ksm: remove old stable nodes more thoroughly
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
1da177e4 62
6952b61d 63#include <asm/io.h>
1da177e4
LT
64#include <asm/pgalloc.h>
65#include <asm/uaccess.h>
66#include <asm/tlb.h>
67#include <asm/tlbflush.h>
68#include <asm/pgtable.h>
69
42b77728
JB
70#include "internal.h"
71
75980e97
PZ
72#ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74#endif
75
d41dee36 76#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
77/* use the per-pgdat data instead for discontigmem - mbligh */
78unsigned long max_mapnr;
79struct page *mem_map;
80
81EXPORT_SYMBOL(max_mapnr);
82EXPORT_SYMBOL(mem_map);
83#endif
84
85unsigned long num_physpages;
86/*
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
92 */
93void * high_memory;
1da177e4
LT
94
95EXPORT_SYMBOL(num_physpages);
96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
120
121/*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124static int __init init_zero_pfn(void)
125{
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128}
129core_initcall(init_zero_pfn);
a62eaf15 130
d559db08 131
34e55232
KH
132#if defined(SPLIT_RSS_COUNTING)
133
ea48cf78 134void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
135{
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
34e55232
KH
142 }
143 }
05af2e10 144 current->rss_stat.events = 0;
34e55232
KH
145}
146
147static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148{
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155}
156#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159/* sync counter once per 64 page faults */
160#define TASK_RSS_EVENTS_THRESH (64)
161static void check_sync_rss_stat(struct task_struct *task)
162{
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 166 sync_mm_rss(task->mm);
34e55232 167}
9547d01b 168#else /* SPLIT_RSS_COUNTING */
34e55232
KH
169
170#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173static void check_sync_rss_stat(struct task_struct *task)
174{
175}
176
9547d01b
PZ
177#endif /* SPLIT_RSS_COUNTING */
178
179#ifdef HAVE_GENERIC_MMU_GATHER
180
181static int tlb_next_batch(struct mmu_gather *tlb)
182{
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
53a59fc6
MH
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
9547d01b
PZ
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
53a59fc6 198 tlb->batch_count++;
9547d01b
PZ
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207}
208
209/* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
214void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215{
216 tlb->mm = mm;
217
218 tlb->fullmm = fullmm;
597e1c35
AS
219 tlb->start = -1UL;
220 tlb->end = 0;
9547d01b
PZ
221 tlb->need_flush = 0;
222 tlb->fast_mode = (num_possible_cpus() == 1);
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
53a59fc6 227 tlb->batch_count = 0;
9547d01b
PZ
228
229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231#endif
232}
233
234void tlb_flush_mmu(struct mmu_gather *tlb)
235{
236 struct mmu_gather_batch *batch;
237
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242#ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
34e55232
KH
244#endif
245
9547d01b
PZ
246 if (tlb_fast_mode(tlb))
247 return;
248
249 for (batch = &tlb->local; batch; batch = batch->next) {
250 free_pages_and_swap_cache(batch->pages, batch->nr);
251 batch->nr = 0;
252 }
253 tlb->active = &tlb->local;
254}
255
256/* tlb_finish_mmu
257 * Called at the end of the shootdown operation to free up any resources
258 * that were required.
259 */
260void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
261{
262 struct mmu_gather_batch *batch, *next;
263
597e1c35
AS
264 tlb->start = start;
265 tlb->end = end;
9547d01b
PZ
266 tlb_flush_mmu(tlb);
267
268 /* keep the page table cache within bounds */
269 check_pgt_cache();
270
271 for (batch = tlb->local.next; batch; batch = next) {
272 next = batch->next;
273 free_pages((unsigned long)batch, 0);
274 }
275 tlb->local.next = NULL;
276}
277
278/* __tlb_remove_page
279 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
280 * handling the additional races in SMP caused by other CPUs caching valid
281 * mappings in their TLBs. Returns the number of free page slots left.
282 * When out of page slots we must call tlb_flush_mmu().
283 */
284int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
285{
286 struct mmu_gather_batch *batch;
287
f21760b1 288 VM_BUG_ON(!tlb->need_flush);
9547d01b
PZ
289
290 if (tlb_fast_mode(tlb)) {
291 free_page_and_swap_cache(page);
292 return 1; /* avoid calling tlb_flush_mmu() */
293 }
294
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
0b43c3aa 300 batch = tlb->active;
9547d01b
PZ
301 }
302 VM_BUG_ON(batch->nr > batch->max);
303
304 return batch->max - batch->nr;
305}
306
307#endif /* HAVE_GENERIC_MMU_GATHER */
308
26723911
PZ
309#ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311/*
312 * See the comment near struct mmu_table_batch.
313 */
314
315static void tlb_remove_table_smp_sync(void *arg)
316{
317 /* Simply deliver the interrupt */
318}
319
320static void tlb_remove_table_one(void *table)
321{
322 /*
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
325 *
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
328 */
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
331}
332
333static void tlb_remove_table_rcu(struct rcu_head *head)
334{
335 struct mmu_table_batch *batch;
336 int i;
337
338 batch = container_of(head, struct mmu_table_batch, rcu);
339
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
342
343 free_page((unsigned long)batch);
344}
345
346void tlb_table_flush(struct mmu_gather *tlb)
347{
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
353 }
354}
355
356void tlb_remove_table(struct mmu_gather *tlb, void *table)
357{
358 struct mmu_table_batch **batch = &tlb->batch;
359
360 tlb->need_flush = 1;
361
362 /*
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
365 */
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
369 }
370
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
376 }
377 (*batch)->nr = 0;
378 }
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
382}
383
9547d01b 384#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 385
1da177e4
LT
386/*
387 * If a p?d_bad entry is found while walking page tables, report
388 * the error, before resetting entry to p?d_none. Usually (but
389 * very seldom) called out from the p?d_none_or_clear_bad macros.
390 */
391
392void pgd_clear_bad(pgd_t *pgd)
393{
394 pgd_ERROR(*pgd);
395 pgd_clear(pgd);
396}
397
398void pud_clear_bad(pud_t *pud)
399{
400 pud_ERROR(*pud);
401 pud_clear(pud);
402}
403
404void pmd_clear_bad(pmd_t *pmd)
405{
406 pmd_ERROR(*pmd);
407 pmd_clear(pmd);
408}
409
410/*
411 * Note: this doesn't free the actual pages themselves. That
412 * has been handled earlier when unmapping all the memory regions.
413 */
9e1b32ca
BH
414static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
415 unsigned long addr)
1da177e4 416{
2f569afd 417 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 418 pmd_clear(pmd);
9e1b32ca 419 pte_free_tlb(tlb, token, addr);
e0da382c 420 tlb->mm->nr_ptes--;
1da177e4
LT
421}
422
e0da382c
HD
423static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
424 unsigned long addr, unsigned long end,
425 unsigned long floor, unsigned long ceiling)
1da177e4
LT
426{
427 pmd_t *pmd;
428 unsigned long next;
e0da382c 429 unsigned long start;
1da177e4 430
e0da382c 431 start = addr;
1da177e4 432 pmd = pmd_offset(pud, addr);
1da177e4
LT
433 do {
434 next = pmd_addr_end(addr, end);
435 if (pmd_none_or_clear_bad(pmd))
436 continue;
9e1b32ca 437 free_pte_range(tlb, pmd, addr);
1da177e4
LT
438 } while (pmd++, addr = next, addr != end);
439
e0da382c
HD
440 start &= PUD_MASK;
441 if (start < floor)
442 return;
443 if (ceiling) {
444 ceiling &= PUD_MASK;
445 if (!ceiling)
446 return;
1da177e4 447 }
e0da382c
HD
448 if (end - 1 > ceiling - 1)
449 return;
450
451 pmd = pmd_offset(pud, start);
452 pud_clear(pud);
9e1b32ca 453 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
454}
455
e0da382c
HD
456static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
457 unsigned long addr, unsigned long end,
458 unsigned long floor, unsigned long ceiling)
1da177e4
LT
459{
460 pud_t *pud;
461 unsigned long next;
e0da382c 462 unsigned long start;
1da177e4 463
e0da382c 464 start = addr;
1da177e4 465 pud = pud_offset(pgd, addr);
1da177e4
LT
466 do {
467 next = pud_addr_end(addr, end);
468 if (pud_none_or_clear_bad(pud))
469 continue;
e0da382c 470 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
471 } while (pud++, addr = next, addr != end);
472
e0da382c
HD
473 start &= PGDIR_MASK;
474 if (start < floor)
475 return;
476 if (ceiling) {
477 ceiling &= PGDIR_MASK;
478 if (!ceiling)
479 return;
1da177e4 480 }
e0da382c
HD
481 if (end - 1 > ceiling - 1)
482 return;
483
484 pud = pud_offset(pgd, start);
485 pgd_clear(pgd);
9e1b32ca 486 pud_free_tlb(tlb, pud, start);
1da177e4
LT
487}
488
489/*
e0da382c
HD
490 * This function frees user-level page tables of a process.
491 *
1da177e4
LT
492 * Must be called with pagetable lock held.
493 */
42b77728 494void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
495 unsigned long addr, unsigned long end,
496 unsigned long floor, unsigned long ceiling)
1da177e4
LT
497{
498 pgd_t *pgd;
499 unsigned long next;
e0da382c
HD
500
501 /*
502 * The next few lines have given us lots of grief...
503 *
504 * Why are we testing PMD* at this top level? Because often
505 * there will be no work to do at all, and we'd prefer not to
506 * go all the way down to the bottom just to discover that.
507 *
508 * Why all these "- 1"s? Because 0 represents both the bottom
509 * of the address space and the top of it (using -1 for the
510 * top wouldn't help much: the masks would do the wrong thing).
511 * The rule is that addr 0 and floor 0 refer to the bottom of
512 * the address space, but end 0 and ceiling 0 refer to the top
513 * Comparisons need to use "end - 1" and "ceiling - 1" (though
514 * that end 0 case should be mythical).
515 *
516 * Wherever addr is brought up or ceiling brought down, we must
517 * be careful to reject "the opposite 0" before it confuses the
518 * subsequent tests. But what about where end is brought down
519 * by PMD_SIZE below? no, end can't go down to 0 there.
520 *
521 * Whereas we round start (addr) and ceiling down, by different
522 * masks at different levels, in order to test whether a table
523 * now has no other vmas using it, so can be freed, we don't
524 * bother to round floor or end up - the tests don't need that.
525 */
1da177e4 526
e0da382c
HD
527 addr &= PMD_MASK;
528 if (addr < floor) {
529 addr += PMD_SIZE;
530 if (!addr)
531 return;
532 }
533 if (ceiling) {
534 ceiling &= PMD_MASK;
535 if (!ceiling)
536 return;
537 }
538 if (end - 1 > ceiling - 1)
539 end -= PMD_SIZE;
540 if (addr > end - 1)
541 return;
542
42b77728 543 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
544 do {
545 next = pgd_addr_end(addr, end);
546 if (pgd_none_or_clear_bad(pgd))
547 continue;
42b77728 548 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 549 } while (pgd++, addr = next, addr != end);
e0da382c
HD
550}
551
42b77728 552void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 553 unsigned long floor, unsigned long ceiling)
e0da382c
HD
554{
555 while (vma) {
556 struct vm_area_struct *next = vma->vm_next;
557 unsigned long addr = vma->vm_start;
558
8f4f8c16 559 /*
25d9e2d1 560 * Hide vma from rmap and truncate_pagecache before freeing
561 * pgtables
8f4f8c16 562 */
5beb4930 563 unlink_anon_vmas(vma);
8f4f8c16
HD
564 unlink_file_vma(vma);
565
9da61aef 566 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 567 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 568 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
569 } else {
570 /*
571 * Optimization: gather nearby vmas into one call down
572 */
573 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 574 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
575 vma = next;
576 next = vma->vm_next;
5beb4930 577 unlink_anon_vmas(vma);
8f4f8c16 578 unlink_file_vma(vma);
3bf5ee95
HD
579 }
580 free_pgd_range(tlb, addr, vma->vm_end,
581 floor, next? next->vm_start: ceiling);
582 }
e0da382c
HD
583 vma = next;
584 }
1da177e4
LT
585}
586
8ac1f832
AA
587int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
588 pmd_t *pmd, unsigned long address)
1da177e4 589{
2f569afd 590 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 591 int wait_split_huge_page;
1bb3630e
HD
592 if (!new)
593 return -ENOMEM;
594
362a61ad
NP
595 /*
596 * Ensure all pte setup (eg. pte page lock and page clearing) are
597 * visible before the pte is made visible to other CPUs by being
598 * put into page tables.
599 *
600 * The other side of the story is the pointer chasing in the page
601 * table walking code (when walking the page table without locking;
602 * ie. most of the time). Fortunately, these data accesses consist
603 * of a chain of data-dependent loads, meaning most CPUs (alpha
604 * being the notable exception) will already guarantee loads are
605 * seen in-order. See the alpha page table accessors for the
606 * smp_read_barrier_depends() barriers in page table walking code.
607 */
608 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
609
c74df32c 610 spin_lock(&mm->page_table_lock);
8ac1f832
AA
611 wait_split_huge_page = 0;
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 613 mm->nr_ptes++;
1da177e4 614 pmd_populate(mm, pmd, new);
2f569afd 615 new = NULL;
8ac1f832
AA
616 } else if (unlikely(pmd_trans_splitting(*pmd)))
617 wait_split_huge_page = 1;
c74df32c 618 spin_unlock(&mm->page_table_lock);
2f569afd
MS
619 if (new)
620 pte_free(mm, new);
8ac1f832
AA
621 if (wait_split_huge_page)
622 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 623 return 0;
1da177e4
LT
624}
625
1bb3630e 626int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 627{
1bb3630e
HD
628 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
629 if (!new)
630 return -ENOMEM;
631
362a61ad
NP
632 smp_wmb(); /* See comment in __pte_alloc */
633
1bb3630e 634 spin_lock(&init_mm.page_table_lock);
8ac1f832 635 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 636 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 637 new = NULL;
8ac1f832
AA
638 } else
639 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 640 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
641 if (new)
642 pte_free_kernel(&init_mm, new);
1bb3630e 643 return 0;
1da177e4
LT
644}
645
d559db08
KH
646static inline void init_rss_vec(int *rss)
647{
648 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
649}
650
651static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 652{
d559db08
KH
653 int i;
654
34e55232 655 if (current->mm == mm)
05af2e10 656 sync_mm_rss(mm);
d559db08
KH
657 for (i = 0; i < NR_MM_COUNTERS; i++)
658 if (rss[i])
659 add_mm_counter(mm, i, rss[i]);
ae859762
HD
660}
661
b5810039 662/*
6aab341e
LT
663 * This function is called to print an error when a bad pte
664 * is found. For example, we might have a PFN-mapped pte in
665 * a region that doesn't allow it.
b5810039
NP
666 *
667 * The calling function must still handle the error.
668 */
3dc14741
HD
669static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
670 pte_t pte, struct page *page)
b5810039 671{
3dc14741
HD
672 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
673 pud_t *pud = pud_offset(pgd, addr);
674 pmd_t *pmd = pmd_offset(pud, addr);
675 struct address_space *mapping;
676 pgoff_t index;
d936cf9b
HD
677 static unsigned long resume;
678 static unsigned long nr_shown;
679 static unsigned long nr_unshown;
680
681 /*
682 * Allow a burst of 60 reports, then keep quiet for that minute;
683 * or allow a steady drip of one report per second.
684 */
685 if (nr_shown == 60) {
686 if (time_before(jiffies, resume)) {
687 nr_unshown++;
688 return;
689 }
690 if (nr_unshown) {
1e9e6365
HD
691 printk(KERN_ALERT
692 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
693 nr_unshown);
694 nr_unshown = 0;
695 }
696 nr_shown = 0;
697 }
698 if (nr_shown++ == 0)
699 resume = jiffies + 60 * HZ;
3dc14741
HD
700
701 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
702 index = linear_page_index(vma, addr);
703
1e9e6365
HD
704 printk(KERN_ALERT
705 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
706 current->comm,
707 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
708 if (page)
709 dump_page(page);
1e9e6365 710 printk(KERN_ALERT
3dc14741
HD
711 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
712 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
713 /*
714 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
715 */
716 if (vma->vm_ops)
1e9e6365 717 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
3dc14741
HD
718 (unsigned long)vma->vm_ops->fault);
719 if (vma->vm_file && vma->vm_file->f_op)
1e9e6365 720 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
3dc14741 721 (unsigned long)vma->vm_file->f_op->mmap);
b5810039 722 dump_stack();
3dc14741 723 add_taint(TAINT_BAD_PAGE);
b5810039
NP
724}
725
2ec74c3e 726static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
727{
728 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
729}
730
ee498ed7 731/*
7e675137 732 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 733 *
7e675137
NP
734 * "Special" mappings do not wish to be associated with a "struct page" (either
735 * it doesn't exist, or it exists but they don't want to touch it). In this
736 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 737 *
7e675137
NP
738 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
739 * pte bit, in which case this function is trivial. Secondly, an architecture
740 * may not have a spare pte bit, which requires a more complicated scheme,
741 * described below.
