Merge branch 'akpm-current/current'
[deliverable/linux.git] / arch / mips / cavium-octeon / setup.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h> /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
31
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
40
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-rst-defs.h>
44
45 /*
46 * TRUE for devices having registers with little-endian byte
47 * order, FALSE for registers with native-endian byte order.
48 * PCI mandates little-endian, USB and SATA are configuraable,
49 * but we chose little-endian for these.
50 */
51 const bool octeon_should_swizzle_table[256] = {
52 [0x00] = true, /* bootbus/CF */
53 [0x1b] = true, /* PCI mmio window */
54 [0x1c] = true, /* PCI mmio window */
55 [0x1d] = true, /* PCI mmio window */
56 [0x1e] = true, /* PCI mmio window */
57 [0x68] = true, /* OCTEON III USB */
58 [0x69] = true, /* OCTEON III USB */
59 [0x6c] = true, /* OCTEON III SATA */
60 [0x6f] = true, /* OCTEON II USB */
61 };
62 EXPORT_SYMBOL(octeon_should_swizzle_table);
63
64 #ifdef CONFIG_PCI
65 extern void pci_console_init(const char *arg);
66 #endif
67
68 static unsigned long long max_memory = ULLONG_MAX;
69 static unsigned long long reserve_low_mem;
70
71 DEFINE_SEMAPHORE(octeon_bootbus_sem);
72 EXPORT_SYMBOL(octeon_bootbus_sem);
73
74 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
75
76 struct cvmx_bootinfo *octeon_bootinfo;
77 EXPORT_SYMBOL(octeon_bootinfo);
78
79 #ifdef CONFIG_KEXEC
80 #ifdef CONFIG_SMP
81 /*
82 * Wait for relocation code is prepared and send
83 * secondary CPUs to spin until kernel is relocated.
84 */
85 static void octeon_kexec_smp_down(void *ignored)
86 {
87 int cpu = smp_processor_id();
88
89 local_irq_disable();
90 set_cpu_online(cpu, false);
91 while (!atomic_read(&kexec_ready_to_reboot))
92 cpu_relax();
93
94 asm volatile (
95 " sync \n"
96 " synci ($0) \n");
97
98 relocated_kexec_smp_wait(NULL);
99 }
100 #endif
101
102 #define OCTEON_DDR0_BASE (0x0ULL)
103 #define OCTEON_DDR0_SIZE (0x010000000ULL)
104 #define OCTEON_DDR1_BASE (0x410000000ULL)
105 #define OCTEON_DDR1_SIZE (0x010000000ULL)
106 #define OCTEON_DDR2_BASE (0x020000000ULL)
107 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
108 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
109
110 static struct kimage *kimage_ptr;
111
112 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
113 {
114 int64_t addr;
115 struct cvmx_bootmem_desc *bootmem_desc;
116
117 bootmem_desc = cvmx_bootmem_get_desc();
118
119 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
120 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
121 pr_err("Error: requested memory too large,"
122 "truncating to maximum size\n");
123 }
124
125 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
126 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
127
128 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
129 bootmem_desc->head_addr = 0;
130
131 if (mem_size <= OCTEON_DDR0_SIZE) {
132 __cvmx_bootmem_phy_free(addr,
133 mem_size - reserve_low_mem -
134 low_reserved_bytes, 0);
135 return;
136 }
137
138 __cvmx_bootmem_phy_free(addr,
139 OCTEON_DDR0_SIZE - reserve_low_mem -
140 low_reserved_bytes, 0);
141
142 mem_size -= OCTEON_DDR0_SIZE;
143
144 if (mem_size > OCTEON_DDR1_SIZE) {
145 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
146 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
147 mem_size - OCTEON_DDR1_SIZE, 0);
148 } else
149 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
150 }
151
152 static int octeon_kexec_prepare(struct kimage *image)
153 {
154 int i;
155 char *bootloader = "kexec";
156
157 octeon_boot_desc_ptr->argc = 0;
158 for (i = 0; i < image->nr_segments; i++) {
159 if (!strncmp(bootloader, (char *)image->segment[i].buf,
160 strlen(bootloader))) {
161 /*
162 * convert command line string to array
163 * of parameters (as bootloader does).
