58dbd5c439df45bc10497954db0e61b433646cd6
[deliverable/linux.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47
48 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
49 #define kvm_pud_huge(_x) pud_huge(_x)
50
51 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
52 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
53
54 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
55 {
56 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 }
58
59 /**
60 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
61 * @kvm: pointer to kvm structure.
62 *
63 * Interface to HYP function to flush all VM TLB entries
64 */
65 void kvm_flush_remote_tlbs(struct kvm *kvm)
66 {
67 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68 }
69
70 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71 {
72 /*
73 * This function also gets called when dealing with HYP page
74 * tables. As HYP doesn't have an associated struct kvm (and
75 * the HYP page tables are fairly static), we don't do
76 * anything there.
77 */
78 if (kvm)
79 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
80 }
81
82 /*
83 * D-Cache management functions. They take the page table entries by
84 * value, as they are flushing the cache using the kernel mapping (or
85 * kmap on 32bit).
86 */
87 static void kvm_flush_dcache_pte(pte_t pte)
88 {
89 __kvm_flush_dcache_pte(pte);
90 }
91
92 static void kvm_flush_dcache_pmd(pmd_t pmd)
93 {
94 __kvm_flush_dcache_pmd(pmd);
95 }
96
97 static void kvm_flush_dcache_pud(pud_t pud)
98 {
99 __kvm_flush_dcache_pud(pud);
100 }
101
102 static bool kvm_is_device_pfn(unsigned long pfn)
103 {
104 return !pfn_valid(pfn);
105 }
106
107 /**
108 * stage2_dissolve_pmd() - clear and flush huge PMD entry
109 * @kvm: pointer to kvm structure.
110 * @addr: IPA
111 * @pmd: pmd pointer for IPA
112 *
113 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
114 * pages in the range dirty.
115 */
116 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
117 {
118 if (!kvm_pmd_huge(*pmd))
119 return;
120
121 pmd_clear(pmd);
122 kvm_tlb_flush_vmid_ipa(kvm, addr);
123 put_page(virt_to_page(pmd));
124 }
125
126 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
127 int min, int max)
128 {
129 void *page;
130
131 BUG_ON(max > KVM_NR_MEM_OBJS);
132 if (cache->nobjs >= min)
133 return 0;
134 while (cache->nobjs < max) {
135 page = (void *)__get_free_page(PGALLOC_GFP);
136 if (!page)
137 return -ENOMEM;
138 cache->objects[cache->nobjs++] = page;
139 }
140 return 0;
141 }
142
143 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
144 {
145 while (mc->nobjs)
146 free_page((unsigned long)mc->objects[--mc->nobjs]);
147 }
148
149 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
150 {
151 void *p;
152
153 BUG_ON(!mc || !mc->nobjs);
154 p = mc->objects[--mc->nobjs];
155 return p;
156 }
157
158 static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
159 {
160 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
161 pgd_clear(pgd);
162 kvm_tlb_flush_vmid_ipa(kvm, addr);
163 pud_free(NULL, pud_table);
164 put_page(virt_to_page(pgd));
165 }
166
167 static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
168 {
169 pmd_t *pmd_table = pmd_offset(pud, 0);
170 VM_BUG_ON(pud_huge(*pud));
171 pud_clear(pud);
172 kvm_tlb_flush_vmid_ipa(kvm, addr);
173 pmd_free(NULL, pmd_table);
174 put_page(virt_to_page(pud));
175 }
176
177 static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
178 {
179 pte_t *pte_table = pte_offset_kernel(pmd, 0);
180 VM_BUG_ON(kvm_pmd_huge(*pmd));
181 pmd_clear(pmd);
182 kvm_tlb_flush_vmid_ipa(kvm, addr);
183 pte_free_kernel(NULL, pte_table);
184 put_page(virt_to_page(pmd));
185 }
186
187 /*
188 * Unmapping vs dcache management:
189 *
190 * If a guest maps certain memory pages as uncached, all writes will
191 * bypass the data cache and go directly to RAM. However, the CPUs
192 * can still speculate reads (not writes) and fill cache lines with
193 * data.
194 *
195 * Those cache lines will be *clean* cache lines though, so a
196 * clean+invalidate operation is equivalent to an invalidate
197 * operation, because no cache lines are marked dirty.
198 *
199 * Those clean cache lines could be filled prior to an uncached write
200 * by the guest, and the cache coherent IO subsystem would therefore
201 * end up writing old data to disk.
202 *
203 * This is why right after unmapping a page/section and invalidating
204 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
205 * the IO subsystem will never hit in the cache.
206 */
207 static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
208 phys_addr_t addr, phys_addr_t end)
209 {
210 phys_addr_t start_addr = addr;
211 pte_t *pte, *start_pte;
212
213 start_pte = pte = pte_offset_kernel(pmd, addr);
214 do {
215 if (!pte_none(*pte)) {
216 pte_t old_pte = *pte;
217
218 kvm_set_pte(pte, __pte(0));
219 kvm_tlb_flush_vmid_ipa(kvm, addr);
220
221 /* No need to invalidate the cache for device mappings */
222 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
223 kvm_flush_dcache_pte(old_pte);
224
225 put_page(virt_to_page(pte));
226 }
227 } while (pte++, addr += PAGE_SIZE, addr != end);
228
229 if (kvm_pte_table_empty(kvm, start_pte))
230 clear_pmd_entry(kvm, pmd, start_addr);
231 }
232
233 static void unmap_pmds(struct kvm *kvm, pud_t *pud,
234 phys_addr_t addr, phys_addr_t end)
235 {
236 phys_addr_t next, start_addr = addr;
237 pmd_t *pmd, *start_pmd;
238
239 start_pmd = pmd = pmd_offset(pud, addr);
240 do {
241 next = kvm_pmd_addr_end(addr, end);
242 if (!pmd_none(*pmd)) {
243 if (kvm_pmd_huge(*pmd)) {
244 pmd_t old_pmd = *pmd;
245
246 pmd_clear(pmd);
247 kvm_tlb_flush_vmid_ipa(kvm, addr);
248
249 kvm_flush_dcache_pmd(old_pmd);
250
251 put_page(virt_to_page(pmd));
252 } else {
253 unmap_ptes(kvm, pmd, addr, next);
254 }
255 }
256 } while (pmd++, addr = next, addr != end);
257
258 if (kvm_pmd_table_empty(kvm, start_pmd))
259 clear_pud_entry(kvm, pud, start_addr);
260 }
261
262 static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
263 phys_addr_t addr, phys_addr_t end)
264 {
265 phys_addr_t next, start_addr = addr;
266 pud_t *pud, *start_pud;
267
268 start_pud = pud = pud_offset(pgd, addr);
269 do {
270 next = kvm_pud_addr_end(addr, end);
271 if (!pud_none(*pud)) {
272 if (pud_huge(*pud)) {
273 pud_t old_pud = *pud;
274
275 pud_clear(pud);
276 kvm_tlb_flush_vmid_ipa(kvm, addr);
277
278 kvm_flush_dcache_pud(old_pud);
279
280 put_page(virt_to_page(pud));
281 } else {
282 unmap_pmds(kvm, pud, addr, next);
283 }
284 }
285 } while (pud++, addr = next, addr != end);
286
287 if (kvm_pud_table_empty(kvm, start_pud))
288 clear_pgd_entry(kvm, pgd, start_addr);
289 }
290
291
292 static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
293 phys_addr_t start, u64 size)
294 {
295 pgd_t *pgd;
296 phys_addr_t addr = start, end = start + size;
297 phys_addr_t next;
298
299 pgd = pgdp + kvm_pgd_index(addr);
300 do {
301 next = kvm_pgd_addr_end(addr, end);
302 if (!pgd_none(*pgd))
303 unmap_puds(kvm, pgd, addr, next);
304 } while (pgd++, addr = next, addr != end);
305 }
306
307 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
308 phys_addr_t addr, phys_addr_t end)
309 {
310 pte_t *pte;
311
312 pte = pte_offset_kernel(pmd, addr);
313 do {
314 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