742 *
743 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
744 * special mapping (even if there are underlying and valid "struct pages").
745 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 746 *
b379d790
JH
747 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
748 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
749 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
750 * mapping will always honor the rule
6aab341e
LT
751 *
752 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
753 *
7e675137
NP
754 * And for normal mappings this is false.
755 *
756 * This restricts such mappings to be a linear translation from virtual address
757 * to pfn. To get around this restriction, we allow arbitrary mappings so long
758 * as the vma is not a COW mapping; in that case, we know that all ptes are
759 * special (because none can have been COWed).
b379d790 760 *
b379d790 761 *
7e675137 762 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
763 *
764 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
765 * page" backing, however the difference is that _all_ pages with a struct
766 * page (that is, those where pfn_valid is true) are refcounted and considered
767 * normal pages by the VM. The disadvantage is that pages are refcounted
768 * (which can be slower and simply not an option for some PFNMAP users). The
769 * advantage is that we don't have to follow the strict linearity rule of
770 * PFNMAP mappings in order to support COWable mappings.
771 *
ee498ed7 772 */
7e675137
NP
773#ifdef __HAVE_ARCH_PTE_SPECIAL
774# define HAVE_PTE_SPECIAL 1
775#else
776# define HAVE_PTE_SPECIAL 0
777#endif
778struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
779 pte_t pte)
ee498ed7 780{
22b31eec 781 unsigned long pfn = pte_pfn(pte);
7e675137
NP
782
783 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
784 if (likely(!pte_special(pte)))
785 goto check_pfn;
a13ea5b7
HD
786 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
787 return NULL;
62eede62 788 if (!is_zero_pfn(pfn))
22b31eec 789 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
790 return NULL;
791 }
792
793 /* !HAVE_PTE_SPECIAL case follows: */
794
b379d790
JH
795 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
796 if (vma->vm_flags & VM_MIXEDMAP) {
797 if (!pfn_valid(pfn))
798 return NULL;
799 goto out;
800 } else {
7e675137
NP
801 unsigned long off;
802 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
803 if (pfn == vma->vm_pgoff + off)
804 return NULL;
805 if (!is_cow_mapping(vma->vm_flags))
806 return NULL;
807 }
6aab341e
LT
808 }
809
62eede62
HD
810 if (is_zero_pfn(pfn))
811 return NULL;
22b31eec
HD
812check_pfn:
813 if (unlikely(pfn > highest_memmap_pfn)) {
814 print_bad_pte(vma, addr, pte, NULL);
815 return NULL;
816 }
6aab341e
LT
817
818 /*
7e675137 819 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 820 * eg. VDSO mappings can cause them to exist.
6aab341e 821 */
b379d790 822out:
6aab341e 823 return pfn_to_page(pfn);
ee498ed7
HD
824}
825
1da177e4
LT
826/*
827 * copy one vm_area from one task to the other. Assumes the page tables
828 * already present in the new task to be cleared in the whole range
829 * covered by this vma.
1da177e4
LT
830 */
831
570a335b 832static inline unsigned long
1da177e4 833copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 834 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 835 unsigned long addr, int *rss)
1da177e4 836{
b5810039 837 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
838 pte_t pte = *src_pte;
839 struct page *page;
1da177e4
LT
840
841 /* pte contains position in swap or file, so copy. */
842 if (unlikely(!pte_present(pte))) {
843 if (!pte_file(pte)) {
0697212a
CL
844 swp_entry_t entry = pte_to_swp_entry(pte);
845
570a335b
HD
846 if (swap_duplicate(entry) < 0)
847 return entry.val;
848
1da177e4
LT
849 /* make sure dst_mm is on swapoff's mmlist. */
850 if (unlikely(list_empty(&dst_mm->mmlist))) {
851 spin_lock(&mmlist_lock);
f412ac08
HD
852 if (list_empty(&dst_mm->mmlist))
853 list_add(&dst_mm->mmlist,
854 &src_mm->mmlist);
1da177e4
LT
855 spin_unlock(&mmlist_lock);
856 }
b084d435
KH
857 if (likely(!non_swap_entry(entry)))
858 rss[MM_SWAPENTS]++;
9f9f1acd
KK
859 else if (is_migration_entry(entry)) {
860 page = migration_entry_to_page(entry);
861
862 if (PageAnon(page))
863 rss[MM_ANONPAGES]++;
864 else
865 rss[MM_FILEPAGES]++;
866
867 if (is_write_migration_entry(entry) &&
868 is_cow_mapping(vm_flags)) {
869 /*
870 * COW mappings require pages in both
871 * parent and child to be set to read.
872 */
873 make_migration_entry_read(&entry);
874 pte = swp_entry_to_pte(entry);
875 set_pte_at(src_mm, addr, src_pte, pte);
876 }
0697212a 877 }
1da177e4 878 }
ae859762 879 goto out_set_pte;
1da177e4
LT
880 }
881
1da177e4
LT
882 /*
883 * If it's a COW mapping, write protect it both
884 * in the parent and the child
885 */
67121172 886 if (is_cow_mapping(vm_flags)) {
1da177e4 887 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 888 pte = pte_wrprotect(pte);
1da177e4
LT
889 }
890
891 /*
892 * If it's a shared mapping, mark it clean in
893 * the child
894 */
895 if (vm_flags & VM_SHARED)
896 pte = pte_mkclean(pte);
897 pte = pte_mkold(pte);
6aab341e
LT
898
899 page = vm_normal_page(vma, addr, pte);
900 if (page) {
901 get_page(page);
21333b2b 902 page_dup_rmap(page);
d559db08
KH
903 if (PageAnon(page))
904 rss[MM_ANONPAGES]++;
905 else
906 rss[MM_FILEPAGES]++;
6aab341e 907 }
ae859762
HD
908
909out_set_pte:
910 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 911 return 0;
1da177e4
LT
912}
913
71e3aac0
AA
914int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 unsigned long addr, unsigned long end)
1da177e4 917{
c36987e2 918 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 919 pte_t *src_pte, *dst_pte;
c74df32c 920 spinlock_t *src_ptl, *dst_ptl;
e040f218 921 int progress = 0;
d559db08 922 int rss[NR_MM_COUNTERS];
570a335b 923 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
924
925again:
d559db08
KH
926 init_rss_vec(rss);
927
c74df32c 928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
929 if (!dst_pte)
930 return -ENOMEM;
ece0e2b6 931 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 932 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
934 orig_src_pte = src_pte;
935 orig_dst_pte = dst_pte;
6606c3e0 936 arch_enter_lazy_mmu_mode();
1da177e4 937
1da177e4
LT
938 do {
939 /*
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
942 */
e040f218
HD
943 if (progress >= 32) {
944 progress = 0;
945 if (need_resched() ||
95c354fe 946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
947 break;
948 }
1da177e4
LT
949 if (pte_none(*src_pte)) {
950 progress++;
951 continue;
952 }
570a335b
HD
953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 vma, addr, rss);
955 if (entry.val)
956 break;
1da177e4
LT
957 progress += 8;
958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 959
6606c3e0 960 arch_leave_lazy_mmu_mode();
c74df32c 961 spin_unlock(src_ptl);
ece0e2b6 962 pte_unmap(orig_src_pte);
d559db08 963 add_mm_rss_vec(dst_mm, rss);
c36987e2 964 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 965 cond_resched();
570a335b
HD
966
967 if (entry.val) {
968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 return -ENOMEM;
970 progress = 0;
971 }
1da177e4
LT
972 if (addr != end)
973 goto again;
974 return 0;
975}
976
977static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
980{
981 pmd_t *src_pmd, *dst_pmd;
982 unsigned long next;
983
984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 if (!dst_pmd)
986 return -ENOMEM;
987 src_pmd = pmd_offset(src_pud, addr);
988 do {
989 next = pmd_addr_end(addr, end);
71e3aac0
AA
990 if (pmd_trans_huge(*src_pmd)) {
991 int err;
14d1a55c 992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
993 err = copy_huge_pmd(dst_mm, src_mm,
994 dst_pmd, src_pmd, addr, vma);
995 if (err == -ENOMEM)
996 return -ENOMEM;
997 if (!err)
998 continue;
999 /* fall through */
1000 }
1da177e4
LT
1001 if (pmd_none_or_clear_bad(src_pmd))
1002 continue;
1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 return 0;
1008}
1009
1010static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 unsigned long addr, unsigned long end)
1013{
1014 pud_t *src_pud, *dst_pud;
1015 unsigned long next;
1016
1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 if (!dst_pud)
1019 return -ENOMEM;
1020 src_pud = pud_offset(src_pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(src_pud))
1024 continue;
1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pud++, src_pud++, addr = next, addr != end);
1029 return 0;
1030}
1031
1032int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 struct vm_area_struct *vma)
1034{
1035 pgd_t *src_pgd, *dst_pgd;
1036 unsigned long next;
1037 unsigned long addr = vma->vm_start;
1038 unsigned long end = vma->vm_end;
2ec74c3e
SG
1039 unsigned long mmun_start; /* For mmu_notifiers */
1040 unsigned long mmun_end; /* For mmu_notifiers */
1041 bool is_cow;
cddb8a5c 1042 int ret;
1da177e4 1043
d992895b
NP
1044 /*
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1049 */
4b6e1e37
KK
1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1051 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1052 if (!vma->anon_vma)
1053 return 0;
1054 }
1055
1da177e4
LT
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
b3b9c293 1059 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1060 /*
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1063 */
5180da41 1064 ret = track_pfn_copy(vma);
2ab64037 1065 if (ret)
1066 return ret;
1067 }
1068
cddb8a5c
AA
1069 /*
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1074 */
2ec74c3e
SG
1075 is_cow = is_cow_mapping(vma->vm_flags);
1076 mmun_start = addr;
1077 mmun_end = end;
1078 if (is_cow)
1079 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1080 mmun_end);
cddb8a5c
AA
1081
1082 ret = 0;
1da177e4
LT
1083 dst_pgd = pgd_offset(dst_mm, addr);
1084 src_pgd = pgd_offset(src_mm, addr);
1085 do {
1086 next = pgd_addr_end(addr, end);
1087 if (pgd_none_or_clear_bad(src_pgd))
1088 continue;
cddb8a5c
AA
1089 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1090 vma, addr, next))) {
1091 ret = -ENOMEM;
1092 break;
1093 }
1da177e4 1094 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1095
2ec74c3e
SG
1096 if (is_cow)
1097 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1098 return ret;
1da177e4
LT
1099}
1100
51c6f666 1101static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1102 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1103 unsigned long addr, unsigned long end,
97a89413 1104 struct zap_details *details)
1da177e4 1105{
b5810039 1106 struct mm_struct *mm = tlb->mm;
d16dfc55 1107 int force_flush = 0;
d559db08 1108 int rss[NR_MM_COUNTERS];
97a89413 1109 spinlock_t *ptl;
5f1a1907 1110 pte_t *start_pte;
97a89413 1111 pte_t *pte;
d559db08 1112
d16dfc55 1113again:
e303297e 1114 init_rss_vec(rss);
5f1a1907
SR
1115 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1116 pte = start_pte;
6606c3e0 1117 arch_enter_lazy_mmu_mode();
1da177e4
LT
1118 do {
1119 pte_t ptent = *pte;
51c6f666 1120 if (pte_none(ptent)) {
1da177e4 1121 continue;
51c6f666 1122 }
6f5e6b9e 1123
1da177e4 1124 if (pte_present(ptent)) {
ee498ed7 1125 struct page *page;
51c6f666 1126
6aab341e 1127 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1128 if (unlikely(details) && page) {
1129 /*
1130 * unmap_shared_mapping_pages() wants to
1131 * invalidate cache without truncating:
1132 * unmap shared but keep private pages.
1133 */
1134 if (details->check_mapping &&
1135 details->check_mapping != page->mapping)
1136 continue;
1137 /*
1138 * Each page->index must be checked when
1139 * invalidating or truncating nonlinear.
1140 */
1141 if (details->nonlinear_vma &&
1142 (page->index < details->first_index ||
1143 page->index > details->last_index))
1144 continue;
1145 }
b5810039 1146 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1147 tlb->fullmm);
1da177e4
LT
1148 tlb_remove_tlb_entry(tlb, pte, addr);
1149 if (unlikely(!page))
1150 continue;
1151 if (unlikely(details) && details->nonlinear_vma
1152 && linear_page_index(details->nonlinear_vma,
1153 addr) != page->index)
b5810039 1154 set_pte_at(mm, addr, pte,
1da177e4 1155 pgoff_to_pte(page->index));
1da177e4 1156 if (PageAnon(page))
d559db08 1157 rss[MM_ANONPAGES]--;
6237bcd9
HD
1158 else {
1159 if (pte_dirty(ptent))
1160 set_page_dirty(page);
4917e5d0
JW
1161 if (pte_young(ptent) &&
1162 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 1163 mark_page_accessed(page);
d559db08 1164 rss[MM_FILEPAGES]--;
6237bcd9 1165 }
edc315fd 1166 page_remove_rmap(page);
3dc14741
HD
1167 if (unlikely(page_mapcount(page) < 0))
1168 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1169 force_flush = !__tlb_remove_page(tlb, page);
1170 if (force_flush)
1171 break;
1da177e4
LT
1172 continue;
1173 }
1174 /*
1175 * If details->check_mapping, we leave swap entries;
1176 * if details->nonlinear_vma, we leave file entries.
1177 */
1178 if (unlikely(details))
1179 continue;
2509ef26
HD
1180 if (pte_file(ptent)) {
1181 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1182 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1183 } else {
1184 swp_entry_t entry = pte_to_swp_entry(ptent);
1185
1186 if (!non_swap_entry(entry))
1187 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1188 else if (is_migration_entry(entry)) {
1189 struct page *page;
1190
1191 page = migration_entry_to_page(entry);
1192
1193 if (PageAnon(page))
1194 rss[MM_ANONPAGES]--;
1195 else
1196 rss[MM_FILEPAGES]--;
1197 }
b084d435
KH
1198 if (unlikely(!free_swap_and_cache(entry)))
1199 print_bad_pte(vma, addr, ptent, NULL);
1200 }
9888a1ca 1201 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1202 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1203
d559db08 1204 add_mm_rss_vec(mm, rss);
6606c3e0 1205 arch_leave_lazy_mmu_mode();
5f1a1907 1206 pte_unmap_unlock(start_pte, ptl);
51c6f666 1207
d16dfc55
PZ
1208 /*
1209 * mmu_gather ran out of room to batch pages, we break out of
1210 * the PTE lock to avoid doing the potential expensive TLB invalidate
1211 * and page-free while holding it.
1212 */
1213 if (force_flush) {
1214 force_flush = 0;
597e1c35
AS
1215
1216#ifdef HAVE_GENERIC_MMU_GATHER
1217 tlb->start = addr;
1218 tlb->end = end;
1219#endif
d16dfc55
PZ
1220 tlb_flush_mmu(tlb);
1221 if (addr != end)
1222 goto again;
1223 }
1224
51c6f666 1225 return addr;
1da177e4
LT
1226}
1227
51c6f666 1228static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1229 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1230 unsigned long addr, unsigned long end,
97a89413 1231 struct zap_details *details)
1da177e4
LT
1232{
1233 pmd_t *pmd;
1234 unsigned long next;
1235
1236 pmd = pmd_offset(pud, addr);
1237 do {
1238 next = pmd_addr_end(addr, end);
71e3aac0 1239 if (pmd_trans_huge(*pmd)) {
1a5a9906 1240 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1241#ifdef CONFIG_DEBUG_VM
1242 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1243 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1244 __func__, addr, end,
1245 vma->vm_start,
1246 vma->vm_end);
1247 BUG();
1248 }
1249#endif
e180377f 1250 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1251 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1252 goto next;
71e3aac0
AA
1253 /* fall through */
1254 }
1a5a9906
AA
1255 /*
1256 * Here there can be other concurrent MADV_DONTNEED or
1257 * trans huge page faults running, and if the pmd is
1258 * none or trans huge it can change under us. This is
1259 * because MADV_DONTNEED holds the mmap_sem in read
1260 * mode.
