);
5944
5945#endif /* CONFIG_MEMCG_SWAP */
This page took 1.214184 seconds and 5 git commands to generate.