164 */
165 int argc = 0, offt;
166 char *str = (char *)image->segment[i].buf;
167 char *ptr = strchr(str, ' ');
168 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
169 *ptr = '\0';
170 if (ptr[1] != ' ') {
171 offt = (int)(ptr - str + 1);
172 octeon_boot_desc_ptr->argv[argc] =
173 image->segment[i].mem + offt;
174 argc++;
175 }
176 ptr = strchr(ptr + 1, ' ');
177 }
178 octeon_boot_desc_ptr->argc = argc;
179 break;
180 }
181 }
182
183 /*
184 * Information about segments will be needed during pre-boot memory
185 * initialization.
186 */
187 kimage_ptr = image;
188 return 0;
189 }
190
191 static void octeon_generic_shutdown(void)
192 {
193 int i;
194 #ifdef CONFIG_SMP
195 int cpu;
196 #endif
197 struct cvmx_bootmem_desc *bootmem_desc;
198 void *named_block_array_ptr;
199
200 bootmem_desc = cvmx_bootmem_get_desc();
201 named_block_array_ptr =
202 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
203
204 #ifdef CONFIG_SMP
205 /* disable watchdogs */
206 for_each_online_cpu(cpu)
207 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
208 #else
209 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
210 #endif
211 if (kimage_ptr != kexec_crash_image) {
212 memset(named_block_array_ptr,
213 0x0,
214 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
215 sizeof(struct cvmx_bootmem_named_block_desc));
216 /*
217 * Mark all memory (except low 0x100000 bytes) as free.
218 * It is the same thing that bootloader does.
219 */
220 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
221 0x100000);
222 /*
223 * Allocate all segments to avoid their corruption during boot.
224 */
225 for (i = 0; i < kimage_ptr->nr_segments; i++)
226 cvmx_bootmem_alloc_address(
227 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
228 kimage_ptr->segment[i].mem - PAGE_SIZE,
229 PAGE_SIZE);
230 } else {
231 /*
232 * Do not mark all memory as free. Free only named sections
233 * leaving the rest of memory unchanged.
234 */
235 struct cvmx_bootmem_named_block_desc *ptr =
236 (struct cvmx_bootmem_named_block_desc *)
237 named_block_array_ptr;
238
239 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
240 if (ptr[i].size)
241 cvmx_bootmem_free_named(ptr[i].name);
242 }
243 kexec_args[2] = 1UL; /* running on octeon_main_processor */
244 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
245 #ifdef CONFIG_SMP
246 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
247 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
248 #endif
249 }
250
251 static void octeon_shutdown(void)
252 {
253 octeon_generic_shutdown();
254 #ifdef CONFIG_SMP
255 smp_call_function(octeon_kexec_smp_down, NULL, 0);
256 smp_wmb();
257 while (num_online_cpus() > 1) {
258 cpu_relax();
259 mdelay(1);
260 }
261 #endif
262 }
263
264 static void octeon_crash_shutdown(struct pt_regs *regs)
265 {
266 octeon_generic_shutdown();
267 default_machine_crash_shutdown(regs);
268 }
269
270 #ifdef CONFIG_SMP
271 void octeon_crash_smp_send_stop(void)
272 {
273 int cpu;
274
275 /* disable watchdogs */
276 for_each_online_cpu(cpu)
277 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
278 }
279 #endif
280
281 #endif /* CONFIG_KEXEC */
282
283 #ifdef CONFIG_CAVIUM_RESERVE32
284 uint64_t octeon_reserve32_memory;
285 EXPORT_SYMBOL(octeon_reserve32_memory);
286 #endif
287
288 #ifdef CONFIG_KEXEC
289 /* crashkernel cmdline parameter is parsed _after_ memory setup
290 * we also parse it here (workaround for EHB5200) */
291 static uint64_t crashk_size, crashk_base;
292 #endif
293
294 static int octeon_uart;
295
296 extern asmlinkage void handle_int(void);
297
298 /**
299 * Return non zero if we are currently running in the Octeon simulator
300 *
301 * Returns
302 */
303 int octeon_is_simulation(void)
304 {
305 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
306 }
307 EXPORT_SYMBOL(octeon_is_simulation);
308
309 /**
310 * Return true if Octeon is in PCI Host mode. This means
311 * Linux can control the PCI bus.