1261 */
1262 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1263 goto next;
97a89413 1264 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1265next:
97a89413
PZ
1266 cond_resched();
1267 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1268
1269 return addr;
1da177e4
LT
1270}
1271
51c6f666 1272static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1273 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1274 unsigned long addr, unsigned long end,
97a89413 1275 struct zap_details *details)
1da177e4
LT
1276{
1277 pud_t *pud;
1278 unsigned long next;
1279
1280 pud = pud_offset(pgd, addr);
1281 do {
1282 next = pud_addr_end(addr, end);
97a89413 1283 if (pud_none_or_clear_bad(pud))
1da177e4 1284 continue;
97a89413
PZ
1285 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1286 } while (pud++, addr = next, addr != end);
51c6f666
RH
1287
1288 return addr;
1da177e4
LT
1289}
1290
038c7aa1
AV
1291static void unmap_page_range(struct mmu_gather *tlb,
1292 struct vm_area_struct *vma,
1293 unsigned long addr, unsigned long end,
1294 struct zap_details *details)
1da177e4
LT
1295{
1296 pgd_t *pgd;
1297 unsigned long next;
1298
1299 if (details && !details->check_mapping && !details->nonlinear_vma)
1300 details = NULL;
1301
1302 BUG_ON(addr >= end);
569b846d 1303 mem_cgroup_uncharge_start();
1da177e4
LT
1304 tlb_start_vma(tlb, vma);
1305 pgd = pgd_offset(vma->vm_mm, addr);
1306 do {
1307 next = pgd_addr_end(addr, end);
97a89413 1308 if (pgd_none_or_clear_bad(pgd))
1da177e4 1309 continue;
97a89413
PZ
1310 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1311 } while (pgd++, addr = next, addr != end);
1da177e4 1312 tlb_end_vma(tlb, vma);
569b846d 1313 mem_cgroup_uncharge_end();
1da177e4 1314}
51c6f666 1315
f5cc4eef
AV
1316
1317static void unmap_single_vma(struct mmu_gather *tlb,
1318 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1319 unsigned long end_addr,
f5cc4eef
AV
1320 struct zap_details *details)
1321{
1322 unsigned long start = max(vma->vm_start, start_addr);
1323 unsigned long end;
1324
1325 if (start >= vma->vm_end)
1326 return;
1327 end = min(vma->vm_end, end_addr);
1328 if (end <= vma->vm_start)
1329 return;
1330
cbc91f71
SD
1331 if (vma->vm_file)
1332 uprobe_munmap(vma, start, end);
1333
b3b9c293 1334 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1335 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1336
1337 if (start != end) {
1338 if (unlikely(is_vm_hugetlb_page(vma))) {
1339 /*
1340 * It is undesirable to test vma->vm_file as it
1341 * should be non-null for valid hugetlb area.
1342 * However, vm_file will be NULL in the error
1343 * cleanup path of do_mmap_pgoff. When
1344 * hugetlbfs ->mmap method fails,
1345 * do_mmap_pgoff() nullifies vma->vm_file
1346 * before calling this function to clean up.
1347 * Since no pte has actually been setup, it is
1348 * safe to do nothing in this case.
1349 */
24669e58
AK
1350 if (vma->vm_file) {
1351 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1352 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1353 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1354 }
f5cc4eef
AV
1355 } else
1356 unmap_page_range(tlb, vma, start, end, details);
1357 }
1da177e4
LT
1358}
1359
1da177e4
LT
1360/**
1361 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1362 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1363 * @vma: the starting vma
1364 * @start_addr: virtual address at which to start unmapping
1365 * @end_addr: virtual address at which to end unmapping
1da177e4 1366 *
508034a3 1367 * Unmap all pages in the vma list.
1da177e4 1368 *
1da177e4
LT
1369 * Only addresses between `start' and `end' will be unmapped.
1370 *
1371 * The VMA list must be sorted in ascending virtual address order.
1372 *
1373 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374 * range after unmap_vmas() returns. So the only responsibility here is to
1375 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376 * drops the lock and schedules.
1377 */
6e8bb019 1378void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1379 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1380 unsigned long end_addr)
1da177e4 1381{
cddb8a5c 1382 struct mm_struct *mm = vma->vm_mm;
1da177e4 1383
cddb8a5c 1384 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1385 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1386 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1387 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1388}
1389
1390/**
1391 * zap_page_range - remove user pages in a given range
1392 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1393 * @start: starting address of pages to zap
1da177e4
LT
1394 * @size: number of bytes to zap
1395 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1396 *
1397 * Caller must protect the VMA list
1da177e4 1398 */
7e027b14 1399void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1400 unsigned long size, struct zap_details *details)
1401{
1402 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1403 struct mmu_gather tlb;
7e027b14 1404 unsigned long end = start + size;
1da177e4 1405
1da177e4 1406 lru_add_drain();
d16dfc55 1407 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1408 update_hiwater_rss(mm);
7e027b14
LT
1409 mmu_notifier_invalidate_range_start(mm, start, end);
1410 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1411 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1412 mmu_notifier_invalidate_range_end(mm, start, end);
1413 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1414}
1415
f5cc4eef
AV
1416/**
1417 * zap_page_range_single - remove user pages in a given range
1418 * @vma: vm_area_struct holding the applicable pages
1419 * @address: starting address of pages to zap
1420 * @size: number of bytes to zap
1421 * @details: details of nonlinear truncation or shared cache invalidation
1422 *
1423 * The range must fit into one VMA.
1da177e4 1424 */
f5cc4eef 1425static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1426 unsigned long size, struct zap_details *details)
1427{
1428 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1429 struct mmu_gather tlb;
1da177e4 1430 unsigned long end = address + size;
1da177e4 1431
1da177e4 1432 lru_add_drain();
d16dfc55 1433 tlb_gather_mmu(&tlb, mm, 0);
365e9c87 1434 update_hiwater_rss(mm);
f5cc4eef 1435 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1436 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1437 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1438 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1439}
1440
c627f9cc
JS
1441/**
1442 * zap_vma_ptes - remove ptes mapping the vma
1443 * @vma: vm_area_struct holding ptes to be zapped
1444 * @address: starting address of pages to zap
1445 * @size: number of bytes to zap
1446 *
1447 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1448 *
1449 * The entire address range must be fully contained within the vma.
1450 *
1451 * Returns 0 if successful.
1452 */
1453int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1454 unsigned long size)
1455{
1456 if (address < vma->vm_start || address + size > vma->vm_end ||
1457 !(vma->vm_flags & VM_PFNMAP))
1458 return -1;
f5cc4eef 1459 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1460 return 0;
1461}
1462EXPORT_SYMBOL_GPL(zap_vma_ptes);
1463
142762bd
JW
1464/**
1465 * follow_page - look up a page descriptor from a user-virtual address
1466 * @vma: vm_area_struct mapping @address
1467 * @address: virtual address to look up
1468 * @flags: flags modifying lookup behaviour
1469 *
1470 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1471 *
1472 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1473 * an error pointer if there is a mapping to something not represented
1474 * by a page descriptor (see also vm_normal_page()).
1da177e4 1475 */
6aab341e 1476struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1477 unsigned int flags)
1da177e4
LT
1478{
1479 pgd_t *pgd;
1480 pud_t *pud;
1481 pmd_t *pmd;
1482 pte_t *ptep, pte;
deceb6cd 1483 spinlock_t *ptl;
1da177e4 1484 struct page *page;
6aab341e 1485 struct mm_struct *mm = vma->vm_mm;
1da177e4 1486
deceb6cd
HD
1487 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1488 if (!IS_ERR(page)) {
1489 BUG_ON(flags & FOLL_GET);
1490 goto out;
1491 }
1da177e4 1492
deceb6cd 1493 page = NULL;
1da177e4
LT
1494 pgd = pgd_offset(mm, address);
1495 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1496 goto no_page_table;
1da177e4
LT
1497
1498 pud = pud_offset(pgd, address);
ceb86879 1499 if (pud_none(*pud))
deceb6cd 1500 goto no_page_table;
8a07651e 1501 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
ceb86879
AK
1502 BUG_ON(flags & FOLL_GET);
1503 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1504 goto out;
1505 }
1506 if (unlikely(pud_bad(*pud)))
1507 goto no_page_table;
1508
1da177e4 1509 pmd = pmd_offset(pud, address);
aeed5fce 1510 if (pmd_none(*pmd))
deceb6cd 1511 goto no_page_table;
71e3aac0 1512 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd
HD
1513 BUG_ON(flags & FOLL_GET);
1514 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1515 goto out;
deceb6cd 1516 }
0b9d7052
AA
1517 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1518 goto no_page_table;
71e3aac0 1519 if (pmd_trans_huge(*pmd)) {
500d65d4 1520 if (flags & FOLL_SPLIT) {
e180377f 1521 split_huge_page_pmd(vma, address, pmd);
500d65d4
AA
1522 goto split_fallthrough;
1523 }
71e3aac0
AA
1524 spin_lock(&mm->page_table_lock);
1525 if (likely(pmd_trans_huge(*pmd))) {
1526 if (unlikely(pmd_trans_splitting(*pmd))) {
1527 spin_unlock(&mm->page_table_lock);
1528 wait_split_huge_page(vma->anon_vma, pmd);
1529 } else {
b676b293 1530 page = follow_trans_huge_pmd(vma, address,
71e3aac0
AA
1531 pmd, flags);
1532 spin_unlock(&mm->page_table_lock);
1533 goto out;
1534 }
1535 } else
1536 spin_unlock(&mm->page_table_lock);
1537 /* fall through */
1538 }
500d65d4 1539split_fallthrough:
aeed5fce
HD
1540 if (unlikely(pmd_bad(*pmd)))
1541 goto no_page_table;
1542
deceb6cd 1543 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1544
1545 pte = *ptep;
deceb6cd 1546 if (!pte_present(pte))
89f5b7da 1547 goto no_page;
0b9d7052
AA
1548 if ((flags & FOLL_NUMA) && pte_numa(pte))
1549 goto no_page;
deceb6cd
HD
1550 if ((flags & FOLL_WRITE) && !pte_write(pte))
1551 goto unlock;
a13ea5b7 1552
6aab341e 1553 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1554 if (unlikely(!page)) {
1555 if ((flags & FOLL_DUMP) ||
62eede62 1556 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1557 goto bad_page;
1558 page = pte_page(pte);
1559 }
1da177e4 1560
deceb6cd 1561 if (flags & FOLL_GET)
70b50f94 1562 get_page_foll(page);
deceb6cd
HD
1563 if (flags & FOLL_TOUCH) {
1564 if ((flags & FOLL_WRITE) &&
1565 !pte_dirty(pte) && !PageDirty(page))
1566 set_page_dirty(page);
bd775c42
KM
1567 /*
1568 * pte_mkyoung() would be more correct here, but atomic care
1569 * is needed to avoid losing the dirty bit: it is easier to use
1570 * mark_page_accessed().
1571 */
deceb6cd
HD
1572 mark_page_accessed(page);
1573 }
a1fde08c 1574 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1575 /*
1576 * The preliminary mapping check is mainly to avoid the
1577 * pointless overhead of lock_page on the ZERO_PAGE
1578 * which might bounce very badly if there is contention.
1579 *
1580 * If the page is already locked, we don't need to
1581 * handle it now - vmscan will handle it later if and
1582 * when it attempts to reclaim the page.
1583 */
1584 if (page->mapping && trylock_page(page)) {
1585 lru_add_drain(); /* push cached pages to LRU */
1586 /*
e6c509f8
HD
1587 * Because we lock page here, and migration is
1588 * blocked by the pte's page reference, and we
1589 * know the page is still mapped, we don't even
1590 * need to check for file-cache page truncation.
110d74a9 1591 */
e6c509f8 1592 mlock_vma_page(page);
110d74a9
ML
1593 unlock_page(page);
1594 }
1595 }
deceb6cd
HD
1596unlock:
1597 pte_unmap_unlock(ptep, ptl);
1da177e4 1598out:
deceb6cd 1599 return page;
1da177e4 1600
89f5b7da
LT
1601bad_page:
1602 pte_unmap_unlock(ptep, ptl);
1603 return ERR_PTR(-EFAULT);
1604
1605no_page:
1606 pte_unmap_unlock(ptep, ptl);
1607 if (!pte_none(pte))
1608 return page;
8e4b9a60 1609
deceb6cd
HD
1610no_page_table:
1611 /*
1612 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1613 * has touched so far, we don't want to allocate unnecessary pages or
1614 * page tables. Return error instead of NULL to skip handle_mm_fault,
1615 * then get_dump_page() will return NULL to leave a hole in the dump.
1616 * But we can only make this optimization where a hole would surely
1617 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1618 */
8e4b9a60
HD
1619 if ((flags & FOLL_DUMP) &&
1620 (!vma->vm_ops || !vma->vm_ops->fault))
1621 return ERR_PTR(-EFAULT);
deceb6cd 1622 return page;
1da177e4
LT
1623}
1624
95042f9e
LT
1625static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1626{
a09a79f6
MP
1627 return stack_guard_page_start(vma, addr) ||
1628 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1629}
1630
0014bd99
HY
1631/**
1632 * __get_user_pages() - pin user pages in memory
1633 * @tsk: task_struct of target task
1634 * @mm: mm_struct of target mm
1635 * @start: starting user address
1636 * @nr_pages: number of pages from start to pin
1637 * @gup_flags: flags modifying pin behaviour
1638 * @pages: array that receives pointers to the pages pinned.
1639 * Should be at least nr_pages long. Or NULL, if caller
1640 * only intends to ensure the pages are faulted in.
1641 * @vmas: array of pointers to vmas corresponding to each page.
1642 * Or NULL if the caller does not require them.
1643 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1644 *
1645 * Returns number of pages pinned. This may be fewer than the number
1646 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1647 * were pinned, returns -errno. Each page returned must be released
1648 * with a put_page() call when it is finished with. vmas will only
1649 * remain valid while mmap_sem is held.
1650 *
1651 * Must be called with mmap_sem held for read or write.
1652 *
1653 * __get_user_pages walks a process's page tables and takes a reference to
1654 * each struct page that each user address corresponds to at a given
1655 * instant. That is, it takes the page that would be accessed if a user
1656 * thread accesses the given user virtual address at that instant.
1657 *
1658 * This does not guarantee that the page exists in the user mappings when
1659 * __get_user_pages returns, and there may even be a completely different
1660 * page there in some cases (eg. if mmapped pagecache has been invalidated
1661 * and subsequently re faulted). However it does guarantee that the page
1662 * won't be freed completely. And mostly callers simply care that the page
1663 * contains data that was valid *at some point in time*. Typically, an IO
1664 * or similar operation cannot guarantee anything stronger anyway because
1665 * locks can't be held over the syscall boundary.
1666 *
1667 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1668 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1669 * appropriate) must be called after the page is finished with, and
1670 * before put_page is called.
1671 *
1672 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1673 * or mmap_sem contention, and if waiting is needed to pin all pages,
1674 * *@nonblocking will be set to 0.
1675 *
1676 * In most cases, get_user_pages or get_user_pages_fast should be used
1677 * instead of __get_user_pages. __get_user_pages should be used only if
1678 * you need some special @gup_flags.
1679 */
b291f000 1680int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
58fa879e 1681 unsigned long start, int nr_pages, unsigned int gup_flags,
53a7706d
ML
1682 struct page **pages, struct vm_area_struct **vmas,
1683 int *nonblocking)
1da177e4
LT
1684{
1685 int i;
58fa879e 1686 unsigned long vm_flags;
1da177e4 1687
9d73777e 1688 if (nr_pages <= 0)
900cf086 1689 return 0;
58fa879e
HD
1690
1691 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1692
1da177e4
LT
1693 /*
1694 * Require read or write permissions.
58fa879e 1695 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1696 */
58fa879e
HD
1697 vm_flags = (gup_flags & FOLL_WRITE) ?
1698 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1699 vm_flags &= (gup_flags & FOLL_FORCE) ?
1700 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
0b9d7052
AA
1701
1702 /*
1703 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1704 * would be called on PROT_NONE ranges. We must never invoke
1705 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1706 * page faults would unprotect the PROT_NONE ranges if
1707 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1708 * bitflag. So to avoid that, don't set FOLL_NUMA if
1709 * FOLL_FORCE is set.