315 kvm_flush_dcache_pte(*pte);
316 } while (pte++, addr += PAGE_SIZE, addr != end);
317 }
318
319 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
320 phys_addr_t addr, phys_addr_t end)
321 {
322 pmd_t *pmd;
323 phys_addr_t next;
324
325 pmd = pmd_offset(pud, addr);
326 do {
327 next = kvm_pmd_addr_end(addr, end);
328 if (!pmd_none(*pmd)) {
329 if (kvm_pmd_huge(*pmd))
330 kvm_flush_dcache_pmd(*pmd);
331 else
332 stage2_flush_ptes(kvm, pmd, addr, next);
333 }
334 } while (pmd++, addr = next, addr != end);
335 }
336
337 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
338 phys_addr_t addr, phys_addr_t end)
339 {
340 pud_t *pud;
341 phys_addr_t next;
342
343 pud = pud_offset(pgd, addr);
344 do {
345 next = kvm_pud_addr_end(addr, end);
346 if (!pud_none(*pud)) {
347 if (pud_huge(*pud))
348 kvm_flush_dcache_pud(*pud);
349 else
350 stage2_flush_pmds(kvm, pud, addr, next);
351 }
352 } while (pud++, addr = next, addr != end);
353 }
354
355 static void stage2_flush_memslot(struct kvm *kvm,
356 struct kvm_memory_slot *memslot)
357 {
358 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
359 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
360 phys_addr_t next;
361 pgd_t *pgd;
362
363 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
364 do {
365 next = kvm_pgd_addr_end(addr, end);
366 stage2_flush_puds(kvm, pgd, addr, next);
367 } while (pgd++, addr = next, addr != end);
368 }
369
370 /**
371 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
372 * @kvm: The struct kvm pointer
373 *
374 * Go through the stage 2 page tables and invalidate any cache lines
375 * backing memory already mapped to the VM.
376 */
377 static void stage2_flush_vm(struct kvm *kvm)
378 {
379 struct kvm_memslots *slots;
380 struct kvm_memory_slot *memslot;
381 int idx;
382
383 idx = srcu_read_lock(&kvm->srcu);
384 spin_lock(&kvm->mmu_lock);
385
386 slots = kvm_memslots(kvm);
387 kvm_for_each_memslot(memslot, slots)
388 stage2_flush_memslot(kvm, memslot);
389
390 spin_unlock(&kvm->mmu_lock);
391 srcu_read_unlock(&kvm->srcu, idx);
392 }
393
394 /**
395 * free_boot_hyp_pgd - free HYP boot page tables
396 *
397 * Free the HYP boot page tables. The bounce page is also freed.
398 */
399 void free_boot_hyp_pgd(void)
400 {
401 mutex_lock(&kvm_hyp_pgd_mutex);
402
403 if (boot_hyp_pgd) {
404 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
405 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
406 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
407 boot_hyp_pgd = NULL;
408 }
409
410 if (hyp_pgd)
411 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
412
413 mutex_unlock(&kvm_hyp_pgd_mutex);
414 }
415
416 /**
417 * free_hyp_pgds - free Hyp-mode page tables
418 *
419 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
420 * therefore contains either mappings in the kernel memory area (above
421 * PAGE_OFFSET), or device mappings in the vmalloc range (from
422 * VMALLOC_START to VMALLOC_END).
423 *
424 * boot_hyp_pgd should only map two pages for the init code.
425 */
426 void free_hyp_pgds(void)
427 {
428 unsigned long addr;
429
430 free_boot_hyp_pgd();
431
432 mutex_lock(&kvm_hyp_pgd_mutex);
433
434 if (hyp_pgd) {
435 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
436 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
437 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
438 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
439
440 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
441 hyp_pgd = NULL;
442 }
443 if (merged_hyp_pgd) {
444 clear_page(merged_hyp_pgd);
445 free_page((unsigned long)merged_hyp_pgd);
446 merged_hyp_pgd = NULL;
447 }
448
449 mutex_unlock(&kvm_hyp_pgd_mutex);
450 }
451
452 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
453 unsigned long end, unsigned long pfn,
454 pgprot_t prot)
455 {
456 pte_t *pte;
457 unsigned long addr;
458
459 addr = start;
460 do {
461 pte = pte_offset_kernel(pmd, addr);
462 kvm_set_pte(pte, pfn_pte(pfn, prot));
463 get_page(virt_to_page(pte));
464 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
465 pfn++;
466 } while (addr += PAGE_SIZE, addr != end);
467 }
468
469 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
470 unsigned long end, unsigned long pfn,
471 pgprot_t prot)
472 {
473 pmd_t *pmd;
474 pte_t *pte;
475 unsigned long addr, next;
476
477 addr = start;
478 do {
479 pmd = pmd_offset(pud, addr);
480
481 BUG_ON(pmd_sect(*pmd));
482
483 if (pmd_none(*pmd)) {
484 pte = pte_alloc_one_kernel(NULL, addr);
485 if (!pte) {
486 kvm_err("Cannot allocate Hyp pte\n");
487 return -ENOMEM;
488 }
489 pmd_populate_kernel(NULL, pmd, pte);
490 get_page(virt_to_page(pmd));
491 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
492 }
493
494 next = pmd_addr_end(addr, end);
495
496 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
497 pfn += (next - addr) >> PAGE_SHIFT;
498 } while (addr = next, addr != end);
499
500 return 0;
501 }
502
503 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
504 unsigned long end, unsigned long pfn,
505 pgprot_t prot)
506 {
507 pud_t *pud;
508 pmd_t *pmd;
509 unsigned long addr, next;
510 int ret;
511
512 addr = start;
513 do {
514 pud = pud_offset(pgd, addr);
515
516 if (pud_none_or_clear_bad(pud)) {
517 pmd = pmd_alloc_one(NULL, addr);
518 if (!pmd) {
519 kvm_err("Cannot allocate Hyp pmd\n");
520 return -ENOMEM;
521 }
522 pud_populate(NULL, pud, pmd);
523 get_page(virt_to_page(pud));
524 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
525 }
526
527 next = pud_addr_end(addr, end);
528 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
529 if (ret)
530 return ret;
531 pfn += (next - addr) >> PAGE_SHIFT;
532 } while (addr = next, addr != end);
533
534 return 0;
535 }
536
537 static int __create_hyp_mappings(pgd_t *pgdp,
538 unsigned long start, unsigned long end,
539 unsigned long pfn, pgprot_t prot)
540 {
541 pgd_t *pgd;
542 pud_t *pud;
543 unsigned long addr, next;
544 int err = 0;
545
546 mutex_lock(&kvm_hyp_pgd_mutex);
547 addr = start & PAGE_MASK;
548 end = PAGE_ALIGN(end);
549 do {
550 pgd = pgdp + pgd_index(addr);
551
552 if (pgd_none(*pgd)) {
553 pud = pud_alloc_one(NULL, addr);
554 if (!pud) {
555 kvm_err("Cannot allocate Hyp pud\n");
556 err = -ENOMEM;
557 goto out;
558 }
559 pgd_populate(NULL, pgd, pud);
560 get_page(virt_to_page(pgd));
561 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
562 }
563
564 next = pgd_addr_end(addr, end);
565 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
566 if (err)
567 goto out;
568 pfn += (next - addr) >> PAGE_SHIFT;
569 } while (addr = next, addr != end);
570 out:
571 mutex_unlock(&kvm_hyp_pgd_mutex);
572 return err;
573 }
574
575 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
576 {
577 if (!is_vmalloc_addr(kaddr)) {
578 BUG_ON(!virt_addr_valid(kaddr));
579 return __pa(kaddr);
580 } else {
581 return page_to_phys(vmalloc_to_page(kaddr)) +
582 offset_in_page(kaddr);
583 }
584 }
585
586 /**
587 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
588 * @from: The virtual kernel start address of the range
589 * @to: The virtual kernel end address of the range (exclusive)
590 *
591 * The same virtual address as the kernel virtual address is also used
592 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
593 * physical pages.
