ARM: 8572/1: nommu: change memory reserve for the vectors
[deliverable/linux.git] / arch / arm / mm / nommu.c
1 /*
2 * linux/arch/arm/mm/nommu.c
3 *
4 * ARM uCLinux supporting functions.
5 */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 #include <asm/procinfo.h>
22
23 #include "mm.h"
24
25 #ifdef CONFIG_ARM_MPU
26 struct mpu_rgn_info mpu_rgn_info;
27
28 /* Region number */
29 static void rgnr_write(u32 v)
30 {
31 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
32 }
33
34 /* Data-side / unified region attributes */
35
36 /* Region access control register */
37 static void dracr_write(u32 v)
38 {
39 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
40 }
41
42 /* Region size register */
43 static void drsr_write(u32 v)
44 {
45 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
46 }
47
48 /* Region base address register */
49 static void drbar_write(u32 v)
50 {
51 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
52 }
53
54 static u32 drbar_read(void)
55 {
56 u32 v;
57 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
58 return v;
59 }
60 /* Optional instruction-side region attributes */
61
62 /* I-side Region access control register */
63 static void iracr_write(u32 v)
64 {
65 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
66 }
67
68 /* I-side Region size register */
69 static void irsr_write(u32 v)
70 {
71 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
72 }
73
74 /* I-side Region base address register */
75 static void irbar_write(u32 v)
76 {
77 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
78 }
79
80 static unsigned long irbar_read(void)
81 {
82 unsigned long v;
83 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
84 return v;
85 }
86
87 /* MPU initialisation functions */
88 void __init sanity_check_meminfo_mpu(void)
89 {
90 phys_addr_t phys_offset = PHYS_OFFSET;
91 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
92 struct memblock_region *reg;
93 bool first = true;
94 phys_addr_t mem_start;
95 phys_addr_t mem_end;
96
97 for_each_memblock(memory, reg) {
98 if (first) {
99 /*
100 * Initially only use memory continuous from
101 * PHYS_OFFSET */
102 if (reg->base != phys_offset)
103 panic("First memory bank must be contiguous from PHYS_OFFSET");
104
105 mem_start = reg->base;
106 mem_end = reg->base + reg->size;
107 specified_mem_size = reg->size;
108 first = false;
109 } else {
110 /*
111 * memblock auto merges contiguous blocks, remove
112 * all blocks afterwards in one go (we can't remove
113 * blocks separately while iterating)
114 */
115 pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
116 &mem_end, &reg->base);
117 memblock_remove(reg->base, 0 - reg->base);
118 break;
119 }
120 }
121
122 /*
123 * MPU has curious alignment requirements: Size must be power of 2, and
124 * region start must be aligned to the region size
125 */
126 if (phys_offset != 0)
127 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
128
129 /*
130 * Maximum aligned region might overflow phys_addr_t if phys_offset is
131 * 0. Hence we keep everything below 4G until we take the smaller of
132 * the aligned_region_size and rounded_mem_size, one of which is
133 * guaranteed to be smaller than the maximum physical address.
134 */
135 aligned_region_size = (phys_offset - 1) ^ (phys_offset);
136 /* Find the max power-of-two sized region that fits inside our bank */
137 rounded_mem_size = (1 << __fls(specified_mem_size)) - 1;
138
139 /* The actual region size is the smaller of the two */
140 aligned_region_size = aligned_region_size < rounded_mem_size
141 ? aligned_region_size + 1
142 : rounded_mem_size + 1;
143
144 if (aligned_region_size != specified_mem_size) {
145 pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
146 &specified_mem_size, &aligned_region_size);
147 memblock_remove(mem_start + aligned_region_size,
148 specified_mem_size - aligned_region_size);
149
150 mem_end = mem_start + aligned_region_size;
151 }
152
153 pr_debug("MPU Region from %pa size %pa (end %pa))\n",
154 &phys_offset, &aligned_region_size, &mem_end);
155
156 }
157
158 static int mpu_present(void)
159 {
160 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
161 }
162
163 static int mpu_max_regions(void)
164 {
165 /*
166 * We don't support a different number of I/D side regions so if we
167 * have separate instruction and data memory maps then return
168 * whichever side has a smaller number of supported regions.