1710 */
1711 if (!(gup_flags & FOLL_FORCE))
1712 gup_flags |= FOLL_NUMA;
1713
1da177e4
LT
1714 i = 0;
1715
1716 do {
deceb6cd 1717 struct vm_area_struct *vma;
1da177e4
LT
1718
1719 vma = find_extend_vma(mm, start);
e7f22e20 1720 if (!vma && in_gate_area(mm, start)) {
1da177e4 1721 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1722 pgd_t *pgd;
1723 pud_t *pud;
1724 pmd_t *pmd;
1725 pte_t *pte;
b291f000
NP
1726
1727 /* user gate pages are read-only */
58fa879e 1728 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1729 return i ? : -EFAULT;
1730 if (pg > TASK_SIZE)
1731 pgd = pgd_offset_k(pg);
1732 else
1733 pgd = pgd_offset_gate(mm, pg);
1734 BUG_ON(pgd_none(*pgd));
1735 pud = pud_offset(pgd, pg);
1736 BUG_ON(pud_none(*pud));
1737 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1738 if (pmd_none(*pmd))
1739 return i ? : -EFAULT;
f66055ab 1740 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1741 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1742 if (pte_none(*pte)) {
1743 pte_unmap(pte);
1744 return i ? : -EFAULT;
1745 }
95042f9e 1746 vma = get_gate_vma(mm);
1da177e4 1747 if (pages) {
de51257a
HD
1748 struct page *page;
1749
95042f9e 1750 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1751 if (!page) {
1752 if (!(gup_flags & FOLL_DUMP) &&
1753 is_zero_pfn(pte_pfn(*pte)))
1754 page = pte_page(*pte);
1755 else {
1756 pte_unmap(pte);
1757 return i ? : -EFAULT;
1758 }
1759 }
6aab341e 1760 pages[i] = page;
de51257a 1761 get_page(page);
1da177e4
LT
1762 }
1763 pte_unmap(pte);
95042f9e 1764 goto next_page;
1da177e4
LT
1765 }
1766
b291f000
NP
1767 if (!vma ||
1768 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1769 !(vm_flags & vma->vm_flags))
1da177e4
LT
1770 return i ? : -EFAULT;
1771
2a15efc9
HD
1772 if (is_vm_hugetlb_page(vma)) {
1773 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1774 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1775 continue;
1776 }
deceb6cd 1777
1da177e4 1778 do {
08ef4729 1779 struct page *page;
58fa879e 1780 unsigned int foll_flags = gup_flags;
1da177e4 1781
462e00cc 1782 /*
4779280d 1783 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1784 * pages and potentially allocating memory.
462e00cc 1785 */
1c3aff1c 1786 if (unlikely(fatal_signal_pending(current)))
4779280d 1787 return i ? i : -ERESTARTSYS;
462e00cc 1788
deceb6cd 1789 cond_resched();
6aab341e 1790 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1791 int ret;
53a7706d
ML
1792 unsigned int fault_flags = 0;
1793
a09a79f6
MP
1794 /* For mlock, just skip the stack guard page. */
1795 if (foll_flags & FOLL_MLOCK) {
1796 if (stack_guard_page(vma, start))
1797 goto next_page;
1798 }
53a7706d
ML
1799 if (foll_flags & FOLL_WRITE)
1800 fault_flags |= FAULT_FLAG_WRITE;
1801 if (nonblocking)
1802 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1803 if (foll_flags & FOLL_NOWAIT)
1804 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1805
d26ed650 1806 ret = handle_mm_fault(mm, vma, start,
53a7706d 1807 fault_flags);
d26ed650 1808
83c54070
NP
1809 if (ret & VM_FAULT_ERROR) {
1810 if (ret & VM_FAULT_OOM)
1811 return i ? i : -ENOMEM;
69ebb83e
HY
1812 if (ret & (VM_FAULT_HWPOISON |
1813 VM_FAULT_HWPOISON_LARGE)) {
1814 if (i)
1815 return i;
1816 else if (gup_flags & FOLL_HWPOISON)
1817 return -EHWPOISON;
1818 else
1819 return -EFAULT;
1820 }
1821 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1822 return i ? i : -EFAULT;
1823 BUG();
1824 }
e7f22e20
SW
1825
1826 if (tsk) {
1827 if (ret & VM_FAULT_MAJOR)
1828 tsk->maj_flt++;
1829 else
1830 tsk->min_flt++;
1831 }
83c54070 1832
53a7706d 1833 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1834 if (nonblocking)
1835 *nonblocking = 0;
53a7706d
ML
1836 return i;
1837 }
1838
a68d2ebc 1839 /*
83c54070
NP
1840 * The VM_FAULT_WRITE bit tells us that
1841 * do_wp_page has broken COW when necessary,
1842 * even if maybe_mkwrite decided not to set
1843 * pte_write. We can thus safely do subsequent
878b63ac
HD
1844 * page lookups as if they were reads. But only
1845 * do so when looping for pte_write is futile:
1846 * in some cases userspace may also be wanting
1847 * to write to the gotten user page, which a
1848 * read fault here might prevent (a readonly
1849 * page might get reCOWed by userspace write).
a68d2ebc 1850 */
878b63ac
HD
1851 if ((ret & VM_FAULT_WRITE) &&
1852 !(vma->vm_flags & VM_WRITE))
deceb6cd 1853 foll_flags &= ~FOLL_WRITE;
83c54070 1854
7f7bbbe5 1855 cond_resched();
1da177e4 1856 }
89f5b7da
LT
1857 if (IS_ERR(page))
1858 return i ? i : PTR_ERR(page);
1da177e4 1859 if (pages) {
08ef4729 1860 pages[i] = page;
03beb076 1861
a6f36be3 1862 flush_anon_page(vma, page, start);
08ef4729 1863 flush_dcache_page(page);
1da177e4 1864 }
95042f9e 1865next_page:
1da177e4
LT
1866 if (vmas)
1867 vmas[i] = vma;
1868 i++;
1869 start += PAGE_SIZE;
9d73777e
PZ
1870 nr_pages--;
1871 } while (nr_pages && start < vma->vm_end);
1872 } while (nr_pages);
1da177e4
LT
1873 return i;
1874}
0014bd99 1875EXPORT_SYMBOL(__get_user_pages);
b291f000 1876
2efaca92
BH
1877/*
1878 * fixup_user_fault() - manually resolve a user page fault
1879 * @tsk: the task_struct to use for page fault accounting, or
1880 * NULL if faults are not to be recorded.
1881 * @mm: mm_struct of target mm
1882 * @address: user address
1883 * @fault_flags:flags to pass down to handle_mm_fault()
1884 *
1885 * This is meant to be called in the specific scenario where for locking reasons
1886 * we try to access user memory in atomic context (within a pagefault_disable()
1887 * section), this returns -EFAULT, and we want to resolve the user fault before
1888 * trying again.
1889 *
1890 * Typically this is meant to be used by the futex code.
1891 *
1892 * The main difference with get_user_pages() is that this function will
1893 * unconditionally call handle_mm_fault() which will in turn perform all the
1894 * necessary SW fixup of the dirty and young bits in the PTE, while
1895 * handle_mm_fault() only guarantees to update these in the struct page.
1896 *
1897 * This is important for some architectures where those bits also gate the
1898 * access permission to the page because they are maintained in software. On
1899 * such architectures, gup() will not be enough to make a subsequent access
1900 * succeed.
1901 *
1902 * This should be called with the mm_sem held for read.
1903 */
1904int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1905 unsigned long address, unsigned int fault_flags)
1906{
1907 struct vm_area_struct *vma;
1908 int ret;
1909
1910 vma = find_extend_vma(mm, address);
1911 if (!vma || address < vma->vm_start)
1912 return -EFAULT;
1913
1914 ret = handle_mm_fault(mm, vma, address, fault_flags);
1915 if (ret & VM_FAULT_ERROR) {
1916 if (ret & VM_FAULT_OOM)
1917 return -ENOMEM;
1918 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1919 return -EHWPOISON;
1920 if (ret & VM_FAULT_SIGBUS)
1921 return -EFAULT;
1922 BUG();
1923 }
1924 if (tsk) {
1925 if (ret & VM_FAULT_MAJOR)
1926 tsk->maj_flt++;
1927 else
1928 tsk->min_flt++;
1929 }
1930 return 0;
1931}
1932
1933/*
d2bf6be8 1934 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1935 * @tsk: the task_struct to use for page fault accounting, or
1936 * NULL if faults are not to be recorded.
d2bf6be8
NP
1937 * @mm: mm_struct of target mm
1938 * @start: starting user address
9d73777e 1939 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1940 * @write: whether pages will be written to by the caller
1941 * @force: whether to force write access even if user mapping is
1942 * readonly. This will result in the page being COWed even
1943 * in MAP_SHARED mappings. You do not want this.
1944 * @pages: array that receives pointers to the pages pinned.
1945 * Should be at least nr_pages long. Or NULL, if caller
1946 * only intends to ensure the pages are faulted in.
1947 * @vmas: array of pointers to vmas corresponding to each page.
1948 * Or NULL if the caller does not require them.
1949 *
1950 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1951 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1952 * were pinned, returns -errno. Each page returned must be released
1953 * with a put_page() call when it is finished with. vmas will only
1954 * remain valid while mmap_sem is held.
1955 *
1956 * Must be called with mmap_sem held for read or write.
1957 *
1958 * get_user_pages walks a process's page tables and takes a reference to
1959 * each struct page that each user address corresponds to at a given
1960 * instant. That is, it takes the page that would be accessed if a user
1961 * thread accesses the given user virtual address at that instant.
1962 *
1963 * This does not guarantee that the page exists in the user mappings when
1964 * get_user_pages returns, and there may even be a completely different
1965 * page there in some cases (eg. if mmapped pagecache has been invalidated
1966 * and subsequently re faulted). However it does guarantee that the page
1967 * won't be freed completely. And mostly callers simply care that the page
1968 * contains data that was valid *at some point in time*. Typically, an IO
1969 * or similar operation cannot guarantee anything stronger anyway because
1970 * locks can't be held over the syscall boundary.
1971 *
1972 * If write=0, the page must not be written to. If the page is written to,
1973 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1974 * after the page is finished with, and before put_page is called.
1975 *
1976 * get_user_pages is typically used for fewer-copy IO operations, to get a
1977 * handle on the memory by some means other than accesses via the user virtual
1978 * addresses. The pages may be submitted for DMA to devices or accessed via
1979 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1980 * use the correct cache flushing APIs.
1981 *
1982 * See also get_user_pages_fast, for performance critical applications.
1983 */
b291f000 1984int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
9d73777e 1985 unsigned long start, int nr_pages, int write, int force,
b291f000
NP
1986 struct page **pages, struct vm_area_struct **vmas)
1987{
58fa879e 1988 int flags = FOLL_TOUCH;
b291f000 1989
58fa879e
HD
1990 if (pages)
1991 flags |= FOLL_GET;
b291f000 1992 if (write)
58fa879e 1993 flags |= FOLL_WRITE;
b291f000 1994 if (force)
58fa879e 1995 flags |= FOLL_FORCE;
b291f000 1996
53a7706d
ML
1997 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1998 NULL);
b291f000 1999}
1da177e4
LT
2000EXPORT_SYMBOL(get_user_pages);
2001
f3e8fccd
HD
2002/**
2003 * get_dump_page() - pin user page in memory while writing it to core dump
2004 * @addr: user address
2005 *
2006 * Returns struct page pointer of user page pinned for dump,
2007 * to be freed afterwards by page_cache_release() or put_page().
2008 *
2009 * Returns NULL on any kind of failure - a hole must then be inserted into
2010 * the corefile, to preserve alignment with its headers; and also returns
2011 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2012 * allowing a hole to be left in the corefile to save diskspace.
2013 *
2014 * Called without mmap_sem, but after all other threads have been killed.
2015 */
2016#ifdef CONFIG_ELF_CORE
2017struct page *get_dump_page(unsigned long addr)
2018{
2019 struct vm_area_struct *vma;
2020 struct page *page;
2021
2022 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2023 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2024 NULL) < 1)
f3e8fccd 2025 return NULL;
f3e8fccd
HD
2026 flush_cache_page(vma, addr, page_to_pfn(page));
2027 return page;
2028}
2029#endif /* CONFIG_ELF_CORE */
2030
25ca1d6c 2031pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2032 spinlock_t **ptl)
c9cfcddf
LT
2033{
2034 pgd_t * pgd = pgd_offset(mm, addr);
2035 pud_t * pud = pud_alloc(mm, pgd, addr);
2036 if (pud) {
49c91fb0 2037 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2038 if (pmd) {
2039 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2040 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2041 }
c9cfcddf
LT
2042 }
2043 return NULL;
2044}
2045
238f58d8
LT
2046/*
2047 * This is the old fallback for page remapping.
2048 *
2049 * For historical reasons, it only allows reserved pages. Only
2050 * old drivers should use this, and they needed to mark their
2051 * pages reserved for the old functions anyway.
2052 */
423bad60
NP
2053static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2054 struct page *page, pgprot_t prot)
238f58d8 2055{
423bad60 2056 struct mm_struct *mm = vma->vm_mm;
238f58d8 2057 int retval;
c9cfcddf 2058 pte_t *pte;
8a9f3ccd
BS
2059 spinlock_t *ptl;
2060
238f58d8 2061 retval = -EINVAL;
a145dd41 2062 if (PageAnon(page))
5b4e655e 2063 goto out;
238f58d8
LT
2064 retval = -ENOMEM;
2065 flush_dcache_page(page);
c9cfcddf 2066 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2067 if (!pte)
5b4e655e 2068 goto out;
238f58d8
LT
2069 retval = -EBUSY;
2070 if (!pte_none(*pte))
2071 goto out_unlock;
2072
2073 /* Ok, finally just insert the thing.. */
2074 get_page(page);
34e55232 2075 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2076 page_add_file_rmap(page);
2077 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2078
2079 retval = 0;
8a9f3ccd
BS
2080 pte_unmap_unlock(pte, ptl);
2081 return retval;
238f58d8
LT
2082out_unlock:
2083 pte_unmap_unlock(pte, ptl);
2084out:
2085 return retval;
2086}
2087
bfa5bf6d
REB
2088/**
2089 * vm_insert_page - insert single page into user vma
2090 * @vma: user vma to map to
2091 * @addr: target user address of this page
2092 * @page: source kernel page
2093 *
a145dd41
LT
2094 * This allows drivers to insert individual pages they've allocated
2095 * into a user vma.
2096 *
2097 * The page has to be a nice clean _individual_ kernel allocation.
2098 * If you allocate a compound page, you need to have marked it as
2099 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2100 * (see split_page()).
a145dd41
LT
2101 *
2102 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2103 * took an arbitrary page protection parameter. This doesn't allow
2104 * that. Your vma protection will have to be set up correctly, which
2105 * means that if you want a shared writable mapping, you'd better
2106 * ask for a shared writable mapping!
2107 *
2108 * The page does not need to be reserved.
4b6e1e37
KK
2109 *
2110 * Usually this function is called from f_op->mmap() handler
2111 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2112 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2113 * function from other places, for example from page-fault handler.
a145dd41 2114 */
423bad60
NP
2115int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2116 struct page *page)
a145dd41
LT
2117{
2118 if (addr < vma->vm_start || addr >= vma->vm_end)
2119 return -EFAULT;
2120 if (!page_count(page))
2121 return -EINVAL;
4b6e1e37
KK
2122 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2123 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2124 BUG_ON(vma->vm_flags & VM_PFNMAP);
2125 vma->vm_flags |= VM_MIXEDMAP;
2126 }
423bad60 2127 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2128}
e3c3374f 2129EXPORT_SYMBOL(vm_insert_page);
a145dd41 2130
423bad60
NP
2131static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2132 unsigned long pfn, pgprot_t prot)
2133{
2134 struct mm_struct *mm = vma->vm_mm;
2135 int retval;
2136 pte_t *pte, entry;
2137 spinlock_t *ptl;
2138
2139 retval = -ENOMEM;
2140 pte = get_locked_pte(mm, addr, &ptl);
2141 if (!pte)
2142 goto out;
2143 retval = -EBUSY;
2144 if (!pte_none(*pte))
2145 goto out_unlock;
2146
2147 /* Ok, finally just insert the thing.. */
2148 entry = pte_mkspecial(pfn_pte(pfn, prot));
2149 set_pte_at(mm, addr, pte, entry);
4b3073e1 2150 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2151
2152 retval = 0;
2153out_unlock:
2154 pte_unmap_unlock(pte, ptl);
2155out:
2156 return retval;
2157}
2158
e0dc0d8f
NP
2159/**
2160 * vm_insert_pfn - insert single pfn into user vma
2161 * @vma: user vma to map to
2162 * @addr: target user address of this page
2163 * @pfn: source kernel pfn
2164 *
c462f179 2165 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2166 * they've allocated into a user vma. Same comments apply.
2167 *
2168 * This function should only be called from a vm_ops->fault handler, and
2169 * in that case the handler should return NULL.
0d71d10a
NP
2170 *
2171 * vma cannot be a COW mapping.
2172 *
2173 * As this is called only for pages that do not currently exist, we
2174 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2175 */
2176int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2177 unsigned long pfn)
e0dc0d8f 2178{
2ab64037 2179 int ret;
e4b866ed 2180 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2181 /*
2182 * Technically, architectures with pte_special can avoid all these
2183 * restrictions (same for remap_pfn_range). However we would like
2184 * consistency in testing and feature parity among all, so we should
2185 * try to keep these invariants in place for everybody.