312 *
313 * Returns Non zero if Octeon in host mode.
314 */
315 int octeon_is_pci_host(void)
316 {
317 #ifdef CONFIG_PCI
318 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
319 #else
320 return 0;
321 #endif
322 }
323
324 /**
325 * Get the clock rate of Octeon
326 *
327 * Returns Clock rate in HZ
328 */
329 uint64_t octeon_get_clock_rate(void)
330 {
331 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
332
333 return sysinfo->cpu_clock_hz;
334 }
335 EXPORT_SYMBOL(octeon_get_clock_rate);
336
337 static u64 octeon_io_clock_rate;
338
339 u64 octeon_get_io_clock_rate(void)
340 {
341 return octeon_io_clock_rate;
342 }
343 EXPORT_SYMBOL(octeon_get_io_clock_rate);
344
345
346 /**
347 * Write to the LCD display connected to the bootbus. This display
348 * exists on most Cavium evaluation boards. If it doesn't exist, then
349 * this function doesn't do anything.
350 *
351 * @s: String to write
352 */
353 void octeon_write_lcd(const char *s)
354 {
355 if (octeon_bootinfo->led_display_base_addr) {
356 void __iomem *lcd_address =
357 ioremap_nocache(octeon_bootinfo->led_display_base_addr,
358 8);
359 int i;
360 for (i = 0; i < 8; i++, s++) {
361 if (*s)
362 iowrite8(*s, lcd_address + i);
363 else
364 iowrite8(' ', lcd_address + i);
365 }
366 iounmap(lcd_address);
367 }
368 }
369
370 /**
371 * Return the console uart passed by the bootloader
372 *
373 * Returns uart (0 or 1)
374 */
375 int octeon_get_boot_uart(void)
376 {
377 int uart;
378 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
379 uart = 1;
380 #else
381 uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
382 1 : 0;
383 #endif
384 return uart;
385 }
386
387 /**
388 * Get the coremask Linux was booted on.
389 *
390 * Returns Core mask
391 */
392 int octeon_get_boot_coremask(void)
393 {
394 return octeon_boot_desc_ptr->core_mask;
395 }
396
397 /**
398 * Check the hardware BIST results for a CPU
399 */
400 void octeon_check_cpu_bist(void)
401 {
402 const int coreid = cvmx_get_core_num();
403 unsigned long long mask;
404 unsigned long long bist_val;
405
406 /* Check BIST results for COP0 registers */
407 mask = 0x1f00000000ull;
408 bist_val = read_octeon_c0_icacheerr();
409 if (bist_val & mask)
410 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
411 coreid, bist_val);
412
413 bist_val = read_octeon_c0_dcacheerr();
414 if (bist_val & 1)
415 pr_err("Core%d L1 Dcache parity error: "
416 "CacheErr(dcache) = 0x%llx\n",
417 coreid, bist_val);
418
419 mask = 0xfc00000000000000ull;
420 bist_val = read_c0_cvmmemctl();
421 if (bist_val & mask)
422 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
423 coreid, bist_val);
424
425 write_octeon_c0_dcacheerr(0);
426 }
427
428 /**
429 * Reboot Octeon
430 *
431 * @command: Command to pass to the bootloader. Currently ignored.
432 */
433 static void octeon_restart(char *command)
434 {
435 /* Disable all watchdogs before soft reset. They don't get cleared */
436 #ifdef CONFIG_SMP
437 int cpu;
438 for_each_online_cpu(cpu)
439 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
440 #else
441 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
442 #endif
443
444 mb();
445 while (1)
446 if (OCTEON_IS_OCTEON3())
447 cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
448 else
449 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
450 }
451
452
453 /**
454 * Permanently stop a core.
455 *
456 * @arg: Ignored.
