mm, oom: replace some information in tasklist dump
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
925cc71e 54#include <linux/memory.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
718a3821 57#include <linux/ftrace_event.h>
f212ad7c 58#include <linux/memcontrol.h>
268bb0ce 59#include <linux/prefetch.h>
041d3a8c 60#include <linux/migrate.h>
c0a32fc5 61#include <linux/page-debug-flags.h>
1da177e4
LT
62
63#include <asm/tlbflush.h>
ac924c60 64#include <asm/div64.h>
1da177e4
LT
65#include "internal.h"
66
72812019
LS
67#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68DEFINE_PER_CPU(int, numa_node);
69EXPORT_PER_CPU_SYMBOL(numa_node);
70#endif
71
7aac7898
LS
72#ifdef CONFIG_HAVE_MEMORYLESS_NODES
73/*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81#endif
82
1da177e4 83/*
13808910 84 * Array of node states.
1da177e4 85 */
13808910
CL
86nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89#ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91#ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93#endif
94 [N_CPU] = { { [0] = 1UL } },
95#endif /* NUMA */
96};
97EXPORT_SYMBOL(node_states);
98
6c231b7b 99unsigned long totalram_pages __read_mostly;
cb45b0e9 100unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
101/*
102 * When calculating the number of globally allowed dirty pages, there
103 * is a certain number of per-zone reserves that should not be
104 * considered dirtyable memory. This is the sum of those reserves
105 * over all existing zones that contribute dirtyable memory.
106 */
107unsigned long dirty_balance_reserve __read_mostly;
108
1b76b02f 109int percpu_pagelist_fraction;
dcce284a 110gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 111
452aa699
RW
112#ifdef CONFIG_PM_SLEEP
113/*
114 * The following functions are used by the suspend/hibernate code to temporarily
115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116 * while devices are suspended. To avoid races with the suspend/hibernate code,
117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
119 * guaranteed not to run in parallel with that modification).
120 */
c9e664f1
RW
121
122static gfp_t saved_gfp_mask;
123
124void pm_restore_gfp_mask(void)
452aa699
RW
125{
126 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
127 if (saved_gfp_mask) {
128 gfp_allowed_mask = saved_gfp_mask;
129 saved_gfp_mask = 0;
130 }
452aa699
RW
131}
132
c9e664f1 133void pm_restrict_gfp_mask(void)
452aa699 134{
452aa699 135 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
136 WARN_ON(saved_gfp_mask);
137 saved_gfp_mask = gfp_allowed_mask;
138 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 139}
f90ac398
MG
140
141bool pm_suspended_storage(void)
142{
143 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
144 return false;
145 return true;
146}
452aa699
RW
147#endif /* CONFIG_PM_SLEEP */
148
d9c23400
MG
149#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150int pageblock_order __read_mostly;
151#endif
152
d98c7a09 153static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 154
1da177e4
LT
155/*
156 * results with 256, 32 in the lowmem_reserve sysctl:
157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158 * 1G machine -> (16M dma, 784M normal, 224M high)
159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
162 *
163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
164 * don't need any ZONE_NORMAL reservation
1da177e4 165 */
2f1b6248 166int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 167#ifdef CONFIG_ZONE_DMA
2f1b6248 168 256,
4b51d669 169#endif
fb0e7942 170#ifdef CONFIG_ZONE_DMA32
2f1b6248 171 256,
fb0e7942 172#endif
e53ef38d 173#ifdef CONFIG_HIGHMEM
2a1e274a 174 32,
e53ef38d 175#endif
2a1e274a 176 32,
2f1b6248 177};
1da177e4
LT
178
179EXPORT_SYMBOL(totalram_pages);
1da177e4 180
15ad7cdc 181static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 "DMA",
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 "DMA32",
fb0e7942 187#endif
2f1b6248 188 "Normal",
e53ef38d 189#ifdef CONFIG_HIGHMEM
2a1e274a 190 "HighMem",
e53ef38d 191#endif
2a1e274a 192 "Movable",
2f1b6248
CL
193};
194
1da177e4
LT
195int min_free_kbytes = 1024;
196
2c85f51d
JB
197static unsigned long __meminitdata nr_kernel_pages;
198static unsigned long __meminitdata nr_all_pages;
a3142c8e 199static unsigned long __meminitdata dma_reserve;
1da177e4 200
0ee332c1
TH
201#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204static unsigned long __initdata required_kernelcore;
205static unsigned long __initdata required_movablecore;
206static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207
208/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209int movable_zone;
210EXPORT_SYMBOL(movable_zone);
211#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 212
418508c1
MS
213#if MAX_NUMNODES > 1
214int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 215int nr_online_nodes __read_mostly = 1;
418508c1 216EXPORT_SYMBOL(nr_node_ids);
62bc62a8 217EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
218#endif
219
9ef9acb0
MG
220int page_group_by_mobility_disabled __read_mostly;
221
68e3e926 222static void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 223{
49255c61
MG
224
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
227
b2a0ac88
MG
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
230}
231
7f33d49a
RW
232bool oom_killer_disabled __read_mostly;
233
13e7444b 234#ifdef CONFIG_DEBUG_VM
c6a57e19 235static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 236{
bdc8cb98
DH
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
c6a57e19 240
bdc8cb98
DH
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
248
249 return ret;
c6a57e19
DH
250}
251
252static int page_is_consistent(struct zone *zone, struct page *page)
253{
14e07298 254 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 255 return 0;
1da177e4 256 if (zone != page_zone(page))
c6a57e19
DH
257 return 0;
258
259 return 1;
260}
261/*
262 * Temporary debugging check for pages not lying within a given zone.
263 */
264static int bad_range(struct zone *zone, struct page *page)
265{
266 if (page_outside_zone_boundaries(zone, page))
1da177e4 267 return 1;
c6a57e19
DH
268 if (!page_is_consistent(zone, page))
269 return 1;
270
1da177e4
LT
271 return 0;
272}
13e7444b
NP
273#else
274static inline int bad_range(struct zone *zone, struct page *page)
275{
276 return 0;
277}
278#endif
279
224abf92 280static void bad_page(struct page *page)
1da177e4 281{
d936cf9b
HD
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
285
2a7684a2
WF
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
ef2b4b95 288 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
289 return;
290 }
291
d936cf9b
HD
292 /*
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
295 */
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
300 }
301 if (nr_unshown) {
1e9e6365
HD
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
304 nr_unshown);
305 nr_unshown = 0;
306 }
307 nr_shown = 0;
308 }
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
311
1e9e6365 312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 313 current->comm, page_to_pfn(page));
718a3821 314 dump_page(page);
3dc14741 315
4f31888c 316 print_modules();
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392 319 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 320 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
6416b9fa
WSH
331 * All pages have PG_compound set. All tail pages have their ->first_page
332 * pointing at the head page.
1da177e4 333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
18229df5 354 __SetPageTail(p);
58a84aa9 355 set_page_count(p, 0);
18229df5
AW
356 p->first_page = page;
357 }
358}
359
59ff4216 360/* update __split_huge_page_refcount if you change this function */
8cc3b392 361static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
362{
363 int i;
364 int nr_pages = 1 << order;
8cc3b392 365 int bad = 0;
1da177e4 366
8cc3b392
HD
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
224abf92 369 bad_page(page);
8cc3b392
HD
370 bad++;
371 }
1da177e4 372
6d777953 373 __ClearPageHead(page);
8cc3b392 374
18229df5
AW
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
1da177e4 377
e713a21d 378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 379 bad_page(page);
8cc3b392
HD
380 bad++;
381 }
d85f3385 382 __ClearPageTail(p);
1da177e4 383 }
8cc3b392
HD
384
385 return bad;
1da177e4 386}
1da177e4 387
17cf4406
NP
388static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389{
390 int i;
391
6626c5d5
AM
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
725d704e 396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399}
400
c0a32fc5
SG
401#ifdef CONFIG_DEBUG_PAGEALLOC
402unsigned int _debug_guardpage_minorder;
403
404static int __init debug_guardpage_minorder_setup(char *buf)
405{
406 unsigned long res;
407
408 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
409 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
410 return 0;
411 }
412 _debug_guardpage_minorder = res;
413 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
414 return 0;
415}
416__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
417
418static inline void set_page_guard_flag(struct page *page)
419{
420 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
421}
422
423static inline void clear_page_guard_flag(struct page *page)
424{
425 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
426}
427#else
428static inline void set_page_guard_flag(struct page *page) { }
429static inline void clear_page_guard_flag(struct page *page) { }
430#endif
431
6aa3001b
AM
432static inline void set_page_order(struct page *page, int order)
433{
4c21e2f2 434 set_page_private(page, order);
676165a8 435 __SetPageBuddy(page);
1da177e4
LT
436}
437
438static inline void rmv_page_order(struct page *page)
439{
676165a8 440 __ClearPageBuddy(page);
4c21e2f2 441 set_page_private(page, 0);
1da177e4
LT
442}
443
444/*
445 * Locate the struct page for both the matching buddy in our
446 * pair (buddy1) and the combined O(n+1) page they form (page).
447 *
448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
449 * the following equation:
450 * B2 = B1 ^ (1 << O)
451 * For example, if the starting buddy (buddy2) is #8 its order
452 * 1 buddy is #10:
453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454 *
455 * 2) Any buddy B will have an order O+1 parent P which
456 * satisfies the following equation:
457 * P = B & ~(1 << O)
458 *
d6e05edc 459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 460 */
1da177e4 461static inline unsigned long
43506fad 462__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 463{
43506fad 464 return page_idx ^ (1 << order);
1da177e4
LT
465}
466
467/*
468 * This function checks whether a page is free && is the buddy
469 * we can do coalesce a page and its buddy if
13e7444b 470 * (a) the buddy is not in a hole &&
676165a8 471 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
472 * (c) a page and its buddy have the same order &&
473 * (d) a page and its buddy are in the same zone.
676165a8 474 *
5f24ce5f
AA
475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 477 *
676165a8 478 * For recording page's order, we use page_private(page).
1da177e4 479 */
cb2b95e1
AW
480static inline int page_is_buddy(struct page *page, struct page *buddy,
481 int order)
1da177e4 482{
14e07298 483 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 484 return 0;
13e7444b 485
cb2b95e1
AW
486 if (page_zone_id(page) != page_zone_id(buddy))
487 return 0;
488
c0a32fc5
SG
489 if (page_is_guard(buddy) && page_order(buddy) == order) {
490 VM_BUG_ON(page_count(buddy) != 0);
491 return 1;
492 }
493
cb2b95e1 494 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 495 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 496 return 1;
676165a8 497 }
6aa3001b 498 return 0;
1da177e4
LT
499}
500
501/*
502 * Freeing function for a buddy system allocator.
503 *
504 * The concept of a buddy system is to maintain direct-mapped table
505 * (containing bit values) for memory blocks of various "orders".
506 * The bottom level table contains the map for the smallest allocatable
507 * units of memory (here, pages), and each level above it describes
508 * pairs of units from the levels below, hence, "buddies".
509 * At a high level, all that happens here is marking the table entry
510 * at the bottom level available, and propagating the changes upward
511 * as necessary, plus some accounting needed to play nicely with other
512 * parts of the VM system.
513 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 515 * order is recorded in page_private(page) field.
1da177e4 516 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
517 * other. That is, if we allocate a small block, and both were
518 * free, the remainder of the region must be split into blocks.
1da177e4 519 * If a block is freed, and its buddy is also free, then this
5f63b720 520 * triggers coalescing into a block of larger size.
1da177e4
LT
521 *
522 * -- wli
523 */
524
48db57f8 525static inline void __free_one_page(struct page *page,
ed0ae21d
MG
526 struct zone *zone, unsigned int order,
527 int migratetype)
1da177e4
LT
528{
529 unsigned long page_idx;
6dda9d55 530 unsigned long combined_idx;
43506fad 531 unsigned long uninitialized_var(buddy_idx);
6dda9d55 532 struct page *buddy;
1da177e4 533
224abf92 534 if (unlikely(PageCompound(page)))
8cc3b392
HD
535 if (unlikely(destroy_compound_page(page, order)))
536 return;
1da177e4 537
ed0ae21d
MG
538 VM_BUG_ON(migratetype == -1);
539
1da177e4
LT
540 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
541
f2260e6b 542 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 543 VM_BUG_ON(bad_range(zone, page));
1da177e4 544
1da177e4 545 while (order < MAX_ORDER-1) {
43506fad
KC
546 buddy_idx = __find_buddy_index(page_idx, order);
547 buddy = page + (buddy_idx - page_idx);
cb2b95e1 548 if (!page_is_buddy(page, buddy, order))
3c82d0ce 549 break;
c0a32fc5
SG
550 /*
551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 * merge with it and move up one order.
553 */
554 if (page_is_guard(buddy)) {
555 clear_page_guard_flag(buddy);
556 set_page_private(page, 0);
557 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
558 } else {
559 list_del(&buddy->lru);
560 zone->free_area[order].nr_free--;
561 rmv_page_order(buddy);
562 }
43506fad 563 combined_idx = buddy_idx & page_idx;
1da177e4
LT
564 page = page + (combined_idx - page_idx);
565 page_idx = combined_idx;
566 order++;
567 }
568 set_page_order(page, order);
6dda9d55
CZ
569
570 /*
571 * If this is not the largest possible page, check if the buddy
572 * of the next-highest order is free. If it is, it's possible
573 * that pages are being freed that will coalesce soon. In case,
574 * that is happening, add the free page to the tail of the list
575 * so it's less likely to be used soon and more likely to be merged
576 * as a higher order page
577 */
b7f50cfa 578 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 579 struct page *higher_page, *higher_buddy;
43506fad
KC
580 combined_idx = buddy_idx & page_idx;
581 higher_page = page + (combined_idx - page_idx);
582 buddy_idx = __find_buddy_index(combined_idx, order + 1);
583 higher_buddy = page + (buddy_idx - combined_idx);
6dda9d55
CZ
584 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
585 list_add_tail(&page->lru,
586 &zone->free_area[order].free_list[migratetype]);
587 goto out;
588 }
589 }
590
591 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
592out:
1da177e4
LT
593 zone->free_area[order].nr_free++;
594}
595
092cead6
KM
596/*
597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
598 * Page should not be on lru, so no need to fix that up.
599 * free_pages_check() will verify...
600 */
601static inline void free_page_mlock(struct page *page)
602{
092cead6
KM
603 __dec_zone_page_state(page, NR_MLOCK);
604 __count_vm_event(UNEVICTABLE_MLOCKFREED);
605}
092cead6 606
224abf92 607static inline int free_pages_check(struct page *page)
1da177e4 608{
92be2e33
NP
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
a3af9c38 611 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
224abf92 614 bad_page(page);
79f4b7bf 615 return 1;
8cc3b392 616 }
79f4b7bf
HD
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
1da177e4
LT
620}
621
622/*
5f8dcc21 623 * Frees a number of pages from the PCP lists
1da177e4 624 * Assumes all pages on list are in same zone, and of same order.
207f36ee 625 * count is the number of pages to free.
1da177e4
LT
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
5f8dcc21
MG
633static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
1da177e4 635{
5f8dcc21 636 int migratetype = 0;
a6f9edd6 637 int batch_free = 0;
72853e29 638 int to_free = count;
5f8dcc21 639
c54ad30c 640 spin_lock(&zone->lock);
93e4a89a 641 zone->all_unreclaimable = 0;
1da177e4 642 zone->pages_scanned = 0;
f2260e6b 643
72853e29 644 while (to_free) {
48db57f8 645 struct page *page;
5f8dcc21
MG
646 struct list_head *list;
647
648 /*
a6f9edd6
MG
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
5f8dcc21
MG
654 */
655 do {
a6f9edd6 656 batch_free++;
5f8dcc21
MG
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
48db57f8 661
1d16871d
NK
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
a6f9edd6
MG
666 do {
667 page = list_entry(list->prev, struct page, lru);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page->lru);
a7016235
HD
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, page_private(page));
672 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 673 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 674 }
72853e29 675 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 676 spin_unlock(&zone->lock);
1da177e4
LT
677}
678
ed0ae21d
MG
679static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
1da177e4 681{
006d22d9 682 spin_lock(&zone->lock);
93e4a89a 683 zone->all_unreclaimable = 0;
006d22d9 684 zone->pages_scanned = 0;
f2260e6b 685
ed0ae21d 686 __free_one_page(page, zone, order, migratetype);
72853e29 687 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
720 int wasMlocked = __TestClearPageMlocked(page);
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
c277331d 726 if (unlikely(wasMlocked))
da456f14 727 free_page_mlock(page);
f8891e5e 728 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
729 free_one_page(page_zone(page), page, order,
730 get_pageblock_migratetype(page));
c54ad30c 731 local_irq_restore(flags);
1da177e4
LT
732}
733
af370fb8 734void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 735{
c3993076
JW
736 unsigned int nr_pages = 1 << order;
737 unsigned int loop;
a226f6c8 738
c3993076
JW
739 prefetchw(page);
740 for (loop = 0; loop < nr_pages; loop++) {
741 struct page *p = &page[loop];
742
743 if (loop + 1 < nr_pages)
744 prefetchw(p + 1);
745 __ClearPageReserved(p);
746 set_page_count(p, 0);
a226f6c8 747 }
c3993076
JW
748
749 set_page_refcounted(page);
750 __free_pages(page, order);
a226f6c8
DH
751}
752
47118af0
MN
753#ifdef CONFIG_CMA
754/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
755void __init init_cma_reserved_pageblock(struct page *page)
756{
757 unsigned i = pageblock_nr_pages;
758 struct page *p = page;
759
760 do {
761 __ClearPageReserved(p);
762 set_page_count(p, 0);
763 } while (++p, --i);
764
765 set_page_refcounted(page);
766 set_pageblock_migratetype(page, MIGRATE_CMA);
767 __free_pages(page, pageblock_order);
768 totalram_pages += pageblock_nr_pages;
769}
770#endif
1da177e4
LT
771
772/*
773 * The order of subdivision here is critical for the IO subsystem.
774 * Please do not alter this order without good reasons and regression
775 * testing. Specifically, as large blocks of memory are subdivided,
776 * the order in which smaller blocks are delivered depends on the order
777 * they're subdivided in this function. This is the primary factor
778 * influencing the order in which pages are delivered to the IO
779 * subsystem according to empirical testing, and this is also justified
780 * by considering the behavior of a buddy system containing a single
781 * large block of memory acted on by a series of small allocations.
782 * This behavior is a critical factor in sglist merging's success.
783 *
784 * -- wli
785 */
085cc7d5 786static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
787 int low, int high, struct free_area *area,
788 int migratetype)
1da177e4
LT
789{
790 unsigned long size = 1 << high;
791
792 while (high > low) {
793 area--;
794 high--;
795 size >>= 1;
725d704e 796 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
797
798#ifdef CONFIG_DEBUG_PAGEALLOC
799 if (high < debug_guardpage_minorder()) {
800 /*
801 * Mark as guard pages (or page), that will allow to
802 * merge back to allocator when buddy will be freed.
803 * Corresponding page table entries will not be touched,
804 * pages will stay not present in virtual address space
805 */
806 INIT_LIST_HEAD(&page[size].lru);
807 set_page_guard_flag(&page[size]);
808 set_page_private(&page[size], high);
809 /* Guard pages are not available for any usage */
810 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
811 continue;
812 }
813#endif
b2a0ac88 814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
1da177e4
LT
818}
819
1da177e4
LT
820/*
821 * This page is about to be returned from the page allocator
822 */
2a7684a2 823static inline int check_new_page(struct page *page)
1da177e4 824{
92be2e33
NP
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
a3af9c38 827 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
224abf92 830 bad_page(page);
689bcebf 831 return 1;
8cc3b392 832 }
2a7684a2
WF
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
689bcebf 845
4c21e2f2 846 set_page_private(page, 0);
7835e98b 847 set_page_refcounted(page);
cc102509
NP
848
849 arch_alloc_page(page, order);
1da177e4 850 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
689bcebf 858 return 0;
1da177e4
LT
859}
860
56fd56b8
MG
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
728ec980
MG
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
56fd56b8
MG
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
b2a0ac88
MG
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
47118af0
MN
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
6d4a4916
MN
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
907};
908
c361be55
MG
909/*
910 * Move the free pages in a range to the free lists of the requested type.
d9c23400 911 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
912 * boundary. If alignment is required, use move_freepages_block()
913 */
b69a7288
AB
914static int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
c361be55
MG
917{
918 struct page *page;
919 unsigned long order;
d100313f 920 int pages_moved = 0;
c361be55
MG
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
ac0e5b7a 928 * grouping pages by mobility
c361be55
MG
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
344c790e
AL
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
c361be55
MG
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
84be48d8
KS
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
c361be55 950 page += 1 << order;
d100313f 951 pages_moved += 1 << order;
c361be55
MG
952 }
953
d100313f 954 return pages_moved;
c361be55
MG
955}
956
68e3e926
LT
957static int move_freepages_block(struct zone *zone, struct page *page,
958 int migratetype)
c361be55
MG
959{
960 unsigned long start_pfn, end_pfn;
961 struct page *start_page, *end_page;
962
963 start_pfn = page_to_pfn(page);
d9c23400 964 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 965 start_page = pfn_to_page(start_pfn);
d9c23400
MG
966 end_page = start_page + pageblock_nr_pages - 1;
967 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
968
969 /* Do not cross zone boundaries */
970 if (start_pfn < zone->zone_start_pfn)
971 start_page = page;
972 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
973 return 0;
974
975 return move_freepages(zone, start_page, end_page, migratetype);
976}
977
2f66a68f
MG
978static void change_pageblock_range(struct page *pageblock_page,
979 int start_order, int migratetype)
980{
981 int nr_pageblocks = 1 << (start_order - pageblock_order);
982
983 while (nr_pageblocks--) {
984 set_pageblock_migratetype(pageblock_page, migratetype);
985 pageblock_page += pageblock_nr_pages;
986 }
987}
988
b2a0ac88 989/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
990static inline struct page *
991__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
992{
993 struct free_area * area;
994 int current_order;
995 struct page *page;
996 int migratetype, i;
997
998 /* Find the largest possible block of pages in the other list */
999 for (current_order = MAX_ORDER-1; current_order >= order;
1000 --current_order) {
6d4a4916 1001 for (i = 0;; i++) {
b2a0ac88
MG
1002 migratetype = fallbacks[start_migratetype][i];
1003
56fd56b8
MG
1004 /* MIGRATE_RESERVE handled later if necessary */
1005 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1006 break;
e010487d 1007
b2a0ac88
MG
1008 area = &(zone->free_area[current_order]);
1009 if (list_empty(&area->free_list[migratetype]))
1010 continue;
1011
1012 page = list_entry(area->free_list[migratetype].next,
1013 struct page, lru);
1014 area->nr_free--;
1015
1016 /*
c361be55 1017 * If breaking a large block of pages, move all free
46dafbca
MG
1018 * pages to the preferred allocation list. If falling
1019 * back for a reclaimable kernel allocation, be more
25985edc 1020 * aggressive about taking ownership of free pages
47118af0
MN
1021 *
1022 * On the other hand, never change migration
1023 * type of MIGRATE_CMA pageblocks nor move CMA
1024 * pages on different free lists. We don't
1025 * want unmovable pages to be allocated from
1026 * MIGRATE_CMA areas.
b2a0ac88 1027 */
47118af0
MN
1028 if (!is_migrate_cma(migratetype) &&
1029 (unlikely(current_order >= pageblock_order / 2) ||
1030 start_migratetype == MIGRATE_RECLAIMABLE ||
1031 page_group_by_mobility_disabled)) {
1032 int pages;
46dafbca
MG
1033 pages = move_freepages_block(zone, page,
1034 start_migratetype);
1035
1036 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1037 if (pages >= (1 << (pageblock_order-1)) ||
1038 page_group_by_mobility_disabled)
46dafbca
MG
1039 set_pageblock_migratetype(page,
1040 start_migratetype);
1041
b2a0ac88 1042 migratetype = start_migratetype;
c361be55 1043 }
b2a0ac88
MG
1044
1045 /* Remove the page from the freelists */
1046 list_del(&page->lru);
1047 rmv_page_order(page);
b2a0ac88 1048
2f66a68f 1049 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1050 if (current_order >= pageblock_order &&
1051 !is_migrate_cma(migratetype))
2f66a68f 1052 change_pageblock_range(page, current_order,
b2a0ac88
MG
1053 start_migratetype);
1054
47118af0
MN
1055 expand(zone, page, order, current_order, area,
1056 is_migrate_cma(migratetype)
1057 ? migratetype : start_migratetype);
e0fff1bd
MG
1058
1059 trace_mm_page_alloc_extfrag(page, order, current_order,
1060 start_migratetype, migratetype);
1061
b2a0ac88
MG
1062 return page;
1063 }
1064 }
1065
728ec980 1066 return NULL;
b2a0ac88
MG
1067}
1068
56fd56b8 1069/*
1da177e4
LT
1070 * Do the hard work of removing an element from the buddy allocator.