2186 */
b379d790
JH
2187 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2188 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2189 (VM_PFNMAP|VM_MIXEDMAP));
2190 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2191 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2192
423bad60
NP
2193 if (addr < vma->vm_start || addr >= vma->vm_end)
2194 return -EFAULT;
5180da41 2195 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2196 return -EINVAL;
2197
e4b866ed 2198 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2199
2ab64037 2200 return ret;
423bad60
NP
2201}
2202EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2203
423bad60
NP
2204int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2205 unsigned long pfn)
2206{
2207 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2208
423bad60
NP
2209 if (addr < vma->vm_start || addr >= vma->vm_end)
2210 return -EFAULT;
e0dc0d8f 2211
423bad60
NP
2212 /*
2213 * If we don't have pte special, then we have to use the pfn_valid()
2214 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2215 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2216 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2217 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2218 */
2219 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2220 struct page *page;
2221
2222 page = pfn_to_page(pfn);
2223 return insert_page(vma, addr, page, vma->vm_page_prot);
2224 }
2225 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2226}
423bad60 2227EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2228
1da177e4
LT
2229/*
2230 * maps a range of physical memory into the requested pages. the old
2231 * mappings are removed. any references to nonexistent pages results
2232 * in null mappings (currently treated as "copy-on-access")
2233 */
2234static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2235 unsigned long addr, unsigned long end,
2236 unsigned long pfn, pgprot_t prot)
2237{
2238 pte_t *pte;
c74df32c 2239 spinlock_t *ptl;
1da177e4 2240
c74df32c 2241 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2242 if (!pte)
2243 return -ENOMEM;
6606c3e0 2244 arch_enter_lazy_mmu_mode();
1da177e4
LT
2245 do {
2246 BUG_ON(!pte_none(*pte));
7e675137 2247 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2248 pfn++;
2249 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2250 arch_leave_lazy_mmu_mode();
c74df32c 2251 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2252 return 0;
2253}
2254
2255static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2256 unsigned long addr, unsigned long end,
2257 unsigned long pfn, pgprot_t prot)
2258{
2259 pmd_t *pmd;
2260 unsigned long next;
2261
2262 pfn -= addr >> PAGE_SHIFT;
2263 pmd = pmd_alloc(mm, pud, addr);
2264 if (!pmd)
2265 return -ENOMEM;
f66055ab 2266 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2267 do {
2268 next = pmd_addr_end(addr, end);
2269 if (remap_pte_range(mm, pmd, addr, next,
2270 pfn + (addr >> PAGE_SHIFT), prot))
2271 return -ENOMEM;
2272 } while (pmd++, addr = next, addr != end);
2273 return 0;
2274}
2275
2276static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2277 unsigned long addr, unsigned long end,
2278 unsigned long pfn, pgprot_t prot)
2279{
2280 pud_t *pud;
2281 unsigned long next;
2282
2283 pfn -= addr >> PAGE_SHIFT;
2284 pud = pud_alloc(mm, pgd, addr);
2285 if (!pud)
2286 return -ENOMEM;
2287 do {
2288 next = pud_addr_end(addr, end);
2289 if (remap_pmd_range(mm, pud, addr, next,
2290 pfn + (addr >> PAGE_SHIFT), prot))
2291 return -ENOMEM;
2292 } while (pud++, addr = next, addr != end);
2293 return 0;
2294}
2295
bfa5bf6d
REB
2296/**
2297 * remap_pfn_range - remap kernel memory to userspace
2298 * @vma: user vma to map to
2299 * @addr: target user address to start at
2300 * @pfn: physical address of kernel memory
2301 * @size: size of map area
2302 * @prot: page protection flags for this mapping
2303 *
2304 * Note: this is only safe if the mm semaphore is held when called.
2305 */
1da177e4
LT
2306int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2307 unsigned long pfn, unsigned long size, pgprot_t prot)
2308{
2309 pgd_t *pgd;
2310 unsigned long next;
2d15cab8 2311 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2312 struct mm_struct *mm = vma->vm_mm;
2313 int err;
2314
2315 /*
2316 * Physically remapped pages are special. Tell the
2317 * rest of the world about it:
2318 * VM_IO tells people not to look at these pages
2319 * (accesses can have side effects).
6aab341e
LT
2320 * VM_PFNMAP tells the core MM that the base pages are just
2321 * raw PFN mappings, and do not have a "struct page" associated
2322 * with them.
314e51b9
KK
2323 * VM_DONTEXPAND
2324 * Disable vma merging and expanding with mremap().
2325 * VM_DONTDUMP
2326 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2327 *
2328 * There's a horrible special case to handle copy-on-write
2329 * behaviour that some programs depend on. We mark the "original"
2330 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2331 * See vm_normal_page() for details.
1da177e4 2332 */
b3b9c293
KK
2333 if (is_cow_mapping(vma->vm_flags)) {
2334 if (addr != vma->vm_start || end != vma->vm_end)
2335 return -EINVAL;
fb155c16 2336 vma->vm_pgoff = pfn;
b3b9c293
KK
2337 }
2338
2339 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2340 if (err)
3c8bb73a 2341 return -EINVAL;
fb155c16 2342
314e51b9 2343 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2344
2345 BUG_ON(addr >= end);
2346 pfn -= addr >> PAGE_SHIFT;
2347 pgd = pgd_offset(mm, addr);
2348 flush_cache_range(vma, addr, end);
1da177e4
LT
2349 do {
2350 next = pgd_addr_end(addr, end);
2351 err = remap_pud_range(mm, pgd, addr, next,
2352 pfn + (addr >> PAGE_SHIFT), prot);
2353 if (err)
2354 break;
2355 } while (pgd++, addr = next, addr != end);
2ab64037 2356
2357 if (err)
5180da41 2358 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2359
1da177e4
LT
2360 return err;
2361}
2362EXPORT_SYMBOL(remap_pfn_range);
2363
aee16b3c
JF
2364static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2365 unsigned long addr, unsigned long end,
2366 pte_fn_t fn, void *data)
2367{
2368 pte_t *pte;
2369 int err;
2f569afd 2370 pgtable_t token;
94909914 2371 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2372
2373 pte = (mm == &init_mm) ?
2374 pte_alloc_kernel(pmd, addr) :
2375 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2376 if (!pte)
2377 return -ENOMEM;
2378
2379 BUG_ON(pmd_huge(*pmd));
2380
38e0edb1
JF
2381 arch_enter_lazy_mmu_mode();
2382
2f569afd 2383 token = pmd_pgtable(*pmd);
aee16b3c
JF
2384
2385 do {
c36987e2 2386 err = fn(pte++, token, addr, data);
aee16b3c
JF
2387 if (err)
2388 break;
c36987e2 2389 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2390
38e0edb1
JF
2391 arch_leave_lazy_mmu_mode();
2392
aee16b3c
JF
2393 if (mm != &init_mm)
2394 pte_unmap_unlock(pte-1, ptl);
2395 return err;
2396}
2397
2398static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2399 unsigned long addr, unsigned long end,
2400 pte_fn_t fn, void *data)
2401{
2402 pmd_t *pmd;
2403 unsigned long next;
2404 int err;
2405
ceb86879
AK
2406 BUG_ON(pud_huge(*pud));
2407
aee16b3c
JF
2408 pmd = pmd_alloc(mm, pud, addr);
2409 if (!pmd)
2410 return -ENOMEM;
2411 do {
2412 next = pmd_addr_end(addr, end);
2413 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2414 if (err)
2415 break;
2416 } while (pmd++, addr = next, addr != end);
2417 return err;
2418}
2419
2420static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2421 unsigned long addr, unsigned long end,
2422 pte_fn_t fn, void *data)
2423{
2424 pud_t *pud;
2425 unsigned long next;
2426 int err;
2427
2428 pud = pud_alloc(mm, pgd, addr);
2429 if (!pud)
2430 return -ENOMEM;
2431 do {
2432 next = pud_addr_end(addr, end);
2433 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2434 if (err)
2435 break;
2436 } while (pud++, addr = next, addr != end);
2437 return err;
2438}
2439
2440/*
2441 * Scan a region of virtual memory, filling in page tables as necessary
2442 * and calling a provided function on each leaf page table.
2443 */
2444int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2445 unsigned long size, pte_fn_t fn, void *data)
2446{
2447 pgd_t *pgd;
2448 unsigned long next;
57250a5b 2449 unsigned long end = addr + size;
aee16b3c
JF
2450 int err;
2451
2452 BUG_ON(addr >= end);
2453 pgd = pgd_offset(mm, addr);
2454 do {
2455 next = pgd_addr_end(addr, end);
2456 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2457 if (err)
2458 break;
2459 } while (pgd++, addr = next, addr != end);
57250a5b 2460
aee16b3c
JF
2461 return err;
2462}
2463EXPORT_SYMBOL_GPL(apply_to_page_range);
2464
8f4e2101
HD
2465/*
2466 * handle_pte_fault chooses page fault handler according to an entry
2467 * which was read non-atomically. Before making any commitment, on
2468 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2469 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2470 * must check under lock before unmapping the pte and proceeding
2471 * (but do_wp_page is only called after already making such a check;
a335b2e1 2472 * and do_anonymous_page can safely check later on).
8f4e2101 2473 */
4c21e2f2 2474static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2475 pte_t *page_table, pte_t orig_pte)
2476{
2477 int same = 1;
2478#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2479 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2480 spinlock_t *ptl = pte_lockptr(mm, pmd);
2481 spin_lock(ptl);
8f4e2101 2482 same = pte_same(*page_table, orig_pte);
4c21e2f2 2483 spin_unlock(ptl);
8f4e2101
HD
2484 }
2485#endif
2486 pte_unmap(page_table);
2487 return same;
2488}
2489
9de455b2 2490static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2491{
2492 /*
2493 * If the source page was a PFN mapping, we don't have
2494 * a "struct page" for it. We do a best-effort copy by
2495 * just copying from the original user address. If that
2496 * fails, we just zero-fill it. Live with it.
2497 */
2498 if (unlikely(!src)) {
9b04c5fe 2499 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2500 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2501
2502 /*
2503 * This really shouldn't fail, because the page is there
2504 * in the page tables. But it might just be unreadable,
2505 * in which case we just give up and fill the result with
2506 * zeroes.
2507 */
2508 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2509 clear_page(kaddr);
9b04c5fe 2510 kunmap_atomic(kaddr);
c4ec7b0d 2511 flush_dcache_page(dst);
0ed361de
NP
2512 } else
2513 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2514}
2515
1da177e4
LT
2516/*
2517 * This routine handles present pages, when users try to write
2518 * to a shared page. It is done by copying the page to a new address
2519 * and decrementing the shared-page counter for the old page.
2520 *
1da177e4
LT
2521 * Note that this routine assumes that the protection checks have been
2522 * done by the caller (the low-level page fault routine in most cases).
2523 * Thus we can safely just mark it writable once we've done any necessary
2524 * COW.
2525 *
2526 * We also mark the page dirty at this point even though the page will
2527 * change only once the write actually happens. This avoids a few races,
2528 * and potentially makes it more efficient.
2529 *
8f4e2101
HD
2530 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2531 * but allow concurrent faults), with pte both mapped and locked.
2532 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2533 */
65500d23
HD
2534static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2535 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2536 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2537 __releases(ptl)
1da177e4 2538{
2ec74c3e 2539 struct page *old_page, *new_page = NULL;
1da177e4 2540 pte_t entry;
b009c024 2541 int ret = 0;
a200ee18 2542 int page_mkwrite = 0;
d08b3851 2543 struct page *dirty_page = NULL;
1756954c
DR
2544 unsigned long mmun_start = 0; /* For mmu_notifiers */
2545 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2546
6aab341e 2547 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2548 if (!old_page) {
2549 /*
2550 * VM_MIXEDMAP !pfn_valid() case
2551 *
2552 * We should not cow pages in a shared writeable mapping.
2553 * Just mark the pages writable as we can't do any dirty
2554 * accounting on raw pfn maps.
2555 */
2556 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557 (VM_WRITE|VM_SHARED))
2558 goto reuse;
6aab341e 2559 goto gotten;
251b97f5 2560 }
1da177e4 2561
d08b3851 2562 /*
ee6a6457
PZ
2563 * Take out anonymous pages first, anonymous shared vmas are
2564 * not dirty accountable.
d08b3851 2565 */
9a840895 2566 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2567 if (!trylock_page(old_page)) {
2568 page_cache_get(old_page);
2569 pte_unmap_unlock(page_table, ptl);
2570 lock_page(old_page);
2571 page_table = pte_offset_map_lock(mm, pmd, address,
2572 &ptl);
2573 if (!pte_same(*page_table, orig_pte)) {
2574 unlock_page(old_page);
ab967d86
HD
2575 goto unlock;
2576 }
2577 page_cache_release(old_page);
ee6a6457 2578 }
b009c024 2579 if (reuse_swap_page(old_page)) {
c44b6743
RR
2580 /*
2581 * The page is all ours. Move it to our anon_vma so
2582 * the rmap code will not search our parent or siblings.
2583 * Protected against the rmap code by the page lock.
2584 */
2585 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2586 unlock_page(old_page);
2587 goto reuse;
2588 }
ab967d86 2589 unlock_page(old_page);
ee6a6457 2590 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2591 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2592 /*
2593 * Only catch write-faults on shared writable pages,
2594 * read-only shared pages can get COWed by
2595 * get_user_pages(.write=1, .force=1).
2596 */
9637a5ef 2597 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2598 struct vm_fault vmf;
2599 int tmp;
2600
2601 vmf.virtual_address = (void __user *)(address &
2602 PAGE_MASK);
2603 vmf.pgoff = old_page->index;
2604 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2605 vmf.page = old_page;
2606
9637a5ef
DH
2607 /*
2608 * Notify the address space that the page is about to
2609 * become writable so that it can prohibit this or wait
2610 * for the page to get into an appropriate state.
2611 *
2612 * We do this without the lock held, so that it can
2613 * sleep if it needs to.
2614 */
2615 page_cache_get(old_page);
2616 pte_unmap_unlock(page_table, ptl);
2617
c2ec175c
NP
2618 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2619 if (unlikely(tmp &
2620 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2621 ret = tmp;
9637a5ef 2622 goto unwritable_page;
c2ec175c 2623 }
b827e496
NP
2624 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2625 lock_page(old_page);
2626 if (!old_page->mapping) {
2627 ret = 0; /* retry the fault */
2628 unlock_page(old_page);
2629 goto unwritable_page;
2630 }
2631 } else
2632 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2633
9637a5ef
DH
2634 /*
2635 * Since we dropped the lock we need to revalidate
2636 * the PTE as someone else may have changed it. If
2637 * they did, we just return, as we can count on the
2638 * MMU to tell us if they didn't also make it writable.
2639 */
2640 page_table = pte_offset_map_lock(mm, pmd, address,
2641 &ptl);
b827e496
NP
2642 if (!pte_same(*page_table, orig_pte)) {
2643 unlock_page(old_page);
9637a5ef 2644 goto unlock;
b827e496 2645 }
a200ee18
PZ
2646
2647 page_mkwrite = 1;
1da177e4 2648 }
d08b3851
PZ
2649 dirty_page = old_page;
2650 get_page(dirty_page);
9637a5ef 2651
251b97f5 2652reuse:
9637a5ef
DH
2653 flush_cache_page(vma, address, pte_pfn(orig_pte));
2654 entry = pte_mkyoung(orig_pte);
2655 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2656 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2657 update_mmu_cache(vma, address, page_table);
72ddc8f7 2658 pte_unmap_unlock(page_table, ptl);
9637a5ef 2659 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2660
2661 if (!dirty_page)
2662 return ret;
2663
2664 /*
2665 * Yes, Virginia, this is actually required to prevent a race
2666 * with clear_page_dirty_for_io() from clearing the page dirty
2667 * bit after it clear all dirty ptes, but before a racing
2668 * do_wp_page installs a dirty pte.
2669 *
a335b2e1 2670 * __do_fault is protected similarly.
72ddc8f7
ML
2671 */
2672 if (!page_mkwrite) {
2673 wait_on_page_locked(dirty_page);
2674 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2675 /* file_update_time outside page_lock */
2676 if (vma->vm_file)
2677 file_update_time(vma->vm_file);
72ddc8f7
ML
2678 }
2679 put_page(dirty_page);
2680 if (page_mkwrite) {
2681 struct address_space *mapping = dirty_page->mapping;
2682
2683 set_page_dirty(dirty_page);
2684 unlock_page(dirty_page);
2685 page_cache_release(dirty_page);
2686 if (mapping) {
2687 /*
2688 * Some device drivers do not set page.mapping
2689 * but still dirty their pages
2690 */
2691 balance_dirty_pages_ratelimited(mapping);
2692 }
2693 }
2694
72ddc8f7 2695 return ret;
1da177e4 2696 }
1da177e4
LT
2697
2698 /*
2699 * Ok, we need to copy. Oh, well..