457 */
458 static void octeon_kill_core(void *arg)
459 {
460 if (octeon_is_simulation())
461 /* A break instruction causes the simulator stop a core */
462 asm volatile ("break" ::: "memory");
463
464 local_irq_disable();
465 /* Disable watchdog on this core. */
466 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
467 /* Spin in a low power mode. */
468 while (true)
469 asm volatile ("wait" ::: "memory");
470 }
471
472
473 /**
474 * Halt the system
475 */
476 static void octeon_halt(void)
477 {
478 smp_call_function(octeon_kill_core, NULL, 0);
479
480 switch (octeon_bootinfo->board_type) {
481 case CVMX_BOARD_TYPE_NAO38:
482 /* Driving a 1 to GPIO 12 shuts off this board */
483 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
484 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
485 break;
486 default:
487 octeon_write_lcd("PowerOff");
488 break;
489 }
490
491 octeon_kill_core(NULL);
492 }
493
494 static char __read_mostly octeon_system_type[80];
495
496 static void __init init_octeon_system_type(void)
497 {
498 char const *board_type;
499
500 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
501 if (board_type == NULL) {
502 struct device_node *root;
503 int ret;
504
505 root = of_find_node_by_path("/");
506 ret = of_property_read_string(root, "model", &board_type);
507 of_node_put(root);
508 if (ret)
509 board_type = "Unsupported Board";
510 }
511
512 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
513 board_type, octeon_model_get_string(read_c0_prid()));
514 }
515
516 /**
517 * Return a string representing the system type
518 *
519 * Returns
520 */
521 const char *octeon_board_type_string(void)
522 {
523 return octeon_system_type;
524 }
525
526 const char *get_system_type(void)
527 __attribute__ ((alias("octeon_board_type_string")));
528
529 void octeon_user_io_init(void)
530 {
531 union octeon_cvmemctl cvmmemctl;
532
533 /* Get the current settings for CP0_CVMMEMCTL_REG */
534 cvmmemctl.u64 = read_c0_cvmmemctl();
535 /* R/W If set, marked write-buffer entries time out the same
536 * as as other entries; if clear, marked write-buffer entries
537 * use the maximum timeout. */
538 cvmmemctl.s.dismarkwblongto = 1;
539 /* R/W If set, a merged store does not clear the write-buffer
540 * entry timeout state. */
541 cvmmemctl.s.dismrgclrwbto = 0;
542 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
543 * word location for an IOBDMA. The other 8 bits come from the
544 * SCRADDR field of the IOBDMA. */
545 cvmmemctl.s.iobdmascrmsb = 0;
546 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
547 * clear, SYNCWS and SYNCS only order unmarked
548 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
549 * set. */
550 cvmmemctl.s.syncwsmarked = 0;
551 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
552 cvmmemctl.s.dissyncws = 0;
553 /* R/W If set, no stall happens on write buffer full. */
554 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
555 cvmmemctl.s.diswbfst = 1;
556 else
557 cvmmemctl.s.diswbfst = 0;
558 /* R/W If set (and SX set), supervisor-level loads/stores can
559 * use XKPHYS addresses with <48>==0 */
560 cvmmemctl.s.xkmemenas = 0;
561
562 /* R/W If set (and UX set), user-level loads/stores can use
563 * XKPHYS addresses with VA<48>==0 */
564 cvmmemctl.s.xkmemenau = 0;
565
566 /* R/W If set (and SX set), supervisor-level loads/stores can
567 * use XKPHYS addresses with VA<48>==1 */
568 cvmmemctl.s.xkioenas = 0;
569
570 /* R/W If set (and UX set), user-level loads/stores can use
571 * XKPHYS addresses with VA<48>==1 */
572 cvmmemctl.s.xkioenau = 0;
573
574 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
575 * when this is set) RW, reset to 0. */
576 cvmmemctl.s.allsyncw = 0;
577
578 /* R/W If set, no stores merge, and all stores reach the
579 * coherent bus in order. */
580 cvmmemctl.s.nomerge = 0;
581 /* R/W Selects the bit in the counter used for DID time-outs 0
582 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
583 * between 1x and 2x this interval. For example, with
584 * DIDTTO=3, expiration interval is between 16K and 32K. */
585 cvmmemctl.s.didtto = 0;
586 /* R/W If set, the (mem) CSR clock never turns off. */
587 cvmmemctl.s.csrckalwys = 0;
588 /* R/W If set, mclk never turns off. */
589 cvmmemctl.s.mclkalwys = 0;
590 /* R/W Selects the bit in the counter used for write buffer
591 * flush time-outs (WBFLT+11) is the bit position in an
592 * internal counter used to determine expiration. The write
593 * buffer expires between 1x and 2x this interval. For
594 * example, with WBFLT = 0, a write buffer expires between 2K
595 * and 4K cycles after the write buffer entry is allocated. */
596 cvmmemctl.s.wbfltime = 0;
597 /* R/W If set, do not put Istream in the L2 cache. */
598 cvmmemctl.s.istrnol2 = 0;
599
600 /*
601 * R/W The write buffer threshold. As per erratum Core-14752
602 * for CN63XX, a sc/scd might fail if the write buffer is
603 * full. Lowering WBTHRESH greatly lowers the chances of the
604 * write buffer ever being full and triggering the erratum.
