1dd10936d68d0422b328128fbb6a234d77adee1d
[deliverable/linux.git] / arch / arm / mm / nommu.c
1 /*
2 * linux/arch/arm/mm/nommu.c
3 *
4 * ARM uCLinux supporting functions.
5 */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 #include <asm/procinfo.h>
22
23 #include "mm.h"
24
25 #ifdef CONFIG_ARM_MPU
26 struct mpu_rgn_info mpu_rgn_info;
27
28 /* Region number */
29 static void rgnr_write(u32 v)
30 {
31 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
32 }
33
34 /* Data-side / unified region attributes */
35
36 /* Region access control register */
37 static void dracr_write(u32 v)
38 {
39 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
40 }
41
42 /* Region size register */
43 static void drsr_write(u32 v)
44 {
45 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
46 }
47
48 /* Region base address register */
49 static void drbar_write(u32 v)
50 {
51 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
52 }
53
54 static u32 drbar_read(void)
55 {
56 u32 v;
57 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
58 return v;
59 }
60 /* Optional instruction-side region attributes */
61
62 /* I-side Region access control register */
63 static void iracr_write(u32 v)
64 {
65 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
66 }
67
68 /* I-side Region size register */
69 static void irsr_write(u32 v)
70 {
71 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
72 }
73
74 /* I-side Region base address register */
75 static void irbar_write(u32 v)
76 {
77 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
78 }
79
80 static unsigned long irbar_read(void)
81 {
82 unsigned long v;
83 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
84 return v;
85 }
86
87 /* MPU initialisation functions */
88 void __init sanity_check_meminfo_mpu(void)
89 {
90 int i;
91 phys_addr_t phys_offset = PHYS_OFFSET;
92 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
93 struct memblock_region *reg;
94 bool first = true;
95 phys_addr_t mem_start;
96 phys_addr_t mem_end;
97
98 for_each_memblock(memory, reg) {
99 if (first) {
100 /*
101 * Initially only use memory continuous from
102 * PHYS_OFFSET */
103 if (reg->base != phys_offset)
104 panic("First memory bank must be contiguous from PHYS_OFFSET");
105
106 mem_start = reg->base;
107 mem_end = reg->base + reg->size;
108 specified_mem_size = reg->size;
109 first = false;
110 } else {
111 /*
112 * memblock auto merges contiguous blocks, remove
113 * all blocks afterwards
114 */
115 pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
116 &mem_start, &reg->base);
117 memblock_remove(reg->base, reg->size);
118 }
119 }
120
121 /*
122 * MPU has curious alignment requirements: Size must be power of 2, and
123 * region start must be aligned to the region size
124 */
125 if (phys_offset != 0)
126 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
127
128 /*
129 * Maximum aligned region might overflow phys_addr_t if phys_offset is
130 * 0. Hence we keep everything below 4G until we take the smaller of
131 * the aligned_region_size and rounded_mem_size, one of which is
132 * guaranteed to be smaller than the maximum physical address.
133 */
134 aligned_region_size = (phys_offset - 1) ^ (phys_offset);
135 /* Find the max power-of-two sized region that fits inside our bank */
136 rounded_mem_size = (1 << __fls(specified_mem_size)) - 1;
137
138 /* The actual region size is the smaller of the two */
139 aligned_region_size = aligned_region_size < rounded_mem_size
140 ? aligned_region_size + 1
141 : rounded_mem_size + 1;
142
143 if (aligned_region_size != specified_mem_size) {
144 pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
145 &specified_mem_size, &aligned_region_size);
146 memblock_remove(mem_start + aligned_region_size,
147 specified_mem_size - aligned_round_size);
148
149 mem_end = mem_start + aligned_region_size;
150 }
151
152 pr_debug("MPU Region from %pa size %pa (end %pa))\n",
153 &phys_offset, &aligned_region_size, &mem_end);
154
155 }
156
157 static int mpu_present(void)
158 {
159 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
160 }
161
162 static int mpu_max_regions(void)
163 {
164 /*
165 * We don't support a different number of I/D side regions so if we
166 * have separate instruction and data memory maps then return
167 * whichever side has a smaller number of supported regions.