1071 * Call me with the zone->lock already held.
1072 */
b2a0ac88
MG
1073static struct page *__rmqueue(struct zone *zone, unsigned int order,
1074 int migratetype)
1da177e4 1075{
1da177e4
LT
1076 struct page *page;
1077
728ec980 1078retry_reserve:
56fd56b8 1079 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1080
728ec980 1081 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1082 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1083
728ec980
MG
1084 /*
1085 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086 * is used because __rmqueue_smallest is an inline function
1087 * and we want just one call site
1088 */
1089 if (!page) {
1090 migratetype = MIGRATE_RESERVE;
1091 goto retry_reserve;
1092 }
1093 }
1094
0d3d062a 1095 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1096 return page;
1da177e4
LT
1097}
1098
5f63b720 1099/*
1da177e4
LT
1100 * Obtain a specified number of elements from the buddy allocator, all under
1101 * a single hold of the lock, for efficiency. Add them to the supplied list.
1102 * Returns the number of new pages which were placed at *list.
1103 */
5f63b720 1104static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1105 unsigned long count, struct list_head *list,
e084b2d9 1106 int migratetype, int cold)
1da177e4 1107{
47118af0 1108 int mt = migratetype, i;
5f63b720 1109
c54ad30c 1110 spin_lock(&zone->lock);
1da177e4 1111 for (i = 0; i < count; ++i) {
b2a0ac88 1112 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1113 if (unlikely(page == NULL))
1da177e4 1114 break;
81eabcbe
MG
1115
1116 /*
1117 * Split buddy pages returned by expand() are received here
1118 * in physical page order. The page is added to the callers and
1119 * list and the list head then moves forward. From the callers
1120 * perspective, the linked list is ordered by page number in
1121 * some conditions. This is useful for IO devices that can
1122 * merge IO requests if the physical pages are ordered
1123 * properly.
1124 */
e084b2d9
MG
1125 if (likely(cold == 0))
1126 list_add(&page->lru, list);
1127 else
1128 list_add_tail(&page->lru, list);
47118af0
MN
1129 if (IS_ENABLED(CONFIG_CMA)) {
1130 mt = get_pageblock_migratetype(page);
1131 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1132 mt = migratetype;
1133 }
1134 set_page_private(page, mt);
81eabcbe 1135 list = &page->lru;
1da177e4 1136 }
f2260e6b 1137 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1138 spin_unlock(&zone->lock);
085cc7d5 1139 return i;
1da177e4
LT
1140}
1141
4ae7c039 1142#ifdef CONFIG_NUMA
8fce4d8e 1143/*
4037d452
CL
1144 * Called from the vmstat counter updater to drain pagesets of this
1145 * currently executing processor on remote nodes after they have
1146 * expired.
1147 *
879336c3
CL
1148 * Note that this function must be called with the thread pinned to
1149 * a single processor.
8fce4d8e 1150 */
4037d452 1151void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1152{
4ae7c039 1153 unsigned long flags;
4037d452 1154 int to_drain;
4ae7c039 1155
4037d452
CL
1156 local_irq_save(flags);
1157 if (pcp->count >= pcp->batch)
1158 to_drain = pcp->batch;
1159 else
1160 to_drain = pcp->count;
2a13515c
KM
1161 if (to_drain > 0) {
1162 free_pcppages_bulk(zone, to_drain, pcp);
1163 pcp->count -= to_drain;
1164 }
4037d452 1165 local_irq_restore(flags);
4ae7c039
CL
1166}
1167#endif
1168
9f8f2172
CL
1169/*
1170 * Drain pages of the indicated processor.
1171 *
1172 * The processor must either be the current processor and the
1173 * thread pinned to the current processor or a processor that
1174 * is not online.
1175 */
1176static void drain_pages(unsigned int cpu)
1da177e4 1177{
c54ad30c 1178 unsigned long flags;
1da177e4 1179 struct zone *zone;
1da177e4 1180
ee99c71c 1181 for_each_populated_zone(zone) {
1da177e4 1182 struct per_cpu_pageset *pset;
3dfa5721 1183 struct per_cpu_pages *pcp;
1da177e4 1184
99dcc3e5
CL
1185 local_irq_save(flags);
1186 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1187
1188 pcp = &pset->pcp;
2ff754fa
DR
1189 if (pcp->count) {
1190 free_pcppages_bulk(zone, pcp->count, pcp);
1191 pcp->count = 0;
1192 }
3dfa5721 1193 local_irq_restore(flags);
1da177e4
LT
1194 }
1195}
1da177e4 1196
9f8f2172
CL
1197/*
1198 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1199 */
1200void drain_local_pages(void *arg)
1201{
1202 drain_pages(smp_processor_id());
1203}
1204
1205/*
74046494
GBY
1206 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1207 *
1208 * Note that this code is protected against sending an IPI to an offline
1209 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1210 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1211 * nothing keeps CPUs from showing up after we populated the cpumask and
1212 * before the call to on_each_cpu_mask().
9f8f2172
CL
1213 */
1214void drain_all_pages(void)
1215{
74046494
GBY
1216 int cpu;
1217 struct per_cpu_pageset *pcp;
1218 struct zone *zone;
1219
1220 /*
1221 * Allocate in the BSS so we wont require allocation in
1222 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1223 */
1224 static cpumask_t cpus_with_pcps;
1225
1226 /*
1227 * We don't care about racing with CPU hotplug event
1228 * as offline notification will cause the notified
1229 * cpu to drain that CPU pcps and on_each_cpu_mask
1230 * disables preemption as part of its processing
1231 */
1232 for_each_online_cpu(cpu) {
1233 bool has_pcps = false;
1234 for_each_populated_zone(zone) {
1235 pcp = per_cpu_ptr(zone->pageset, cpu);
1236 if (pcp->pcp.count) {
1237 has_pcps = true;
1238 break;
1239 }
1240 }
1241 if (has_pcps)
1242 cpumask_set_cpu(cpu, &cpus_with_pcps);
1243 else
1244 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1245 }
1246 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1247}
1248
296699de 1249#ifdef CONFIG_HIBERNATION
1da177e4
LT
1250
1251void mark_free_pages(struct zone *zone)
1252{
f623f0db
RW
1253 unsigned long pfn, max_zone_pfn;
1254 unsigned long flags;
b2a0ac88 1255 int order, t;
1da177e4
LT
1256 struct list_head *curr;
1257
1258 if (!zone->spanned_pages)
1259 return;
1260
1261 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1262
1263 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1264 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1265 if (pfn_valid(pfn)) {
1266 struct page *page = pfn_to_page(pfn);
1267
7be98234
RW
1268 if (!swsusp_page_is_forbidden(page))
1269 swsusp_unset_page_free(page);
f623f0db 1270 }
1da177e4 1271
b2a0ac88
MG
1272 for_each_migratetype_order(order, t) {
1273 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1274 unsigned long i;
1da177e4 1275
f623f0db
RW
1276 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1277 for (i = 0; i < (1UL << order); i++)
7be98234 1278 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1279 }
b2a0ac88 1280 }
1da177e4
LT
1281 spin_unlock_irqrestore(&zone->lock, flags);
1282}
e2c55dc8 1283#endif /* CONFIG_PM */
1da177e4 1284
1da177e4
LT
1285/*
1286 * Free a 0-order page
fc91668e 1287 * cold == 1 ? free a cold page : free a hot page
1da177e4 1288 */
fc91668e 1289void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1290{
1291 struct zone *zone = page_zone(page);
1292 struct per_cpu_pages *pcp;
1293 unsigned long flags;
5f8dcc21 1294 int migratetype;
451ea25d 1295 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1296
ec95f53a 1297 if (!free_pages_prepare(page, 0))
689bcebf
HD
1298 return;
1299
5f8dcc21
MG
1300 migratetype = get_pageblock_migratetype(page);
1301 set_page_private(page, migratetype);
1da177e4 1302 local_irq_save(flags);
c277331d 1303 if (unlikely(wasMlocked))
da456f14 1304 free_page_mlock(page);
f8891e5e 1305 __count_vm_event(PGFREE);
da456f14 1306
5f8dcc21
MG
1307 /*
1308 * We only track unmovable, reclaimable and movable on pcp lists.
1309 * Free ISOLATE pages back to the allocator because they are being
1310 * offlined but treat RESERVE as movable pages so we can get those
1311 * areas back if necessary. Otherwise, we may have to free
1312 * excessively into the page allocator
1313 */
1314 if (migratetype >= MIGRATE_PCPTYPES) {
1315 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1316 free_one_page(zone, page, 0, migratetype);
1317 goto out;
1318 }
1319 migratetype = MIGRATE_MOVABLE;
1320 }
1321
99dcc3e5 1322 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1323 if (cold)
5f8dcc21 1324 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1325 else
5f8dcc21 1326 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1327 pcp->count++;
48db57f8 1328 if (pcp->count >= pcp->high) {
5f8dcc21 1329 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1330 pcp->count -= pcp->batch;
1331 }
5f8dcc21
MG
1332
1333out:
1da177e4 1334 local_irq_restore(flags);
1da177e4
LT
1335}
1336
cc59850e
KK
1337/*
1338 * Free a list of 0-order pages
1339 */
1340void free_hot_cold_page_list(struct list_head *list, int cold)
1341{
1342 struct page *page, *next;
1343
1344 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1345 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1346 free_hot_cold_page(page, cold);
1347 }
1348}
1349
8dfcc9ba
NP
1350/*
1351 * split_page takes a non-compound higher-order page, and splits it into
1352 * n (1<<order) sub-pages: page[0..n]
1353 * Each sub-page must be freed individually.
1354 *
1355 * Note: this is probably too low level an operation for use in drivers.
1356 * Please consult with lkml before using this in your driver.
1357 */
1358void split_page(struct page *page, unsigned int order)
1359{
1360 int i;
1361
725d704e
NP
1362 VM_BUG_ON(PageCompound(page));
1363 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1364
1365#ifdef CONFIG_KMEMCHECK
1366 /*
1367 * Split shadow pages too, because free(page[0]) would
1368 * otherwise free the whole shadow.
1369 */
1370 if (kmemcheck_page_is_tracked(page))
1371 split_page(virt_to_page(page[0].shadow), order);
1372#endif
1373
7835e98b
NP
1374 for (i = 1; i < (1 << order); i++)
1375 set_page_refcounted(page + i);
8dfcc9ba 1376}
8dfcc9ba 1377
748446bb
MG
1378/*
1379 * Similar to split_page except the page is already free. As this is only
1380 * being used for migration, the migratetype of the block also changes.
1381 * As this is called with interrupts disabled, the caller is responsible
1382 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1383 * are enabled.
1384 *
1385 * Note: this is probably too low level an operation for use in drivers.
1386 * Please consult with lkml before using this in your driver.
1387 */
1388int split_free_page(struct page *page)
1389{
1390 unsigned int order;
1391 unsigned long watermark;
1392 struct zone *zone;
1393
1394 BUG_ON(!PageBuddy(page));
1395
1396 zone = page_zone(page);
1397 order = page_order(page);
1398
1399 /* Obey watermarks as if the page was being allocated */
1400 watermark = low_wmark_pages(zone) + (1 << order);
1401 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1402 return 0;
1403
1404 /* Remove page from free list */
1405 list_del(&page->lru);
1406 zone->free_area[order].nr_free--;
1407 rmv_page_order(page);
1408 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1409
1410 /* Split into individual pages */
1411 set_page_refcounted(page);
1412 split_page(page, order);
1413
1414 if (order >= pageblock_order - 1) {
1415 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1416 for (; page < endpage; page += pageblock_nr_pages) {
1417 int mt = get_pageblock_migratetype(page);
1418 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1419 set_pageblock_migratetype(page,
1420 MIGRATE_MOVABLE);
1421 }
748446bb
MG
1422 }
1423
1424 return 1 << order;
1425}
1426
1da177e4
LT
1427/*
1428 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1429 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1430 * or two.
1431 */
0a15c3e9
MG
1432static inline
1433struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1434 struct zone *zone, int order, gfp_t gfp_flags,
1435 int migratetype)
1da177e4
LT
1436{
1437 unsigned long flags;
689bcebf 1438 struct page *page;
1da177e4
LT
1439 int cold = !!(gfp_flags & __GFP_COLD);
1440
689bcebf 1441again:
48db57f8 1442 if (likely(order == 0)) {
1da177e4 1443 struct per_cpu_pages *pcp;
5f8dcc21 1444 struct list_head *list;
1da177e4 1445
1da177e4 1446 local_irq_save(flags);
99dcc3e5
CL
1447 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1448 list = &pcp->lists[migratetype];
5f8dcc21 1449 if (list_empty(list)) {
535131e6 1450 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1451 pcp->batch, list,
e084b2d9 1452 migratetype, cold);
5f8dcc21 1453 if (unlikely(list_empty(list)))
6fb332fa 1454 goto failed;
535131e6 1455 }
b92a6edd 1456
5f8dcc21
MG
1457 if (cold)
1458 page = list_entry(list->prev, struct page, lru);
1459 else
1460 page = list_entry(list->next, struct page, lru);
1461
b92a6edd
MG
1462 list_del(&page->lru);
1463 pcp->count--;
7fb1d9fc 1464 } else {
dab48dab
AM
1465 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1466 /*
1467 * __GFP_NOFAIL is not to be used in new code.
1468 *
1469 * All __GFP_NOFAIL callers should be fixed so that they
1470 * properly detect and handle allocation failures.
1471 *
1472 * We most definitely don't want callers attempting to
4923abf9 1473 * allocate greater than order-1 page units with
dab48dab
AM
1474 * __GFP_NOFAIL.
1475 */
4923abf9 1476 WARN_ON_ONCE(order > 1);
dab48dab 1477 }
1da177e4 1478 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1479 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1480 spin_unlock(&zone->lock);
1481 if (!page)
1482 goto failed;
6ccf80eb 1483 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1484 }
1485
f8891e5e 1486 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1487 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1488 local_irq_restore(flags);
1da177e4 1489
725d704e 1490 VM_BUG_ON(bad_range(zone, page));
17cf4406 1491 if (prep_new_page(page, order, gfp_flags))
a74609fa 1492 goto again;
1da177e4 1493 return page;
a74609fa
NP
1494
1495failed:
1496 local_irq_restore(flags);
a74609fa 1497 return NULL;
1da177e4
LT
1498}
1499
41858966
MG
1500/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1501#define ALLOC_WMARK_MIN WMARK_MIN
1502#define ALLOC_WMARK_LOW WMARK_LOW
1503#define ALLOC_WMARK_HIGH WMARK_HIGH
1504#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1505
1506/* Mask to get the watermark bits */
1507#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1508
3148890b
NP
1509#define ALLOC_HARDER 0x10 /* try to alloc harder */
1510#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1511#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1512
933e312e
AM
1513#ifdef CONFIG_FAIL_PAGE_ALLOC
1514
b2588c4b 1515static struct {
933e312e
AM
1516 struct fault_attr attr;
1517
1518 u32 ignore_gfp_highmem;
1519 u32 ignore_gfp_wait;
54114994 1520 u32 min_order;
933e312e
AM
1521} fail_page_alloc = {
1522 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1523 .ignore_gfp_wait = 1,
1524 .ignore_gfp_highmem = 1,
54114994 1525 .min_order = 1,
933e312e
AM
1526};
1527
1528static int __init setup_fail_page_alloc(char *str)
1529{
1530 return setup_fault_attr(&fail_page_alloc.attr, str);
1531}
1532__setup("fail_page_alloc=", setup_fail_page_alloc);
1533
deaf386e 1534static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1535{
54114994 1536 if (order < fail_page_alloc.min_order)
deaf386e 1537 return false;
933e312e 1538 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1539 return false;
933e312e 1540 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1541 return false;
933e312e 1542 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1543 return false;
933e312e
AM
1544
1545 return should_fail(&fail_page_alloc.attr, 1 << order);
1546}
1547
1548#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1549
1550static int __init fail_page_alloc_debugfs(void)
1551{
f4ae40a6 1552 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1553 struct dentry *dir;
933e312e 1554
dd48c085
AM
1555 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1556 &fail_page_alloc.attr);
1557 if (IS_ERR(dir))
1558 return PTR_ERR(dir);
933e312e 1559
b2588c4b
AM
1560 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1561 &fail_page_alloc.ignore_gfp_wait))
1562 goto fail;
1563 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1564 &fail_page_alloc.ignore_gfp_highmem))
1565 goto fail;
1566 if (!debugfs_create_u32("min-order", mode, dir,
1567 &fail_page_alloc.min_order))
1568 goto fail;
1569
1570 return 0;
1571fail:
dd48c085 1572 debugfs_remove_recursive(dir);
933e312e 1573
b2588c4b 1574 return -ENOMEM;
933e312e
AM
1575}
1576
1577late_initcall(fail_page_alloc_debugfs);
1578
1579#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1580
1581#else /* CONFIG_FAIL_PAGE_ALLOC */
1582
deaf386e 1583static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1584{
deaf386e 1585 return false;
933e312e
AM
1586}
1587
1588#endif /* CONFIG_FAIL_PAGE_ALLOC */
1589
1da177e4 1590/*
88f5acf8 1591 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1592 * of the allocation.
1593 */
88f5acf8
MG
1594static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1595 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1596{
1597 /* free_pages my go negative - that's OK */
d23ad423 1598 long min = mark;
1da177e4
LT
1599 int o;
1600
df0a6daa 1601 free_pages -= (1 << order) - 1;
7fb1d9fc 1602 if (alloc_flags & ALLOC_HIGH)
1da177e4 1603 min -= min / 2;
7fb1d9fc 1604 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1605 min -= min / 4;
1606
1607 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1608 return false;
1da177e4
LT
1609 for (o = 0; o < order; o++) {
1610 /* At the next order, this order's pages become unavailable */
1611 free_pages -= z->free_area[o].nr_free << o;
1612
1613 /* Require fewer higher order pages to be free */
1614 min >>= 1;
1615
1616 if (free_pages <= min)
88f5acf8 1617 return false;
1da177e4 1618 }
88f5acf8
MG
1619 return true;
1620}
1621
1622bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags)
1624{
1625 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1626 zone_page_state(z, NR_FREE_PAGES));
1627}
1628
1629bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1630 int classzone_idx, int alloc_flags)
1631{
1632 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1633
1634 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1635 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1636
1637 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1638 free_pages);
1da177e4
LT
1639}
1640
9276b1bc
PJ
1641#ifdef CONFIG_NUMA
1642/*
1643 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1644 * skip over zones that are not allowed by the cpuset, or that have
1645 * been recently (in last second) found to be nearly full. See further
1646 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1647 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1648 *
1649 * If the zonelist cache is present in the passed in zonelist, then
1650 * returns a pointer to the allowed node mask (either the current
37b07e41 1651 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1652 *
1653 * If the zonelist cache is not available for this zonelist, does
1654 * nothing and returns NULL.
1655 *
1656 * If the fullzones BITMAP in the zonelist cache is stale (more than
1657 * a second since last zap'd) then we zap it out (clear its bits.)
1658 *
1659 * We hold off even calling zlc_setup, until after we've checked the
1660 * first zone in the zonelist, on the theory that most allocations will
1661 * be satisfied from that first zone, so best to examine that zone as
1662 * quickly as we can.
1663 */
1664static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1665{
1666 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1667 nodemask_t *allowednodes; /* zonelist_cache approximation */
1668
1669 zlc = zonelist->zlcache_ptr;
1670 if (!zlc)
1671 return NULL;
1672
f05111f5 1673 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1674 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1675 zlc->last_full_zap = jiffies;
1676 }
1677
1678 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1679 &cpuset_current_mems_allowed :
37b07e41 1680 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1681 return allowednodes;
1682}
1683
1684/*
1685 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1686 * if it is worth looking at further for free memory:
1687 * 1) Check that the zone isn't thought to be full (doesn't have its
1688 * bit set in the zonelist_cache fullzones BITMAP).
1689 * 2) Check that the zones node (obtained from the zonelist_cache
1690 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1691 * Return true (non-zero) if zone is worth looking at further, or
1692 * else return false (zero) if it is not.
1693 *
1694 * This check -ignores- the distinction between various watermarks,
1695 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1696 * found to be full for any variation of these watermarks, it will
1697 * be considered full for up to one second by all requests, unless
1698 * we are so low on memory on all allowed nodes that we are forced
1699 * into the second scan of the zonelist.
1700 *
1701 * In the second scan we ignore this zonelist cache and exactly
1702 * apply the watermarks to all zones, even it is slower to do so.
1703 * We are low on memory in the second scan, and should leave no stone
1704 * unturned looking for a free page.
1705 */
dd1a239f 1706static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1707 nodemask_t *allowednodes)
1708{
1709 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1710 int i; /* index of *z in zonelist zones */
1711 int n; /* node that zone *z is on */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return 1;
1716
dd1a239f 1717 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1718 n = zlc->z_to_n[i];
1719
1720 /* This zone is worth trying if it is allowed but not full */
1721 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1722}
1723
1724/*
1725 * Given 'z' scanning a zonelist, set the corresponding bit in
1726 * zlc->fullzones, so that subsequent attempts to allocate a page
1727 * from that zone don't waste time re-examining it.