594 */
595 int create_hyp_mappings(void *from, void *to)
596 {
597 phys_addr_t phys_addr;
598 unsigned long virt_addr;
599 unsigned long start = KERN_TO_HYP((unsigned long)from);
600 unsigned long end = KERN_TO_HYP((unsigned long)to);
601
602 if (is_kernel_in_hyp_mode())
603 return 0;
604
605 start = start & PAGE_MASK;
606 end = PAGE_ALIGN(end);
607
608 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
609 int err;
610
611 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
612 err = __create_hyp_mappings(hyp_pgd, virt_addr,
613 virt_addr + PAGE_SIZE,
614 __phys_to_pfn(phys_addr),
615 PAGE_HYP);
616 if (err)
617 return err;
618 }
619
620 return 0;
621 }
622
623 /**
624 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
625 * @from: The kernel start VA of the range
626 * @to: The kernel end VA of the range (exclusive)
627 * @phys_addr: The physical start address which gets mapped
628 *
629 * The resulting HYP VA is the same as the kernel VA, modulo
630 * HYP_PAGE_OFFSET.
631 */
632 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
633 {
634 unsigned long start = KERN_TO_HYP((unsigned long)from);
635 unsigned long end = KERN_TO_HYP((unsigned long)to);
636
637 if (is_kernel_in_hyp_mode())
638 return 0;
639
640 /* Check for a valid kernel IO mapping */
641 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
642 return -EINVAL;
643
644 return __create_hyp_mappings(hyp_pgd, start, end,
645 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
646 }
647
648 /* Free the HW pgd, one page at a time */
649 static void kvm_free_hwpgd(void *hwpgd)
650 {
651 free_pages_exact(hwpgd, kvm_get_hwpgd_size());
652 }
653
654 /* Allocate the HW PGD, making sure that each page gets its own refcount */
655 static void *kvm_alloc_hwpgd(void)
656 {
657 unsigned int size = kvm_get_hwpgd_size();
658
659 return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
660 }
661
662 /**
663 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
664 * @kvm: The KVM struct pointer for the VM.
665 *
666 * Allocates only the stage-2 HW PGD level table(s) (can support either full
667 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
668 * allocated pages.
669 *
670 * Note we don't need locking here as this is only called when the VM is
671 * created, which can only be done once.
672 */
673 int kvm_alloc_stage2_pgd(struct kvm *kvm)
674 {
675 pgd_t *pgd;
676 void *hwpgd;
677
678 if (kvm->arch.pgd != NULL) {
679 kvm_err("kvm_arch already initialized?\n");
680 return -EINVAL;
681 }
682
683 hwpgd = kvm_alloc_hwpgd();
684 if (!hwpgd)
685 return -ENOMEM;
686
687 /* When the kernel uses more levels of page tables than the
688 * guest, we allocate a fake PGD and pre-populate it to point
689 * to the next-level page table, which will be the real
690 * initial page table pointed to by the VTTBR.
691 *
692 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
693 * the PMD and the kernel will use folded pud.
694 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
695 * pages.
696 */
697 if (KVM_PREALLOC_LEVEL > 0) {
698 int i;
699
700 /*
701 * Allocate fake pgd for the page table manipulation macros to
702 * work. This is not used by the hardware and we have no
703 * alignment requirement for this allocation.
704 */
705 pgd = kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
706 GFP_KERNEL | __GFP_ZERO);
707
708 if (!pgd) {
709 kvm_free_hwpgd(hwpgd);
710 return -ENOMEM;
711 }
712
713 /* Plug the HW PGD into the fake one. */
714 for (i = 0; i < PTRS_PER_S2_PGD; i++) {
715 if (KVM_PREALLOC_LEVEL == 1)
716 pgd_populate(NULL, pgd + i,
717 (pud_t *)hwpgd + i * PTRS_PER_PUD);
718 else if (KVM_PREALLOC_LEVEL == 2)
719 pud_populate(NULL, pud_offset(pgd, 0) + i,
720 (pmd_t *)hwpgd + i * PTRS_PER_PMD);
721 }
722 } else {
723 /*
724 * Allocate actual first-level Stage-2 page table used by the
725 * hardware for Stage-2 page table walks.
726 */
727 pgd = (pgd_t *)hwpgd;
728 }
729
730 kvm_clean_pgd(pgd);
731 kvm->arch.pgd = pgd;
732 return 0;
733 }
734
735 /**
736 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
737 * @kvm: The VM pointer
738 * @start: The intermediate physical base address of the range to unmap
739 * @size: The size of the area to unmap
740 *
741 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
742 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
743 * destroying the VM), otherwise another faulting VCPU may come in and mess
744 * with things behind our backs.
745 */
746 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
747 {
748 unmap_range(kvm, kvm->arch.pgd, start, size);
749 }
750
751 static void stage2_unmap_memslot(struct kvm *kvm,
752 struct kvm_memory_slot *memslot)
753 {
754 hva_t hva = memslot->userspace_addr;
755 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
756 phys_addr_t size = PAGE_SIZE * memslot->npages;
757 hva_t reg_end = hva + size;
758
759 /*
760 * A memory region could potentially cover multiple VMAs, and any holes
761 * between them, so iterate over all of them to find out if we should
762 * unmap any of them.