168 */
169 u32 dregions, iregions, mpuir;
170 mpuir = read_cpuid(CPUID_MPUIR);
171
172 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
173
174 /* Check for separate d-side and i-side memory maps */
175 if (mpuir & MPUIR_nU)
176 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
177
178 /* Use the smallest of the two maxima */
179 return min(dregions, iregions);
180 }
181
182 static int mpu_iside_independent(void)
183 {
184 /* MPUIR.nU specifies whether there is *not* a unified memory map */
185 return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
186 }
187
188 static int mpu_min_region_order(void)
189 {
190 u32 drbar_result, irbar_result;
191 /* We've kept a region free for this probing */
192 rgnr_write(MPU_PROBE_REGION);
193 isb();
194 /*
195 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
196 * region order
197 */
198 drbar_write(0xFFFFFFFC);
199 drbar_result = irbar_result = drbar_read();
200 drbar_write(0x0);
201 /* If the MPU is non-unified, we use the larger of the two minima*/
202 if (mpu_iside_independent()) {
203 irbar_write(0xFFFFFFFC);
204 irbar_result = irbar_read();
205 irbar_write(0x0);
206 }
207 isb(); /* Ensure that MPU region operations have completed */
208 /* Return whichever result is larger */
209 return __ffs(max(drbar_result, irbar_result));
210 }
211
212 static int mpu_setup_region(unsigned int number, phys_addr_t start,
213 unsigned int size_order, unsigned int properties)
214 {
215 u32 size_data;
216
217 /* We kept a region free for probing resolution of MPU regions*/
218 if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
219 return -ENOENT;
220
221 if (size_order > 32)
222 return -ENOMEM;
223
224 if (size_order < mpu_min_region_order())
225 return -ENOMEM;
226
227 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
228 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
229
230 dsb(); /* Ensure all previous data accesses occur with old mappings */
231 rgnr_write(number);
232 isb();
233 drbar_write(start);
234 dracr_write(properties);
235 isb(); /* Propagate properties before enabling region */
236 drsr_write(size_data);
237
238 /* Check for independent I-side registers */
239 if (mpu_iside_independent()) {
240 irbar_write(start);
241 iracr_write(properties);
242 isb();
243 irsr_write(size_data);
244 }
245 isb();
246
247 /* Store region info (we treat i/d side the same, so only store d) */
248 mpu_rgn_info.rgns[number].dracr = properties;
249 mpu_rgn_info.rgns[number].drbar = start;
250 mpu_rgn_info.rgns[number].drsr = size_data;
251 return 0;
252 }
253
254 /*
255 * Set up default MPU regions, doing nothing if there is no MPU
256 */
257 void __init mpu_setup(void)
258 {
259 int region_err;
260 if (!mpu_present())
261 return;
262
263 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
264 ilog2(meminfo.bank[0].size),
265 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
266 if (region_err) {
267 panic("MPU region initialization failure! %d", region_err);
268 } else {
269 pr_info("Using ARMv7 PMSA Compliant MPU. "
270 "Region independence: %s, Max regions: %d\n",
271 mpu_iside_independent() ? "Yes" : "No",
272 mpu_max_regions());
273 }
274 }
275 #else
276 static void sanity_check_meminfo_mpu(void) {}
277 static void __init mpu_setup(void) {}
278 #endif /* CONFIG_ARM_MPU */
279
280 void __init arm_mm_memblock_reserve(void)
281 {
282 #ifndef CONFIG_CPU_V7M
283 /*
284 * Register the exception vector page.
285 * some architectures which the DRAM is the exception vector to trap,
286 * alloc_page breaks with error, although it is not NULL, but "0."
287 */
288 memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
289 #else /* ifndef CONFIG_CPU_V7M */
290 /*
291 * There is no dedicated vector page on V7-M. So nothing needs to be
292 * reserved here.
293 */
294 #endif
295 }
296
297 void __init sanity_check_meminfo(void)
298 {
299 phys_addr_t end;
300 sanity_check_meminfo_mpu();
301 end = memblock_end_of_DRAM();
302 high_memory = __va(end - 1) + 1;
303 memblock_set_current_limit(end);
304 }
305
306 /*
307 * paging_init() sets up the page tables, initialises the zone memory
308 * maps, and sets up the zero page, bad page and bad page tables.
309 */
310 void __init paging_init(const struct machine_desc *mdesc)
311 {
312 early_trap_init((void *)CONFIG_VECTORS_BASE);
313 mpu_setup();
314 bootmem_init();
315 }
316
317 /*
318 * We don't need to do anything here for nommu machines.
319 */
320 void setup_mm_for_reboot(void)
321 {
322 }
323
324 void flush_dcache_page(struct page *page)
325 {
326 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
327 }
328 EXPORT_SYMBOL(flush_dcache_page);
329
330 void flush_kernel_dcache_page(struct page *page)
331 {
332 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
333 }
334 EXPORT_SYMBOL(flush_kernel_dcache_page);
335
336 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
337 unsigned long uaddr, void *dst, const void *src,
338 unsigned long len)
339 {
340 memcpy(dst, src, len);
341 if (vma->vm_flags & VM_EXEC)
342 __cpuc_coherent_user_range(uaddr, uaddr + len);
343 }
344
345 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
346 size_t size, unsigned int mtype)
347 {
348 if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
349 return NULL;
350 return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
351 }
352 EXPORT_SYMBOL(__arm_ioremap_pfn);
353
354 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
355 unsigned int mtype, void *caller)
356 {
357 return (void __iomem *)phys_addr;
358 }
359
360 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
361
362 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
363 {
364 return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
365 __builtin_return_address(0));
366 }
367 EXPORT_SYMBOL(ioremap);
368
369 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
370 {
371 return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
372 __builtin_return_address(0));
373 }
374 EXPORT_SYMBOL(ioremap_cache);
375
376 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
377 {
378 return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
379 __builtin_return_address(0));
380 }
381 EXPORT_SYMBOL(ioremap_wc);
382
383 void __iounmap(volatile void __iomem *addr)
384 {
385 }
386 EXPORT_SYMBOL(__iounmap);
387
388 void (*arch_iounmap)(volatile void __iomem *);
389
390 void iounmap(volatile void __iomem *addr)
391 {
392 }
393 EXPORT_SYMBOL(iounmap);
This page took 0.042818 seconds and 4 git commands to generate.