1728 */
dd1a239f 1729static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1730{
1731 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1732 int i; /* index of *z in zonelist zones */
1733
1734 zlc = zonelist->zlcache_ptr;
1735 if (!zlc)
1736 return;
1737
dd1a239f 1738 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1739
1740 set_bit(i, zlc->fullzones);
1741}
1742
76d3fbf8
MG
1743/*
1744 * clear all zones full, called after direct reclaim makes progress so that
1745 * a zone that was recently full is not skipped over for up to a second
1746 */
1747static void zlc_clear_zones_full(struct zonelist *zonelist)
1748{
1749 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1750
1751 zlc = zonelist->zlcache_ptr;
1752 if (!zlc)
1753 return;
1754
1755 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1756}
1757
9276b1bc
PJ
1758#else /* CONFIG_NUMA */
1759
1760static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1761{
1762 return NULL;
1763}
1764
dd1a239f 1765static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1766 nodemask_t *allowednodes)
1767{
1768 return 1;
1769}
1770
dd1a239f 1771static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1772{
1773}
76d3fbf8
MG
1774
1775static void zlc_clear_zones_full(struct zonelist *zonelist)
1776{
1777}
9276b1bc
PJ
1778#endif /* CONFIG_NUMA */
1779
7fb1d9fc 1780/*
0798e519 1781 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1782 * a page.
1783 */
1784static struct page *
19770b32 1785get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1786 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1787 struct zone *preferred_zone, int migratetype)
753ee728 1788{
dd1a239f 1789 struct zoneref *z;
7fb1d9fc 1790 struct page *page = NULL;
54a6eb5c 1791 int classzone_idx;
5117f45d 1792 struct zone *zone;
9276b1bc
PJ
1793 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1794 int zlc_active = 0; /* set if using zonelist_cache */
1795 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1796
19770b32 1797 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1798zonelist_scan:
7fb1d9fc 1799 /*
9276b1bc 1800 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1801 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1802 */
19770b32
MG
1803 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1804 high_zoneidx, nodemask) {
9276b1bc
PJ
1805 if (NUMA_BUILD && zlc_active &&
1806 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1807 continue;
7fb1d9fc 1808 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1809 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1810 continue;
a756cf59
JW
1811 /*
1812 * When allocating a page cache page for writing, we
1813 * want to get it from a zone that is within its dirty
1814 * limit, such that no single zone holds more than its
1815 * proportional share of globally allowed dirty pages.
1816 * The dirty limits take into account the zone's
1817 * lowmem reserves and high watermark so that kswapd
1818 * should be able to balance it without having to
1819 * write pages from its LRU list.
1820 *
1821 * This may look like it could increase pressure on
1822 * lower zones by failing allocations in higher zones
1823 * before they are full. But the pages that do spill
1824 * over are limited as the lower zones are protected
1825 * by this very same mechanism. It should not become
1826 * a practical burden to them.
1827 *
1828 * XXX: For now, allow allocations to potentially
1829 * exceed the per-zone dirty limit in the slowpath
1830 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1831 * which is important when on a NUMA setup the allowed
1832 * zones are together not big enough to reach the
1833 * global limit. The proper fix for these situations
1834 * will require awareness of zones in the
1835 * dirty-throttling and the flusher threads.
1836 */
1837 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1838 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1839 goto this_zone_full;
7fb1d9fc 1840
41858966 1841 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1842 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1843 unsigned long mark;
fa5e084e
MG
1844 int ret;
1845
41858966 1846 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1847 if (zone_watermark_ok(zone, order, mark,
1848 classzone_idx, alloc_flags))
1849 goto try_this_zone;
1850
cd38b115
MG
1851 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1852 /*
1853 * we do zlc_setup if there are multiple nodes
1854 * and before considering the first zone allowed
1855 * by the cpuset.
1856 */
1857 allowednodes = zlc_setup(zonelist, alloc_flags);
1858 zlc_active = 1;
1859 did_zlc_setup = 1;
1860 }
1861
fa5e084e
MG
1862 if (zone_reclaim_mode == 0)
1863 goto this_zone_full;
1864
cd38b115
MG
1865 /*
1866 * As we may have just activated ZLC, check if the first
1867 * eligible zone has failed zone_reclaim recently.
1868 */
1869 if (NUMA_BUILD && zlc_active &&
1870 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1871 continue;
1872
fa5e084e
MG
1873 ret = zone_reclaim(zone, gfp_mask, order);
1874 switch (ret) {
1875 case ZONE_RECLAIM_NOSCAN:
1876 /* did not scan */
cd38b115 1877 continue;
fa5e084e
MG
1878 case ZONE_RECLAIM_FULL:
1879 /* scanned but unreclaimable */
cd38b115 1880 continue;
fa5e084e
MG
1881 default:
1882 /* did we reclaim enough */
1883 if (!zone_watermark_ok(zone, order, mark,
1884 classzone_idx, alloc_flags))
9276b1bc 1885 goto this_zone_full;
0798e519 1886 }
7fb1d9fc
RS
1887 }
1888
fa5e084e 1889try_this_zone:
3dd28266
MG
1890 page = buffered_rmqueue(preferred_zone, zone, order,
1891 gfp_mask, migratetype);
0798e519 1892 if (page)
7fb1d9fc 1893 break;
9276b1bc
PJ
1894this_zone_full:
1895 if (NUMA_BUILD)
1896 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1897 }
9276b1bc
PJ
1898
1899 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1900 /* Disable zlc cache for second zonelist scan */
1901 zlc_active = 0;
1902 goto zonelist_scan;
1903 }
7fb1d9fc 1904 return page;
753ee728
MH
1905}
1906
29423e77
DR
1907/*
1908 * Large machines with many possible nodes should not always dump per-node
1909 * meminfo in irq context.
1910 */
1911static inline bool should_suppress_show_mem(void)
1912{
1913 bool ret = false;
1914
1915#if NODES_SHIFT > 8
1916 ret = in_interrupt();
1917#endif
1918 return ret;
1919}
1920
a238ab5b
DH
1921static DEFINE_RATELIMIT_STATE(nopage_rs,
1922 DEFAULT_RATELIMIT_INTERVAL,
1923 DEFAULT_RATELIMIT_BURST);
1924
1925void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1926{
a238ab5b
DH
1927 unsigned int filter = SHOW_MEM_FILTER_NODES;
1928
c0a32fc5
SG
1929 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1930 debug_guardpage_minorder() > 0)
a238ab5b
DH
1931 return;
1932
1933 /*
1934 * This documents exceptions given to allocations in certain
1935 * contexts that are allowed to allocate outside current's set
1936 * of allowed nodes.
1937 */
1938 if (!(gfp_mask & __GFP_NOMEMALLOC))
1939 if (test_thread_flag(TIF_MEMDIE) ||
1940 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1941 filter &= ~SHOW_MEM_FILTER_NODES;
1942 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1943 filter &= ~SHOW_MEM_FILTER_NODES;
1944
1945 if (fmt) {
3ee9a4f0
JP
1946 struct va_format vaf;
1947 va_list args;
1948
a238ab5b 1949 va_start(args, fmt);
3ee9a4f0
JP
1950
1951 vaf.fmt = fmt;
1952 vaf.va = &args;
1953
1954 pr_warn("%pV", &vaf);
1955
a238ab5b
DH
1956 va_end(args);
1957 }
1958
3ee9a4f0
JP
1959 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1960 current->comm, order, gfp_mask);
a238ab5b
DH
1961
1962 dump_stack();
1963 if (!should_suppress_show_mem())
1964 show_mem(filter);
1965}
1966
11e33f6a
MG
1967static inline int
1968should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 1969 unsigned long did_some_progress,
11e33f6a 1970 unsigned long pages_reclaimed)
1da177e4 1971{
11e33f6a
MG
1972 /* Do not loop if specifically requested */
1973 if (gfp_mask & __GFP_NORETRY)
1974 return 0;
1da177e4 1975
f90ac398
MG
1976 /* Always retry if specifically requested */
1977 if (gfp_mask & __GFP_NOFAIL)
1978 return 1;
1979
1980 /*
1981 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1982 * making forward progress without invoking OOM. Suspend also disables
1983 * storage devices so kswapd will not help. Bail if we are suspending.
1984 */
1985 if (!did_some_progress && pm_suspended_storage())
1986 return 0;
1987
11e33f6a
MG
1988 /*
1989 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1990 * means __GFP_NOFAIL, but that may not be true in other
1991 * implementations.
1992 */
1993 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1994 return 1;
1995
1996 /*
1997 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1998 * specified, then we retry until we no longer reclaim any pages
1999 * (above), or we've reclaimed an order of pages at least as
2000 * large as the allocation's order. In both cases, if the
2001 * allocation still fails, we stop retrying.
2002 */
2003 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2004 return 1;
cf40bd16 2005
11e33f6a
MG
2006 return 0;
2007}
933e312e 2008
11e33f6a
MG
2009static inline struct page *
2010__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2011 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2012 nodemask_t *nodemask, struct zone *preferred_zone,
2013 int migratetype)
11e33f6a
MG
2014{
2015 struct page *page;
2016
2017 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2018 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2019 schedule_timeout_uninterruptible(1);
1da177e4
LT
2020 return NULL;
2021 }
6b1de916 2022
11e33f6a
MG
2023 /*
2024 * Go through the zonelist yet one more time, keep very high watermark
2025 * here, this is only to catch a parallel oom killing, we must fail if
2026 * we're still under heavy pressure.
2027 */
2028 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2029 order, zonelist, high_zoneidx,
5117f45d 2030 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2031 preferred_zone, migratetype);
7fb1d9fc 2032 if (page)
11e33f6a
MG
2033 goto out;
2034
4365a567
KH
2035 if (!(gfp_mask & __GFP_NOFAIL)) {
2036 /* The OOM killer will not help higher order allocs */
2037 if (order > PAGE_ALLOC_COSTLY_ORDER)
2038 goto out;
03668b3c
DR
2039 /* The OOM killer does not needlessly kill tasks for lowmem */
2040 if (high_zoneidx < ZONE_NORMAL)
2041 goto out;
4365a567
KH
2042 /*
2043 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2044 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2045 * The caller should handle page allocation failure by itself if
2046 * it specifies __GFP_THISNODE.
2047 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2048 */
2049 if (gfp_mask & __GFP_THISNODE)
2050 goto out;
2051 }
11e33f6a 2052 /* Exhausted what can be done so it's blamo time */
08ab9b10 2053 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2054
2055out:
2056 clear_zonelist_oom(zonelist, gfp_mask);
2057 return page;
2058}
2059
56de7263
MG
2060#ifdef CONFIG_COMPACTION
2061/* Try memory compaction for high-order allocations before reclaim */
2062static struct page *
2063__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2064 struct zonelist *zonelist, enum zone_type high_zoneidx,
2065 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2066 int migratetype, bool sync_migration,
2067 bool *deferred_compaction,
2068 unsigned long *did_some_progress)
56de7263
MG
2069{
2070 struct page *page;
2071
66199712 2072 if (!order)
56de7263
MG
2073 return NULL;
2074
aff62249 2075 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2076 *deferred_compaction = true;
2077 return NULL;
2078 }
2079
c06b1fca 2080 current->flags |= PF_MEMALLOC;
56de7263 2081 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 2082 nodemask, sync_migration);
c06b1fca 2083 current->flags &= ~PF_MEMALLOC;
56de7263
MG
2084 if (*did_some_progress != COMPACT_SKIPPED) {
2085
2086 /* Page migration frees to the PCP lists but we want merging */
2087 drain_pages(get_cpu());
2088 put_cpu();
2089
2090 page = get_page_from_freelist(gfp_mask, nodemask,
2091 order, zonelist, high_zoneidx,
2092 alloc_flags, preferred_zone,
2093 migratetype);
2094 if (page) {
4f92e258
MG
2095 preferred_zone->compact_considered = 0;
2096 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2097 if (order >= preferred_zone->compact_order_failed)
2098 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2099 count_vm_event(COMPACTSUCCESS);
2100 return page;
2101 }
2102
2103 /*
2104 * It's bad if compaction run occurs and fails.
2105 * The most likely reason is that pages exist,
2106 * but not enough to satisfy watermarks.
2107 */
2108 count_vm_event(COMPACTFAIL);
66199712
MG
2109
2110 /*
2111 * As async compaction considers a subset of pageblocks, only
2112 * defer if the failure was a sync compaction failure.
2113 */
2114 if (sync_migration)
aff62249 2115 defer_compaction(preferred_zone, order);
56de7263
MG
2116
2117 cond_resched();
2118 }
2119
2120 return NULL;
2121}
2122#else
2123static inline struct page *
2124__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2125 struct zonelist *zonelist, enum zone_type high_zoneidx,
2126 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712
MG
2127 int migratetype, bool sync_migration,
2128 bool *deferred_compaction,
2129 unsigned long *did_some_progress)
56de7263
MG
2130{
2131 return NULL;
2132}
2133#endif /* CONFIG_COMPACTION */
2134
bba90710
MS
2135/* Perform direct synchronous page reclaim */
2136static int
2137__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2138 nodemask_t *nodemask)
11e33f6a 2139{
11e33f6a 2140 struct reclaim_state reclaim_state;
bba90710 2141 int progress;
11e33f6a
MG
2142
2143 cond_resched();
2144
2145 /* We now go into synchronous reclaim */
2146 cpuset_memory_pressure_bump();
c06b1fca 2147 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2148 lockdep_set_current_reclaim_state(gfp_mask);
2149 reclaim_state.reclaimed_slab = 0;
c06b1fca 2150 current->reclaim_state = &reclaim_state;
11e33f6a 2151
bba90710 2152 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2153
c06b1fca 2154 current->reclaim_state = NULL;
11e33f6a 2155 lockdep_clear_current_reclaim_state();
c06b1fca 2156 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2157
2158 cond_resched();
2159
bba90710
MS
2160 return progress;
2161}
2162
2163/* The really slow allocator path where we enter direct reclaim */
2164static inline struct page *
2165__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2166 struct zonelist *zonelist, enum zone_type high_zoneidx,
2167 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2168 int migratetype, unsigned long *did_some_progress)
2169{
2170 struct page *page = NULL;
2171 bool drained = false;
2172
2173 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2174 nodemask);
9ee493ce
MG
2175 if (unlikely(!(*did_some_progress)))
2176 return NULL;
11e33f6a 2177
76d3fbf8
MG
2178 /* After successful reclaim, reconsider all zones for allocation */
2179 if (NUMA_BUILD)
2180 zlc_clear_zones_full(zonelist);
2181
9ee493ce
MG
2182retry:
2183 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2184 zonelist, high_zoneidx,
3dd28266
MG
2185 alloc_flags, preferred_zone,
2186 migratetype);
9ee493ce
MG
2187
2188 /*
2189 * If an allocation failed after direct reclaim, it could be because
2190 * pages are pinned on the per-cpu lists. Drain them and try again
2191 */
2192 if (!page && !drained) {
2193 drain_all_pages();
2194 drained = true;
2195 goto retry;
2196 }
2197
11e33f6a
MG
2198 return page;
2199}
2200
1da177e4 2201/*
11e33f6a
MG
2202 * This is called in the allocator slow-path if the allocation request is of
2203 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2204 */
11e33f6a
MG
2205static inline struct page *
2206__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2207 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2208 nodemask_t *nodemask, struct zone *preferred_zone,
2209 int migratetype)
11e33f6a
MG
2210{
2211 struct page *page;
2212
2213 do {
2214 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2215 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2216 preferred_zone, migratetype);
11e33f6a
MG
2217
2218 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2219 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2220 } while (!page && (gfp_mask & __GFP_NOFAIL));
2221
2222 return page;
2223}
2224
2225static inline
2226void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2227 enum zone_type high_zoneidx,
2228 enum zone_type classzone_idx)
1da177e4 2229{
dd1a239f
MG
2230 struct zoneref *z;
2231 struct zone *zone;
1da177e4 2232
11e33f6a 2233 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2234 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2235}
cf40bd16 2236
341ce06f
PZ
2237static inline int
2238gfp_to_alloc_flags(gfp_t gfp_mask)
2239{
341ce06f
PZ
2240 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2241 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2242
a56f57ff 2243 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2244 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2245
341ce06f
PZ
2246 /*
2247 * The caller may dip into page reserves a bit more if the caller
2248 * cannot run direct reclaim, or if the caller has realtime scheduling
2249 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2250 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2251 */
e6223a3b 2252 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2253
341ce06f 2254 if (!wait) {
5c3240d9
AA
2255 /*
2256 * Not worth trying to allocate harder for
2257 * __GFP_NOMEMALLOC even if it can't schedule.
2258 */
2259 if (!(gfp_mask & __GFP_NOMEMALLOC))
2260 alloc_flags |= ALLOC_HARDER;
523b9458 2261 /*
341ce06f
PZ
2262 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2263 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2264 */
341ce06f 2265 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2266 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2267 alloc_flags |= ALLOC_HARDER;
2268
2269 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2270 if (!in_interrupt() &&
c06b1fca 2271 ((current->flags & PF_MEMALLOC) ||
341ce06f
PZ
2272 unlikely(test_thread_flag(TIF_MEMDIE))))
2273 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2274 }
6b1de916 2275
341ce06f
PZ
2276 return alloc_flags;
2277}
2278
11e33f6a
MG
2279static inline struct page *
2280__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2281 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2282 nodemask_t *nodemask, struct zone *preferred_zone,
2283 int migratetype)
11e33f6a
MG
2284{
2285 const gfp_t wait = gfp_mask & __GFP_WAIT;
2286 struct page *page = NULL;
2287 int alloc_flags;
2288 unsigned long pages_reclaimed = 0;
2289 unsigned long did_some_progress;
77f1fe6b 2290 bool sync_migration = false;
66199712 2291 bool deferred_compaction = false;
1da177e4 2292
72807a74
MG
2293 /*
2294 * In the slowpath, we sanity check order to avoid ever trying to
2295 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2296 * be using allocators in order of preference for an area that is
2297 * too large.
2298 */
1fc28b70
MG
2299 if (order >= MAX_ORDER) {
2300 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2301 return NULL;
1fc28b70 2302 }
1da177e4 2303
952f3b51
CL
2304 /*
2305 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2306 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2307 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2308 * using a larger set of nodes after it has established that the
2309 * allowed per node queues are empty and that nodes are
2310 * over allocated.
2311 */
2312 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2313 goto nopage;
2314
cc4a6851 2315restart:
32dba98e
AA
2316 if (!(gfp_mask & __GFP_NO_KSWAPD))
2317 wake_all_kswapd(order, zonelist, high_zoneidx,
99504748 2318 zone_idx(preferred_zone));
1da177e4 2319
9bf2229f 2320 /*
7fb1d9fc
RS
2321 * OK, we're below the kswapd watermark and have kicked background
2322 * reclaim. Now things get more complex, so set up alloc_flags according
2323 * to how we want to proceed.
9bf2229f 2324 */
341ce06f 2325 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2326
f33261d7
DR
2327 /*
2328 * Find the true preferred zone if the allocation is unconstrained by
2329 * cpusets.
2330 */
2331 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2332 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2333 &preferred_zone);
2334
cfa54a0f 2335rebalance:
341ce06f 2336 /* This is the last chance, in general, before the goto nopage. */
19770b32 2337 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2338 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2339 preferred_zone, migratetype);
7fb1d9fc
RS
2340 if (page)
2341 goto got_pg;
1da177e4 2342
11e33f6a 2343 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2344 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2345 page = __alloc_pages_high_priority(gfp_mask, order,
2346 zonelist, high_zoneidx, nodemask,
2347 preferred_zone, migratetype);
2348 if (page)
2349 goto got_pg;
1da177e4
LT
2350 }
2351
2352 /* Atomic allocations - we can't balance anything */
2353 if (!wait)
2354 goto nopage;
2355
341ce06f 2356 /* Avoid recursion of direct reclaim */
c06b1fca 2357 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2358 goto nopage;
2359
6583bb64
DR
2360 /* Avoid allocations with no watermarks from looping endlessly */
2361 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2362 goto nopage;
2363
77f1fe6b
MG
2364 /*
2365 * Try direct compaction. The first pass is asynchronous. Subsequent
2366 * attempts after direct reclaim are synchronous
2367 */
56de7263
MG
2368 page = __alloc_pages_direct_compact(gfp_mask, order,
2369 zonelist, high_zoneidx,
2370 nodemask,
2371 alloc_flags, preferred_zone,
66199712
MG
2372 migratetype, sync_migration,
2373 &deferred_compaction,
2374 &did_some_progress);
56de7263
MG
2375 if (page)
2376 goto got_pg;
c6a140bf 2377 sync_migration = true;
56de7263 2378
66199712
MG
2379 /*
2380 * If compaction is deferred for high-order allocations, it is because
2381 * sync compaction recently failed. In this is the case and the caller
2382 * has requested the system not be heavily disrupted, fail the
2383 * allocation now instead of entering direct reclaim
2384 */
2385 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2386 goto nopage;
2387
11e33f6a
MG
2388 /* Try direct reclaim and then allocating */
2389 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2390 zonelist, high_zoneidx,
2391 nodemask,
5117f45d 2392 alloc_flags, preferred_zone,
3dd28266 2393 migratetype, &did_some_progress);
11e33f6a
MG
2394 if (page)
2395 goto got_pg;
1da177e4 2396
e33c3b5e 2397 /*
11e33f6a
MG
2398 * If we failed to make any progress reclaiming, then we are
2399 * running out of options and have to consider going OOM
e33c3b5e 2400 */
11e33f6a
MG
2401 if (!did_some_progress) {
2402 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2403 if (oom_killer_disabled)
2404 goto nopage;
29fd66d2
DR
2405 /* Coredumps can quickly deplete all memory reserves */
2406 if ((current->flags & PF_DUMPCORE) &&
2407 !(gfp_mask & __GFP_NOFAIL))
2408 goto nopage;
11e33f6a
MG
2409 page = __alloc_pages_may_oom(gfp_mask, order,
2410 zonelist, high_zoneidx,
3dd28266
MG
2411 nodemask, preferred_zone,
2412 migratetype);
11e33f6a
MG
2413 if (page)
2414 goto got_pg;
1da177e4 2415
03668b3c
DR
2416 if (!(gfp_mask & __GFP_NOFAIL)) {
2417 /*
2418 * The oom killer is not called for high-order
2419 * allocations that may fail, so if no progress
2420 * is being made, there are no other options and
2421 * retrying is unlikely to help.
2422 */
2423 if (order > PAGE_ALLOC_COSTLY_ORDER)
2424 goto nopage;
2425 /*
2426 * The oom killer is not called for lowmem
2427 * allocations to prevent needlessly killing
2428 * innocent tasks.