763 *
764 * +--------------------------------------------+
765 * +---------------+----------------+ +----------------+
766 * | : VMA 1 | VMA 2 | | VMA 3 : |
767 * +---------------+----------------+ +----------------+
768 * | memory region |
769 * +--------------------------------------------+
770 */
771 do {
772 struct vm_area_struct *vma = find_vma(current->mm, hva);
773 hva_t vm_start, vm_end;
774
775 if (!vma || vma->vm_start >= reg_end)
776 break;
777
778 /*
779 * Take the intersection of this VMA with the memory region
780 */
781 vm_start = max(hva, vma->vm_start);
782 vm_end = min(reg_end, vma->vm_end);
783
784 if (!(vma->vm_flags & VM_PFNMAP)) {
785 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
786 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
787 }
788 hva = vm_end;
789 } while (hva < reg_end);
790 }
791
792 /**
793 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
794 * @kvm: The struct kvm pointer
795 *
796 * Go through the memregions and unmap any reguler RAM
797 * backing memory already mapped to the VM.
798 */
799 void stage2_unmap_vm(struct kvm *kvm)
800 {
801 struct kvm_memslots *slots;
802 struct kvm_memory_slot *memslot;
803 int idx;
804
805 idx = srcu_read_lock(&kvm->srcu);
806 spin_lock(&kvm->mmu_lock);
807
808 slots = kvm_memslots(kvm);
809 kvm_for_each_memslot(memslot, slots)
810 stage2_unmap_memslot(kvm, memslot);
811
812 spin_unlock(&kvm->mmu_lock);
813 srcu_read_unlock(&kvm->srcu, idx);
814 }
815
816 /**
817 * kvm_free_stage2_pgd - free all stage-2 tables
818 * @kvm: The KVM struct pointer for the VM.
819 *
820 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
821 * underlying level-2 and level-3 tables before freeing the actual level-1 table
822 * and setting the struct pointer to NULL.
823 *
824 * Note we don't need locking here as this is only called when the VM is
825 * destroyed, which can only be done once.
826 */
827 void kvm_free_stage2_pgd(struct kvm *kvm)
828 {
829 if (kvm->arch.pgd == NULL)
830 return;
831
832 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
833 kvm_free_hwpgd(kvm_get_hwpgd(kvm));
834 if (KVM_PREALLOC_LEVEL > 0)
835 kfree(kvm->arch.pgd);
836
837 kvm->arch.pgd = NULL;
838 }
839
840 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
841 phys_addr_t addr)
842 {
843 pgd_t *pgd;
844 pud_t *pud;
845
846 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
847 if (WARN_ON(pgd_none(*pgd))) {
848 if (!cache)
849 return NULL;
850 pud = mmu_memory_cache_alloc(cache);
851 pgd_populate(NULL, pgd, pud);
852 get_page(virt_to_page(pgd));
853 }
854
855 return pud_offset(pgd, addr);
856 }
857
858 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
859 phys_addr_t addr)
860 {
861 pud_t *pud;
862 pmd_t *pmd;
863
864 pud = stage2_get_pud(kvm, cache, addr);
865 if (pud_none(*pud)) {
866 if (!cache)
867 return NULL;
868 pmd = mmu_memory_cache_alloc(cache);
869 pud_populate(NULL, pud, pmd);
870 get_page(virt_to_page(pud));
871 }
872
873 return pmd_offset(pud, addr);
874 }
875
876 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
877 *cache, phys_addr_t addr, const pmd_t *new_pmd)
878 {
879 pmd_t *pmd, old_pmd;
880
881 pmd = stage2_get_pmd(kvm, cache, addr);
882 VM_BUG_ON(!pmd);
883
884 /*
885 * Mapping in huge pages should only happen through a fault. If a
886 * page is merged into a transparent huge page, the individual
887 * subpages of that huge page should be unmapped through MMU
888 * notifiers before we get here.
889 *
890 * Merging of CompoundPages is not supported; they should become
891 * splitting first, unmapped, merged, and mapped back in on-demand.
892 */
893 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
894
895 old_pmd = *pmd;
896 kvm_set_pmd(pmd, *new_pmd);
897 if (pmd_present(old_pmd))
898 kvm_tlb_flush_vmid_ipa(kvm, addr);
899 else
900 get_page(virt_to_page(pmd));
901 return 0;
902 }
903
904 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
905 phys_addr_t addr, const pte_t *new_pte,
906 unsigned long flags)
907 {
908 pmd_t *pmd;
909 pte_t *pte, old_pte;
910 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
911 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
912
913 VM_BUG_ON(logging_active && !cache);
914
915 /* Create stage-2 page table mapping - Levels 0 and 1 */
916 pmd = stage2_get_pmd(kvm, cache, addr);
917 if (!pmd) {
918 /*
919 * Ignore calls from kvm_set_spte_hva for unallocated
920 * address ranges.
921 */
922 return 0;
923 }
924
925 /*
926 * While dirty page logging - dissolve huge PMD, then continue on to
927 * allocate page.
928 */
929 if (logging_active)
930 stage2_dissolve_pmd(kvm, addr, pmd);
931
932 /* Create stage-2 page mappings - Level 2 */
933 if (pmd_none(*pmd)) {
934 if (!cache)
935 return 0; /* ignore calls from kvm_set_spte_hva */
936 pte = mmu_memory_cache_alloc(cache);
937 kvm_clean_pte(pte);
938 pmd_populate_kernel(NULL, pmd, pte);
939 get_page(virt_to_page(pmd));
940 }
941
942 pte = pte_offset_kernel(pmd, addr);
943
944 if (iomap && pte_present(*pte))
945 return -EFAULT;
946
947 /* Create 2nd stage page table mapping - Level 3 */
948 old_pte = *pte;
949 kvm_set_pte(pte, *new_pte);
950 if (pte_present(old_pte))
951 kvm_tlb_flush_vmid_ipa(kvm, addr);
952 else
953 get_page(virt_to_page(pte));
954
955 return 0;
956 }
957
958 /**
959 * kvm_phys_addr_ioremap - map a device range to guest IPA
960 *
961 * @kvm: The KVM pointer
962 * @guest_ipa: The IPA at which to insert the mapping
963 * @pa: The physical address of the device
964 * @size: The size of the mapping
965 */
966 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
967 phys_addr_t pa, unsigned long size, bool writable)
968 {
969 phys_addr_t addr, end;
970 int ret = 0;
971 unsigned long pfn;
972 struct kvm_mmu_memory_cache cache = { 0, };
973
974 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
975 pfn = __phys_to_pfn(pa);
976
977 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
978 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
979
980 if (writable)
981 kvm_set_s2pte_writable(&pte);
982
983 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
984 KVM_NR_MEM_OBJS);
985 if (ret)
986 goto out;
987 spin_lock(&kvm->mmu_lock);
988 ret = stage2_set_pte(kvm, &cache, addr, &pte,
989 KVM_S2PTE_FLAG_IS_IOMAP);
990 spin_unlock(&kvm->mmu_lock);
991 if (ret)
992 goto out;
993
994 pfn++;
995 }
996
997 out:
998 mmu_free_memory_cache(&cache);
999 return ret;
1000 }
1001
1002 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1003 {
1004 kvm_pfn_t pfn = *pfnp;
1005 gfn_t gfn = *ipap >> PAGE_SHIFT;
1006
1007 if (PageTransCompound(pfn_to_page(pfn))) {
1008 unsigned long mask;
1009 /*
1010 * The address we faulted on is backed by a transparent huge
1011 * page. However, because we map the compound huge page and
1012 * not the individual tail page, we need to transfer the
1013 * refcount to the head page. We have to be careful that the
1014 * THP doesn't start to split while we are adjusting the
1015 * refcounts.