2700 */
b5810039 2701 page_cache_get(old_page);
920fc356 2702gotten:
8f4e2101 2703 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2704
2705 if (unlikely(anon_vma_prepare(vma)))
65500d23 2706 goto oom;
a13ea5b7 2707
62eede62 2708 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2709 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2710 if (!new_page)
2711 goto oom;
2712 } else {
2713 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2714 if (!new_page)
2715 goto oom;
2716 cow_user_page(new_page, old_page, address, vma);
2717 }
2718 __SetPageUptodate(new_page);
2719
2c26fdd7 2720 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2721 goto oom_free_new;
2722
6bdb913f 2723 mmun_start = address & PAGE_MASK;
1756954c 2724 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2725 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2726
1da177e4
LT
2727 /*
2728 * Re-check the pte - we dropped the lock
2729 */
8f4e2101 2730 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2731 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2732 if (old_page) {
920fc356 2733 if (!PageAnon(old_page)) {
34e55232
KH
2734 dec_mm_counter_fast(mm, MM_FILEPAGES);
2735 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2736 }
2737 } else
34e55232 2738 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2739 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2740 entry = mk_pte(new_page, vma->vm_page_prot);
2741 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2742 /*
2743 * Clear the pte entry and flush it first, before updating the
2744 * pte with the new entry. This will avoid a race condition
2745 * seen in the presence of one thread doing SMC and another
2746 * thread doing COW.
2747 */
828502d3 2748 ptep_clear_flush(vma, address, page_table);
9617d95e 2749 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2750 /*
2751 * We call the notify macro here because, when using secondary
2752 * mmu page tables (such as kvm shadow page tables), we want the
2753 * new page to be mapped directly into the secondary page table.
2754 */
2755 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2756 update_mmu_cache(vma, address, page_table);
945754a1
NP
2757 if (old_page) {
2758 /*
2759 * Only after switching the pte to the new page may
2760 * we remove the mapcount here. Otherwise another
2761 * process may come and find the rmap count decremented
2762 * before the pte is switched to the new page, and
2763 * "reuse" the old page writing into it while our pte
2764 * here still points into it and can be read by other
2765 * threads.
2766 *
2767 * The critical issue is to order this
2768 * page_remove_rmap with the ptp_clear_flush above.
2769 * Those stores are ordered by (if nothing else,)
2770 * the barrier present in the atomic_add_negative
2771 * in page_remove_rmap.
2772 *
2773 * Then the TLB flush in ptep_clear_flush ensures that
2774 * no process can access the old page before the
2775 * decremented mapcount is visible. And the old page
2776 * cannot be reused until after the decremented
2777 * mapcount is visible. So transitively, TLBs to
2778 * old page will be flushed before it can be reused.
2779 */
edc315fd 2780 page_remove_rmap(old_page);
945754a1
NP
2781 }
2782
1da177e4
LT
2783 /* Free the old page.. */
2784 new_page = old_page;
f33ea7f4 2785 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2786 } else
2787 mem_cgroup_uncharge_page(new_page);
2788
6bdb913f
HE
2789 if (new_page)
2790 page_cache_release(new_page);
65500d23 2791unlock:
8f4e2101 2792 pte_unmap_unlock(page_table, ptl);
1756954c 2793 if (mmun_end > mmun_start)
6bdb913f 2794 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2795 if (old_page) {
2796 /*
2797 * Don't let another task, with possibly unlocked vma,
2798 * keep the mlocked page.
2799 */
2800 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2801 lock_page(old_page); /* LRU manipulation */
2802 munlock_vma_page(old_page);
2803 unlock_page(old_page);
2804 }
2805 page_cache_release(old_page);
2806 }
f33ea7f4 2807 return ret;
8a9f3ccd 2808oom_free_new:
6dbf6d3b 2809 page_cache_release(new_page);
65500d23 2810oom:
66521d5a 2811 if (old_page)
920fc356 2812 page_cache_release(old_page);
1da177e4 2813 return VM_FAULT_OOM;
9637a5ef
DH
2814
2815unwritable_page:
2816 page_cache_release(old_page);
c2ec175c 2817 return ret;
1da177e4
LT
2818}
2819
97a89413 2820static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2821 unsigned long start_addr, unsigned long end_addr,
2822 struct zap_details *details)
2823{
f5cc4eef 2824 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2825}
2826
6b2dbba8 2827static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2828 struct zap_details *details)
2829{
2830 struct vm_area_struct *vma;
1da177e4
LT
2831 pgoff_t vba, vea, zba, zea;
2832
6b2dbba8 2833 vma_interval_tree_foreach(vma, root,
1da177e4 2834 details->first_index, details->last_index) {
1da177e4
LT
2835
2836 vba = vma->vm_pgoff;
2837 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2838 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2839 zba = details->first_index;
2840 if (zba < vba)
2841 zba = vba;
2842 zea = details->last_index;
2843 if (zea > vea)
2844 zea = vea;
2845
97a89413 2846 unmap_mapping_range_vma(vma,
1da177e4
LT
2847 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2848 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2849 details);
1da177e4
LT
2850 }
2851}
2852
2853static inline void unmap_mapping_range_list(struct list_head *head,
2854 struct zap_details *details)
2855{
2856 struct vm_area_struct *vma;
2857
2858 /*
2859 * In nonlinear VMAs there is no correspondence between virtual address
2860 * offset and file offset. So we must perform an exhaustive search
2861 * across *all* the pages in each nonlinear VMA, not just the pages
2862 * whose virtual address lies outside the file truncation point.
2863 */
6b2dbba8 2864 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2865 details->nonlinear_vma = vma;
97a89413 2866 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2867 }
2868}
2869
2870/**
72fd4a35 2871 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2872 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2873 * @holebegin: byte in first page to unmap, relative to the start of
2874 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2875 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2876 * must keep the partial page. In contrast, we must get rid of
2877 * partial pages.
2878 * @holelen: size of prospective hole in bytes. This will be rounded
2879 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2880 * end of the file.
2881 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2882 * but 0 when invalidating pagecache, don't throw away private data.
2883 */
2884void unmap_mapping_range(struct address_space *mapping,
2885 loff_t const holebegin, loff_t const holelen, int even_cows)
2886{
2887 struct zap_details details;
2888 pgoff_t hba = holebegin >> PAGE_SHIFT;
2889 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2890
2891 /* Check for overflow. */
2892 if (sizeof(holelen) > sizeof(hlen)) {
2893 long long holeend =
2894 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2895 if (holeend & ~(long long)ULONG_MAX)
2896 hlen = ULONG_MAX - hba + 1;
2897 }
2898
2899 details.check_mapping = even_cows? NULL: mapping;
2900 details.nonlinear_vma = NULL;
2901 details.first_index = hba;
2902 details.last_index = hba + hlen - 1;
2903 if (details.last_index < details.first_index)
2904 details.last_index = ULONG_MAX;
1da177e4 2905
1da177e4 2906
3d48ae45 2907 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2908 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2909 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2910 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2911 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2912 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2913}
2914EXPORT_SYMBOL(unmap_mapping_range);
2915
1da177e4 2916/*
8f4e2101
HD
2917 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2918 * but allow concurrent faults), and pte mapped but not yet locked.
2919 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2920 */
65500d23
HD
2921static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2922 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2923 unsigned int flags, pte_t orig_pte)
1da177e4 2924{
8f4e2101 2925 spinlock_t *ptl;
4969c119 2926 struct page *page, *swapcache = NULL;
65500d23 2927 swp_entry_t entry;
1da177e4 2928 pte_t pte;
d065bd81 2929 int locked;
56039efa 2930 struct mem_cgroup *ptr;
ad8c2ee8 2931 int exclusive = 0;
83c54070 2932 int ret = 0;
1da177e4 2933
4c21e2f2 2934 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2935 goto out;
65500d23
HD
2936
2937 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2938 if (unlikely(non_swap_entry(entry))) {
2939 if (is_migration_entry(entry)) {
2940 migration_entry_wait(mm, pmd, address);
2941 } else if (is_hwpoison_entry(entry)) {
2942 ret = VM_FAULT_HWPOISON;
2943 } else {
2944 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2945 ret = VM_FAULT_SIGBUS;
d1737fdb 2946 }
0697212a
CL
2947 goto out;
2948 }
0ff92245 2949 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2950 page = lookup_swap_cache(entry);
2951 if (!page) {
02098fea
HD
2952 page = swapin_readahead(entry,
2953 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2954 if (!page) {
2955 /*
8f4e2101
HD
2956 * Back out if somebody else faulted in this pte
2957 * while we released the pte lock.
1da177e4 2958 */
8f4e2101 2959 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2960 if (likely(pte_same(*page_table, orig_pte)))
2961 ret = VM_FAULT_OOM;
0ff92245 2962 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2963 goto unlock;
1da177e4
LT
2964 }
2965
2966 /* Had to read the page from swap area: Major fault */
2967 ret = VM_FAULT_MAJOR;
f8891e5e 2968 count_vm_event(PGMAJFAULT);
456f998e 2969 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2970 } else if (PageHWPoison(page)) {
71f72525
WF
2971 /*
2972 * hwpoisoned dirty swapcache pages are kept for killing
2973 * owner processes (which may be unknown at hwpoison time)
2974 */
d1737fdb
AK
2975 ret = VM_FAULT_HWPOISON;
2976 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2977 goto out_release;
1da177e4
LT
2978 }
2979
d065bd81 2980 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2981
073e587e 2982 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2983 if (!locked) {
2984 ret |= VM_FAULT_RETRY;
2985 goto out_release;
2986 }
073e587e 2987
4969c119 2988 /*
31c4a3d3
HD
2989 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2990 * release the swapcache from under us. The page pin, and pte_same
2991 * test below, are not enough to exclude that. Even if it is still
2992 * swapcache, we need to check that the page's swap has not changed.
4969c119 2993 */
31c4a3d3 2994 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2995 goto out_page;
2996
cbf86cfe
HD
2997 swapcache = page;
2998 page = ksm_might_need_to_copy(page, vma, address);
2999 if (unlikely(!page)) {
3000 ret = VM_FAULT_OOM;
3001 page = swapcache;
3002 swapcache = NULL;
3003 goto out_page;
5ad64688 3004 }
cbf86cfe
HD
3005 if (page == swapcache)
3006 swapcache = NULL;
5ad64688 3007
2c26fdd7 3008 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3009 ret = VM_FAULT_OOM;
bc43f75c 3010 goto out_page;
8a9f3ccd
BS
3011 }
3012
1da177e4 3013 /*
8f4e2101 3014 * Back out if somebody else already faulted in this pte.
1da177e4 3015 */
8f4e2101 3016 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3017 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3018 goto out_nomap;
b8107480
KK
3019
3020 if (unlikely(!PageUptodate(page))) {
3021 ret = VM_FAULT_SIGBUS;
3022 goto out_nomap;
1da177e4
LT
3023 }
3024
8c7c6e34
KH
3025 /*
3026 * The page isn't present yet, go ahead with the fault.
3027 *
3028 * Be careful about the sequence of operations here.
3029 * To get its accounting right, reuse_swap_page() must be called
3030 * while the page is counted on swap but not yet in mapcount i.e.
3031 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3032 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3033 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3034 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3035 * in page->private. In this case, a record in swap_cgroup is silently
3036 * discarded at swap_free().
8c7c6e34 3037 */
1da177e4 3038
34e55232 3039 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3040 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3041 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3042 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3043 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3044 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3045 ret |= VM_FAULT_WRITE;
ad8c2ee8 3046 exclusive = 1;
1da177e4 3047 }
1da177e4
LT
3048 flush_icache_page(vma, page);
3049 set_pte_at(mm, address, page_table, pte);
af34770e
JW
3050 if (swapcache) /* ksm created a completely new copy */
3051 page_add_new_anon_rmap(page, vma, address);
3052 else
3053 do_page_add_anon_rmap(page, vma, address, exclusive);
03f3c433
KH
3054 /* It's better to call commit-charge after rmap is established */
3055 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3056
c475a8ab 3057 swap_free(entry);
b291f000 3058 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3059 try_to_free_swap(page);
c475a8ab 3060 unlock_page(page);
4969c119
AA
3061 if (swapcache) {
3062 /*
3063 * Hold the lock to avoid the swap entry to be reused
3064 * until we take the PT lock for the pte_same() check
3065 * (to avoid false positives from pte_same). For
3066 * further safety release the lock after the swap_free
3067 * so that the swap count won't change under a
3068 * parallel locked swapcache.
3069 */
3070 unlock_page(swapcache);
3071 page_cache_release(swapcache);
3072 }
c475a8ab 3073
30c9f3a9 3074 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3075 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3076 if (ret & VM_FAULT_ERROR)
3077 ret &= VM_FAULT_ERROR;
1da177e4
LT
3078 goto out;
3079 }
3080
3081 /* No need to invalidate - it was non-present before */
4b3073e1 3082 update_mmu_cache(vma, address, page_table);
65500d23 3083unlock:
8f4e2101 3084 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3085out:
3086 return ret;
b8107480 3087out_nomap:
7a81b88c 3088 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3089 pte_unmap_unlock(page_table, ptl);
bc43f75c 3090out_page:
b8107480 3091 unlock_page(page);
4779cb31 3092out_release:
b8107480 3093 page_cache_release(page);
4969c119
AA
3094 if (swapcache) {
3095 unlock_page(swapcache);
3096 page_cache_release(swapcache);
3097 }
65500d23 3098 return ret;
1da177e4
LT
3099}
3100
320b2b8d 3101/*
8ca3eb08
LT
3102 * This is like a special single-page "expand_{down|up}wards()",
3103 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3104 * doesn't hit another vma.
320b2b8d
LT
3105 */
3106static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3107{
3108 address &= PAGE_MASK;
3109 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3110 struct vm_area_struct *prev = vma->vm_prev;
3111
3112 /*
3113 * Is there a mapping abutting this one below?
3114 *
3115 * That's only ok if it's the same stack mapping
3116 * that has gotten split..
3117 */
3118 if (prev && prev->vm_end == address)
3119 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3120
d05f3169 3121 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3122 }
8ca3eb08
LT
3123 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3124 struct vm_area_struct *next = vma->vm_next;
3125
3126 /* As VM_GROWSDOWN but s/below/above/ */
3127 if (next && next->vm_start == address + PAGE_SIZE)
3128 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3129
3130 expand_upwards(vma, address + PAGE_SIZE);
3131 }
320b2b8d
LT
3132 return 0;
3133}
3134
1da177e4 3135/*
8f4e2101
HD
3136 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3137 * but allow concurrent faults), and pte mapped but not yet locked.
3138 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3139 */
65500d23
HD
3140static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3141 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3142 unsigned int flags)
1da177e4 3143{
8f4e2101
HD
3144 struct page *page;
3145 spinlock_t *ptl;
1da177e4 3146 pte_t entry;
1da177e4 3147
11ac5524
LT
3148 pte_unmap(page_table);
3149
3150 /* Check if we need to add a guard page to the stack */
3151 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3152 return VM_FAULT_SIGBUS;
3153
11ac5524 3154 /* Use the zero-page for reads */
62eede62
HD
3155 if (!(flags & FAULT_FLAG_WRITE)) {
3156 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3157 vma->vm_page_prot));
11ac5524 3158 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3159 if (!pte_none(*page_table))
3160 goto unlock;
3161 goto setpte;
3162 }
3163
557ed1fa 3164 /* Allocate our own private page. */
557ed1fa
NP
3165 if (unlikely(anon_vma_prepare(vma)))
3166 goto oom;
3167 page = alloc_zeroed_user_highpage_movable(vma, address);
3168 if (!page)
3169 goto oom;
0ed361de 3170 __SetPageUptodate(page);
8f4e2101 3171
2c26fdd7 3172 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3173 goto oom_free_page;
3174
557ed1fa 3175 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3176 if (vma->vm_flags & VM_WRITE)
3177 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3178
557ed1fa 3179 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3180 if (!pte_none(*page_table))
557ed1fa 3181 goto release;
9ba69294 3182
34e55232 3183 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3184 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3185setpte:
65500d23 3186 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3187
3188 /* No need to invalidate - it was non-present before */
4b3073e1 3189 update_mmu_cache(vma, address, page_table);
65500d23 3190unlock:
8f4e2101 3191 pte_unmap_unlock(page_table, ptl);
83c54070 3192 return 0;
8f4e2101 3193release:
8a9f3ccd 3194 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3195 page_cache_release(page);
3196 goto unlock;
8a9f3ccd 3197oom_free_page:
6dbf6d3b 3198 page_cache_release(page);
65500d23 3199oom:
1da177e4
LT
3200 return VM_FAULT_OOM;
3201}
3202
3203/*
54cb8821 3204 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3205 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3206 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3207 * the next page fault.