2429 */
2430 if (high_zoneidx < ZONE_NORMAL)
2431 goto nopage;
2432 }
e2c55dc8 2433
ff0ceb9d
DR
2434 goto restart;
2435 }
1da177e4
LT
2436 }
2437
11e33f6a 2438 /* Check if we should retry the allocation */
a41f24ea 2439 pages_reclaimed += did_some_progress;
f90ac398
MG
2440 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2441 pages_reclaimed)) {
11e33f6a 2442 /* Wait for some write requests to complete then retry */
0e093d99 2443 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2444 goto rebalance;
3e7d3449
MG
2445 } else {
2446 /*
2447 * High-order allocations do not necessarily loop after
2448 * direct reclaim and reclaim/compaction depends on compaction
2449 * being called after reclaim so call directly if necessary
2450 */
2451 page = __alloc_pages_direct_compact(gfp_mask, order,
2452 zonelist, high_zoneidx,
2453 nodemask,
2454 alloc_flags, preferred_zone,
66199712
MG
2455 migratetype, sync_migration,
2456 &deferred_compaction,
2457 &did_some_progress);
3e7d3449
MG
2458 if (page)
2459 goto got_pg;
1da177e4
LT
2460 }
2461
2462nopage:
a238ab5b 2463 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2464 return page;
1da177e4 2465got_pg:
b1eeab67
VN
2466 if (kmemcheck_enabled)
2467 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2468 return page;
11e33f6a 2469
1da177e4 2470}
11e33f6a
MG
2471
2472/*
2473 * This is the 'heart' of the zoned buddy allocator.
2474 */
2475struct page *
2476__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2477 struct zonelist *zonelist, nodemask_t *nodemask)
2478{
2479 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2480 struct zone *preferred_zone;
cc9a6c87 2481 struct page *page = NULL;
3dd28266 2482 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2483 unsigned int cpuset_mems_cookie;
11e33f6a 2484
dcce284a
BH
2485 gfp_mask &= gfp_allowed_mask;
2486
11e33f6a
MG
2487 lockdep_trace_alloc(gfp_mask);
2488
2489 might_sleep_if(gfp_mask & __GFP_WAIT);
2490
2491 if (should_fail_alloc_page(gfp_mask, order))
2492 return NULL;
2493
2494 /*
2495 * Check the zones suitable for the gfp_mask contain at least one
2496 * valid zone. It's possible to have an empty zonelist as a result
2497 * of GFP_THISNODE and a memoryless node
2498 */
2499 if (unlikely(!zonelist->_zonerefs->zone))
2500 return NULL;
2501
cc9a6c87
MG
2502retry_cpuset:
2503 cpuset_mems_cookie = get_mems_allowed();
2504
5117f45d 2505 /* The preferred zone is used for statistics later */
f33261d7
DR
2506 first_zones_zonelist(zonelist, high_zoneidx,
2507 nodemask ? : &cpuset_current_mems_allowed,
2508 &preferred_zone);
cc9a6c87
MG
2509 if (!preferred_zone)
2510 goto out;
5117f45d
MG
2511
2512 /* First allocation attempt */
11e33f6a 2513 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2514 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2515 preferred_zone, migratetype);
11e33f6a
MG
2516 if (unlikely(!page))
2517 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2518 zonelist, high_zoneidx, nodemask,
3dd28266 2519 preferred_zone, migratetype);
11e33f6a 2520
4b4f278c 2521 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2522
2523out:
2524 /*
2525 * When updating a task's mems_allowed, it is possible to race with
2526 * parallel threads in such a way that an allocation can fail while
2527 * the mask is being updated. If a page allocation is about to fail,
2528 * check if the cpuset changed during allocation and if so, retry.
2529 */
2530 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2531 goto retry_cpuset;
2532
11e33f6a 2533 return page;
1da177e4 2534}
d239171e 2535EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2536
2537/*
2538 * Common helper functions.
2539 */
920c7a5d 2540unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2541{
945a1113
AM
2542 struct page *page;
2543
2544 /*
2545 * __get_free_pages() returns a 32-bit address, which cannot represent
2546 * a highmem page
2547 */
2548 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2549
1da177e4
LT
2550 page = alloc_pages(gfp_mask, order);
2551 if (!page)
2552 return 0;
2553 return (unsigned long) page_address(page);
2554}
1da177e4
LT
2555EXPORT_SYMBOL(__get_free_pages);
2556
920c7a5d 2557unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2558{
945a1113 2559 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2560}
1da177e4
LT
2561EXPORT_SYMBOL(get_zeroed_page);
2562
920c7a5d 2563void __free_pages(struct page *page, unsigned int order)
1da177e4 2564{
b5810039 2565 if (put_page_testzero(page)) {
1da177e4 2566 if (order == 0)
fc91668e 2567 free_hot_cold_page(page, 0);
1da177e4
LT
2568 else
2569 __free_pages_ok(page, order);
2570 }
2571}
2572
2573EXPORT_SYMBOL(__free_pages);
2574
920c7a5d 2575void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2576{
2577 if (addr != 0) {
725d704e 2578 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2579 __free_pages(virt_to_page((void *)addr), order);
2580 }
2581}
2582
2583EXPORT_SYMBOL(free_pages);
2584
ee85c2e1
AK
2585static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2586{
2587 if (addr) {
2588 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2589 unsigned long used = addr + PAGE_ALIGN(size);
2590
2591 split_page(virt_to_page((void *)addr), order);
2592 while (used < alloc_end) {
2593 free_page(used);
2594 used += PAGE_SIZE;
2595 }
2596 }
2597 return (void *)addr;
2598}
2599
2be0ffe2
TT
2600/**
2601 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2602 * @size: the number of bytes to allocate
2603 * @gfp_mask: GFP flags for the allocation
2604 *
2605 * This function is similar to alloc_pages(), except that it allocates the
2606 * minimum number of pages to satisfy the request. alloc_pages() can only
2607 * allocate memory in power-of-two pages.
2608 *
2609 * This function is also limited by MAX_ORDER.
2610 *
2611 * Memory allocated by this function must be released by free_pages_exact().
2612 */
2613void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2614{
2615 unsigned int order = get_order(size);
2616 unsigned long addr;
2617
2618 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2619 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2620}
2621EXPORT_SYMBOL(alloc_pages_exact);
2622
ee85c2e1
AK
2623/**
2624 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2625 * pages on a node.
b5e6ab58 2626 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2627 * @size: the number of bytes to allocate
2628 * @gfp_mask: GFP flags for the allocation
2629 *
2630 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2631 * back.
2632 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2633 * but is not exact.
2634 */
2635void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2636{
2637 unsigned order = get_order(size);
2638 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2639 if (!p)
2640 return NULL;
2641 return make_alloc_exact((unsigned long)page_address(p), order, size);
2642}
2643EXPORT_SYMBOL(alloc_pages_exact_nid);
2644
2be0ffe2
TT
2645/**
2646 * free_pages_exact - release memory allocated via alloc_pages_exact()
2647 * @virt: the value returned by alloc_pages_exact.
2648 * @size: size of allocation, same value as passed to alloc_pages_exact().
2649 *
2650 * Release the memory allocated by a previous call to alloc_pages_exact.
2651 */
2652void free_pages_exact(void *virt, size_t size)
2653{
2654 unsigned long addr = (unsigned long)virt;
2655 unsigned long end = addr + PAGE_ALIGN(size);
2656
2657 while (addr < end) {
2658 free_page(addr);
2659 addr += PAGE_SIZE;
2660 }
2661}
2662EXPORT_SYMBOL(free_pages_exact);
2663
1da177e4
LT
2664static unsigned int nr_free_zone_pages(int offset)
2665{
dd1a239f 2666 struct zoneref *z;
54a6eb5c
MG
2667 struct zone *zone;
2668
e310fd43 2669 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2670 unsigned int sum = 0;
2671
0e88460d 2672 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2673
54a6eb5c 2674 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2675 unsigned long size = zone->present_pages;
41858966 2676 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2677 if (size > high)
2678 sum += size - high;
1da177e4
LT
2679 }
2680
2681 return sum;
2682}
2683
2684/*
2685 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2686 */
2687unsigned int nr_free_buffer_pages(void)
2688{
af4ca457 2689 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2690}
c2f1a551 2691EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2692
2693/*
2694 * Amount of free RAM allocatable within all zones
2695 */
2696unsigned int nr_free_pagecache_pages(void)
2697{
2a1e274a 2698 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2699}
08e0f6a9
CL
2700
2701static inline void show_node(struct zone *zone)
1da177e4 2702{
08e0f6a9 2703 if (NUMA_BUILD)
25ba77c1 2704 printk("Node %d ", zone_to_nid(zone));
1da177e4 2705}
1da177e4 2706
1da177e4
LT
2707void si_meminfo(struct sysinfo *val)
2708{
2709 val->totalram = totalram_pages;
2710 val->sharedram = 0;
d23ad423 2711 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2712 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2713 val->totalhigh = totalhigh_pages;
2714 val->freehigh = nr_free_highpages();
1da177e4
LT
2715 val->mem_unit = PAGE_SIZE;
2716}
2717
2718EXPORT_SYMBOL(si_meminfo);
2719
2720#ifdef CONFIG_NUMA
2721void si_meminfo_node(struct sysinfo *val, int nid)
2722{
2723 pg_data_t *pgdat = NODE_DATA(nid);
2724
2725 val->totalram = pgdat->node_present_pages;
d23ad423 2726 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2727#ifdef CONFIG_HIGHMEM
1da177e4 2728 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2729 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2730 NR_FREE_PAGES);
98d2b0eb
CL
2731#else
2732 val->totalhigh = 0;
2733 val->freehigh = 0;
2734#endif
1da177e4
LT
2735 val->mem_unit = PAGE_SIZE;
2736}
2737#endif
2738
ddd588b5 2739/*
7bf02ea2
DR
2740 * Determine whether the node should be displayed or not, depending on whether
2741 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2742 */
7bf02ea2 2743bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2744{
2745 bool ret = false;
cc9a6c87 2746 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2747
2748 if (!(flags & SHOW_MEM_FILTER_NODES))
2749 goto out;
2750
cc9a6c87
MG
2751 do {
2752 cpuset_mems_cookie = get_mems_allowed();
2753 ret = !node_isset(nid, cpuset_current_mems_allowed);
2754 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2755out:
2756 return ret;
2757}
2758
1da177e4
LT
2759#define K(x) ((x) << (PAGE_SHIFT-10))
2760
2761/*
2762 * Show free area list (used inside shift_scroll-lock stuff)
2763 * We also calculate the percentage fragmentation. We do this by counting the
2764 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2765 * Suppresses nodes that are not allowed by current's cpuset if
2766 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2767 */
7bf02ea2 2768void show_free_areas(unsigned int filter)
1da177e4 2769{
c7241913 2770 int cpu;
1da177e4
LT
2771 struct zone *zone;
2772
ee99c71c 2773 for_each_populated_zone(zone) {
7bf02ea2 2774 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2775 continue;
c7241913
JS
2776 show_node(zone);
2777 printk("%s per-cpu:\n", zone->name);
1da177e4 2778
6b482c67 2779 for_each_online_cpu(cpu) {
1da177e4
LT
2780 struct per_cpu_pageset *pageset;
2781
99dcc3e5 2782 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2783
3dfa5721
CL
2784 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2785 cpu, pageset->pcp.high,
2786 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2787 }
2788 }
2789
a731286d
KM
2790 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2791 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2792 " unevictable:%lu"
b76146ed 2793 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2794 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2795 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2796 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2797 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2798 global_page_state(NR_ISOLATED_ANON),
2799 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2800 global_page_state(NR_INACTIVE_FILE),
a731286d 2801 global_page_state(NR_ISOLATED_FILE),
7b854121 2802 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2803 global_page_state(NR_FILE_DIRTY),
ce866b34 2804 global_page_state(NR_WRITEBACK),
fd39fc85 2805 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2806 global_page_state(NR_FREE_PAGES),
3701b033
KM
2807 global_page_state(NR_SLAB_RECLAIMABLE),
2808 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2809 global_page_state(NR_FILE_MAPPED),
4b02108a 2810 global_page_state(NR_SHMEM),
a25700a5
AM
2811 global_page_state(NR_PAGETABLE),
2812 global_page_state(NR_BOUNCE));
1da177e4 2813
ee99c71c 2814 for_each_populated_zone(zone) {
1da177e4
LT
2815 int i;
2816
7bf02ea2 2817 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2818 continue;
1da177e4
LT
2819 show_node(zone);
2820 printk("%s"
2821 " free:%lukB"
2822 " min:%lukB"
2823 " low:%lukB"
2824 " high:%lukB"
4f98a2fe
RR
2825 " active_anon:%lukB"
2826 " inactive_anon:%lukB"
2827 " active_file:%lukB"
2828 " inactive_file:%lukB"
7b854121 2829 " unevictable:%lukB"
a731286d
KM
2830 " isolated(anon):%lukB"
2831 " isolated(file):%lukB"
1da177e4 2832 " present:%lukB"
4a0aa73f
KM
2833 " mlocked:%lukB"
2834 " dirty:%lukB"
2835 " writeback:%lukB"
2836 " mapped:%lukB"
4b02108a 2837 " shmem:%lukB"
4a0aa73f
KM
2838 " slab_reclaimable:%lukB"
2839 " slab_unreclaimable:%lukB"
c6a7f572 2840 " kernel_stack:%lukB"
4a0aa73f
KM
2841 " pagetables:%lukB"
2842 " unstable:%lukB"
2843 " bounce:%lukB"
2844 " writeback_tmp:%lukB"
1da177e4
LT
2845 " pages_scanned:%lu"
2846 " all_unreclaimable? %s"
2847 "\n",
2848 zone->name,
88f5acf8 2849 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2850 K(min_wmark_pages(zone)),
2851 K(low_wmark_pages(zone)),
2852 K(high_wmark_pages(zone)),
4f98a2fe
RR
2853 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2854 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2855 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2856 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2857 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2858 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2859 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2860 K(zone->present_pages),
4a0aa73f
KM
2861 K(zone_page_state(zone, NR_MLOCK)),
2862 K(zone_page_state(zone, NR_FILE_DIRTY)),
2863 K(zone_page_state(zone, NR_WRITEBACK)),
2864 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2865 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2866 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2867 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2868 zone_page_state(zone, NR_KERNEL_STACK) *
2869 THREAD_SIZE / 1024,
4a0aa73f
KM
2870 K(zone_page_state(zone, NR_PAGETABLE)),
2871 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2872 K(zone_page_state(zone, NR_BOUNCE)),
2873 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2874 zone->pages_scanned,
93e4a89a 2875 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2876 );
2877 printk("lowmem_reserve[]:");
2878 for (i = 0; i < MAX_NR_ZONES; i++)
2879 printk(" %lu", zone->lowmem_reserve[i]);
2880 printk("\n");
2881 }
2882
ee99c71c 2883 for_each_populated_zone(zone) {
8f9de51a 2884 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 2885
7bf02ea2 2886 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2887 continue;
1da177e4
LT
2888 show_node(zone);
2889 printk("%s: ", zone->name);
1da177e4
LT
2890
2891 spin_lock_irqsave(&zone->lock, flags);
2892 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2893 nr[order] = zone->free_area[order].nr_free;
2894 total += nr[order] << order;
1da177e4
LT
2895 }
2896 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2897 for (order = 0; order < MAX_ORDER; order++)
2898 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2899 printk("= %lukB\n", K(total));
2900 }
2901
e6f3602d
LW
2902 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2903
1da177e4
LT
2904 show_swap_cache_info();
2905}
2906
19770b32
MG
2907static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2908{
2909 zoneref->zone = zone;
2910 zoneref->zone_idx = zone_idx(zone);
2911}
2912
1da177e4
LT
2913/*
2914 * Builds allocation fallback zone lists.
1a93205b
CL
2915 *
2916 * Add all populated zones of a node to the zonelist.
1da177e4 2917 */
f0c0b2b8
KH
2918static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2919 int nr_zones, enum zone_type zone_type)
1da177e4 2920{
1a93205b
CL
2921 struct zone *zone;
2922
98d2b0eb 2923 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2924 zone_type++;
02a68a5e
CL
2925
2926 do {
2f6726e5 2927 zone_type--;
070f8032 2928 zone = pgdat->node_zones + zone_type;
1a93205b 2929 if (populated_zone(zone)) {
dd1a239f
MG
2930 zoneref_set_zone(zone,
2931 &zonelist->_zonerefs[nr_zones++]);
070f8032 2932 check_highest_zone(zone_type);
1da177e4 2933 }
02a68a5e 2934
2f6726e5 2935 } while (zone_type);
070f8032 2936 return nr_zones;
1da177e4
LT
2937}
2938
f0c0b2b8
KH
2939
2940/*
2941 * zonelist_order:
2942 * 0 = automatic detection of better ordering.
2943 * 1 = order by ([node] distance, -zonetype)
2944 * 2 = order by (-zonetype, [node] distance)
2945 *
2946 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2947 * the same zonelist. So only NUMA can configure this param.
2948 */
2949#define ZONELIST_ORDER_DEFAULT 0
2950#define ZONELIST_ORDER_NODE 1
2951#define ZONELIST_ORDER_ZONE 2
2952
2953/* zonelist order in the kernel.
2954 * set_zonelist_order() will set this to NODE or ZONE.
2955 */
2956static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2957static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2958
2959
1da177e4 2960#ifdef CONFIG_NUMA
f0c0b2b8
KH
2961/* The value user specified ....changed by config */
2962static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2963/* string for sysctl */
2964#define NUMA_ZONELIST_ORDER_LEN 16
2965char numa_zonelist_order[16] = "default";
2966
2967/*
2968 * interface for configure zonelist ordering.
2969 * command line option "numa_zonelist_order"
2970 * = "[dD]efault - default, automatic configuration.
2971 * = "[nN]ode - order by node locality, then by zone within node
2972 * = "[zZ]one - order by zone, then by locality within zone
2973 */
2974
2975static int __parse_numa_zonelist_order(char *s)
2976{
2977 if (*s == 'd' || *s == 'D') {
2978 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2979 } else if (*s == 'n' || *s == 'N') {
2980 user_zonelist_order = ZONELIST_ORDER_NODE;
2981 } else if (*s == 'z' || *s == 'Z') {
2982 user_zonelist_order = ZONELIST_ORDER_ZONE;
2983 } else {
2984 printk(KERN_WARNING
2985 "Ignoring invalid numa_zonelist_order value: "
2986 "%s\n", s);
2987 return -EINVAL;
2988 }
2989 return 0;
2990}
2991
2992static __init int setup_numa_zonelist_order(char *s)
2993{
ecb256f8
VL
2994 int ret;
2995
2996 if (!s)
2997 return 0;
2998
2999 ret = __parse_numa_zonelist_order(s);
3000 if (ret == 0)
3001 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3002
3003 return ret;
f0c0b2b8
KH
3004}
3005early_param("numa_zonelist_order", setup_numa_zonelist_order);
3006
3007/*
3008 * sysctl handler for numa_zonelist_order
3009 */
3010int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3011 void __user *buffer, size_t *length,
f0c0b2b8
KH
3012 loff_t *ppos)
3013{
3014 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3015 int ret;
443c6f14 3016 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3017
443c6f14 3018 mutex_lock(&zl_order_mutex);
f0c0b2b8 3019 if (write)
443c6f14 3020 strcpy(saved_string, (char*)table->data);
8d65af78 3021 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3022 if (ret)
443c6f14 3023 goto out;
f0c0b2b8
KH
3024 if (write) {
3025 int oldval = user_zonelist_order;
3026 if (__parse_numa_zonelist_order((char*)table->data)) {
3027 /*
3028 * bogus value. restore saved string
3029 */
3030 strncpy((char*)table->data, saved_string,
3031 NUMA_ZONELIST_ORDER_LEN);
3032 user_zonelist_order = oldval;
4eaf3f64
HL
3033 } else if (oldval != user_zonelist_order) {
3034 mutex_lock(&zonelists_mutex);
1f522509 3035 build_all_zonelists(NULL);
4eaf3f64
HL
3036 mutex_unlock(&zonelists_mutex);
3037 }
f0c0b2b8 3038 }
443c6f14
AK
3039out:
3040 mutex_unlock(&zl_order_mutex);
3041 return ret;
f0c0b2b8
KH
3042}
3043
3044
62bc62a8 3045#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3046static int node_load[MAX_NUMNODES];
3047
1da177e4 3048/**
4dc3b16b 3049 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3050 * @node: node whose fallback list we're appending
3051 * @used_node_mask: nodemask_t of already used nodes
3052 *
3053 * We use a number of factors to determine which is the next node that should
3054 * appear on a given node's fallback list. The node should not have appeared
3055 * already in @node's fallback list, and it should be the next closest node
3056 * according to the distance array (which contains arbitrary distance values
3057 * from each node to each node in the system), and should also prefer nodes
3058 * with no CPUs, since presumably they'll have very little allocation pressure
3059 * on them otherwise.
3060 * It returns -1 if no node is found.
3061 */
f0c0b2b8 3062static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3063{
4cf808eb 3064 int n, val;
1da177e4
LT
3065 int min_val = INT_MAX;
3066 int best_node = -1;
a70f7302 3067 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3068
4cf808eb
LT
3069 /* Use the local node if we haven't already */
3070 if (!node_isset(node, *used_node_mask)) {
3071 node_set(node, *used_node_mask);
3072 return node;
3073 }
1da177e4 3074
37b07e41 3075 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3076
3077 /* Don't want a node to appear more than once */
3078 if (node_isset(n, *used_node_mask))
3079 continue;
3080
1da177e4
LT
3081 /* Use the distance array to find the distance */
3082 val = node_distance(node, n);
3083
4cf808eb
LT
3084 /* Penalize nodes under us ("prefer the next node") */
3085 val += (n < node);
3086
1da177e4 3087 /* Give preference to headless and unused nodes */
a70f7302
RR
3088 tmp = cpumask_of_node(n);
3089 if (!cpumask_empty(tmp))
1da177e4
LT
3090 val += PENALTY_FOR_NODE_WITH_CPUS;
3091
3092 /* Slight preference for less loaded node */
3093 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3094 val += node_load[n];
3095
3096 if (val < min_val) {
3097 min_val = val;
3098 best_node = n;
3099 }
3100 }
3101
3102 if (best_node >= 0)
3103 node_set(best_node, *used_node_mask);
3104
3105 return best_node;
3106}
3107
f0c0b2b8
KH
3108
3109/*
3110 * Build zonelists ordered by node and zones within node.
3111 * This results in maximum locality--normal zone overflows into local
3112 * DMA zone, if any--but risks exhausting DMA zone.
3113 */
3114static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3115{
f0c0b2b8 3116 int j;
1da177e4 3117 struct zonelist *zonelist;
f0c0b2b8 3118
54a6eb5c 3119 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3120 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3121 ;
3122 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3123 MAX_NR_ZONES - 1);
dd1a239f
MG
3124 zonelist->_zonerefs[j].zone = NULL;
3125 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3126}
3127
523b9458
CL
3128/*
3129 * Build gfp_thisnode zonelists
3130 */
3131static void build_thisnode_zonelists(pg_data_t *pgdat)
3132{
523b9458
CL
3133 int j;
3134 struct zonelist *zonelist;
3135
54a6eb5c
MG
3136 zonelist = &pgdat->node_zonelists[1];
3137 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3138 zonelist->_zonerefs[j].zone = NULL;
3139 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3140}
3141
f0c0b2b8
KH
3142/*
3143 * Build zonelists ordered by zone and nodes within zones.
3144 * This results in conserving DMA zone[s] until all Normal memory is
3145 * exhausted, but results in overflowing to remote node while memory
3146 * may still exist in local DMA zone.