1016 *
1017 * We are sure this doesn't happen, because mmu_notifier_retry
1018 * was successful and we are holding the mmu_lock, so if this
1019 * THP is trying to split, it will be blocked in the mmu
1020 * notifier before touching any of the pages, specifically
1021 * before being able to call __split_huge_page_refcount().
1022 *
1023 * We can therefore safely transfer the refcount from PG_tail
1024 * to PG_head and switch the pfn from a tail page to the head
1025 * page accordingly.
1026 */
1027 mask = PTRS_PER_PMD - 1;
1028 VM_BUG_ON((gfn & mask) != (pfn & mask));
1029 if (pfn & mask) {
1030 *ipap &= PMD_MASK;
1031 kvm_release_pfn_clean(pfn);
1032 pfn &= ~mask;
1033 kvm_get_pfn(pfn);
1034 *pfnp = pfn;
1035 }
1036
1037 return true;
1038 }
1039
1040 return false;
1041 }
1042
1043 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1044 {
1045 if (kvm_vcpu_trap_is_iabt(vcpu))
1046 return false;
1047
1048 return kvm_vcpu_dabt_iswrite(vcpu);
1049 }
1050
1051 /**
1052 * stage2_wp_ptes - write protect PMD range
1053 * @pmd: pointer to pmd entry
1054 * @addr: range start address
1055 * @end: range end address
1056 */
1057 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1058 {
1059 pte_t *pte;
1060
1061 pte = pte_offset_kernel(pmd, addr);
1062 do {
1063 if (!pte_none(*pte)) {
1064 if (!kvm_s2pte_readonly(pte))
1065 kvm_set_s2pte_readonly(pte);
1066 }
1067 } while (pte++, addr += PAGE_SIZE, addr != end);
1068 }
1069
1070 /**
1071 * stage2_wp_pmds - write protect PUD range
1072 * @pud: pointer to pud entry
1073 * @addr: range start address
1074 * @end: range end address
1075 */
1076 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1077 {
1078 pmd_t *pmd;
1079 phys_addr_t next;
1080
1081 pmd = pmd_offset(pud, addr);
1082
1083 do {
1084 next = kvm_pmd_addr_end(addr, end);
1085 if (!pmd_none(*pmd)) {
1086 if (kvm_pmd_huge(*pmd)) {
1087 if (!kvm_s2pmd_readonly(pmd))
1088 kvm_set_s2pmd_readonly(pmd);
1089 } else {
1090 stage2_wp_ptes(pmd, addr, next);
1091 }
1092 }
1093 } while (pmd++, addr = next, addr != end);
1094 }
1095
1096 /**
1097 * stage2_wp_puds - write protect PGD range
1098 * @pgd: pointer to pgd entry
1099 * @addr: range start address
1100 * @end: range end address
1101 *
1102 * Process PUD entries, for a huge PUD we cause a panic.
1103 */
1104 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1105 {
1106 pud_t *pud;
1107 phys_addr_t next;
1108
1109 pud = pud_offset(pgd, addr);
1110 do {
1111 next = kvm_pud_addr_end(addr, end);
1112 if (!pud_none(*pud)) {
1113 /* TODO:PUD not supported, revisit later if supported */
1114 BUG_ON(kvm_pud_huge(*pud));
1115 stage2_wp_pmds(pud, addr, next);
1116 }
1117 } while (pud++, addr = next, addr != end);
1118 }
1119
1120 /**
1121 * stage2_wp_range() - write protect stage2 memory region range
1122 * @kvm: The KVM pointer
1123 * @addr: Start address of range
1124 * @end: End address of range
1125 */
1126 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1127 {
1128 pgd_t *pgd;
1129 phys_addr_t next;
1130
1131 pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1132 do {
1133 /*
1134 * Release kvm_mmu_lock periodically if the memory region is
1135 * large. Otherwise, we may see kernel panics with
1136 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1137 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1138 * will also starve other vCPUs.
1139 */
1140 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1141 cond_resched_lock(&kvm->mmu_lock);
1142
1143 next = kvm_pgd_addr_end(addr, end);
1144 if (pgd_present(*pgd))
1145 stage2_wp_puds(pgd, addr, next);
1146 } while (pgd++, addr = next, addr != end);
1147 }
1148
1149 /**
1150 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1151 * @kvm: The KVM pointer
1152 * @slot: The memory slot to write protect
1153 *
1154 * Called to start logging dirty pages after memory region
1155 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1156 * all present PMD and PTEs are write protected in the memory region.
1157 * Afterwards read of dirty page log can be called.
1158 *
1159 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1160 * serializing operations for VM memory regions.
1161 */
1162 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1163 {
1164 struct kvm_memslots *slots = kvm_memslots(kvm);
1165 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1166 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1167 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1168
1169 spin_lock(&kvm->mmu_lock);
1170 stage2_wp_range(kvm, start, end);
1171 spin_unlock(&kvm->mmu_lock);
1172 kvm_flush_remote_tlbs(kvm);
1173 }
1174
1175 /**
1176 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1177 * @kvm: The KVM pointer
1178 * @slot: The memory slot associated with mask
1179 * @gfn_offset: The gfn offset in memory slot
1180 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1181 * slot to be write protected
1182 *
1183 * Walks bits set in mask write protects the associated pte's. Caller must
1184 * acquire kvm_mmu_lock.
1185 */
1186 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1187 struct kvm_memory_slot *slot,
1188 gfn_t gfn_offset, unsigned long mask)
1189 {
1190 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1191 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1192 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1193
1194 stage2_wp_range(kvm, start, end);
1195 }
1196
1197 /*
1198 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1199 * dirty pages.
1200 *
1201 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1202 * enable dirty logging for them.