1da177e4
LT
3208 *
3209 * As this is called only for pages that do not currently exist, we
3210 * do not need to flush old virtual caches or the TLB.
3211 *
8f4e2101 3212 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3213 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3214 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3215 */
54cb8821 3216static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3217 unsigned long address, pmd_t *pmd,
54cb8821 3218 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3219{
16abfa08 3220 pte_t *page_table;
8f4e2101 3221 spinlock_t *ptl;
d0217ac0 3222 struct page *page;
1d65f86d 3223 struct page *cow_page;
1da177e4 3224 pte_t entry;
1da177e4 3225 int anon = 0;
d08b3851 3226 struct page *dirty_page = NULL;
d0217ac0
NP
3227 struct vm_fault vmf;
3228 int ret;
a200ee18 3229 int page_mkwrite = 0;
54cb8821 3230
1d65f86d
KH
3231 /*
3232 * If we do COW later, allocate page befor taking lock_page()
3233 * on the file cache page. This will reduce lock holding time.
3234 */
3235 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3236
3237 if (unlikely(anon_vma_prepare(vma)))
3238 return VM_FAULT_OOM;
3239
3240 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3241 if (!cow_page)
3242 return VM_FAULT_OOM;
3243
3244 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3245 page_cache_release(cow_page);
3246 return VM_FAULT_OOM;
3247 }
3248 } else
3249 cow_page = NULL;
3250
d0217ac0
NP
3251 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3252 vmf.pgoff = pgoff;
3253 vmf.flags = flags;
3254 vmf.page = NULL;
1da177e4 3255
3c18ddd1 3256 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3257 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3258 VM_FAULT_RETRY)))
1d65f86d 3259 goto uncharge_out;
1da177e4 3260
a3b947ea
AK
3261 if (unlikely(PageHWPoison(vmf.page))) {
3262 if (ret & VM_FAULT_LOCKED)
3263 unlock_page(vmf.page);
1d65f86d
KH
3264 ret = VM_FAULT_HWPOISON;
3265 goto uncharge_out;
a3b947ea
AK
3266 }
3267
d00806b1 3268 /*
d0217ac0 3269 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3270 * locked.
3271 */
83c54070 3272 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3273 lock_page(vmf.page);
54cb8821 3274 else
d0217ac0 3275 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3276
1da177e4
LT
3277 /*
3278 * Should we do an early C-O-W break?
3279 */
d0217ac0 3280 page = vmf.page;
54cb8821 3281 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3282 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3283 page = cow_page;
54cb8821 3284 anon = 1;
d0217ac0 3285 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3286 __SetPageUptodate(page);
9637a5ef 3287 } else {
54cb8821
NP
3288 /*
3289 * If the page will be shareable, see if the backing
9637a5ef 3290 * address space wants to know that the page is about
54cb8821
NP
3291 * to become writable
3292 */
69676147 3293 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3294 int tmp;
3295
69676147 3296 unlock_page(page);
b827e496 3297 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3298 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3299 if (unlikely(tmp &
3300 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3301 ret = tmp;
b827e496 3302 goto unwritable_page;
d0217ac0 3303 }
b827e496
NP
3304 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3305 lock_page(page);
3306 if (!page->mapping) {
3307 ret = 0; /* retry the fault */
3308 unlock_page(page);
3309 goto unwritable_page;
3310 }
3311 } else
3312 VM_BUG_ON(!PageLocked(page));
a200ee18 3313 page_mkwrite = 1;
9637a5ef
DH
3314 }
3315 }
54cb8821 3316
1da177e4
LT
3317 }
3318
8f4e2101 3319 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3320
3321 /*
3322 * This silly early PAGE_DIRTY setting removes a race
3323 * due to the bad i386 page protection. But it's valid
3324 * for other architectures too.
3325 *
30c9f3a9 3326 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3327 * an exclusive copy of the page, or this is a shared mapping,
3328 * so we can make it writable and dirty to avoid having to
3329 * handle that later.
3330 */
3331 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3332 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3333 flush_icache_page(vma, page);
3334 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3335 if (flags & FAULT_FLAG_WRITE)
1da177e4 3336 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 3337 if (anon) {
34e55232 3338 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3339 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3340 } else {
34e55232 3341 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3342 page_add_file_rmap(page);
54cb8821 3343 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3344 dirty_page = page;
d08b3851
PZ
3345 get_page(dirty_page);
3346 }
4294621f 3347 }
64d6519d 3348 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3349
3350 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3351 update_mmu_cache(vma, address, page_table);
1da177e4 3352 } else {
1d65f86d
KH
3353 if (cow_page)
3354 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3355 if (anon)
3356 page_cache_release(page);
3357 else
54cb8821 3358 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3359 }
3360
8f4e2101 3361 pte_unmap_unlock(page_table, ptl);
d00806b1 3362
b827e496
NP
3363 if (dirty_page) {
3364 struct address_space *mapping = page->mapping;
41c4d25f 3365 int dirtied = 0;
8f7b3d15 3366
b827e496 3367 if (set_page_dirty(dirty_page))
41c4d25f 3368 dirtied = 1;
b827e496 3369 unlock_page(dirty_page);
d08b3851 3370 put_page(dirty_page);
41c4d25f 3371 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3372 /*
3373 * Some device drivers do not set page.mapping but still
3374 * dirty their pages
3375 */
3376 balance_dirty_pages_ratelimited(mapping);
3377 }
3378
3379 /* file_update_time outside page_lock */
41c4d25f 3380 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3381 file_update_time(vma->vm_file);
3382 } else {
3383 unlock_page(vmf.page);
3384 if (anon)
3385 page_cache_release(vmf.page);
d08b3851 3386 }
d00806b1 3387
83c54070 3388 return ret;
b827e496
NP
3389
3390unwritable_page:
3391 page_cache_release(page);
3392 return ret;
1d65f86d
KH
3393uncharge_out:
3394 /* fs's fault handler get error */
3395 if (cow_page) {
3396 mem_cgroup_uncharge_page(cow_page);
3397 page_cache_release(cow_page);
3398 }
3399 return ret;
54cb8821 3400}
d00806b1 3401
54cb8821
NP
3402static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3403 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3404 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3405{
3406 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3407 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3408
16abfa08
HD
3409 pte_unmap(page_table);
3410 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3411}
3412
1da177e4
LT
3413/*
3414 * Fault of a previously existing named mapping. Repopulate the pte
3415 * from the encoded file_pte if possible. This enables swappable
3416 * nonlinear vmas.
8f4e2101
HD
3417 *
3418 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3419 * but allow concurrent faults), and pte mapped but not yet locked.
3420 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3421 */
d0217ac0 3422static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3423 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3424 unsigned int flags, pte_t orig_pte)
1da177e4 3425{
65500d23 3426 pgoff_t pgoff;
1da177e4 3427
30c9f3a9
LT
3428 flags |= FAULT_FLAG_NONLINEAR;
3429
4c21e2f2 3430 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3431 return 0;
1da177e4 3432
2509ef26 3433 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3434 /*
3435 * Page table corrupted: show pte and kill process.
3436 */
3dc14741 3437 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3438 return VM_FAULT_SIGBUS;
65500d23 3439 }
65500d23
HD
3440
3441 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3442 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3443}
3444
9532fec1
MG
3445int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3446 unsigned long addr, int current_nid)
3447{
3448 get_page(page);
3449
3450 count_vm_numa_event(NUMA_HINT_FAULTS);
3451 if (current_nid == numa_node_id())
3452 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3453
3454 return mpol_misplaced(page, vma, addr);
3455}
3456
d10e63f2
MG
3457int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3458 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3459{
4daae3b4 3460 struct page *page = NULL;
d10e63f2 3461 spinlock_t *ptl;
cbee9f88
PZ
3462 int current_nid = -1;
3463 int target_nid;
b8593bfd 3464 bool migrated = false;
d10e63f2
MG
3465
3466 /*
3467 * The "pte" at this point cannot be used safely without
3468 * validation through pte_unmap_same(). It's of NUMA type but
3469 * the pfn may be screwed if the read is non atomic.
3470 *
3471 * ptep_modify_prot_start is not called as this is clearing
3472 * the _PAGE_NUMA bit and it is not really expected that there
3473 * would be concurrent hardware modifications to the PTE.
3474 */
3475 ptl = pte_lockptr(mm, pmd);
3476 spin_lock(ptl);
4daae3b4
MG
3477 if (unlikely(!pte_same(*ptep, pte))) {
3478 pte_unmap_unlock(ptep, ptl);
3479 goto out;
3480 }
3481
d10e63f2
MG
3482 pte = pte_mknonnuma(pte);
3483 set_pte_at(mm, addr, ptep, pte);
3484 update_mmu_cache(vma, addr, ptep);
3485
3486 page = vm_normal_page(vma, addr, pte);
3487 if (!page) {
3488 pte_unmap_unlock(ptep, ptl);
3489 return 0;
3490 }
3491
4daae3b4 3492 current_nid = page_to_nid(page);
9532fec1 3493 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
d10e63f2 3494 pte_unmap_unlock(ptep, ptl);
4daae3b4
MG
3495 if (target_nid == -1) {
3496 /*
3497 * Account for the fault against the current node if it not
3498 * being replaced regardless of where the page is located.
3499 */
3500 current_nid = numa_node_id();
3501 put_page(page);
3502 goto out;
3503 }
3504
3505 /* Migrate to the requested node */
b8593bfd
MG
3506 migrated = migrate_misplaced_page(page, target_nid);
3507 if (migrated)
4daae3b4
MG
3508 current_nid = target_nid;
3509
3510out:
9532fec1 3511 if (current_nid != -1)
b8593bfd 3512 task_numa_fault(current_nid, 1, migrated);
d10e63f2
MG
3513 return 0;
3514}
3515
3516/* NUMA hinting page fault entry point for regular pmds */
3517#ifdef CONFIG_NUMA_BALANCING
3518static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3519 unsigned long addr, pmd_t *pmdp)
3520{
3521 pmd_t pmd;
3522 pte_t *pte, *orig_pte;
3523 unsigned long _addr = addr & PMD_MASK;
3524 unsigned long offset;
3525 spinlock_t *ptl;
3526 bool numa = false;
03c5a6e1 3527 int local_nid = numa_node_id();
d10e63f2
MG
3528
3529 spin_lock(&mm->page_table_lock);
3530 pmd = *pmdp;
3531 if (pmd_numa(pmd)) {
3532 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3533 numa = true;
3534 }
3535 spin_unlock(&mm->page_table_lock);
3536
3537 if (!numa)
3538 return 0;
3539
3540 /* we're in a page fault so some vma must be in the range */
3541 BUG_ON(!vma);
3542 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3543 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3544 VM_BUG_ON(offset >= PMD_SIZE);
3545 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3546 pte += offset >> PAGE_SHIFT;
3547 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3548 pte_t pteval = *pte;
3549 struct page *page;
9532fec1
MG
3550 int curr_nid = local_nid;
3551 int target_nid;
b8593bfd 3552 bool migrated;
d10e63f2
MG
3553 if (!pte_present(pteval))
3554 continue;
3555 if (!pte_numa(pteval))
3556 continue;
3557 if (addr >= vma->vm_end) {
3558 vma = find_vma(mm, addr);
3559 /* there's a pte present so there must be a vma */
3560 BUG_ON(!vma);
3561 BUG_ON(addr < vma->vm_start);
3562 }
3563 if (pte_numa(pteval)) {
3564 pteval = pte_mknonnuma(pteval);
3565 set_pte_at(mm, addr, pte, pteval);
3566 }
3567 page = vm_normal_page(vma, addr, pteval);
3568 if (unlikely(!page))
3569 continue;
cbee9f88
PZ
3570 /* only check non-shared pages */
3571 if (unlikely(page_mapcount(page) != 1))
3572 continue;
cbee9f88 3573
9532fec1
MG
3574 /*
3575 * Note that the NUMA fault is later accounted to either
3576 * the node that is currently running or where the page is
3577 * migrated to.
3578 */
3579 curr_nid = local_nid;
3580 target_nid = numa_migrate_prep(page, vma, addr,
3581 page_to_nid(page));
3582 if (target_nid == -1) {
3583 put_page(page);
3584 continue;
3585 }
cbee9f88 3586
9532fec1
MG
3587 /* Migrate to the requested node */
3588 pte_unmap_unlock(pte, ptl);
b8593bfd
MG
3589 migrated = migrate_misplaced_page(page, target_nid);
3590 if (migrated)
9532fec1 3591 curr_nid = target_nid;
b8593bfd 3592 task_numa_fault(curr_nid, 1, migrated);
03c5a6e1 3593
cbee9f88 3594 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
d10e63f2
MG
3595 }
3596 pte_unmap_unlock(orig_pte, ptl);
3597
3598 return 0;
3599}
3600#else
3601static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3602 unsigned long addr, pmd_t *pmdp)
3603{
3604 BUG();
b3dd2070 3605 return 0;
d10e63f2
MG
3606}
3607#endif /* CONFIG_NUMA_BALANCING */
3608
1da177e4
LT
3609/*
3610 * These routines also need to handle stuff like marking pages dirty
3611 * and/or accessed for architectures that don't do it in hardware (most
3612 * RISC architectures). The early dirtying is also good on the i386.
3613 *
3614 * There is also a hook called "update_mmu_cache()" that architectures
3615 * with external mmu caches can use to update those (ie the Sparc or
3616 * PowerPC hashed page tables that act as extended TLBs).
3617 *
c74df32c
HD
3618 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3619 * but allow concurrent faults), and pte mapped but not yet locked.
3620 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3621 */
71e3aac0
AA
3622int handle_pte_fault(struct mm_struct *mm,
3623 struct vm_area_struct *vma, unsigned long address,
3624 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3625{
3626 pte_t entry;
8f4e2101 3627 spinlock_t *ptl;
1da177e4 3628
8dab5241 3629 entry = *pte;
1da177e4 3630 if (!pte_present(entry)) {
65500d23 3631 if (pte_none(entry)) {
f4b81804 3632 if (vma->vm_ops) {
3c18ddd1 3633 if (likely(vma->vm_ops->fault))
54cb8821 3634 return do_linear_fault(mm, vma, address,
30c9f3a9 3635 pte, pmd, flags, entry);
f4b81804
JS
3636 }
3637 return do_anonymous_page(mm, vma, address,
30c9f3a9 3638 pte, pmd, flags);
65500d23 3639 }
1da177e4 3640 if (pte_file(entry))
d0217ac0 3641 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3642 pte, pmd, flags, entry);
65500d23 3643 return do_swap_page(mm, vma, address,
30c9f3a9 3644 pte, pmd, flags, entry);
1da177e4
LT
3645 }
3646
d10e63f2
MG
3647 if (pte_numa(entry))
3648 return do_numa_page(mm, vma, address, entry, pte, pmd);
3649
4c21e2f2 3650 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3651 spin_lock(ptl);
3652 if (unlikely(!pte_same(*pte, entry)))
3653 goto unlock;
30c9f3a9 3654 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3655 if (!pte_write(entry))
8f4e2101
HD
3656 return do_wp_page(mm, vma, address,
3657 pte, pmd, ptl, entry);
1da177e4
LT
3658 entry = pte_mkdirty(entry);
3659 }
3660 entry = pte_mkyoung(entry);
30c9f3a9 3661 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3662 update_mmu_cache(vma, address, pte);
1a44e149
AA
3663 } else {
3664 /*
3665 * This is needed only for protection faults but the arch code
3666 * is not yet telling us if this is a protection fault or not.
3667 * This still avoids useless tlb flushes for .text page faults
3668 * with threads.