3147 */
3148static int node_order[MAX_NUMNODES];
3149
3150static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3151{
f0c0b2b8
KH
3152 int pos, j, node;
3153 int zone_type; /* needs to be signed */
3154 struct zone *z;
3155 struct zonelist *zonelist;
3156
54a6eb5c
MG
3157 zonelist = &pgdat->node_zonelists[0];
3158 pos = 0;
3159 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3160 for (j = 0; j < nr_nodes; j++) {
3161 node = node_order[j];
3162 z = &NODE_DATA(node)->node_zones[zone_type];
3163 if (populated_zone(z)) {
dd1a239f
MG
3164 zoneref_set_zone(z,
3165 &zonelist->_zonerefs[pos++]);
54a6eb5c 3166 check_highest_zone(zone_type);
f0c0b2b8
KH
3167 }
3168 }
f0c0b2b8 3169 }
dd1a239f
MG
3170 zonelist->_zonerefs[pos].zone = NULL;
3171 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3172}
3173
3174static int default_zonelist_order(void)
3175{
3176 int nid, zone_type;
3177 unsigned long low_kmem_size,total_size;
3178 struct zone *z;
3179 int average_size;
3180 /*
88393161 3181 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3182 * If they are really small and used heavily, the system can fall
3183 * into OOM very easily.
e325c90f 3184 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3185 */
3186 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3187 low_kmem_size = 0;
3188 total_size = 0;
3189 for_each_online_node(nid) {
3190 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3191 z = &NODE_DATA(nid)->node_zones[zone_type];
3192 if (populated_zone(z)) {
3193 if (zone_type < ZONE_NORMAL)
3194 low_kmem_size += z->present_pages;
3195 total_size += z->present_pages;
e325c90f
DR
3196 } else if (zone_type == ZONE_NORMAL) {
3197 /*
3198 * If any node has only lowmem, then node order
3199 * is preferred to allow kernel allocations
3200 * locally; otherwise, they can easily infringe
3201 * on other nodes when there is an abundance of
3202 * lowmem available to allocate from.
3203 */
3204 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3205 }
3206 }
3207 }
3208 if (!low_kmem_size || /* there are no DMA area. */
3209 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3210 return ZONELIST_ORDER_NODE;
3211 /*
3212 * look into each node's config.
3213 * If there is a node whose DMA/DMA32 memory is very big area on
3214 * local memory, NODE_ORDER may be suitable.
3215 */
37b07e41
LS
3216 average_size = total_size /
3217 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3218 for_each_online_node(nid) {
3219 low_kmem_size = 0;
3220 total_size = 0;
3221 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3222 z = &NODE_DATA(nid)->node_zones[zone_type];
3223 if (populated_zone(z)) {
3224 if (zone_type < ZONE_NORMAL)
3225 low_kmem_size += z->present_pages;
3226 total_size += z->present_pages;
3227 }
3228 }
3229 if (low_kmem_size &&
3230 total_size > average_size && /* ignore small node */
3231 low_kmem_size > total_size * 70/100)
3232 return ZONELIST_ORDER_NODE;
3233 }
3234 return ZONELIST_ORDER_ZONE;
3235}
3236
3237static void set_zonelist_order(void)
3238{
3239 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3240 current_zonelist_order = default_zonelist_order();
3241 else
3242 current_zonelist_order = user_zonelist_order;
3243}
3244
3245static void build_zonelists(pg_data_t *pgdat)
3246{
3247 int j, node, load;
3248 enum zone_type i;
1da177e4 3249 nodemask_t used_mask;
f0c0b2b8
KH
3250 int local_node, prev_node;
3251 struct zonelist *zonelist;
3252 int order = current_zonelist_order;
1da177e4
LT
3253
3254 /* initialize zonelists */
523b9458 3255 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3256 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3257 zonelist->_zonerefs[0].zone = NULL;
3258 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3259 }
3260
3261 /* NUMA-aware ordering of nodes */
3262 local_node = pgdat->node_id;
62bc62a8 3263 load = nr_online_nodes;
1da177e4
LT
3264 prev_node = local_node;
3265 nodes_clear(used_mask);
f0c0b2b8 3266
f0c0b2b8
KH
3267 memset(node_order, 0, sizeof(node_order));
3268 j = 0;
3269
1da177e4 3270 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
3271 int distance = node_distance(local_node, node);
3272
3273 /*
3274 * If another node is sufficiently far away then it is better
3275 * to reclaim pages in a zone before going off node.
3276 */
3277 if (distance > RECLAIM_DISTANCE)
3278 zone_reclaim_mode = 1;
3279
1da177e4
LT
3280 /*
3281 * We don't want to pressure a particular node.
3282 * So adding penalty to the first node in same
3283 * distance group to make it round-robin.
3284 */
9eeff239 3285 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
3286 node_load[node] = load;
3287
1da177e4
LT
3288 prev_node = node;
3289 load--;
f0c0b2b8
KH
3290 if (order == ZONELIST_ORDER_NODE)
3291 build_zonelists_in_node_order(pgdat, node);
3292 else
3293 node_order[j++] = node; /* remember order */
3294 }
1da177e4 3295
f0c0b2b8
KH
3296 if (order == ZONELIST_ORDER_ZONE) {
3297 /* calculate node order -- i.e., DMA last! */
3298 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3299 }
523b9458
CL
3300
3301 build_thisnode_zonelists(pgdat);
1da177e4
LT
3302}
3303
9276b1bc 3304/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3305static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3306{
54a6eb5c
MG
3307 struct zonelist *zonelist;
3308 struct zonelist_cache *zlc;
dd1a239f 3309 struct zoneref *z;
9276b1bc 3310
54a6eb5c
MG
3311 zonelist = &pgdat->node_zonelists[0];
3312 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3313 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3314 for (z = zonelist->_zonerefs; z->zone; z++)
3315 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3316}
3317
7aac7898
LS
3318#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3319/*
3320 * Return node id of node used for "local" allocations.
3321 * I.e., first node id of first zone in arg node's generic zonelist.
3322 * Used for initializing percpu 'numa_mem', which is used primarily
3323 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3324 */
3325int local_memory_node(int node)
3326{
3327 struct zone *zone;
3328
3329 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3330 gfp_zone(GFP_KERNEL),
3331 NULL,
3332 &zone);
3333 return zone->node;
3334}
3335#endif
f0c0b2b8 3336
1da177e4
LT
3337#else /* CONFIG_NUMA */
3338
f0c0b2b8
KH
3339static void set_zonelist_order(void)
3340{
3341 current_zonelist_order = ZONELIST_ORDER_ZONE;
3342}
3343
3344static void build_zonelists(pg_data_t *pgdat)
1da177e4 3345{
19655d34 3346 int node, local_node;
54a6eb5c
MG
3347 enum zone_type j;
3348 struct zonelist *zonelist;
1da177e4
LT
3349
3350 local_node = pgdat->node_id;
1da177e4 3351
54a6eb5c
MG
3352 zonelist = &pgdat->node_zonelists[0];
3353 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3354
54a6eb5c
MG
3355 /*
3356 * Now we build the zonelist so that it contains the zones
3357 * of all the other nodes.
3358 * We don't want to pressure a particular node, so when
3359 * building the zones for node N, we make sure that the
3360 * zones coming right after the local ones are those from
3361 * node N+1 (modulo N)
3362 */
3363 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3364 if (!node_online(node))
3365 continue;
3366 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3367 MAX_NR_ZONES - 1);
1da177e4 3368 }
54a6eb5c
MG
3369 for (node = 0; node < local_node; node++) {
3370 if (!node_online(node))
3371 continue;
3372 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3373 MAX_NR_ZONES - 1);
3374 }
3375
dd1a239f
MG
3376 zonelist->_zonerefs[j].zone = NULL;
3377 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3378}
3379
9276b1bc 3380/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3381static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3382{
54a6eb5c 3383 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3384}
3385
1da177e4
LT
3386#endif /* CONFIG_NUMA */
3387
99dcc3e5
CL
3388/*
3389 * Boot pageset table. One per cpu which is going to be used for all
3390 * zones and all nodes. The parameters will be set in such a way
3391 * that an item put on a list will immediately be handed over to
3392 * the buddy list. This is safe since pageset manipulation is done
3393 * with interrupts disabled.
3394 *
3395 * The boot_pagesets must be kept even after bootup is complete for
3396 * unused processors and/or zones. They do play a role for bootstrapping
3397 * hotplugged processors.
3398 *
3399 * zoneinfo_show() and maybe other functions do
3400 * not check if the processor is online before following the pageset pointer.
3401 * Other parts of the kernel may not check if the zone is available.
3402 */
3403static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3404static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3405static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3406
4eaf3f64
HL
3407/*
3408 * Global mutex to protect against size modification of zonelists
3409 * as well as to serialize pageset setup for the new populated zone.
3410 */
3411DEFINE_MUTEX(zonelists_mutex);
3412
9b1a4d38 3413/* return values int ....just for stop_machine() */
1f522509 3414static __init_refok int __build_all_zonelists(void *data)
1da177e4 3415{
6811378e 3416 int nid;
99dcc3e5 3417 int cpu;
9276b1bc 3418
7f9cfb31
BL
3419#ifdef CONFIG_NUMA
3420 memset(node_load, 0, sizeof(node_load));
3421#endif
9276b1bc 3422 for_each_online_node(nid) {
7ea1530a
CL
3423 pg_data_t *pgdat = NODE_DATA(nid);
3424
3425 build_zonelists(pgdat);
3426 build_zonelist_cache(pgdat);
9276b1bc 3427 }
99dcc3e5
CL
3428
3429 /*
3430 * Initialize the boot_pagesets that are going to be used
3431 * for bootstrapping processors. The real pagesets for
3432 * each zone will be allocated later when the per cpu
3433 * allocator is available.
3434 *
3435 * boot_pagesets are used also for bootstrapping offline
3436 * cpus if the system is already booted because the pagesets
3437 * are needed to initialize allocators on a specific cpu too.
3438 * F.e. the percpu allocator needs the page allocator which
3439 * needs the percpu allocator in order to allocate its pagesets
3440 * (a chicken-egg dilemma).
3441 */
7aac7898 3442 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3443 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3444
7aac7898
LS
3445#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3446 /*
3447 * We now know the "local memory node" for each node--
3448 * i.e., the node of the first zone in the generic zonelist.
3449 * Set up numa_mem percpu variable for on-line cpus. During
3450 * boot, only the boot cpu should be on-line; we'll init the
3451 * secondary cpus' numa_mem as they come on-line. During
3452 * node/memory hotplug, we'll fixup all on-line cpus.
3453 */
3454 if (cpu_online(cpu))
3455 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3456#endif
3457 }
3458
6811378e
YG
3459 return 0;
3460}
3461
4eaf3f64
HL
3462/*
3463 * Called with zonelists_mutex held always
3464 * unless system_state == SYSTEM_BOOTING.
3465 */
9f6ae448 3466void __ref build_all_zonelists(void *data)
6811378e 3467{
f0c0b2b8
KH
3468 set_zonelist_order();
3469
6811378e 3470 if (system_state == SYSTEM_BOOTING) {
423b41d7 3471 __build_all_zonelists(NULL);
68ad8df4 3472 mminit_verify_zonelist();
6811378e
YG
3473 cpuset_init_current_mems_allowed();
3474 } else {
183ff22b 3475 /* we have to stop all cpus to guarantee there is no user
6811378e 3476 of zonelist */
e9959f0f
KH
3477#ifdef CONFIG_MEMORY_HOTPLUG
3478 if (data)
3479 setup_zone_pageset((struct zone *)data);
3480#endif
3481 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3482 /* cpuset refresh routine should be here */
3483 }
bd1e22b8 3484 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3485 /*
3486 * Disable grouping by mobility if the number of pages in the
3487 * system is too low to allow the mechanism to work. It would be
3488 * more accurate, but expensive to check per-zone. This check is
3489 * made on memory-hotadd so a system can start with mobility
3490 * disabled and enable it later
3491 */
d9c23400 3492 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3493 page_group_by_mobility_disabled = 1;
3494 else
3495 page_group_by_mobility_disabled = 0;
3496
3497 printk("Built %i zonelists in %s order, mobility grouping %s. "
3498 "Total pages: %ld\n",
62bc62a8 3499 nr_online_nodes,
f0c0b2b8 3500 zonelist_order_name[current_zonelist_order],
9ef9acb0 3501 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3502 vm_total_pages);
3503#ifdef CONFIG_NUMA
3504 printk("Policy zone: %s\n", zone_names[policy_zone]);
3505#endif
1da177e4
LT
3506}
3507
3508/*
3509 * Helper functions to size the waitqueue hash table.
3510 * Essentially these want to choose hash table sizes sufficiently
3511 * large so that collisions trying to wait on pages are rare.
3512 * But in fact, the number of active page waitqueues on typical
3513 * systems is ridiculously low, less than 200. So this is even
3514 * conservative, even though it seems large.
3515 *
3516 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3517 * waitqueues, i.e. the size of the waitq table given the number of pages.
3518 */
3519#define PAGES_PER_WAITQUEUE 256
3520
cca448fe 3521#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3522static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3523{
3524 unsigned long size = 1;
3525
3526 pages /= PAGES_PER_WAITQUEUE;
3527
3528 while (size < pages)
3529 size <<= 1;
3530
3531 /*
3532 * Once we have dozens or even hundreds of threads sleeping
3533 * on IO we've got bigger problems than wait queue collision.
3534 * Limit the size of the wait table to a reasonable size.
3535 */
3536 size = min(size, 4096UL);
3537
3538 return max(size, 4UL);
3539}
cca448fe
YG
3540#else
3541/*
3542 * A zone's size might be changed by hot-add, so it is not possible to determine
3543 * a suitable size for its wait_table. So we use the maximum size now.
3544 *
3545 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3546 *
3547 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3548 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3549 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3550 *
3551 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3552 * or more by the traditional way. (See above). It equals:
3553 *
3554 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3555 * ia64(16K page size) : = ( 8G + 4M)byte.
3556 * powerpc (64K page size) : = (32G +16M)byte.
3557 */
3558static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3559{
3560 return 4096UL;
3561}
3562#endif
1da177e4
LT
3563
3564/*
3565 * This is an integer logarithm so that shifts can be used later
3566 * to extract the more random high bits from the multiplicative
3567 * hash function before the remainder is taken.
3568 */
3569static inline unsigned long wait_table_bits(unsigned long size)
3570{
3571 return ffz(~size);
3572}
3573
3574#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3575
6d3163ce
AH
3576/*
3577 * Check if a pageblock contains reserved pages
3578 */
3579static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3580{
3581 unsigned long pfn;
3582
3583 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3584 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3585 return 1;
3586 }
3587 return 0;
3588}
3589
56fd56b8 3590/*
d9c23400 3591 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3592 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3593 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3594 * higher will lead to a bigger reserve which will get freed as contiguous
3595 * blocks as reclaim kicks in
3596 */
3597static void setup_zone_migrate_reserve(struct zone *zone)
3598{
6d3163ce 3599 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3600 struct page *page;
78986a67
MG
3601 unsigned long block_migratetype;
3602 int reserve;
56fd56b8 3603
d0215638
MH
3604 /*
3605 * Get the start pfn, end pfn and the number of blocks to reserve
3606 * We have to be careful to be aligned to pageblock_nr_pages to
3607 * make sure that we always check pfn_valid for the first page in
3608 * the block.
3609 */
56fd56b8
MG
3610 start_pfn = zone->zone_start_pfn;
3611 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3612 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3613 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3614 pageblock_order;
56fd56b8 3615
78986a67
MG
3616 /*
3617 * Reserve blocks are generally in place to help high-order atomic
3618 * allocations that are short-lived. A min_free_kbytes value that
3619 * would result in more than 2 reserve blocks for atomic allocations
3620 * is assumed to be in place to help anti-fragmentation for the
3621 * future allocation of hugepages at runtime.
3622 */
3623 reserve = min(2, reserve);
3624
d9c23400 3625 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3626 if (!pfn_valid(pfn))
3627 continue;
3628 page = pfn_to_page(pfn);
3629
344c790e
AL
3630 /* Watch out for overlapping nodes */
3631 if (page_to_nid(page) != zone_to_nid(zone))
3632 continue;
3633
56fd56b8
MG
3634 block_migratetype = get_pageblock_migratetype(page);
3635
938929f1
MG
3636 /* Only test what is necessary when the reserves are not met */
3637 if (reserve > 0) {
3638 /*
3639 * Blocks with reserved pages will never free, skip
3640 * them.
3641 */
3642 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3643 if (pageblock_is_reserved(pfn, block_end_pfn))
3644 continue;
56fd56b8 3645
938929f1
MG
3646 /* If this block is reserved, account for it */
3647 if (block_migratetype == MIGRATE_RESERVE) {
3648 reserve--;
3649 continue;
3650 }
3651
3652 /* Suitable for reserving if this block is movable */
3653 if (block_migratetype == MIGRATE_MOVABLE) {
3654 set_pageblock_migratetype(page,
3655 MIGRATE_RESERVE);
3656 move_freepages_block(zone, page,
3657 MIGRATE_RESERVE);
3658 reserve--;
3659 continue;
3660 }
56fd56b8
MG
3661 }
3662
3663 /*
3664 * If the reserve is met and this is a previous reserved block,
3665 * take it back
3666 */
3667 if (block_migratetype == MIGRATE_RESERVE) {
3668 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3669 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3670 }
3671 }
3672}
ac0e5b7a 3673
1da177e4
LT
3674/*
3675 * Initially all pages are reserved - free ones are freed
3676 * up by free_all_bootmem() once the early boot process is
3677 * done. Non-atomic initialization, single-pass.
3678 */
c09b4240 3679void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3680 unsigned long start_pfn, enum memmap_context context)
1da177e4 3681{
1da177e4 3682 struct page *page;
29751f69
AW
3683 unsigned long end_pfn = start_pfn + size;
3684 unsigned long pfn;
86051ca5 3685 struct zone *z;
1da177e4 3686
22b31eec
HD
3687 if (highest_memmap_pfn < end_pfn - 1)
3688 highest_memmap_pfn = end_pfn - 1;
3689
86051ca5 3690 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3691 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3692 /*
3693 * There can be holes in boot-time mem_map[]s
3694 * handed to this function. They do not
3695 * exist on hotplugged memory.
3696 */
3697 if (context == MEMMAP_EARLY) {
3698 if (!early_pfn_valid(pfn))
3699 continue;
3700 if (!early_pfn_in_nid(pfn, nid))
3701 continue;
3702 }
d41dee36
AW
3703 page = pfn_to_page(pfn);
3704 set_page_links(page, zone, nid, pfn);
708614e6 3705 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3706 init_page_count(page);
1da177e4
LT
3707 reset_page_mapcount(page);
3708 SetPageReserved(page);
b2a0ac88
MG
3709 /*
3710 * Mark the block movable so that blocks are reserved for
3711 * movable at startup. This will force kernel allocations
3712 * to reserve their blocks rather than leaking throughout
3713 * the address space during boot when many long-lived
56fd56b8
MG
3714 * kernel allocations are made. Later some blocks near
3715 * the start are marked MIGRATE_RESERVE by
3716 * setup_zone_migrate_reserve()
86051ca5
KH
3717 *
3718 * bitmap is created for zone's valid pfn range. but memmap
3719 * can be created for invalid pages (for alignment)
3720 * check here not to call set_pageblock_migratetype() against
3721 * pfn out of zone.
b2a0ac88 3722 */
86051ca5
KH
3723 if ((z->zone_start_pfn <= pfn)
3724 && (pfn < z->zone_start_pfn + z->spanned_pages)
3725 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3726 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3727
1da177e4
LT
3728 INIT_LIST_HEAD(&page->lru);
3729#ifdef WANT_PAGE_VIRTUAL
3730 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3731 if (!is_highmem_idx(zone))
3212c6be 3732 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3733#endif
1da177e4
LT
3734 }
3735}
3736
1e548deb 3737static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3738{
b2a0ac88
MG
3739 int order, t;
3740 for_each_migratetype_order(order, t) {
3741 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3742 zone->free_area[order].nr_free = 0;
3743 }
3744}
3745
3746#ifndef __HAVE_ARCH_MEMMAP_INIT
3747#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3748 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3749#endif
3750
1d6f4e60 3751static int zone_batchsize(struct zone *zone)
e7c8d5c9 3752{
3a6be87f 3753#ifdef CONFIG_MMU
e7c8d5c9
CL
3754 int batch;
3755
3756 /*
3757 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3758 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3759 *
3760 * OK, so we don't know how big the cache is. So guess.
3761 */
3762 batch = zone->present_pages / 1024;
ba56e91c
SR
3763 if (batch * PAGE_SIZE > 512 * 1024)
3764 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3765 batch /= 4; /* We effectively *= 4 below */
3766 if (batch < 1)
3767 batch = 1;
3768
3769 /*
0ceaacc9
NP
3770 * Clamp the batch to a 2^n - 1 value. Having a power
3771 * of 2 value was found to be more likely to have
3772 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3773 *
0ceaacc9
NP
3774 * For example if 2 tasks are alternately allocating
3775 * batches of pages, one task can end up with a lot
3776 * of pages of one half of the possible page colors
3777 * and the other with pages of the other colors.
e7c8d5c9 3778 */
9155203a 3779 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3780
e7c8d5c9 3781 return batch;
3a6be87f
DH
3782
3783#else
3784 /* The deferral and batching of frees should be suppressed under NOMMU
3785 * conditions.
3786 *
3787 * The problem is that NOMMU needs to be able to allocate large chunks
3788 * of contiguous memory as there's no hardware page translation to
3789 * assemble apparent contiguous memory from discontiguous pages.
3790 *
3791 * Queueing large contiguous runs of pages for batching, however,
3792 * causes the pages to actually be freed in smaller chunks. As there
3793 * can be a significant delay between the individual batches being
3794 * recycled, this leads to the once large chunks of space being
3795 * fragmented and becoming unavailable for high-order allocations.
3796 */
3797 return 0;
3798#endif
e7c8d5c9
CL
3799}
3800
b69a7288 3801static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3802{
3803 struct per_cpu_pages *pcp;
5f8dcc21 3804 int migratetype;
2caaad41 3805
1c6fe946
MD
3806 memset(p, 0, sizeof(*p));
3807
3dfa5721 3808 pcp = &p->pcp;
2caaad41 3809 pcp->count = 0;
2caaad41
CL
3810 pcp->high = 6 * batch;
3811 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3812 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3813 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3814}
3815
8ad4b1fb
RS
3816/*
3817 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3818 * to the value high for the pageset p.
3819 */
3820
3821static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3822 unsigned long high)
3823{
3824 struct per_cpu_pages *pcp;
3825
3dfa5721 3826 pcp = &p->pcp;
8ad4b1fb
RS
3827 pcp->high = high;
3828 pcp->batch = max(1UL, high/4);
3829 if ((high/4) > (PAGE_SHIFT * 8))
3830 pcp->batch = PAGE_SHIFT * 8;
3831}
3832
58c2ee40 3833static void setup_zone_pageset(struct zone *zone)
319774e2
WF
3834{
3835 int cpu;
3836
3837 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3838
3839 for_each_possible_cpu(cpu) {
3840 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3841
3842 setup_pageset(pcp, zone_batchsize(zone));
3843
3844 if (percpu_pagelist_fraction)
3845 setup_pagelist_highmark(pcp,
3846 (zone->present_pages /
3847 percpu_pagelist_fraction));
3848 }
3849}
3850
2caaad41 3851/*
99dcc3e5
CL
3852 * Allocate per cpu pagesets and initialize them.