1203 */
1204 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1205 struct kvm_memory_slot *slot,
1206 gfn_t gfn_offset, unsigned long mask)
1207 {
1208 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1209 }
1210
1211 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1212 unsigned long size, bool uncached)
1213 {
1214 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1215 }
1216
1217 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1218 struct kvm_memory_slot *memslot, unsigned long hva,
1219 unsigned long fault_status)
1220 {
1221 int ret;
1222 bool write_fault, writable, hugetlb = false, force_pte = false;
1223 unsigned long mmu_seq;
1224 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1225 struct kvm *kvm = vcpu->kvm;
1226 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1227 struct vm_area_struct *vma;
1228 kvm_pfn_t pfn;
1229 pgprot_t mem_type = PAGE_S2;
1230 bool fault_ipa_uncached;
1231 bool logging_active = memslot_is_logging(memslot);
1232 unsigned long flags = 0;
1233
1234 write_fault = kvm_is_write_fault(vcpu);
1235 if (fault_status == FSC_PERM && !write_fault) {
1236 kvm_err("Unexpected L2 read permission error\n");
1237 return -EFAULT;
1238 }
1239
1240 /* Let's check if we will get back a huge page backed by hugetlbfs */
1241 down_read(&current->mm->mmap_sem);
1242 vma = find_vma_intersection(current->mm, hva, hva + 1);
1243 if (unlikely(!vma)) {
1244 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1245 up_read(&current->mm->mmap_sem);
1246 return -EFAULT;
1247 }
1248
1249 if (is_vm_hugetlb_page(vma) && !logging_active) {
1250 hugetlb = true;
1251 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1252 } else {
1253 /*
1254 * Pages belonging to memslots that don't have the same
1255 * alignment for userspace and IPA cannot be mapped using
1256 * block descriptors even if the pages belong to a THP for
1257 * the process, because the stage-2 block descriptor will
1258 * cover more than a single THP and we loose atomicity for
1259 * unmapping, updates, and splits of the THP or other pages
1260 * in the stage-2 block range.
1261 */
1262 if ((memslot->userspace_addr & ~PMD_MASK) !=
1263 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1264 force_pte = true;
1265 }
1266 up_read(&current->mm->mmap_sem);
1267
1268 /* We need minimum second+third level pages */
1269 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1270 KVM_NR_MEM_OBJS);
1271 if (ret)
1272 return ret;
1273
1274 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1275 /*
1276 * Ensure the read of mmu_notifier_seq happens before we call
1277 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1278 * the page we just got a reference to gets unmapped before we have a
1279 * chance to grab the mmu_lock, which ensure that if the page gets
1280 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1281 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1282 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1283 */
1284 smp_rmb();
1285
1286 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1287 if (is_error_pfn(pfn))
1288 return -EFAULT;
1289
1290 if (kvm_is_device_pfn(pfn)) {
1291 mem_type = PAGE_S2_DEVICE;
1292 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1293 } else if (logging_active) {
1294 /*
1295 * Faults on pages in a memslot with logging enabled
1296 * should not be mapped with huge pages (it introduces churn
1297 * and performance degradation), so force a pte mapping.
1298 */
1299 force_pte = true;
1300 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1301
1302 /*
1303 * Only actually map the page as writable if this was a write
1304 * fault.
1305 */
1306 if (!write_fault)
1307 writable = false;
1308 }
1309
1310 spin_lock(&kvm->mmu_lock);
1311 if (mmu_notifier_retry(kvm, mmu_seq))
1312 goto out_unlock;
1313
1314 if (!hugetlb && !force_pte)
1315 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1316
1317 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1318
1319 if (hugetlb) {
1320 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1321 new_pmd = pmd_mkhuge(new_pmd);
1322 if (writable) {
1323 kvm_set_s2pmd_writable(&new_pmd);
1324 kvm_set_pfn_dirty(pfn);
1325 }
1326 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1327 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1328 } else {
1329 pte_t new_pte = pfn_pte(pfn, mem_type);
1330
1331 if (writable) {
1332 kvm_set_s2pte_writable(&new_pte);
1333 kvm_set_pfn_dirty(pfn);
1334 mark_page_dirty(kvm, gfn);
1335 }
1336 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1337 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1338 }
1339
1340 out_unlock:
1341 spin_unlock(&kvm->mmu_lock);
1342 kvm_set_pfn_accessed(pfn);
1343 kvm_release_pfn_clean(pfn);
1344 return ret;
1345 }
1346
1347 /*
1348 * Resolve the access fault by making the page young again.
1349 * Note that because the faulting entry is guaranteed not to be
1350 * cached in the TLB, we don't need to invalidate anything.
1351 */
1352 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1353 {
1354 pmd_t *pmd;
1355 pte_t *pte;
1356 kvm_pfn_t pfn;
1357 bool pfn_valid = false;
1358
1359 trace_kvm_access_fault(fault_ipa);
1360
1361 spin_lock(&vcpu->kvm->mmu_lock);
1362
1363 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1364 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1365 goto out;
1366
1367 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1368 *pmd = pmd_mkyoung(*pmd);
1369 pfn = pmd_pfn(*pmd);
1370 pfn_valid = true;
1371 goto out;
1372 }
1373
1374 pte = pte_offset_kernel(pmd, fault_ipa);
1375 if (pte_none(*pte)) /* Nothing there either */
1376 goto out;
1377
1378 *pte = pte_mkyoung(*pte); /* Just a page... */
1379 pfn = pte_pfn(*pte);
1380 pfn_valid = true;
1381 out:
1382 spin_unlock(&vcpu->kvm->mmu_lock);
1383 if (pfn_valid)
1384 kvm_set_pfn_accessed(pfn);
1385 }
1386
1387 /**
1388 * kvm_handle_guest_abort - handles all 2nd stage aborts
1389 * @vcpu: the VCPU pointer
1390 * @run: the kvm_run structure
1391 *
1392 * Any abort that gets to the host is almost guaranteed to be caused by a
1393 * missing second stage translation table entry, which can mean that either the
1394 * guest simply needs more memory and we must allocate an appropriate page or it
1395 * can mean that the guest tried to access I/O memory, which is emulated by user
1396 * space. The distinction is based on the IPA causing the fault and whether this
1397 * memory region has been registered as standard RAM by user space.
1398 */
1399 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1400 {
1401 unsigned long fault_status;
1402 phys_addr_t fault_ipa;
1403 struct kvm_memory_slot *memslot;
1404 unsigned long hva;
1405 bool is_iabt, write_fault, writable;
1406 gfn_t gfn;
1407 int ret, idx;
1408
1409 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1410 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1411
1412 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1413 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1414
1415 /* Check the stage-2 fault is trans. fault or write fault */
1416 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1417 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1418 fault_status != FSC_ACCESS) {
1419 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1420 kvm_vcpu_trap_get_class(vcpu),
1421 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1422 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1423 return -EFAULT;
1424 }
1425
1426 idx = srcu_read_lock(&vcpu->kvm->srcu);
1427
1428 gfn = fault_ipa >> PAGE_SHIFT;
1429 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1430 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1431 write_fault = kvm_is_write_fault(vcpu);
1432 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1433 if (is_iabt) {
1434 /* Prefetch Abort on I/O address */
1435 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1436 ret = 1;
1437 goto out_unlock;
1438 }
1439
1440 /*
1441 * Check for a cache maintenance operation. Since we
1442 * ended-up here, we know it is outside of any memory
1443 * slot. But we can't find out if that is for a device,
1444 * or if the guest is just being stupid. The only thing
1445 * we know for sure is that this range cannot be cached.
1446 *
1447 * So let's assume that the guest is just being
1448 * cautious, and skip the instruction.