605 */
606 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
607 cvmmemctl.s.wbthresh = 4;
608 else
609 cvmmemctl.s.wbthresh = 10;
610
611 /* R/W If set, CVMSEG is available for loads/stores in
612 * kernel/debug mode. */
613 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
614 cvmmemctl.s.cvmsegenak = 1;
615 #else
616 cvmmemctl.s.cvmsegenak = 0;
617 #endif
618 /* R/W If set, CVMSEG is available for loads/stores in
619 * supervisor mode. */
620 cvmmemctl.s.cvmsegenas = 0;
621 /* R/W If set, CVMSEG is available for loads/stores in user
622 * mode. */
623 cvmmemctl.s.cvmsegenau = 0;
624
625 write_c0_cvmmemctl(cvmmemctl.u64);
626
627 /* Setup of CVMSEG is done in kernel-entry-init.h */
628 if (smp_processor_id() == 0)
629 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
630 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
631 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
632
633 if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
634 union cvmx_iob_fau_timeout fau_timeout;
635
636 /* Set a default for the hardware timeouts */
637 fau_timeout.u64 = 0;
638 fau_timeout.s.tout_val = 0xfff;
639 /* Disable tagwait FAU timeout */
640 fau_timeout.s.tout_enb = 0;
641 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
642 }
643
644 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
645 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
646 OCTEON_IS_MODEL(OCTEON_CN70XX)) {
647 union cvmx_pow_nw_tim nm_tim;
648
649 nm_tim.u64 = 0;
650 /* 4096 cycles */
651 nm_tim.s.nw_tim = 3;
652 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
653 }
654
655 write_octeon_c0_icacheerr(0);
656 write_c0_derraddr1(0);
657 }
658
659 /**
660 * Early entry point for arch setup
661 */
662 void __init prom_init(void)
663 {
664 struct cvmx_sysinfo *sysinfo;
665 const char *arg;
666 char *p;
667 int i;
668 u64 t;
669 int argc;
670 #ifdef CONFIG_CAVIUM_RESERVE32
671 int64_t addr = -1;
672 #endif
673 /*
674 * The bootloader passes a pointer to the boot descriptor in
675 * $a3, this is available as fw_arg3.