3853 * Before this call only boot pagesets were available.
e7c8d5c9 3854 */
99dcc3e5 3855void __init setup_per_cpu_pageset(void)
e7c8d5c9 3856{
99dcc3e5 3857 struct zone *zone;
e7c8d5c9 3858
319774e2
WF
3859 for_each_populated_zone(zone)
3860 setup_zone_pageset(zone);
e7c8d5c9
CL
3861}
3862
577a32f6 3863static noinline __init_refok
cca448fe 3864int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3865{
3866 int i;
3867 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3868 size_t alloc_size;
ed8ece2e
DH
3869
3870 /*
3871 * The per-page waitqueue mechanism uses hashed waitqueues
3872 * per zone.
3873 */
02b694de
YG
3874 zone->wait_table_hash_nr_entries =
3875 wait_table_hash_nr_entries(zone_size_pages);
3876 zone->wait_table_bits =
3877 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3878 alloc_size = zone->wait_table_hash_nr_entries
3879 * sizeof(wait_queue_head_t);
3880
cd94b9db 3881 if (!slab_is_available()) {
cca448fe 3882 zone->wait_table = (wait_queue_head_t *)
8f389a99 3883 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
3884 } else {
3885 /*
3886 * This case means that a zone whose size was 0 gets new memory
3887 * via memory hot-add.
3888 * But it may be the case that a new node was hot-added. In
3889 * this case vmalloc() will not be able to use this new node's
3890 * memory - this wait_table must be initialized to use this new
3891 * node itself as well.
3892 * To use this new node's memory, further consideration will be
3893 * necessary.
3894 */
8691f3a7 3895 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3896 }
3897 if (!zone->wait_table)
3898 return -ENOMEM;
ed8ece2e 3899
02b694de 3900 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3901 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3902
3903 return 0;
ed8ece2e
DH
3904}
3905
112067f0
SL
3906static int __zone_pcp_update(void *data)
3907{
3908 struct zone *zone = data;
3909 int cpu;
3910 unsigned long batch = zone_batchsize(zone), flags;
3911
2d30a1f6 3912 for_each_possible_cpu(cpu) {
112067f0
SL
3913 struct per_cpu_pageset *pset;
3914 struct per_cpu_pages *pcp;
3915
99dcc3e5 3916 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3917 pcp = &pset->pcp;
3918
3919 local_irq_save(flags);
2a13515c
KM
3920 if (pcp->count > 0)
3921 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3922 setup_pageset(pset, batch);
3923 local_irq_restore(flags);
3924 }
3925 return 0;
3926}
3927
3928void zone_pcp_update(struct zone *zone)
3929{
3930 stop_machine(__zone_pcp_update, zone, NULL);
3931}
3932
c09b4240 3933static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3934{
99dcc3e5
CL
3935 /*
3936 * per cpu subsystem is not up at this point. The following code
3937 * relies on the ability of the linker to provide the
3938 * offset of a (static) per cpu variable into the per cpu area.
3939 */
3940 zone->pageset = &boot_pageset;
ed8ece2e 3941
f5335c0f 3942 if (zone->present_pages)
99dcc3e5
CL
3943 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3944 zone->name, zone->present_pages,
3945 zone_batchsize(zone));
ed8ece2e
DH
3946}
3947
718127cc
YG
3948__meminit int init_currently_empty_zone(struct zone *zone,
3949 unsigned long zone_start_pfn,
a2f3aa02
DH
3950 unsigned long size,
3951 enum memmap_context context)
ed8ece2e
DH
3952{
3953 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3954 int ret;
3955 ret = zone_wait_table_init(zone, size);
3956 if (ret)
3957 return ret;
ed8ece2e
DH
3958 pgdat->nr_zones = zone_idx(zone) + 1;
3959
ed8ece2e
DH
3960 zone->zone_start_pfn = zone_start_pfn;
3961
708614e6
MG
3962 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3963 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3964 pgdat->node_id,
3965 (unsigned long)zone_idx(zone),
3966 zone_start_pfn, (zone_start_pfn + size));
3967
1e548deb 3968 zone_init_free_lists(zone);
718127cc
YG
3969
3970 return 0;
ed8ece2e
DH
3971}
3972
0ee332c1 3973#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
3974#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3975/*
3976 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3977 * Architectures may implement their own version but if add_active_range()
3978 * was used and there are no special requirements, this is a convenient
3979 * alternative
3980 */
f2dbcfa7 3981int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 3982{
c13291a5
TH
3983 unsigned long start_pfn, end_pfn;
3984 int i, nid;
c713216d 3985
c13291a5 3986 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 3987 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 3988 return nid;
cc2559bc
KH
3989 /* This is a memory hole */
3990 return -1;
c713216d
MG
3991}
3992#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3993
f2dbcfa7
KH
3994int __meminit early_pfn_to_nid(unsigned long pfn)
3995{
cc2559bc
KH
3996 int nid;
3997
3998 nid = __early_pfn_to_nid(pfn);
3999 if (nid >= 0)
4000 return nid;
4001 /* just returns 0 */
4002 return 0;
f2dbcfa7
KH
4003}
4004
cc2559bc
KH
4005#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4006bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4007{
4008 int nid;
4009
4010 nid = __early_pfn_to_nid(pfn);
4011 if (nid >= 0 && nid != node)
4012 return false;
4013 return true;
4014}
4015#endif
f2dbcfa7 4016
c713216d
MG
4017/**
4018 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4019 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4020 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4021 *
4022 * If an architecture guarantees that all ranges registered with
4023 * add_active_ranges() contain no holes and may be freed, this
4024 * this function may be used instead of calling free_bootmem() manually.
4025 */
c13291a5 4026void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4027{
c13291a5
TH
4028 unsigned long start_pfn, end_pfn;
4029 int i, this_nid;
edbe7d23 4030
c13291a5
TH
4031 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4032 start_pfn = min(start_pfn, max_low_pfn);
4033 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4034
c13291a5
TH
4035 if (start_pfn < end_pfn)
4036 free_bootmem_node(NODE_DATA(this_nid),
4037 PFN_PHYS(start_pfn),
4038 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4039 }
edbe7d23 4040}
edbe7d23 4041
c713216d
MG
4042/**
4043 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4044 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4045 *
4046 * If an architecture guarantees that all ranges registered with
4047 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4048 * function may be used instead of calling memory_present() manually.
c713216d
MG
4049 */
4050void __init sparse_memory_present_with_active_regions(int nid)
4051{
c13291a5
TH
4052 unsigned long start_pfn, end_pfn;
4053 int i, this_nid;
c713216d 4054
c13291a5
TH
4055 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4056 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4057}
4058
4059/**
4060 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4061 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4062 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4063 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4064 *
4065 * It returns the start and end page frame of a node based on information
4066 * provided by an arch calling add_active_range(). If called for a node
4067 * with no available memory, a warning is printed and the start and end
88ca3b94 4068 * PFNs will be 0.
c713216d 4069 */
a3142c8e 4070void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4071 unsigned long *start_pfn, unsigned long *end_pfn)
4072{
c13291a5 4073 unsigned long this_start_pfn, this_end_pfn;
c713216d 4074 int i;
c13291a5 4075
c713216d
MG
4076 *start_pfn = -1UL;
4077 *end_pfn = 0;
4078
c13291a5
TH
4079 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4080 *start_pfn = min(*start_pfn, this_start_pfn);
4081 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4082 }
4083
633c0666 4084 if (*start_pfn == -1UL)
c713216d 4085 *start_pfn = 0;
c713216d
MG
4086}
4087
2a1e274a
MG
4088/*
4089 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4090 * assumption is made that zones within a node are ordered in monotonic
4091 * increasing memory addresses so that the "highest" populated zone is used
4092 */
b69a7288 4093static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4094{
4095 int zone_index;
4096 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4097 if (zone_index == ZONE_MOVABLE)
4098 continue;
4099
4100 if (arch_zone_highest_possible_pfn[zone_index] >
4101 arch_zone_lowest_possible_pfn[zone_index])
4102 break;
4103 }
4104
4105 VM_BUG_ON(zone_index == -1);
4106 movable_zone = zone_index;
4107}
4108
4109/*
4110 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4111 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4112 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4113 * in each node depending on the size of each node and how evenly kernelcore
4114 * is distributed. This helper function adjusts the zone ranges
4115 * provided by the architecture for a given node by using the end of the
4116 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4117 * zones within a node are in order of monotonic increases memory addresses
4118 */
b69a7288 4119static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4120 unsigned long zone_type,
4121 unsigned long node_start_pfn,
4122 unsigned long node_end_pfn,
4123 unsigned long *zone_start_pfn,
4124 unsigned long *zone_end_pfn)
4125{
4126 /* Only adjust if ZONE_MOVABLE is on this node */
4127 if (zone_movable_pfn[nid]) {
4128 /* Size ZONE_MOVABLE */
4129 if (zone_type == ZONE_MOVABLE) {
4130 *zone_start_pfn = zone_movable_pfn[nid];
4131 *zone_end_pfn = min(node_end_pfn,
4132 arch_zone_highest_possible_pfn[movable_zone]);
4133
4134 /* Adjust for ZONE_MOVABLE starting within this range */
4135 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4136 *zone_end_pfn > zone_movable_pfn[nid]) {
4137 *zone_end_pfn = zone_movable_pfn[nid];
4138
4139 /* Check if this whole range is within ZONE_MOVABLE */
4140 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4141 *zone_start_pfn = *zone_end_pfn;
4142 }
4143}
4144
c713216d
MG
4145/*
4146 * Return the number of pages a zone spans in a node, including holes
4147 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4148 */
6ea6e688 4149static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4150 unsigned long zone_type,
4151 unsigned long *ignored)
4152{
4153 unsigned long node_start_pfn, node_end_pfn;
4154 unsigned long zone_start_pfn, zone_end_pfn;
4155
4156 /* Get the start and end of the node and zone */
4157 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4158 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4159 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4160 adjust_zone_range_for_zone_movable(nid, zone_type,
4161 node_start_pfn, node_end_pfn,
4162 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4163
4164 /* Check that this node has pages within the zone's required range */
4165 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4166 return 0;
4167
4168 /* Move the zone boundaries inside the node if necessary */
4169 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4170 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4171
4172 /* Return the spanned pages */
4173 return zone_end_pfn - zone_start_pfn;
4174}
4175
4176/*
4177 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4178 * then all holes in the requested range will be accounted for.
c713216d 4179 */
32996250 4180unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4181 unsigned long range_start_pfn,
4182 unsigned long range_end_pfn)
4183{
96e907d1
TH
4184 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4185 unsigned long start_pfn, end_pfn;
4186 int i;
c713216d 4187
96e907d1
TH
4188 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4189 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4190 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4191 nr_absent -= end_pfn - start_pfn;
c713216d 4192 }
96e907d1 4193 return nr_absent;
c713216d
MG
4194}
4195
4196/**
4197 * absent_pages_in_range - Return number of page frames in holes within a range
4198 * @start_pfn: The start PFN to start searching for holes
4199 * @end_pfn: The end PFN to stop searching for holes
4200 *
88ca3b94 4201 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4202 */
4203unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4204 unsigned long end_pfn)
4205{
4206 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4207}
4208
4209/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4210static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4211 unsigned long zone_type,
4212 unsigned long *ignored)
4213{
96e907d1
TH
4214 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4215 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4216 unsigned long node_start_pfn, node_end_pfn;
4217 unsigned long zone_start_pfn, zone_end_pfn;
4218
4219 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4220 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4221 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4222
2a1e274a
MG
4223 adjust_zone_range_for_zone_movable(nid, zone_type,
4224 node_start_pfn, node_end_pfn,
4225 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4226 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4227}
0e0b864e 4228
0ee332c1 4229#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4230static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4231 unsigned long zone_type,
4232 unsigned long *zones_size)
4233{
4234 return zones_size[zone_type];
4235}
4236
6ea6e688 4237static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4238 unsigned long zone_type,
4239 unsigned long *zholes_size)
4240{
4241 if (!zholes_size)
4242 return 0;
4243
4244 return zholes_size[zone_type];
4245}
0e0b864e 4246
0ee332c1 4247#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4248
a3142c8e 4249static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4250 unsigned long *zones_size, unsigned long *zholes_size)
4251{
4252 unsigned long realtotalpages, totalpages = 0;
4253 enum zone_type i;
4254
4255 for (i = 0; i < MAX_NR_ZONES; i++)
4256 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4257 zones_size);
4258 pgdat->node_spanned_pages = totalpages;
4259
4260 realtotalpages = totalpages;
4261 for (i = 0; i < MAX_NR_ZONES; i++)
4262 realtotalpages -=
4263 zone_absent_pages_in_node(pgdat->node_id, i,
4264 zholes_size);
4265 pgdat->node_present_pages = realtotalpages;
4266 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4267 realtotalpages);
4268}
4269
835c134e
MG
4270#ifndef CONFIG_SPARSEMEM
4271/*
4272 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4275 * round what is now in bits to nearest long in bits, then return it in
4276 * bytes.
4277 */
4278static unsigned long __init usemap_size(unsigned long zonesize)
4279{
4280 unsigned long usemapsize;
4281
d9c23400
MG
4282 usemapsize = roundup(zonesize, pageblock_nr_pages);
4283 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4284 usemapsize *= NR_PAGEBLOCK_BITS;
4285 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4286
4287 return usemapsize / 8;
4288}
4289
4290static void __init setup_usemap(struct pglist_data *pgdat,
4291 struct zone *zone, unsigned long zonesize)
4292{
4293 unsigned long usemapsize = usemap_size(zonesize);
4294 zone->pageblock_flags = NULL;
58a01a45 4295 if (usemapsize)
8f389a99
YL
4296 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4297 usemapsize);
835c134e
MG
4298}
4299#else
fa9f90be 4300static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4301 struct zone *zone, unsigned long zonesize) {}
4302#endif /* CONFIG_SPARSEMEM */
4303
d9c23400 4304#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4305
d9c23400 4306/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
955c1cd7 4307static inline void __init set_pageblock_order(void)
d9c23400 4308{
955c1cd7
AM
4309 unsigned int order;
4310
d9c23400
MG
4311 /* Check that pageblock_nr_pages has not already been setup */
4312 if (pageblock_order)
4313 return;
4314
955c1cd7
AM
4315 if (HPAGE_SHIFT > PAGE_SHIFT)
4316 order = HUGETLB_PAGE_ORDER;
4317 else
4318 order = MAX_ORDER - 1;
4319
d9c23400
MG
4320 /*
4321 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4322 * This value may be variable depending on boot parameters on IA64 and
4323 * powerpc.
d9c23400
MG
4324 */
4325 pageblock_order = order;
4326}
4327#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4328
ba72cb8c
MG
4329/*
4330 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4331 * is unused as pageblock_order is set at compile-time. See
4332 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4333 * the kernel config
ba72cb8c 4334 */
955c1cd7 4335static inline void set_pageblock_order(void)
ba72cb8c 4336{
ba72cb8c 4337}
d9c23400
MG
4338
4339#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4340
1da177e4
LT
4341/*
4342 * Set up the zone data structures:
4343 * - mark all pages reserved
4344 * - mark all memory queues empty
4345 * - clear the memory bitmaps
4346 */
b5a0e011 4347static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4348 unsigned long *zones_size, unsigned long *zholes_size)
4349{
2f1b6248 4350 enum zone_type j;
ed8ece2e 4351 int nid = pgdat->node_id;
1da177e4 4352 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4353 int ret;
1da177e4 4354
208d54e5 4355 pgdat_resize_init(pgdat);
1da177e4
LT
4356 pgdat->nr_zones = 0;
4357 init_waitqueue_head(&pgdat->kswapd_wait);
4358 pgdat->kswapd_max_order = 0;
52d4b9ac 4359 pgdat_page_cgroup_init(pgdat);
5f63b720 4360
1da177e4
LT
4361 for (j = 0; j < MAX_NR_ZONES; j++) {
4362 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4363 unsigned long size, realsize, memmap_pages;
1da177e4 4364
c713216d
MG
4365 size = zone_spanned_pages_in_node(nid, j, zones_size);
4366 realsize = size - zone_absent_pages_in_node(nid, j,
4367 zholes_size);
1da177e4 4368
0e0b864e
MG
4369 /*
4370 * Adjust realsize so that it accounts for how much memory
4371 * is used by this zone for memmap. This affects the watermark
4372 * and per-cpu initialisations
4373 */
f7232154
JW
4374 memmap_pages =
4375 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4376 if (realsize >= memmap_pages) {
4377 realsize -= memmap_pages;
5594c8c8
YL
4378 if (memmap_pages)
4379 printk(KERN_DEBUG
4380 " %s zone: %lu pages used for memmap\n",
4381 zone_names[j], memmap_pages);
0e0b864e
MG
4382 } else
4383 printk(KERN_WARNING
4384 " %s zone: %lu pages exceeds realsize %lu\n",
4385 zone_names[j], memmap_pages, realsize);
4386
6267276f
CL
4387 /* Account for reserved pages */
4388 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4389 realsize -= dma_reserve;
d903ef9f 4390 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4391 zone_names[0], dma_reserve);
0e0b864e
MG
4392 }
4393
98d2b0eb 4394 if (!is_highmem_idx(j))
1da177e4
LT
4395 nr_kernel_pages += realsize;
4396 nr_all_pages += realsize;
4397
4398 zone->spanned_pages = size;
4399 zone->present_pages = realsize;
9614634f 4400#ifdef CONFIG_NUMA
d5f541ed 4401 zone->node = nid;
8417bba4 4402 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4403 / 100;
0ff38490 4404 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4405#endif
1da177e4
LT
4406 zone->name = zone_names[j];
4407 spin_lock_init(&zone->lock);
4408 spin_lock_init(&zone->lru_lock);
bdc8cb98 4409 zone_seqlock_init(zone);
1da177e4 4410 zone->zone_pgdat = pgdat;
1da177e4 4411
ed8ece2e 4412 zone_pcp_init(zone);
7f5e86c2 4413 lruvec_init(&zone->lruvec, zone);
2244b95a 4414 zap_zone_vm_stats(zone);
e815af95 4415 zone->flags = 0;
1da177e4
LT
4416 if (!size)
4417 continue;
4418
955c1cd7 4419 set_pageblock_order();
835c134e 4420 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4421 ret = init_currently_empty_zone(zone, zone_start_pfn,
4422 size, MEMMAP_EARLY);
718127cc 4423 BUG_ON(ret);
76cdd58e 4424 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4425 zone_start_pfn += size;
1da177e4
LT
4426 }
4427}
4428
577a32f6 4429static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4430{
1da177e4
LT
4431 /* Skip empty nodes */
4432 if (!pgdat->node_spanned_pages)
4433 return;
4434
d41dee36 4435#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4436 /* ia64 gets its own node_mem_map, before this, without bootmem */
4437 if (!pgdat->node_mem_map) {
e984bb43 4438 unsigned long size, start, end;
d41dee36
AW
4439 struct page *map;
4440
e984bb43
BP
4441 /*
4442 * The zone's endpoints aren't required to be MAX_ORDER
4443 * aligned but the node_mem_map endpoints must be in order
4444 * for the buddy allocator to function correctly.
4445 */
4446 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4447 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4448 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4449 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4450 map = alloc_remap(pgdat->node_id, size);
4451 if (!map)
8f389a99 4452 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4453 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4454 }
12d810c1 4455#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4456 /*
4457 * With no DISCONTIG, the global mem_map is just set as node 0's
4458 */
c713216d 4459 if (pgdat == NODE_DATA(0)) {
1da177e4 4460 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4461#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4462 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4463 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4464#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4465 }
1da177e4 4466#endif
d41dee36 4467#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4468}
4469
9109fb7b
JW
4470void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4471 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4472{
9109fb7b
JW
4473 pg_data_t *pgdat = NODE_DATA(nid);
4474
1da177e4
LT
4475 pgdat->node_id = nid;
4476 pgdat->node_start_pfn = node_start_pfn;
c713216d 4477 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4478
4479 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4480#ifdef CONFIG_FLAT_NODE_MEM_MAP
4481 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4482 nid, (unsigned long)pgdat,
4483 (unsigned long)pgdat->node_mem_map);
4484#endif
1da177e4
LT
4485
4486 free_area_init_core(pgdat, zones_size, zholes_size);
4487}
4488
0ee332c1 4489#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4490
4491#if MAX_NUMNODES > 1
4492/*
4493 * Figure out the number of possible node ids.
4494 */
4495static void __init setup_nr_node_ids(void)
4496{
4497 unsigned int node;
4498 unsigned int highest = 0;
4499
4500 for_each_node_mask(node, node_possible_map)
4501 highest = node;
4502 nr_node_ids = highest + 1;
4503}
4504#else
4505static inline void setup_nr_node_ids(void)
4506{
4507}
4508#endif
4509
1e01979c
TH
4510/**
4511 * node_map_pfn_alignment - determine the maximum internode alignment
4512 *
4513 * This function should be called after node map is populated and sorted.
4514 * It calculates the maximum power of two alignment which can distinguish
4515 * all the nodes.
4516 *
4517 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4518 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4519 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4520 * shifted, 1GiB is enough and this function will indicate so.
4521 *
4522 * This is used to test whether pfn -> nid mapping of the chosen memory
4523 * model has fine enough granularity to avoid incorrect mapping for the
4524 * populated node map.
4525 *
4526 * Returns the determined alignment in pfn's. 0 if there is no alignment
4527 * requirement (single node).
4528 */
4529unsigned long __init node_map_pfn_alignment(void)
4530{
4531 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4532 unsigned long start, end, mask;
1e01979c 4533 int last_nid = -1;
c13291a5 4534 int i, nid;
1e01979c 4535
c13291a5 4536 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4537 if (!start || last_nid < 0 || last_nid == nid) {
4538 last_nid = nid;
4539 last_end = end;
4540 continue;
4541 }
4542
4543 /*
4544 * Start with a mask granular enough to pin-point to the
4545 * start pfn and tick off bits one-by-one until it becomes
4546 * too coarse to separate the current node from the last.
4547 */
4548 mask = ~((1 << __ffs(start)) - 1);
4549 while (mask && last_end <= (start & (mask << 1)))
4550 mask <<= 1;
4551
4552 /* accumulate all internode masks */
4553 accl_mask |= mask;
4554 }
4555
4556 /* convert mask to number of pages */
4557 return ~accl_mask + 1;
4558}
4559
a6af2bc3 4560/* Find the lowest pfn for a node */
b69a7288 4561static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4562{
a6af2bc3 4563 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4564 unsigned long start_pfn;
4565 int i;
1abbfb41 4566
c13291a5
TH
4567 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4568 min_pfn = min(min_pfn, start_pfn);
c713216d 4569
a6af2bc3
MG
4570 if (min_pfn == ULONG_MAX) {
4571 printk(KERN_WARNING
2bc0d261 4572 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4573 return 0;
4574 }
4575
4576 return min_pfn;
c713216d
MG
4577}
4578
4579/**
4580 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4581 *
4582 * It returns the minimum PFN based on information provided via
88ca3b94 4583 * add_active_range().
c713216d
MG
4584 */
4585unsigned long __init find_min_pfn_with_active_regions(void)
4586{
4587 return find_min_pfn_for_node(MAX_NUMNODES);
4588}
4589
37b07e41
LS
4590/*
4591 * early_calculate_totalpages()
4592 * Sum pages in active regions for movable zone.