169 */
170 u32 dregions, iregions, mpuir;
171 mpuir = read_cpuid(CPUID_MPUIR);
172
173 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
174
175 /* Check for separate d-side and i-side memory maps */
176 if (mpuir & MPUIR_nU)
177 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
178
179 /* Use the smallest of the two maxima */
180 return min(dregions, iregions);
181 }
182
183 static int mpu_iside_independent(void)
184 {
185 /* MPUIR.nU specifies whether there is *not* a unified memory map */
186 return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
187 }
188
189 static int mpu_min_region_order(void)
190 {
191 u32 drbar_result, irbar_result;
192 /* We've kept a region free for this probing */
193 rgnr_write(MPU_PROBE_REGION);
194 isb();
195 /*
196 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
197 * region order
198 */
199 drbar_write(0xFFFFFFFC);
200 drbar_result = irbar_result = drbar_read();
201 drbar_write(0x0);
202 /* If the MPU is non-unified, we use the larger of the two minima*/
203 if (mpu_iside_independent()) {
204 irbar_write(0xFFFFFFFC);
205 irbar_result = irbar_read();
206 irbar_write(0x0);
207 }
208 isb(); /* Ensure that MPU region operations have completed */
209 /* Return whichever result is larger */
210 return __ffs(max(drbar_result, irbar_result));
211 }
212
213 static int mpu_setup_region(unsigned int number, phys_addr_t start,
214 unsigned int size_order, unsigned int properties)
215 {
216 u32 size_data;
217
218 /* We kept a region free for probing resolution of MPU regions*/
219 if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
220 return -ENOENT;
221
222 if (size_order > 32)
223 return -ENOMEM;
224
225 if (size_order < mpu_min_region_order())
226 return -ENOMEM;
227
228 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
229 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
230
231 dsb(); /* Ensure all previous data accesses occur with old mappings */
232 rgnr_write(number);
233 isb();
234 drbar_write(start);
235 dracr_write(properties);
236 isb(); /* Propagate properties before enabling region */
237 drsr_write(size_data);
238
239 /* Check for independent I-side registers */
240 if (mpu_iside_independent()) {
241 irbar_write(start);
242 iracr_write(properties);
243 isb();
244 irsr_write(size_data);
245 }
246 isb();
247
248 /* Store region info (we treat i/d side the same, so only store d) */
249 mpu_rgn_info.rgns[number].dracr = properties;
250 mpu_rgn_info.rgns[number].drbar = start;
251 mpu_rgn_info.rgns[number].drsr = size_data;
252 return 0;
253 }
254
255 /*
256 * Set up default MPU regions, doing nothing if there is no MPU
257 */
258 void __init mpu_setup(void)
259 {
260 int region_err;
261 if (!mpu_present())
262 return;
263
264 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
265 ilog2(memblock.memory.regions[0].size),
266 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
267 if (region_err) {
268 panic("MPU region initialization failure! %d", region_err);
269 } else {
270 pr_info("Using ARMv7 PMSA Compliant MPU. "
271 "Region independence: %s, Max regions: %d\n",
272 mpu_iside_independent() ? "Yes" : "No",
273 mpu_max_regions());
274 }
275 }
276 #else
277 static void sanity_check_meminfo_mpu(void) {}
278 static void __init mpu_setup(void) {}
279 #endif /* CONFIG_ARM_MPU */
280
281 void __init arm_mm_memblock_reserve(void)
282 {
283 #ifndef CONFIG_CPU_V7M
284 /*
285 * Register the exception vector page.
286 * some architectures which the DRAM is the exception vector to trap,
287 * alloc_page breaks with error, although it is not NULL, but "0."
288 */
289 memblock_reserve(CONFIG_VECTORS_BASE, 2 * PAGE_SIZE);
290 #else /* ifndef CONFIG_CPU_V7M */
291 /*
292 * There is no dedicated vector page on V7-M. So nothing needs to be
293 * reserved here.
294 */
295 #endif
296 }
297
298 void __init sanity_check_meminfo(void)
299 {
300 phys_addr_t end;
301 sanity_check_meminfo_mpu();
302 end = memblock_end_of_DRAM();
303 high_memory = __va(end - 1) + 1;
304 memblock_set_current_limit(end);
305 }
306
307 /*
308 * paging_init() sets up the page tables, initialises the zone memory
309 * maps, and sets up the zero page, bad page and bad page tables.
310 */
311 void __init paging_init(const struct machine_desc *mdesc)
312 {
313 early_trap_init((void *)CONFIG_VECTORS_BASE);
314 mpu_setup();
315 bootmem_init();
316 }
317
318 /*
319 * We don't need to do anything here for nommu machines.
320 */
321 void setup_mm_for_reboot(void)
322 {
323 }
324
325 void flush_dcache_page(struct page *page)
326 {
327 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
328 }
329 EXPORT_SYMBOL(flush_dcache_page);
330
331 void flush_kernel_dcache_page(struct page *page)
332 {
333 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
334 }
335 EXPORT_SYMBOL(flush_kernel_dcache_page);
336
337 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
338 unsigned long uaddr, void *dst, const void *src,
339 unsigned long len)
340 {
341 memcpy(dst, src, len);
342 if (vma->vm_flags & VM_EXEC)
343 __cpuc_coherent_user_range(uaddr, uaddr + len);
344 }
345
346 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
347 size_t size, unsigned int mtype)
348 {
349 if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
350 return NULL;
351 return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
352 }
353 EXPORT_SYMBOL(__arm_ioremap_pfn);
354
355 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
356 unsigned int mtype, void *caller)
357 {
358 return (void __iomem *)phys_addr;
359 }
360
361 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
362
363 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
364 {
365 return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
366 __builtin_return_address(0));
367 }
368 EXPORT_SYMBOL(ioremap);
369
370 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
371 {
372 return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
373 __builtin_return_address(0));
374 }
375 EXPORT_SYMBOL(ioremap_cache);
376
377 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
378 {
379 return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
380 __builtin_return_address(0));
381 }
382 EXPORT_SYMBOL(ioremap_wc);
383
384 void __iounmap(volatile void __iomem *addr)
385 {
386 }
387 EXPORT_SYMBOL(__iounmap);
388
389 void (*arch_iounmap)(volatile void __iomem *);
390
391 void iounmap(volatile void __iomem *addr)
392 {
393 }
394 EXPORT_SYMBOL(iounmap);
This page took 0.039598 seconds and 5 git commands to generate.