676 */
677 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
678 octeon_bootinfo =
679 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
680 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
681
682 sysinfo = cvmx_sysinfo_get();
683 memset(sysinfo, 0, sizeof(*sysinfo));
684 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
685 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
686
687 if ((octeon_bootinfo->major_version > 1) ||
688 (octeon_bootinfo->major_version == 1 &&
689 octeon_bootinfo->minor_version >= 4))
690 cvmx_coremask_copy(&sysinfo->core_mask,
691 &octeon_bootinfo->ext_core_mask);
692 else
693 cvmx_coremask_set64(&sysinfo->core_mask,
694 octeon_bootinfo->core_mask);
695
696 /* Some broken u-boot pass garbage in upper bits, clear them out */
697 if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
698 for (i = 512; i < 1024; i++)
699 cvmx_coremask_clear_core(&sysinfo->core_mask, i);
700
701 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
702 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
703 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
704 sysinfo->board_type = octeon_bootinfo->board_type;
705 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
706 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
707 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
708 sizeof(sysinfo->mac_addr_base));
709 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
710 memcpy(sysinfo->board_serial_number,
711 octeon_bootinfo->board_serial_number,
712 sizeof(sysinfo->board_serial_number));
713 sysinfo->compact_flash_common_base_addr =
714 octeon_bootinfo->compact_flash_common_base_addr;
715 sysinfo->compact_flash_attribute_base_addr =
716 octeon_bootinfo->compact_flash_attribute_base_addr;
717 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
718 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
719 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
720
721 if (OCTEON_IS_OCTEON2()) {
722 /* I/O clock runs at a different rate than the CPU. */
723 union cvmx_mio_rst_boot rst_boot;
724 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
725 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
726 } else if (OCTEON_IS_OCTEON3()) {
727 /* I/O clock runs at a different rate than the CPU. */
728 union cvmx_rst_boot rst_boot;
729 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
730 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
731 } else {
732 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
733 }
734
735 t = read_c0_cvmctl();
736 if ((t & (1ull << 27)) == 0) {
737 /*
738 * Setup the multiplier save/restore code if
739 * CvmCtl[NOMUL] clear.
740 */
741 void *save;
742 void *save_end;
743 void *restore;
744 void *restore_end;
745 int save_len;
746 int restore_len;
747 int save_max = (char *)octeon_mult_save_end -
748 (char *)octeon_mult_save;
749 int restore_max = (char *)octeon_mult_restore_end -
750 (char *)octeon_mult_restore;
751 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
752 save = octeon_mult_save3;
753 save_end = octeon_mult_save3_end;
754 restore = octeon_mult_restore3;
755 restore_end = octeon_mult_restore3_end;
756 } else {
757 save = octeon_mult_save2;
758 save_end = octeon_mult_save2_end;
759 restore = octeon_mult_restore2;
760 restore_end = octeon_mult_restore2_end;
761 }
762 save_len = (char *)save_end - (char *)save;
763 restore_len = (char *)restore_end - (char *)restore;
764 if (!WARN_ON(save_len > save_max ||
765 restore_len > restore_max)) {
766 memcpy(octeon_mult_save, save, save_len);
767 memcpy(octeon_mult_restore, restore, restore_len);
768 }
769 }
770
771 /*
772 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
773 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
774 */
775 if (!octeon_is_simulation() &&
776 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
777 cvmx_write_csr(CVMX_LED_EN, 0);
778 cvmx_write_csr(CVMX_LED_PRT, 0);
779 cvmx_write_csr(CVMX_LED_DBG, 0);
780 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
781 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
782 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
783 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
784 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
785 cvmx_write_csr(CVMX_LED_EN, 1);
786 }
787 #ifdef CONFIG_CAVIUM_RESERVE32
788 /*
789 * We need to temporarily allocate all memory in the reserve32
790 * region. This makes sure the kernel doesn't allocate this
791 * memory when it is getting memory from the
792 * bootloader. Later, after the memory allocations are
793 * complete, the reserve32 will be freed.
794 *
795 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
796 * is in case we later use hugetlb entries with it.