4593 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4594 */
484f51f8 4595static unsigned long __init early_calculate_totalpages(void)
7e63efef 4596{
7e63efef 4597 unsigned long totalpages = 0;
c13291a5
TH
4598 unsigned long start_pfn, end_pfn;
4599 int i, nid;
4600
4601 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4602 unsigned long pages = end_pfn - start_pfn;
7e63efef 4603
37b07e41
LS
4604 totalpages += pages;
4605 if (pages)
c13291a5 4606 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4607 }
4608 return totalpages;
7e63efef
MG
4609}
4610
2a1e274a
MG
4611/*
4612 * Find the PFN the Movable zone begins in each node. Kernel memory
4613 * is spread evenly between nodes as long as the nodes have enough
4614 * memory. When they don't, some nodes will have more kernelcore than
4615 * others
4616 */
b224ef85 4617static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4618{
4619 int i, nid;
4620 unsigned long usable_startpfn;
4621 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4622 /* save the state before borrow the nodemask */
4623 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4624 unsigned long totalpages = early_calculate_totalpages();
4625 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4626
7e63efef
MG
4627 /*
4628 * If movablecore was specified, calculate what size of
4629 * kernelcore that corresponds so that memory usable for
4630 * any allocation type is evenly spread. If both kernelcore
4631 * and movablecore are specified, then the value of kernelcore
4632 * will be used for required_kernelcore if it's greater than
4633 * what movablecore would have allowed.
4634 */
4635 if (required_movablecore) {
7e63efef
MG
4636 unsigned long corepages;
4637
4638 /*
4639 * Round-up so that ZONE_MOVABLE is at least as large as what
4640 * was requested by the user
4641 */
4642 required_movablecore =
4643 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4644 corepages = totalpages - required_movablecore;
4645
4646 required_kernelcore = max(required_kernelcore, corepages);
4647 }
4648
2a1e274a
MG
4649 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4650 if (!required_kernelcore)
66918dcd 4651 goto out;
2a1e274a
MG
4652
4653 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4654 find_usable_zone_for_movable();
4655 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4656
4657restart:
4658 /* Spread kernelcore memory as evenly as possible throughout nodes */
4659 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4660 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4661 unsigned long start_pfn, end_pfn;
4662
2a1e274a
MG
4663 /*
4664 * Recalculate kernelcore_node if the division per node
4665 * now exceeds what is necessary to satisfy the requested
4666 * amount of memory for the kernel
4667 */
4668 if (required_kernelcore < kernelcore_node)
4669 kernelcore_node = required_kernelcore / usable_nodes;
4670
4671 /*
4672 * As the map is walked, we track how much memory is usable
4673 * by the kernel using kernelcore_remaining. When it is
4674 * 0, the rest of the node is usable by ZONE_MOVABLE
4675 */
4676 kernelcore_remaining = kernelcore_node;
4677
4678 /* Go through each range of PFNs within this node */
c13291a5 4679 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4680 unsigned long size_pages;
4681
c13291a5 4682 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4683 if (start_pfn >= end_pfn)
4684 continue;
4685
4686 /* Account for what is only usable for kernelcore */
4687 if (start_pfn < usable_startpfn) {
4688 unsigned long kernel_pages;
4689 kernel_pages = min(end_pfn, usable_startpfn)
4690 - start_pfn;
4691
4692 kernelcore_remaining -= min(kernel_pages,
4693 kernelcore_remaining);
4694 required_kernelcore -= min(kernel_pages,
4695 required_kernelcore);
4696
4697 /* Continue if range is now fully accounted */
4698 if (end_pfn <= usable_startpfn) {
4699
4700 /*
4701 * Push zone_movable_pfn to the end so
4702 * that if we have to rebalance
4703 * kernelcore across nodes, we will
4704 * not double account here
4705 */
4706 zone_movable_pfn[nid] = end_pfn;
4707 continue;
4708 }
4709 start_pfn = usable_startpfn;
4710 }
4711
4712 /*
4713 * The usable PFN range for ZONE_MOVABLE is from
4714 * start_pfn->end_pfn. Calculate size_pages as the
4715 * number of pages used as kernelcore
4716 */
4717 size_pages = end_pfn - start_pfn;
4718 if (size_pages > kernelcore_remaining)
4719 size_pages = kernelcore_remaining;
4720 zone_movable_pfn[nid] = start_pfn + size_pages;
4721
4722 /*
4723 * Some kernelcore has been met, update counts and
4724 * break if the kernelcore for this node has been
4725 * satisified
4726 */
4727 required_kernelcore -= min(required_kernelcore,
4728 size_pages);
4729 kernelcore_remaining -= size_pages;
4730 if (!kernelcore_remaining)
4731 break;
4732 }
4733 }
4734
4735 /*
4736 * If there is still required_kernelcore, we do another pass with one
4737 * less node in the count. This will push zone_movable_pfn[nid] further
4738 * along on the nodes that still have memory until kernelcore is
4739 * satisified
4740 */
4741 usable_nodes--;
4742 if (usable_nodes && required_kernelcore > usable_nodes)
4743 goto restart;
4744
4745 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4746 for (nid = 0; nid < MAX_NUMNODES; nid++)
4747 zone_movable_pfn[nid] =
4748 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4749
4750out:
4751 /* restore the node_state */
4752 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4753}
4754
37b07e41
LS
4755/* Any regular memory on that node ? */
4756static void check_for_regular_memory(pg_data_t *pgdat)
4757{
4758#ifdef CONFIG_HIGHMEM
4759 enum zone_type zone_type;
4760
4761 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4762 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4763 if (zone->present_pages) {
37b07e41 4764 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4765 break;
4766 }
37b07e41
LS
4767 }
4768#endif
4769}
4770
c713216d
MG
4771/**
4772 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4773 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4774 *
4775 * This will call free_area_init_node() for each active node in the system.
4776 * Using the page ranges provided by add_active_range(), the size of each
4777 * zone in each node and their holes is calculated. If the maximum PFN
4778 * between two adjacent zones match, it is assumed that the zone is empty.
4779 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4780 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4781 * starts where the previous one ended. For example, ZONE_DMA32 starts
4782 * at arch_max_dma_pfn.
4783 */
4784void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4785{
c13291a5
TH
4786 unsigned long start_pfn, end_pfn;
4787 int i, nid;
a6af2bc3 4788
c713216d
MG
4789 /* Record where the zone boundaries are */
4790 memset(arch_zone_lowest_possible_pfn, 0,
4791 sizeof(arch_zone_lowest_possible_pfn));
4792 memset(arch_zone_highest_possible_pfn, 0,
4793 sizeof(arch_zone_highest_possible_pfn));
4794 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4795 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4796 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4797 if (i == ZONE_MOVABLE)
4798 continue;
c713216d
MG
4799 arch_zone_lowest_possible_pfn[i] =
4800 arch_zone_highest_possible_pfn[i-1];
4801 arch_zone_highest_possible_pfn[i] =
4802 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4803 }
2a1e274a
MG
4804 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4805 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4806
4807 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4808 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4809 find_zone_movable_pfns_for_nodes();
c713216d 4810
c713216d 4811 /* Print out the zone ranges */
a62e2f4f 4812 printk("Zone ranges:\n");
2a1e274a
MG
4813 for (i = 0; i < MAX_NR_ZONES; i++) {
4814 if (i == ZONE_MOVABLE)
4815 continue;
155cbfc8 4816 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4817 if (arch_zone_lowest_possible_pfn[i] ==
4818 arch_zone_highest_possible_pfn[i])
155cbfc8 4819 printk(KERN_CONT "empty\n");
72f0ba02 4820 else
a62e2f4f
BH
4821 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4822 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4823 (arch_zone_highest_possible_pfn[i]
4824 << PAGE_SHIFT) - 1);
2a1e274a
MG
4825 }
4826
4827 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4828 printk("Movable zone start for each node\n");
2a1e274a
MG
4829 for (i = 0; i < MAX_NUMNODES; i++) {
4830 if (zone_movable_pfn[i])
a62e2f4f
BH
4831 printk(" Node %d: %#010lx\n", i,
4832 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4833 }
c713216d
MG
4834
4835 /* Print out the early_node_map[] */
a62e2f4f 4836 printk("Early memory node ranges\n");
c13291a5 4837 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4838 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4839 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4840
4841 /* Initialise every node */
708614e6 4842 mminit_verify_pageflags_layout();
8ef82866 4843 setup_nr_node_ids();
c713216d
MG
4844 for_each_online_node(nid) {
4845 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4846 free_area_init_node(nid, NULL,
c713216d 4847 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4848
4849 /* Any memory on that node */
4850 if (pgdat->node_present_pages)
4851 node_set_state(nid, N_HIGH_MEMORY);
4852 check_for_regular_memory(pgdat);
c713216d
MG
4853 }
4854}
2a1e274a 4855
7e63efef 4856static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4857{
4858 unsigned long long coremem;
4859 if (!p)
4860 return -EINVAL;
4861
4862 coremem = memparse(p, &p);
7e63efef 4863 *core = coremem >> PAGE_SHIFT;
2a1e274a 4864
7e63efef 4865 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4866 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4867
4868 return 0;
4869}
ed7ed365 4870
7e63efef
MG
4871/*
4872 * kernelcore=size sets the amount of memory for use for allocations that
4873 * cannot be reclaimed or migrated.
4874 */
4875static int __init cmdline_parse_kernelcore(char *p)
4876{
4877 return cmdline_parse_core(p, &required_kernelcore);
4878}
4879
4880/*
4881 * movablecore=size sets the amount of memory for use for allocations that
4882 * can be reclaimed or migrated.
4883 */
4884static int __init cmdline_parse_movablecore(char *p)
4885{
4886 return cmdline_parse_core(p, &required_movablecore);
4887}
4888
ed7ed365 4889early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4890early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4891
0ee332c1 4892#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4893
0e0b864e 4894/**
88ca3b94
RD
4895 * set_dma_reserve - set the specified number of pages reserved in the first zone
4896 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4897 *
4898 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4899 * In the DMA zone, a significant percentage may be consumed by kernel image
4900 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4901 * function may optionally be used to account for unfreeable pages in the
4902 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4903 * smaller per-cpu batchsize.
0e0b864e
MG
4904 */
4905void __init set_dma_reserve(unsigned long new_dma_reserve)
4906{
4907 dma_reserve = new_dma_reserve;
4908}
4909
1da177e4
LT
4910void __init free_area_init(unsigned long *zones_size)
4911{
9109fb7b 4912 free_area_init_node(0, zones_size,
1da177e4
LT
4913 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4914}
1da177e4 4915
1da177e4
LT
4916static int page_alloc_cpu_notify(struct notifier_block *self,
4917 unsigned long action, void *hcpu)
4918{
4919 int cpu = (unsigned long)hcpu;
1da177e4 4920
8bb78442 4921 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 4922 lru_add_drain_cpu(cpu);
9f8f2172
CL
4923 drain_pages(cpu);
4924
4925 /*
4926 * Spill the event counters of the dead processor
4927 * into the current processors event counters.
4928 * This artificially elevates the count of the current
4929 * processor.
4930 */
f8891e5e 4931 vm_events_fold_cpu(cpu);
9f8f2172
CL
4932
4933 /*
4934 * Zero the differential counters of the dead processor
4935 * so that the vm statistics are consistent.
4936 *
4937 * This is only okay since the processor is dead and cannot
4938 * race with what we are doing.
4939 */
2244b95a 4940 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4941 }
4942 return NOTIFY_OK;
4943}
1da177e4
LT
4944
4945void __init page_alloc_init(void)
4946{
4947 hotcpu_notifier(page_alloc_cpu_notify, 0);
4948}
4949
cb45b0e9
HA
4950/*
4951 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4952 * or min_free_kbytes changes.
4953 */
4954static void calculate_totalreserve_pages(void)
4955{
4956 struct pglist_data *pgdat;
4957 unsigned long reserve_pages = 0;
2f6726e5 4958 enum zone_type i, j;
cb45b0e9
HA
4959
4960 for_each_online_pgdat(pgdat) {
4961 for (i = 0; i < MAX_NR_ZONES; i++) {
4962 struct zone *zone = pgdat->node_zones + i;
4963 unsigned long max = 0;
4964
4965 /* Find valid and maximum lowmem_reserve in the zone */
4966 for (j = i; j < MAX_NR_ZONES; j++) {
4967 if (zone->lowmem_reserve[j] > max)
4968 max = zone->lowmem_reserve[j];
4969 }
4970
41858966
MG
4971 /* we treat the high watermark as reserved pages. */
4972 max += high_wmark_pages(zone);
cb45b0e9
HA
4973
4974 if (max > zone->present_pages)
4975 max = zone->present_pages;
4976 reserve_pages += max;
ab8fabd4
JW
4977 /*
4978 * Lowmem reserves are not available to
4979 * GFP_HIGHUSER page cache allocations and
4980 * kswapd tries to balance zones to their high
4981 * watermark. As a result, neither should be
4982 * regarded as dirtyable memory, to prevent a
4983 * situation where reclaim has to clean pages
4984 * in order to balance the zones.
4985 */
4986 zone->dirty_balance_reserve = max;
cb45b0e9
HA
4987 }
4988 }
ab8fabd4 4989 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
4990 totalreserve_pages = reserve_pages;
4991}
4992
1da177e4
LT
4993/*
4994 * setup_per_zone_lowmem_reserve - called whenever
4995 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4996 * has a correct pages reserved value, so an adequate number of
4997 * pages are left in the zone after a successful __alloc_pages().
4998 */
4999static void setup_per_zone_lowmem_reserve(void)
5000{
5001 struct pglist_data *pgdat;
2f6726e5 5002 enum zone_type j, idx;
1da177e4 5003
ec936fc5 5004 for_each_online_pgdat(pgdat) {
1da177e4
LT
5005 for (j = 0; j < MAX_NR_ZONES; j++) {
5006 struct zone *zone = pgdat->node_zones + j;
5007 unsigned long present_pages = zone->present_pages;
5008
5009 zone->lowmem_reserve[j] = 0;
5010
2f6726e5
CL
5011 idx = j;
5012 while (idx) {
1da177e4
LT
5013 struct zone *lower_zone;
5014
2f6726e5
CL
5015 idx--;
5016
1da177e4
LT
5017 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5018 sysctl_lowmem_reserve_ratio[idx] = 1;
5019
5020 lower_zone = pgdat->node_zones + idx;
5021 lower_zone->lowmem_reserve[j] = present_pages /
5022 sysctl_lowmem_reserve_ratio[idx];
5023 present_pages += lower_zone->present_pages;
5024 }
5025 }
5026 }
cb45b0e9
HA
5027
5028 /* update totalreserve_pages */
5029 calculate_totalreserve_pages();
1da177e4
LT
5030}
5031
cfd3da1e 5032static void __setup_per_zone_wmarks(void)
1da177e4
LT
5033{
5034 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5035 unsigned long lowmem_pages = 0;
5036 struct zone *zone;
5037 unsigned long flags;
5038
5039 /* Calculate total number of !ZONE_HIGHMEM pages */
5040 for_each_zone(zone) {
5041 if (!is_highmem(zone))
5042 lowmem_pages += zone->present_pages;
5043 }
5044
5045 for_each_zone(zone) {
ac924c60
AM
5046 u64 tmp;
5047
1125b4e3 5048 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5049 tmp = (u64)pages_min * zone->present_pages;
5050 do_div(tmp, lowmem_pages);
1da177e4
LT
5051 if (is_highmem(zone)) {
5052 /*
669ed175
NP
5053 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5054 * need highmem pages, so cap pages_min to a small
5055 * value here.
5056 *
41858966 5057 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5058 * deltas controls asynch page reclaim, and so should
5059 * not be capped for highmem.
1da177e4
LT
5060 */
5061 int min_pages;
5062
5063 min_pages = zone->present_pages / 1024;
5064 if (min_pages < SWAP_CLUSTER_MAX)
5065 min_pages = SWAP_CLUSTER_MAX;
5066 if (min_pages > 128)
5067 min_pages = 128;
41858966 5068 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5069 } else {
669ed175
NP
5070 /*
5071 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5072 * proportionate to the zone's size.
5073 */
41858966 5074 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5075 }
5076
41858966
MG
5077 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5078 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5079
5080 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5081 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5082 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5083
56fd56b8 5084 setup_zone_migrate_reserve(zone);
1125b4e3 5085 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5086 }
cb45b0e9
HA
5087
5088 /* update totalreserve_pages */
5089 calculate_totalreserve_pages();
1da177e4
LT
5090}
5091
cfd3da1e
MG
5092/**
5093 * setup_per_zone_wmarks - called when min_free_kbytes changes
5094 * or when memory is hot-{added|removed}
5095 *
5096 * Ensures that the watermark[min,low,high] values for each zone are set
5097 * correctly with respect to min_free_kbytes.
5098 */
5099void setup_per_zone_wmarks(void)
5100{
5101 mutex_lock(&zonelists_mutex);
5102 __setup_per_zone_wmarks();
5103 mutex_unlock(&zonelists_mutex);
5104}
5105
55a4462a 5106/*
556adecb
RR
5107 * The inactive anon list should be small enough that the VM never has to
5108 * do too much work, but large enough that each inactive page has a chance
5109 * to be referenced again before it is swapped out.
5110 *
5111 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5112 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5113 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5114 * the anonymous pages are kept on the inactive list.
5115 *
5116 * total target max
5117 * memory ratio inactive anon
5118 * -------------------------------------
5119 * 10MB 1 5MB
5120 * 100MB 1 50MB
5121 * 1GB 3 250MB
5122 * 10GB 10 0.9GB
5123 * 100GB 31 3GB
5124 * 1TB 101 10GB
5125 * 10TB 320 32GB
5126 */
1b79acc9 5127static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5128{
96cb4df5 5129 unsigned int gb, ratio;
556adecb 5130
96cb4df5
MK
5131 /* Zone size in gigabytes */
5132 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5133 if (gb)
556adecb 5134 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5135 else
5136 ratio = 1;
556adecb 5137
96cb4df5
MK
5138 zone->inactive_ratio = ratio;
5139}
556adecb 5140
839a4fcc 5141static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5142{
5143 struct zone *zone;
5144
5145 for_each_zone(zone)
5146 calculate_zone_inactive_ratio(zone);
556adecb
RR
5147}
5148
1da177e4
LT
5149/*
5150 * Initialise min_free_kbytes.
5151 *
5152 * For small machines we want it small (128k min). For large machines
5153 * we want it large (64MB max). But it is not linear, because network
5154 * bandwidth does not increase linearly with machine size. We use
5155 *
5156 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5157 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5158 *
5159 * which yields
5160 *
5161 * 16MB: 512k
5162 * 32MB: 724k
5163 * 64MB: 1024k
5164 * 128MB: 1448k
5165 * 256MB: 2048k
5166 * 512MB: 2896k
5167 * 1024MB: 4096k
5168 * 2048MB: 5792k
5169 * 4096MB: 8192k
5170 * 8192MB: 11584k
5171 * 16384MB: 16384k
5172 */
1b79acc9 5173int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5174{
5175 unsigned long lowmem_kbytes;
5176
5177 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5178
5179 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5180 if (min_free_kbytes < 128)
5181 min_free_kbytes = 128;
5182 if (min_free_kbytes > 65536)
5183 min_free_kbytes = 65536;
bc75d33f 5184 setup_per_zone_wmarks();
a6cccdc3 5185 refresh_zone_stat_thresholds();
1da177e4 5186 setup_per_zone_lowmem_reserve();
556adecb 5187 setup_per_zone_inactive_ratio();
1da177e4
LT
5188 return 0;
5189}
bc75d33f 5190module_init(init_per_zone_wmark_min)
1da177e4
LT
5191
5192/*
5193 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5194 * that we can call two helper functions whenever min_free_kbytes
5195 * changes.
5196 */
5197int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5198 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5199{
8d65af78 5200 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5201 if (write)
bc75d33f 5202 setup_per_zone_wmarks();
1da177e4
LT
5203 return 0;
5204}
5205
9614634f
CL
5206#ifdef CONFIG_NUMA
5207int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5208 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5209{
5210 struct zone *zone;
5211 int rc;
5212
8d65af78 5213 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5214 if (rc)
5215 return rc;
5216
5217 for_each_zone(zone)
8417bba4 5218 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5219 sysctl_min_unmapped_ratio) / 100;
5220 return 0;
5221}
0ff38490
CL
5222
5223int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5224 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5225{
5226 struct zone *zone;
5227 int rc;
5228
8d65af78 5229 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5230 if (rc)
5231 return rc;
5232
5233 for_each_zone(zone)
5234 zone->min_slab_pages = (zone->present_pages *
5235 sysctl_min_slab_ratio) / 100;
5236 return 0;
5237}
9614634f
CL
5238#endif
5239
1da177e4
LT
5240/*
5241 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5242 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5243 * whenever sysctl_lowmem_reserve_ratio changes.
5244 *
5245 * The reserve ratio obviously has absolutely no relation with the
41858966 5246 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5247 * if in function of the boot time zone sizes.
5248 */
5249int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5250 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5251{
8d65af78 5252 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5253 setup_per_zone_lowmem_reserve();
5254 return 0;
5255}
5256
8ad4b1fb
RS
5257/*
5258 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5259 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5260 * can have before it gets flushed back to buddy allocator.