1449 */
1450 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1451 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1452 ret = 1;
1453 goto out_unlock;
1454 }
1455
1456 /*
1457 * The IPA is reported as [MAX:12], so we need to
1458 * complement it with the bottom 12 bits from the
1459 * faulting VA. This is always 12 bits, irrespective
1460 * of the page size.
1461 */
1462 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1463 ret = io_mem_abort(vcpu, run, fault_ipa);
1464 goto out_unlock;
1465 }
1466
1467 /* Userspace should not be able to register out-of-bounds IPAs */
1468 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1469
1470 if (fault_status == FSC_ACCESS) {
1471 handle_access_fault(vcpu, fault_ipa);
1472 ret = 1;
1473 goto out_unlock;
1474 }
1475
1476 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1477 if (ret == 0)
1478 ret = 1;
1479 out_unlock:
1480 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1481 return ret;
1482 }
1483
1484 static int handle_hva_to_gpa(struct kvm *kvm,
1485 unsigned long start,
1486 unsigned long end,
1487 int (*handler)(struct kvm *kvm,
1488 gpa_t gpa, void *data),
1489 void *data)
1490 {
1491 struct kvm_memslots *slots;
1492 struct kvm_memory_slot *memslot;
1493 int ret = 0;
1494
1495 slots = kvm_memslots(kvm);
1496
1497 /* we only care about the pages that the guest sees */
1498 kvm_for_each_memslot(memslot, slots) {
1499 unsigned long hva_start, hva_end;
1500 gfn_t gfn, gfn_end;
1501
1502 hva_start = max(start, memslot->userspace_addr);
1503 hva_end = min(end, memslot->userspace_addr +
1504 (memslot->npages << PAGE_SHIFT));
1505 if (hva_start >= hva_end)
1506 continue;
1507
1508 /*
1509 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1510 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1511 */
1512 gfn = hva_to_gfn_memslot(hva_start, memslot);
1513 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1514
1515 for (; gfn < gfn_end; ++gfn) {
1516 gpa_t gpa = gfn << PAGE_SHIFT;
1517 ret |= handler(kvm, gpa, data);
1518 }
1519 }
1520
1521 return ret;
1522 }
1523
1524 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1525 {
1526 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1527 return 0;
1528 }
1529
1530 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1531 {
1532 unsigned long end = hva + PAGE_SIZE;
1533
1534 if (!kvm->arch.pgd)
1535 return 0;
1536
1537 trace_kvm_unmap_hva(hva);
1538 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1539 return 0;
1540 }
1541
1542 int kvm_unmap_hva_range(struct kvm *kvm,
1543 unsigned long start, unsigned long end)
1544 {
1545 if (!kvm->arch.pgd)
1546 return 0;
1547
1548 trace_kvm_unmap_hva_range(start, end);
1549 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1550 return 0;
1551 }
1552
1553 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1554 {
1555 pte_t *pte = (pte_t *)data;
1556
1557 /*
1558 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1559 * flag clear because MMU notifiers will have unmapped a huge PMD before
1560 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1561 * therefore stage2_set_pte() never needs to clear out a huge PMD
1562 * through this calling path.
1563 */
1564 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1565 return 0;
1566 }
1567
1568
1569 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1570 {
1571 unsigned long end = hva + PAGE_SIZE;
1572 pte_t stage2_pte;
1573
1574 if (!kvm->arch.pgd)
1575 return;
1576
1577 trace_kvm_set_spte_hva(hva);
1578 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1579 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1580 }
1581
1582 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1583 {
1584 pmd_t *pmd;
1585 pte_t *pte;
1586
1587 pmd = stage2_get_pmd(kvm, NULL, gpa);
1588 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1589 return 0;
1590
1591 if (kvm_pmd_huge(*pmd)) { /* THP, HugeTLB */
1592 if (pmd_young(*pmd)) {
1593 *pmd = pmd_mkold(*pmd);
1594 return 1;
1595 }
1596
1597 return 0;
1598 }
1599
1600 pte = pte_offset_kernel(pmd, gpa);
1601 if (pte_none(*pte))
1602 return 0;
1603
1604 if (pte_young(*pte)) {
1605 *pte = pte_mkold(*pte); /* Just a page... */
1606 return 1;
1607 }
1608
1609 return 0;
1610 }
1611
1612 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1613 {
1614 pmd_t *pmd;
1615 pte_t *pte;
1616
1617 pmd = stage2_get_pmd(kvm, NULL, gpa);
1618 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1619 return 0;
1620
1621 if (kvm_pmd_huge(*pmd)) /* THP, HugeTLB */
1622 return pmd_young(*pmd);
1623
1624 pte = pte_offset_kernel(pmd, gpa);
1625 if (!pte_none(*pte)) /* Just a page... */
1626 return pte_young(*pte);
1627
1628 return 0;
1629 }
1630
1631 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1632 {
1633 trace_kvm_age_hva(start, end);
1634 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1635 }
1636
1637 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1638 {
1639 trace_kvm_test_age_hva(hva);
1640 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1641 }
1642
1643 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1644 {
1645 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1646 }
1647
1648 phys_addr_t kvm_mmu_get_httbr(void)
1649 {
1650 if (__kvm_cpu_uses_extended_idmap())
1651 return virt_to_phys(merged_hyp_pgd);
1652 else
1653 return virt_to_phys(hyp_pgd);
1654 }
1655
1656 phys_addr_t kvm_mmu_get_boot_httbr(void)
1657 {
1658 if (__kvm_cpu_uses_extended_idmap())
1659 return virt_to_phys(merged_hyp_pgd);
1660 else
1661 return virt_to_phys(boot_hyp_pgd);
1662 }
1663
1664 phys_addr_t kvm_get_idmap_vector(void)
1665 {
1666 return hyp_idmap_vector;
1667 }
1668
1669 int kvm_mmu_init(void)
1670 {
1671 int err;
1672
1673 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1674 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1675 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1676
1677 /*
1678 * We rely on the linker script to ensure at build time that the HYP
1679 * init code does not cross a page boundary.
1680 */
1681 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1682
1683 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1684 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1685
1686 if (!hyp_pgd || !boot_hyp_pgd) {
1687 kvm_err("Hyp mode PGD not allocated\n");
1688 err = -ENOMEM;
1689 goto out;
1690 }
1691
1692 /* Create the idmap in the boot page tables */
1693 err = __create_hyp_mappings(boot_hyp_pgd,
1694 hyp_idmap_start, hyp_idmap_end,
1695 __phys_to_pfn(hyp_idmap_start),
1696 PAGE_HYP);
1697
1698 if (err) {
1699 kvm_err("Failed to idmap %lx-%lx\n",
1700 hyp_idmap_start, hyp_idmap_end);
1701 goto out;
1702 }
1703
1704 if (__kvm_cpu_uses_extended_idmap()) {
1705 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1706 if (!merged_hyp_pgd) {
1707 kvm_err("Failed to allocate extra HYP pgd\n");
1708 goto out;
1709 }
1710 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1711 hyp_idmap_start);
1712 return 0;
1713 }
1714
1715 /* Map the very same page at the trampoline VA */
1716 err = __create_hyp_mappings(boot_hyp_pgd,
1717 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1718 __phys_to_pfn(hyp_idmap_start),
1719 PAGE_HYP);
1720 if (err) {
1721 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1722 TRAMPOLINE_VA);
1723 goto out;
1724 }
1725
1726 /* Map the same page again into the runtime page tables */
1727 err = __create_hyp_mappings(hyp_pgd,
1728 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1729 __phys_to_pfn(hyp_idmap_start),
1730 PAGE_HYP);
1731 if (err) {
1732 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1733 TRAMPOLINE_VA);
1734 goto out;
1735 }
1736
1737 return 0;
1738 out:
1739 free_hyp_pgds();
1740 return err;
1741 }
1742
1743 void kvm_arch_commit_memory_region(struct kvm *kvm,
1744 const struct kvm_userspace_memory_region *mem,
1745 const struct kvm_memory_slot *old,
1746 const struct kvm_memory_slot *new,
1747 enum kvm_mr_change change)
1748 {
1749 /*
1750 * At this point memslot has been committed and there is an
1751 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1752 * memory slot is write protected.