3669 */
30c9f3a9 3670 if (flags & FAULT_FLAG_WRITE)
61c77326 3671 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3672 }
8f4e2101
HD
3673unlock:
3674 pte_unmap_unlock(pte, ptl);
83c54070 3675 return 0;
1da177e4
LT
3676}
3677
3678/*
3679 * By the time we get here, we already hold the mm semaphore
3680 */
83c54070 3681int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 3682 unsigned long address, unsigned int flags)
1da177e4
LT
3683{
3684 pgd_t *pgd;
3685 pud_t *pud;
3686 pmd_t *pmd;
3687 pte_t *pte;
3688
3689 __set_current_state(TASK_RUNNING);
3690
f8891e5e 3691 count_vm_event(PGFAULT);
456f998e 3692 mem_cgroup_count_vm_event(mm, PGFAULT);
1da177e4 3693
34e55232
KH
3694 /* do counter updates before entering really critical section. */
3695 check_sync_rss_stat(current);
3696
ac9b9c66 3697 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3698 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3699
1f1d06c3 3700retry:
1da177e4 3701 pgd = pgd_offset(mm, address);
1da177e4
LT
3702 pud = pud_alloc(mm, pgd, address);
3703 if (!pud)
c74df32c 3704 return VM_FAULT_OOM;
1da177e4
LT
3705 pmd = pmd_alloc(mm, pud, address);
3706 if (!pmd)
c74df32c 3707 return VM_FAULT_OOM;
71e3aac0
AA
3708 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3709 if (!vma->vm_ops)
3710 return do_huge_pmd_anonymous_page(mm, vma, address,
3711 pmd, flags);
3712 } else {
3713 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3714 int ret;
3715
71e3aac0
AA
3716 barrier();
3717 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3718 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3719
e53289c0
LT
3720 /*
3721 * If the pmd is splitting, return and retry the
3722 * the fault. Alternative: wait until the split
3723 * is done, and goto retry.
3724 */
3725 if (pmd_trans_splitting(orig_pmd))
3726 return 0;
3727
3d59eebc 3728 if (pmd_numa(orig_pmd))
4daae3b4 3729 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3730 orig_pmd, pmd);
3731
3d59eebc 3732 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3733 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3734 orig_pmd);
3735 /*
3736 * If COW results in an oom, the huge pmd will
3737 * have been split, so retry the fault on the
3738 * pte for a smaller charge.
3739 */
3740 if (unlikely(ret & VM_FAULT_OOM))
3741 goto retry;
3742 return ret;
a1dd450b
WD
3743 } else {
3744 huge_pmd_set_accessed(mm, vma, address, pmd,
3745 orig_pmd, dirty);
1f1d06c3 3746 }
d10e63f2 3747
71e3aac0
AA
3748 return 0;
3749 }
3750 }
3751
d10e63f2
MG
3752 if (pmd_numa(*pmd))
3753 return do_pmd_numa_page(mm, vma, address, pmd);
3754
71e3aac0
AA
3755 /*
3756 * Use __pte_alloc instead of pte_alloc_map, because we can't
3757 * run pte_offset_map on the pmd, if an huge pmd could
3758 * materialize from under us from a different thread.
3759 */
4fd01770
MG
3760 if (unlikely(pmd_none(*pmd)) &&
3761 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3762 return VM_FAULT_OOM;
71e3aac0
AA
3763 /* if an huge pmd materialized from under us just retry later */
3764 if (unlikely(pmd_trans_huge(*pmd)))
3765 return 0;
3766 /*
3767 * A regular pmd is established and it can't morph into a huge pmd
3768 * from under us anymore at this point because we hold the mmap_sem
3769 * read mode and khugepaged takes it in write mode. So now it's
3770 * safe to run pte_offset_map().
3771 */
3772 pte = pte_offset_map(pmd, address);
1da177e4 3773
30c9f3a9 3774 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3775}
3776
3777#ifndef __PAGETABLE_PUD_FOLDED
3778/*
3779 * Allocate page upper directory.
872fec16 3780 * We've already handled the fast-path in-line.
1da177e4 3781 */
1bb3630e 3782int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3783{
c74df32c
HD
3784 pud_t *new = pud_alloc_one(mm, address);
3785 if (!new)
1bb3630e 3786 return -ENOMEM;
1da177e4 3787
362a61ad
NP
3788 smp_wmb(); /* See comment in __pte_alloc */
3789
872fec16 3790 spin_lock(&mm->page_table_lock);
1bb3630e 3791 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3792 pud_free(mm, new);
1bb3630e
HD
3793 else
3794 pgd_populate(mm, pgd, new);
c74df32c 3795 spin_unlock(&mm->page_table_lock);
1bb3630e 3796 return 0;
1da177e4
LT
3797}
3798#endif /* __PAGETABLE_PUD_FOLDED */
3799
3800#ifndef __PAGETABLE_PMD_FOLDED
3801/*
3802 * Allocate page middle directory.
872fec16 3803 * We've already handled the fast-path in-line.
1da177e4 3804 */
1bb3630e 3805int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3806{
c74df32c
HD
3807 pmd_t *new = pmd_alloc_one(mm, address);
3808 if (!new)
1bb3630e 3809 return -ENOMEM;
1da177e4 3810
362a61ad
NP
3811 smp_wmb(); /* See comment in __pte_alloc */
3812
872fec16 3813 spin_lock(&mm->page_table_lock);
1da177e4 3814#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3815 if (pud_present(*pud)) /* Another has populated it */
5e541973 3816 pmd_free(mm, new);
1bb3630e
HD
3817 else
3818 pud_populate(mm, pud, new);
1da177e4 3819#else
1bb3630e 3820 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3821 pmd_free(mm, new);
1bb3630e
HD
3822 else
3823 pgd_populate(mm, pud, new);
1da177e4 3824#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3825 spin_unlock(&mm->page_table_lock);
1bb3630e 3826 return 0;
e0f39591 3827}
1da177e4
LT
3828#endif /* __PAGETABLE_PMD_FOLDED */
3829
1da177e4
LT
3830#if !defined(__HAVE_ARCH_GATE_AREA)
3831
3832#if defined(AT_SYSINFO_EHDR)
5ce7852c 3833static struct vm_area_struct gate_vma;
1da177e4
LT
3834
3835static int __init gate_vma_init(void)
3836{
3837 gate_vma.vm_mm = NULL;
3838 gate_vma.vm_start = FIXADDR_USER_START;
3839 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3840 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3841 gate_vma.vm_page_prot = __P101;
909af768 3842
1da177e4
LT
3843 return 0;
3844}
3845__initcall(gate_vma_init);
3846#endif
3847
31db58b3 3848struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3849{
3850#ifdef AT_SYSINFO_EHDR
3851 return &gate_vma;
3852#else
3853 return NULL;
3854#endif
3855}
3856
cae5d390 3857int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3858{
3859#ifdef AT_SYSINFO_EHDR
3860 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3861 return 1;
3862#endif
3863 return 0;
3864}
3865
3866#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3867
1b36ba81 3868static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3869 pte_t **ptepp, spinlock_t **ptlp)
3870{
3871 pgd_t *pgd;
3872 pud_t *pud;
3873 pmd_t *pmd;
3874 pte_t *ptep;
3875
3876 pgd = pgd_offset(mm, address);
3877 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3878 goto out;
3879
3880 pud = pud_offset(pgd, address);
3881 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3882 goto out;
3883
3884 pmd = pmd_offset(pud, address);
f66055ab 3885 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3886 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3887 goto out;
3888
3889 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3890 if (pmd_huge(*pmd))
3891 goto out;
3892
3893 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3894 if (!ptep)
3895 goto out;
3896 if (!pte_present(*ptep))
3897 goto unlock;
3898 *ptepp = ptep;
3899 return 0;
3900unlock:
3901 pte_unmap_unlock(ptep, *ptlp);
3902out:
3903 return -EINVAL;
3904}
3905
1b36ba81
NK
3906static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3907 pte_t **ptepp, spinlock_t **ptlp)
3908{
3909 int res;
3910
3911 /* (void) is needed to make gcc happy */
3912 (void) __cond_lock(*ptlp,
3913 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3914 return res;
3915}
3916
3b6748e2
JW
3917/**
3918 * follow_pfn - look up PFN at a user virtual address
3919 * @vma: memory mapping
3920 * @address: user virtual address
3921 * @pfn: location to store found PFN
3922 *
3923 * Only IO mappings and raw PFN mappings are allowed.
3924 *
3925 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3926 */
3927int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3928 unsigned long *pfn)
3929{
3930 int ret = -EINVAL;
3931 spinlock_t *ptl;
3932 pte_t *ptep;
3933
3934 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3935 return ret;
3936
3937 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3938 if (ret)
3939 return ret;
3940 *pfn = pte_pfn(*ptep);
3941 pte_unmap_unlock(ptep, ptl);
3942 return 0;
3943}
3944EXPORT_SYMBOL(follow_pfn);
3945
28b2ee20 3946#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3947int follow_phys(struct vm_area_struct *vma,
3948 unsigned long address, unsigned int flags,
3949 unsigned long *prot, resource_size_t *phys)
28b2ee20 3950{
03668a4d 3951 int ret = -EINVAL;
28b2ee20
RR
3952 pte_t *ptep, pte;
3953 spinlock_t *ptl;
28b2ee20 3954
d87fe660 3955 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3956 goto out;
28b2ee20 3957
03668a4d 3958 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3959 goto out;
28b2ee20 3960 pte = *ptep;
03668a4d 3961
28b2ee20
RR
3962 if ((flags & FOLL_WRITE) && !pte_write(pte))
3963 goto unlock;
28b2ee20
RR
3964
3965 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3966 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3967
03668a4d 3968 ret = 0;
28b2ee20
RR
3969unlock:
3970 pte_unmap_unlock(ptep, ptl);
3971out:
d87fe660 3972 return ret;
28b2ee20
RR
3973}
3974
3975int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3976 void *buf, int len, int write)
3977{
3978 resource_size_t phys_addr;
3979 unsigned long prot = 0;
2bc7273b 3980 void __iomem *maddr;
28b2ee20
RR
3981 int offset = addr & (PAGE_SIZE-1);
3982
d87fe660 3983 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3984 return -EINVAL;
3985
3986 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3987 if (write)
3988 memcpy_toio(maddr + offset, buf, len);
3989 else
3990 memcpy_fromio(buf, maddr + offset, len);
3991 iounmap(maddr);
3992
3993 return len;
3994}
3995#endif
3996
0ec76a11 3997/*
206cb636
SW
3998 * Access another process' address space as given in mm. If non-NULL, use the
3999 * given task for page fault accounting.
0ec76a11 4000 */
206cb636
SW
4001static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4002 unsigned long addr, void *buf, int len, int write)
0ec76a11 4003{
0ec76a11 4004 struct vm_area_struct *vma;
0ec76a11
DH
4005 void *old_buf = buf;
4006
0ec76a11 4007 down_read(&mm->mmap_sem);
183ff22b 4008 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4009 while (len) {
4010 int bytes, ret, offset;
4011 void *maddr;
28b2ee20 4012 struct page *page = NULL;
0ec76a11
DH
4013
4014 ret = get_user_pages(tsk, mm, addr, 1,
4015 write, 1, &page, &vma);
28b2ee20
RR
4016 if (ret <= 0) {
4017 /*
4018 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4019 * we can access using slightly different code.
4020 */
4021#ifdef CONFIG_HAVE_IOREMAP_PROT
4022 vma = find_vma(mm, addr);
fe936dfc 4023 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4024 break;
4025 if (vma->vm_ops && vma->vm_ops->access)
4026 ret = vma->vm_ops->access(vma, addr, buf,
4027 len, write);
4028 if (ret <= 0)
4029#endif
4030 break;
4031 bytes = ret;
0ec76a11 4032 } else {
28b2ee20
RR
4033 bytes = len;
4034 offset = addr & (PAGE_SIZE-1);
4035 if (bytes > PAGE_SIZE-offset)
4036 bytes = PAGE_SIZE-offset;
4037
4038 maddr = kmap(page);
4039 if (write) {
4040 copy_to_user_page(vma, page, addr,
4041 maddr + offset, buf, bytes);
4042 set_page_dirty_lock(page);
4043 } else {
4044 copy_from_user_page(vma, page, addr,
4045 buf, maddr + offset, bytes);
4046 }
4047 kunmap(page);
4048 page_cache_release(page);
0ec76a11 4049 }
0ec76a11
DH
4050 len -= bytes;
4051 buf += bytes;
4052 addr += bytes;
4053 }
4054 up_read(&mm->mmap_sem);
0ec76a11
DH
4055
4056 return buf - old_buf;
4057}
03252919 4058
5ddd36b9 4059/**
ae91dbfc 4060 * access_remote_vm - access another process' address space
5ddd36b9
SW
4061 * @mm: the mm_struct of the target address space
4062 * @addr: start address to access
4063 * @buf: source or destination buffer
4064 * @len: number of bytes to transfer
4065 * @write: whether the access is a write
4066 *
4067 * The caller must hold a reference on @mm.
4068 */
4069int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4070 void *buf, int len, int write)
4071{
4072 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4073}
4074
206cb636
SW
4075/*
4076 * Access another process' address space.
4077 * Source/target buffer must be kernel space,
4078 * Do not walk the page table directly, use get_user_pages
4079 */
4080int access_process_vm(struct task_struct *tsk, unsigned long addr,
4081 void *buf, int len, int write)
4082{
4083 struct mm_struct *mm;
4084 int ret;
4085
4086 mm = get_task_mm(tsk);
4087 if (!mm)
4088 return 0;
4089
4090 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4091 mmput(mm);
4092
4093 return ret;
4094}
4095
03252919
AK
4096/*
4097 * Print the name of a VMA.
4098 */
4099void print_vma_addr(char *prefix, unsigned long ip)
4100{
4101 struct mm_struct *mm = current->mm;
4102 struct vm_area_struct *vma;
4103
e8bff74a
IM
4104 /*
4105 * Do not print if we are in atomic
4106 * contexts (in exception stacks, etc.):
4107 */
4108 if (preempt_count())
4109 return;
4110
03252919
AK
4111 down_read(&mm->mmap_sem);
4112 vma = find_vma(mm, ip);
4113 if (vma && vma->vm_file) {
4114 struct file *f = vma->vm_file;
4115 char *buf = (char *)__get_free_page(GFP_KERNEL);
4116 if (buf) {
2fbc57c5 4117 char *p;
03252919 4118
cf28b486 4119 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
4120 if (IS_ERR(p))
4121 p = "?";
2fbc57c5 4122 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4123 vma->vm_start,
4124 vma->vm_end - vma->vm_start);
4125 free_page((unsigned long)buf);
4126 }
4127 }
51a07e50 4128 up_read(&mm->mmap_sem);
03252919 4129}
3ee1afa3
NP
4130
4131#ifdef CONFIG_PROVE_LOCKING
4132void might_fault(void)
4133{
95156f00
PZ
4134 /*
4135 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4136 * holding the mmap_sem, this is safe because kernel memory doesn't
4137 * get paged out, therefore we'll never actually fault, and the
4138 * below annotations will generate false positives.
4139 */
4140 if (segment_eq(get_fs(), KERNEL_DS))
4141 return;
4142
3ee1afa3
NP
4143 might_sleep();
4144 /*
4145 * it would be nicer only to annotate paths which are not under
4146 * pagefault_disable, however that requires a larger audit and
4147 * providing helpers like get_user_atomic.
4148 */
4149 if (!in_atomic() && current->mm)
4150 might_lock_read(&current->mm->mmap_sem);
4151}
4152EXPORT_SYMBOL(might_fault);
4153#endif
47ad8475
AA
4154
4155#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4156static void clear_gigantic_page(struct page *page,
4157 unsigned long addr,
4158 unsigned int pages_per_huge_page)
4159{
4160 int i;
4161 struct page *p = page;
4162
4163 might_sleep();
4164 for (i = 0; i < pages_per_huge_page;
4165 i++, p = mem_map_next(p, page, i)) {
4166 cond_resched();
4167 clear_user_highpage(p, addr + i * PAGE_SIZE);
4168 }
4169}
4170void clear_huge_page(struct page *page,
4171 unsigned long addr, unsigned int pages_per_huge_page)
4172{
4173 int i;
4174
4175 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4176 clear_gigantic_page(page, addr, pages_per_huge_page);
4177 return;
4178 }
4179
4180 might_sleep();
4181 for (i = 0; i < pages_per_huge_page; i++) {
4182 cond_resched();
4183 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4184 }
4185}
4186
4187static void copy_user_gigantic_page(struct page *dst, struct page *src,
4188 unsigned long addr,
4189 struct vm_area_struct *vma,
4190 unsigned int pages_per_huge_page)
4191{
4192 int i;
4193 struct page *dst_base = dst;
4194 struct page *src_base = src;
4195
4196 for (i = 0; i < pages_per_huge_page; ) {
4197 cond_resched();
4198 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4199
4200 i++;
4201 dst = mem_map_next(dst, dst_base, i);
4202 src = mem_map_next(src, src_base, i);
4203 }
4204}
4205
4206void copy_user_huge_page(struct page *dst, struct page *src,
4207 unsigned long addr, struct vm_area_struct *vma,
4208 unsigned int pages_per_huge_page)
4209{
4210 int i;
4211
4212 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4213 copy_user_gigantic_page(dst, src, addr, vma,
4214 pages_per_huge_page);
4215 return;
4216 }
4217
4218 might_sleep();
4219 for (i = 0; i < pages_per_huge_page; i++) {
4220 cond_resched();
4221 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4222 }
4223}
4224#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 1.036219 seconds and 5 git commands to generate.