5261 */
5262
5263int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5264 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5265{
5266 struct zone *zone;
5267 unsigned int cpu;
5268 int ret;
5269
8d65af78 5270 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5271 if (!write || (ret < 0))
8ad4b1fb 5272 return ret;
364df0eb 5273 for_each_populated_zone(zone) {
99dcc3e5 5274 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5275 unsigned long high;
5276 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5277 setup_pagelist_highmark(
5278 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5279 }
5280 }
5281 return 0;
5282}
5283
f034b5d4 5284int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5285
5286#ifdef CONFIG_NUMA
5287static int __init set_hashdist(char *str)
5288{
5289 if (!str)
5290 return 0;
5291 hashdist = simple_strtoul(str, &str, 0);
5292 return 1;
5293}
5294__setup("hashdist=", set_hashdist);
5295#endif
5296
5297/*
5298 * allocate a large system hash table from bootmem
5299 * - it is assumed that the hash table must contain an exact power-of-2
5300 * quantity of entries
5301 * - limit is the number of hash buckets, not the total allocation size
5302 */
5303void *__init alloc_large_system_hash(const char *tablename,
5304 unsigned long bucketsize,
5305 unsigned long numentries,
5306 int scale,
5307 int flags,
5308 unsigned int *_hash_shift,
5309 unsigned int *_hash_mask,
31fe62b9
TB
5310 unsigned long low_limit,
5311 unsigned long high_limit)
1da177e4 5312{
31fe62b9 5313 unsigned long long max = high_limit;
1da177e4
LT
5314 unsigned long log2qty, size;
5315 void *table = NULL;
5316
5317 /* allow the kernel cmdline to have a say */
5318 if (!numentries) {
5319 /* round applicable memory size up to nearest megabyte */
04903664 5320 numentries = nr_kernel_pages;
1da177e4
LT
5321 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5322 numentries >>= 20 - PAGE_SHIFT;
5323 numentries <<= 20 - PAGE_SHIFT;
5324
5325 /* limit to 1 bucket per 2^scale bytes of low memory */
5326 if (scale > PAGE_SHIFT)
5327 numentries >>= (scale - PAGE_SHIFT);
5328 else
5329 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5330
5331 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5332 if (unlikely(flags & HASH_SMALL)) {
5333 /* Makes no sense without HASH_EARLY */
5334 WARN_ON(!(flags & HASH_EARLY));
5335 if (!(numentries >> *_hash_shift)) {
5336 numentries = 1UL << *_hash_shift;
5337 BUG_ON(!numentries);
5338 }
5339 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5340 numentries = PAGE_SIZE / bucketsize;
1da177e4 5341 }
6e692ed3 5342 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5343
5344 /* limit allocation size to 1/16 total memory by default */
5345 if (max == 0) {
5346 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5347 do_div(max, bucketsize);
5348 }
074b8517 5349 max = min(max, 0x80000000ULL);
1da177e4 5350
31fe62b9
TB
5351 if (numentries < low_limit)
5352 numentries = low_limit;
1da177e4
LT
5353 if (numentries > max)
5354 numentries = max;
5355
f0d1b0b3 5356 log2qty = ilog2(numentries);
1da177e4
LT
5357
5358 do {
5359 size = bucketsize << log2qty;
5360 if (flags & HASH_EARLY)
74768ed8 5361 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5362 else if (hashdist)
5363 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5364 else {
1037b83b
ED
5365 /*
5366 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5367 * some pages at the end of hash table which
5368 * alloc_pages_exact() automatically does
1037b83b 5369 */
264ef8a9 5370 if (get_order(size) < MAX_ORDER) {
a1dd268c 5371 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5372 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5373 }
1da177e4
LT
5374 }
5375 } while (!table && size > PAGE_SIZE && --log2qty);
5376
5377 if (!table)
5378 panic("Failed to allocate %s hash table\n", tablename);
5379
f241e660 5380 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5381 tablename,
f241e660 5382 (1UL << log2qty),
f0d1b0b3 5383 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5384 size);
5385
5386 if (_hash_shift)
5387 *_hash_shift = log2qty;
5388 if (_hash_mask)
5389 *_hash_mask = (1 << log2qty) - 1;
5390
5391 return table;
5392}
a117e66e 5393
835c134e
MG
5394/* Return a pointer to the bitmap storing bits affecting a block of pages */
5395static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5396 unsigned long pfn)
5397{
5398#ifdef CONFIG_SPARSEMEM
5399 return __pfn_to_section(pfn)->pageblock_flags;
5400#else
5401 return zone->pageblock_flags;
5402#endif /* CONFIG_SPARSEMEM */
5403}
5404
5405static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5406{
5407#ifdef CONFIG_SPARSEMEM
5408 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5409 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5410#else
5411 pfn = pfn - zone->zone_start_pfn;
d9c23400 5412 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5413#endif /* CONFIG_SPARSEMEM */
5414}
5415
5416/**
d9c23400 5417 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5418 * @page: The page within the block of interest
5419 * @start_bitidx: The first bit of interest to retrieve
5420 * @end_bitidx: The last bit of interest
5421 * returns pageblock_bits flags
5422 */
5423unsigned long get_pageblock_flags_group(struct page *page,
5424 int start_bitidx, int end_bitidx)
5425{
5426 struct zone *zone;
5427 unsigned long *bitmap;
5428 unsigned long pfn, bitidx;
5429 unsigned long flags = 0;
5430 unsigned long value = 1;
5431
5432 zone = page_zone(page);
5433 pfn = page_to_pfn(page);
5434 bitmap = get_pageblock_bitmap(zone, pfn);
5435 bitidx = pfn_to_bitidx(zone, pfn);
5436
5437 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5438 if (test_bit(bitidx + start_bitidx, bitmap))
5439 flags |= value;
6220ec78 5440
835c134e
MG
5441 return flags;
5442}
5443
5444/**
d9c23400 5445 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5446 * @page: The page within the block of interest
5447 * @start_bitidx: The first bit of interest
5448 * @end_bitidx: The last bit of interest
5449 * @flags: The flags to set
5450 */
5451void set_pageblock_flags_group(struct page *page, unsigned long flags,
5452 int start_bitidx, int end_bitidx)
5453{
5454 struct zone *zone;
5455 unsigned long *bitmap;
5456 unsigned long pfn, bitidx;
5457 unsigned long value = 1;
5458
5459 zone = page_zone(page);
5460 pfn = page_to_pfn(page);
5461 bitmap = get_pageblock_bitmap(zone, pfn);
5462 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5463 VM_BUG_ON(pfn < zone->zone_start_pfn);
5464 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5465
5466 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5467 if (flags & value)
5468 __set_bit(bitidx + start_bitidx, bitmap);
5469 else
5470 __clear_bit(bitidx + start_bitidx, bitmap);
5471}
a5d76b54
KH
5472
5473/*
5474 * This is designed as sub function...plz see page_isolation.c also.
5475 * set/clear page block's type to be ISOLATE.
5476 * page allocater never alloc memory from ISOLATE block.
5477 */
5478
49ac8255
KH
5479static int
5480__count_immobile_pages(struct zone *zone, struct page *page, int count)
5481{
5482 unsigned long pfn, iter, found;
47118af0
MN
5483 int mt;
5484
49ac8255
KH
5485 /*
5486 * For avoiding noise data, lru_add_drain_all() should be called
5487 * If ZONE_MOVABLE, the zone never contains immobile pages
5488 */
5489 if (zone_idx(zone) == ZONE_MOVABLE)
5490 return true;
47118af0
MN
5491 mt = get_pageblock_migratetype(page);
5492 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
49ac8255
KH
5493 return true;
5494
5495 pfn = page_to_pfn(page);
5496 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5497 unsigned long check = pfn + iter;
5498
29723fcc 5499 if (!pfn_valid_within(check))
49ac8255 5500 continue;
29723fcc 5501
49ac8255
KH
5502 page = pfn_to_page(check);
5503 if (!page_count(page)) {
5504 if (PageBuddy(page))
5505 iter += (1 << page_order(page)) - 1;
5506 continue;
5507 }
5508 if (!PageLRU(page))
5509 found++;
5510 /*
5511 * If there are RECLAIMABLE pages, we need to check it.
5512 * But now, memory offline itself doesn't call shrink_slab()
5513 * and it still to be fixed.
5514 */
5515 /*
5516 * If the page is not RAM, page_count()should be 0.
5517 * we don't need more check. This is an _used_ not-movable page.
5518 *
5519 * The problematic thing here is PG_reserved pages. PG_reserved
5520 * is set to both of a memory hole page and a _used_ kernel
5521 * page at boot.
5522 */
5523 if (found > count)
5524 return false;
5525 }
5526 return true;
5527}
5528
5529bool is_pageblock_removable_nolock(struct page *page)
5530{
656a0706
MH
5531 struct zone *zone;
5532 unsigned long pfn;
687875fb
MH
5533
5534 /*
5535 * We have to be careful here because we are iterating over memory
5536 * sections which are not zone aware so we might end up outside of
5537 * the zone but still within the section.
656a0706
MH
5538 * We have to take care about the node as well. If the node is offline
5539 * its NODE_DATA will be NULL - see page_zone.
687875fb 5540 */
656a0706
MH
5541 if (!node_online(page_to_nid(page)))
5542 return false;
5543
5544 zone = page_zone(page);
5545 pfn = page_to_pfn(page);
5546 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5547 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5548 return false;
5549
49ac8255
KH
5550 return __count_immobile_pages(zone, page, 0);
5551}
5552
a5d76b54
KH
5553int set_migratetype_isolate(struct page *page)
5554{
5555 struct zone *zone;
49ac8255 5556 unsigned long flags, pfn;
925cc71e
RJ
5557 struct memory_isolate_notify arg;
5558 int notifier_ret;
a5d76b54
KH
5559 int ret = -EBUSY;
5560
5561 zone = page_zone(page);
925cc71e 5562
a5d76b54 5563 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5564
5565 pfn = page_to_pfn(page);
5566 arg.start_pfn = pfn;
5567 arg.nr_pages = pageblock_nr_pages;
5568 arg.pages_found = 0;
5569
a5d76b54 5570 /*
925cc71e
RJ
5571 * It may be possible to isolate a pageblock even if the
5572 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5573 * notifier chain is used by balloon drivers to return the
5574 * number of pages in a range that are held by the balloon
5575 * driver to shrink memory. If all the pages are accounted for
5576 * by balloons, are free, or on the LRU, isolation can continue.
5577 * Later, for example, when memory hotplug notifier runs, these
5578 * pages reported as "can be isolated" should be isolated(freed)
5579 * by the balloon driver through the memory notifier chain.
a5d76b54 5580 */
925cc71e
RJ
5581 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5582 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5583 if (notifier_ret)
a5d76b54 5584 goto out;
49ac8255
KH
5585 /*
5586 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5587 * We just check MOVABLE pages.
5588 */
5589 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5590 ret = 0;
5591
49ac8255
KH
5592 /*
5593 * immobile means "not-on-lru" paes. If immobile is larger than
5594 * removable-by-driver pages reported by notifier, we'll fail.
5595 */
5596
a5d76b54 5597out:
925cc71e
RJ
5598 if (!ret) {
5599 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5600 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5601 }
5602
a5d76b54
KH
5603 spin_unlock_irqrestore(&zone->lock, flags);
5604 if (!ret)
9f8f2172 5605 drain_all_pages();
a5d76b54
KH
5606 return ret;
5607}
5608
0815f3d8 5609void unset_migratetype_isolate(struct page *page, unsigned migratetype)
a5d76b54
KH
5610{
5611 struct zone *zone;
5612 unsigned long flags;
5613 zone = page_zone(page);
5614 spin_lock_irqsave(&zone->lock, flags);
5615 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5616 goto out;
0815f3d8
MN
5617 set_pageblock_migratetype(page, migratetype);
5618 move_freepages_block(zone, page, migratetype);
a5d76b54
KH
5619out:
5620 spin_unlock_irqrestore(&zone->lock, flags);
5621}
0c0e6195 5622
041d3a8c
MN
5623#ifdef CONFIG_CMA
5624
5625static unsigned long pfn_max_align_down(unsigned long pfn)
5626{
5627 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5628 pageblock_nr_pages) - 1);
5629}
5630
5631static unsigned long pfn_max_align_up(unsigned long pfn)
5632{
5633 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5634 pageblock_nr_pages));
5635}
5636
5637static struct page *
5638__alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5639 int **resultp)
5640{
6a6dccba
RV
5641 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5642
5643 if (PageHighMem(page))
5644 gfp_mask |= __GFP_HIGHMEM;
5645
5646 return alloc_page(gfp_mask);
041d3a8c
MN
5647}
5648
5649/* [start, end) must belong to a single zone. */
5650static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5651{
5652 /* This function is based on compact_zone() from compaction.c. */
5653
5654 unsigned long pfn = start;
5655 unsigned int tries = 0;
5656 int ret = 0;
5657
5658 struct compact_control cc = {
5659 .nr_migratepages = 0,
5660 .order = -1,
5661 .zone = page_zone(pfn_to_page(start)),
68e3e926 5662 .sync = true,
041d3a8c
MN
5663 };
5664 INIT_LIST_HEAD(&cc.migratepages);
5665
5666 migrate_prep_local();
5667
5668 while (pfn < end || !list_empty(&cc.migratepages)) {
5669 if (fatal_signal_pending(current)) {
5670 ret = -EINTR;
5671 break;
5672 }
5673
5674 if (list_empty(&cc.migratepages)) {
5675 cc.nr_migratepages = 0;
5676 pfn = isolate_migratepages_range(cc.zone, &cc,
5677 pfn, end);
5678 if (!pfn) {
5679 ret = -EINTR;
5680 break;
5681 }
5682 tries = 0;
5683 } else if (++tries == 5) {
5684 ret = ret < 0 ? ret : -EBUSY;
5685 break;
5686 }
5687
5688 ret = migrate_pages(&cc.migratepages,
5689 __alloc_contig_migrate_alloc,
58f42fd5 5690 0, false, MIGRATE_SYNC);
041d3a8c
MN
5691 }
5692
5693 putback_lru_pages(&cc.migratepages);
5694 return ret > 0 ? 0 : ret;
5695}
5696
49f223a9
MS
5697/*
5698 * Update zone's cma pages counter used for watermark level calculation.
5699 */
5700static inline void __update_cma_watermarks(struct zone *zone, int count)
5701{
5702 unsigned long flags;
5703 spin_lock_irqsave(&zone->lock, flags);
5704 zone->min_cma_pages += count;
5705 spin_unlock_irqrestore(&zone->lock, flags);
5706 setup_per_zone_wmarks();
5707}
5708
5709/*
5710 * Trigger memory pressure bump to reclaim some pages in order to be able to
5711 * allocate 'count' pages in single page units. Does similar work as
5712 *__alloc_pages_slowpath() function.
5713 */
5714static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5715{
5716 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5717 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5718 int did_some_progress = 0;
5719 int order = 1;
5720
5721 /*
5722 * Increase level of watermarks to force kswapd do his job
5723 * to stabilise at new watermark level.
5724 */
5725 __update_cma_watermarks(zone, count);
5726
5727 /* Obey watermarks as if the page was being allocated */
5728 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5729 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5730
5731 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5732 NULL);
5733 if (!did_some_progress) {
5734 /* Exhausted what can be done so it's blamo time */
5735 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5736 }
5737 }
5738
5739 /* Restore original watermark levels. */
5740 __update_cma_watermarks(zone, -count);
5741
5742 return count;
5743}
5744
041d3a8c
MN
5745/**
5746 * alloc_contig_range() -- tries to allocate given range of pages
5747 * @start: start PFN to allocate
5748 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5749 * @migratetype: migratetype of the underlaying pageblocks (either
5750 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5751 * in range must have the same migratetype and it must
5752 * be either of the two.
041d3a8c
MN
5753 *
5754 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5755 * aligned, however it's the caller's responsibility to guarantee that
5756 * we are the only thread that changes migrate type of pageblocks the
5757 * pages fall in.
5758 *
5759 * The PFN range must belong to a single zone.
5760 *
5761 * Returns zero on success or negative error code. On success all
5762 * pages which PFN is in [start, end) are allocated for the caller and
5763 * need to be freed with free_contig_range().
5764 */
0815f3d8
MN
5765int alloc_contig_range(unsigned long start, unsigned long end,
5766 unsigned migratetype)
041d3a8c
MN
5767{
5768 struct zone *zone = page_zone(pfn_to_page(start));
5769 unsigned long outer_start, outer_end;
5770 int ret = 0, order;
5771
5772 /*
5773 * What we do here is we mark all pageblocks in range as
5774 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5775 * have different sizes, and due to the way page allocator
5776 * work, we align the range to biggest of the two pages so
5777 * that page allocator won't try to merge buddies from
5778 * different pageblocks and change MIGRATE_ISOLATE to some
5779 * other migration type.
5780 *
5781 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5782 * migrate the pages from an unaligned range (ie. pages that
5783 * we are interested in). This will put all the pages in
5784 * range back to page allocator as MIGRATE_ISOLATE.
5785 *
5786 * When this is done, we take the pages in range from page
5787 * allocator removing them from the buddy system. This way
5788 * page allocator will never consider using them.
5789 *
5790 * This lets us mark the pageblocks back as
5791 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5792 * aligned range but not in the unaligned, original range are
5793 * put back to page allocator so that buddy can use them.
5794 */
5795
5796 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5797 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5798 if (ret)
5799 goto done;
5800
5801 ret = __alloc_contig_migrate_range(start, end);
5802 if (ret)
5803 goto done;
5804
5805 /*
5806 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5807 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5808 * more, all pages in [start, end) are free in page allocator.
5809 * What we are going to do is to allocate all pages from
5810 * [start, end) (that is remove them from page allocator).
5811 *
5812 * The only problem is that pages at the beginning and at the
5813 * end of interesting range may be not aligned with pages that
5814 * page allocator holds, ie. they can be part of higher order
5815 * pages. Because of this, we reserve the bigger range and
5816 * once this is done free the pages we are not interested in.
5817 *
5818 * We don't have to hold zone->lock here because the pages are
5819 * isolated thus they won't get removed from buddy.
5820 */
5821
5822 lru_add_drain_all();
5823 drain_all_pages();
5824
5825 order = 0;
5826 outer_start = start;
5827 while (!PageBuddy(pfn_to_page(outer_start))) {
5828 if (++order >= MAX_ORDER) {
5829 ret = -EBUSY;
5830 goto done;
5831 }
5832 outer_start &= ~0UL << order;
5833 }
5834
5835 /* Make sure the range is really isolated. */
5836 if (test_pages_isolated(outer_start, end)) {
5837 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5838 outer_start, end);
5839 ret = -EBUSY;
5840 goto done;
5841 }
5842
49f223a9
MS
5843 /*
5844 * Reclaim enough pages to make sure that contiguous allocation
5845 * will not starve the system.
5846 */
5847 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5848
5849 /* Grab isolated pages from freelists. */
041d3a8c
MN
5850 outer_end = isolate_freepages_range(outer_start, end);
5851 if (!outer_end) {
5852 ret = -EBUSY;
5853 goto done;
5854 }
5855
5856 /* Free head and tail (if any) */
5857 if (start != outer_start)
5858 free_contig_range(outer_start, start - outer_start);
5859 if (end != outer_end)
5860 free_contig_range(end, outer_end - end);
5861
5862done:
5863 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5864 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5865 return ret;
5866}
5867
5868void free_contig_range(unsigned long pfn, unsigned nr_pages)
5869{
5870 for (; nr_pages--; ++pfn)
5871 __free_page(pfn_to_page(pfn));
5872}
5873#endif
5874
0c0e6195
KH
5875#ifdef CONFIG_MEMORY_HOTREMOVE
5876/*
5877 * All pages in the range must be isolated before calling this.
5878 */
5879void
5880__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5881{
5882 struct page *page;
5883 struct zone *zone;
5884 int order, i;
5885 unsigned long pfn;
5886 unsigned long flags;
5887 /* find the first valid pfn */
5888 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5889 if (pfn_valid(pfn))
5890 break;
5891 if (pfn == end_pfn)
5892 return;
5893 zone = page_zone(pfn_to_page(pfn));
5894 spin_lock_irqsave(&zone->lock, flags);
5895 pfn = start_pfn;
5896 while (pfn < end_pfn) {
5897 if (!pfn_valid(pfn)) {
5898 pfn++;
5899 continue;
5900 }
5901 page = pfn_to_page(pfn);
5902 BUG_ON(page_count(page));
5903 BUG_ON(!PageBuddy(page));
5904 order = page_order(page);
5905#ifdef CONFIG_DEBUG_VM
5906 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5907 pfn, 1 << order, end_pfn);
5908#endif
5909 list_del(&page->lru);
5910 rmv_page_order(page);
5911 zone->free_area[order].nr_free--;
5912 __mod_zone_page_state(zone, NR_FREE_PAGES,
5913 - (1UL << order));
5914 for (i = 0; i < (1 << order); i++)
5915 SetPageReserved((page+i));
5916 pfn += (1 << order);
5917 }
5918 spin_unlock_irqrestore(&zone->lock, flags);
5919}
5920#endif
8d22ba1b
WF
5921
5922#ifdef CONFIG_MEMORY_FAILURE
5923bool is_free_buddy_page(struct page *page)
5924{
5925 struct zone *zone = page_zone(page);
5926 unsigned long pfn = page_to_pfn(page);
5927 unsigned long flags;
5928 int order;
5929
5930 spin_lock_irqsave(&zone->lock, flags);
5931 for (order = 0; order < MAX_ORDER; order++) {
5932 struct page *page_head = page - (pfn & ((1 << order) - 1));
5933
5934 if (PageBuddy(page_head) && page_order(page_head) >= order)
5935 break;
5936 }
5937 spin_unlock_irqrestore(&zone->lock, flags);
5938
5939 return order < MAX_ORDER;
5940}
5941#endif
718a3821 5942
51300cef 5943static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
5944 {1UL << PG_locked, "locked" },
5945 {1UL << PG_error, "error" },
5946 {1UL << PG_referenced, "referenced" },
5947 {1UL << PG_uptodate, "uptodate" },
5948 {1UL << PG_dirty, "dirty" },
5949 {1UL << PG_lru, "lru" },
5950 {1UL << PG_active, "active" },
5951 {1UL << PG_slab, "slab" },
5952 {1UL << PG_owner_priv_1, "owner_priv_1" },
5953 {1UL << PG_arch_1, "arch_1" },
5954 {1UL << PG_reserved, "reserved" },
5955 {1UL << PG_private, "private" },
5956 {1UL << PG_private_2, "private_2" },
5957 {1UL << PG_writeback, "writeback" },
5958#ifdef CONFIG_PAGEFLAGS_EXTENDED
5959 {1UL << PG_head, "head" },
5960 {1UL << PG_tail, "tail" },
5961#else
5962 {1UL << PG_compound, "compound" },
5963#endif
5964 {1UL << PG_swapcache, "swapcache" },
5965 {1UL << PG_mappedtodisk, "mappedtodisk" },
5966 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
5967 {1UL << PG_swapbacked, "swapbacked" },
5968 {1UL << PG_unevictable, "unevictable" },
5969#ifdef CONFIG_MMU
5970 {1UL << PG_mlocked, "mlocked" },
5971#endif
5972#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5973 {1UL << PG_uncached, "uncached" },
5974#endif
5975#ifdef CONFIG_MEMORY_FAILURE
5976 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
5977#endif
5978#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5979 {1UL << PG_compound_lock, "compound_lock" },
718a3821 5980#endif
718a3821
WF
5981};
5982
5983static void dump_page_flags(unsigned long flags)
5984{
5985 const char *delim = "";
5986 unsigned long mask;
5987 int i;
5988
51300cef 5989 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 5990
718a3821
WF
5991 printk(KERN_ALERT "page flags: %#lx(", flags);
5992
5993 /* remove zone id */
5994 flags &= (1UL << NR_PAGEFLAGS) - 1;
5995
51300cef 5996 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
5997
5998 mask = pageflag_names[i].mask;
5999 if ((flags & mask) != mask)
6000 continue;
6001
6002 flags &= ~mask;
6003 printk("%s%s", delim, pageflag_names[i].name);
6004 delim = "|";
6005 }
6006
6007 /* check for left over flags */
6008 if (flags)
6009 printk("%s%#lx", delim, flags);
6010
6011 printk(")\n");
6012}
6013
6014void dump_page(struct page *page)
6015{
6016 printk(KERN_ALERT
6017 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6018 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6019 page->mapping, page->index);
6020 dump_page_flags(page->flags);
f212ad7c 6021 mem_cgroup_print_bad_page(page);
718a3821 6022}
This page took 1.167061 seconds and 5 git commands to generate.