1753 */
1754 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1755 kvm_mmu_wp_memory_region(kvm, mem->slot);
1756 }
1757
1758 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1759 struct kvm_memory_slot *memslot,
1760 const struct kvm_userspace_memory_region *mem,
1761 enum kvm_mr_change change)
1762 {
1763 hva_t hva = mem->userspace_addr;
1764 hva_t reg_end = hva + mem->memory_size;
1765 bool writable = !(mem->flags & KVM_MEM_READONLY);
1766 int ret = 0;
1767
1768 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1769 change != KVM_MR_FLAGS_ONLY)
1770 return 0;
1771
1772 /*
1773 * Prevent userspace from creating a memory region outside of the IPA
1774 * space addressable by the KVM guest IPA space.
1775 */
1776 if (memslot->base_gfn + memslot->npages >=
1777 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1778 return -EFAULT;
1779
1780 /*
1781 * A memory region could potentially cover multiple VMAs, and any holes
1782 * between them, so iterate over all of them to find out if we can map
1783 * any of them right now.
1784 *
1785 * +--------------------------------------------+
1786 * +---------------+----------------+ +----------------+
1787 * | : VMA 1 | VMA 2 | | VMA 3 : |
1788 * +---------------+----------------+ +----------------+
1789 * | memory region |
1790 * +--------------------------------------------+
1791 */
1792 do {
1793 struct vm_area_struct *vma = find_vma(current->mm, hva);
1794 hva_t vm_start, vm_end;
1795
1796 if (!vma || vma->vm_start >= reg_end)
1797 break;
1798
1799 /*
1800 * Mapping a read-only VMA is only allowed if the
1801 * memory region is configured as read-only.
1802 */
1803 if (writable && !(vma->vm_flags & VM_WRITE)) {
1804 ret = -EPERM;
1805 break;
1806 }
1807
1808 /*
1809 * Take the intersection of this VMA with the memory region
1810 */
1811 vm_start = max(hva, vma->vm_start);
1812 vm_end = min(reg_end, vma->vm_end);
1813
1814 if (vma->vm_flags & VM_PFNMAP) {
1815 gpa_t gpa = mem->guest_phys_addr +
1816 (vm_start - mem->userspace_addr);
1817 phys_addr_t pa;
1818
1819 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1820 pa += vm_start - vma->vm_start;
1821
1822 /* IO region dirty page logging not allowed */
1823 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1824 return -EINVAL;
1825
1826 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1827 vm_end - vm_start,
1828 writable);
1829 if (ret)
1830 break;
1831 }
1832 hva = vm_end;
1833 } while (hva < reg_end);
1834
1835 if (change == KVM_MR_FLAGS_ONLY)
1836 return ret;
1837
1838 spin_lock(&kvm->mmu_lock);
1839 if (ret)
1840 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1841 else
1842 stage2_flush_memslot(kvm, memslot);
1843 spin_unlock(&kvm->mmu_lock);
1844 return ret;
1845 }
1846
1847 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1848 struct kvm_memory_slot *dont)
1849 {
1850 }
1851
1852 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1853 unsigned long npages)
1854 {
1855 /*
1856 * Readonly memslots are not incoherent with the caches by definition,
1857 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1858 * that the guest may consider devices and hence map as uncached.
1859 * To prevent incoherency issues in these cases, tag all readonly
1860 * regions as incoherent.
1861 */
1862 if (slot->flags & KVM_MEM_READONLY)
1863 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1864 return 0;
1865 }
1866
1867 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1868 {
1869 }
1870
1871 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1872 {
1873 }
1874
1875 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1876 struct kvm_memory_slot *slot)
1877 {
1878 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1879 phys_addr_t size = slot->npages << PAGE_SHIFT;
1880
1881 spin_lock(&kvm->mmu_lock);
1882 unmap_stage2_range(kvm, gpa, size);
1883 spin_unlock(&kvm->mmu_lock);
1884 }
1885
1886 /*
1887 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1888 *
1889 * Main problems:
1890 * - S/W ops are local to a CPU (not broadcast)
1891 * - We have line migration behind our back (speculation)
1892 * - System caches don't support S/W at all (damn!)
1893 *
1894 * In the face of the above, the best we can do is to try and convert
1895 * S/W ops to VA ops. Because the guest is not allowed to infer the
1896 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1897 * which is a rather good thing for us.
1898 *
1899 * Also, it is only used when turning caches on/off ("The expected
1900 * usage of the cache maintenance instructions that operate by set/way
1901 * is associated with the cache maintenance instructions associated
1902 * with the powerdown and powerup of caches, if this is required by
1903 * the implementation.").
1904 *
1905 * We use the following policy:
1906 *
1907 * - If we trap a S/W operation, we enable VM trapping to detect
1908 * caches being turned on/off, and do a full clean.
1909 *
1910 * - We flush the caches on both caches being turned on and off.
1911 *
1912 * - Once the caches are enabled, we stop trapping VM ops.
1913 */
1914 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1915 {
1916 unsigned long hcr = vcpu_get_hcr(vcpu);
1917
1918 /*
1919 * If this is the first time we do a S/W operation
1920 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1921 * VM trapping.
1922 *
1923 * Otherwise, rely on the VM trapping to wait for the MMU +
1924 * Caches to be turned off. At that point, we'll be able to
1925 * clean the caches again.
1926 */
1927 if (!(hcr & HCR_TVM)) {
1928 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1929 vcpu_has_cache_enabled(vcpu));
1930 stage2_flush_vm(vcpu->kvm);
1931 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1932 }
1933 }
1934
1935 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1936 {
1937 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1938
1939 /*
1940 * If switching the MMU+caches on, need to invalidate the caches.
1941 * If switching it off, need to clean the caches.
1942 * Clean + invalidate does the trick always.
1943 */
1944 if (now_enabled != was_enabled)
1945 stage2_flush_vm(vcpu->kvm);
1946
1947 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1948 if (now_enabled)
1949 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1950
1951 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1952 }
This page took 0.112205 seconds and 4 git commands to generate.