797 */
798 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
799 0, 0, 2 << 20,
800 "CAVIUM_RESERVE32", 0);
801 if (addr < 0)
802 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
803 else
804 octeon_reserve32_memory = addr;
805 #endif
806
807 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
808 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
809 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
810 } else {
811 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
812 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
813 /* TLB refill */
814 cvmx_l2c_lock_mem_region(ebase, 0x100);
815 #endif
816 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
817 /* General exception */
818 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
819 #endif
820 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
821 /* Interrupt handler */
822 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
823 #endif
824 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
825 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
826 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
827 #endif
828 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
829 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
830 #endif
831 }
832 #endif
833
834 octeon_check_cpu_bist();
835
836 octeon_uart = octeon_get_boot_uart();
837
838 #ifdef CONFIG_SMP
839 octeon_write_lcd("LinuxSMP");
840 #else
841 octeon_write_lcd("Linux");
842 #endif
843
844 octeon_setup_delays();
845
846 /*
847 * BIST should always be enabled when doing a soft reset. L2
848 * Cache locking for instance is not cleared unless BIST is
849 * enabled. Unfortunately due to a chip errata G-200 for
850 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
851 */
852 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
853 OCTEON_IS_MODEL(OCTEON_CN31XX))
854 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
855 else
856 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
857
858 /* Default to 64MB in the simulator to speed things up */
859 if (octeon_is_simulation())
860 max_memory = 64ull << 20;
861
862 arg = strstr(arcs_cmdline, "mem=");
863 if (arg) {
864 max_memory = memparse(arg + 4, &p);
865 if (max_memory == 0)
866 max_memory = 32ull << 30;
867 if (*p == '@')
868 reserve_low_mem = memparse(p + 1, &p);
869 }
870
871 arcs_cmdline[0] = 0;
872 argc = octeon_boot_desc_ptr->argc;
873 for (i = 0; i < argc; i++) {
874 const char *arg =
875 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
876 if ((strncmp(arg, "MEM=", 4) == 0) ||
877 (strncmp(arg, "mem=", 4) == 0)) {
878 max_memory = memparse(arg + 4, &p);
879 if (max_memory == 0)
880 max_memory = 32ull << 30;
881 if (*p == '@')
882 reserve_low_mem = memparse(p + 1, &p);
883 #ifdef CONFIG_KEXEC
884 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
885 crashk_size = memparse(arg+12, &p);
886 if (*p == '@')
887 crashk_base = memparse(p+1, &p);
888 strcat(arcs_cmdline, " ");
889 strcat(arcs_cmdline, arg);
890 /*
891 * To do: switch parsing to new style, something like:
892 * parse_crashkernel(arg, sysinfo->system_dram_size,
893 * &crashk_size, &crashk_base);
894 */
895 #endif
896 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
897 sizeof(arcs_cmdline) - 1) {
898 strcat(arcs_cmdline, " ");
899 strcat(arcs_cmdline, arg);
900 }
901 }
902
903 if (strstr(arcs_cmdline, "console=") == NULL) {
904 #ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
905 strcat(arcs_cmdline, " console=ttyS0,115200");
906 #else
907 if (octeon_uart == 1)
908 strcat(arcs_cmdline, " console=ttyS1,115200");
909 else
910 strcat(arcs_cmdline, " console=ttyS0,115200");
911 #endif
912 }
913
914 mips_hpt_frequency = octeon_get_clock_rate();
915
916 octeon_init_cvmcount();
917
918 _machine_restart = octeon_restart;
919 _machine_halt = octeon_halt;
920
921 #ifdef CONFIG_KEXEC
922 _machine_kexec_shutdown = octeon_shutdown;
923 _machine_crash_shutdown = octeon_crash_shutdown;
924 _machine_kexec_prepare = octeon_kexec_prepare;
925 #ifdef CONFIG_SMP
926 _crash_smp_send_stop = octeon_crash_smp_send_stop;
927 #endif
928 #endif
929
930 octeon_user_io_init();
931 octeon_setup_smp();
932 }
933
934 /* Exclude a single page from the regions obtained in plat_mem_setup. */
935 #ifndef CONFIG_CRASH_DUMP
936 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
937 {
938 if (addr > *mem && addr < *mem + *size) {
939 u64 inc = addr - *mem;
940 add_memory_region(*mem, inc, BOOT_MEM_RAM);
941 *mem += inc;
942 *size -= inc;
943 }
944
945 if (addr == *mem && *size > PAGE_SIZE) {
946 *mem += PAGE_SIZE;
947 *size -= PAGE_SIZE;
948 }
949 }
950 #endif /* CONFIG_CRASH_DUMP */
951
952 void __init plat_mem_setup(void)
953 {
954 uint64_t mem_alloc_size;
955 uint64_t total;
956 uint64_t crashk_end;
957 #ifndef CONFIG_CRASH_DUMP
958 int64_t memory;
959 uint64_t kernel_start;
960 uint64_t kernel_size;
961 #endif
962
963 total = 0;
964 crashk_end = 0;
965
966 /*
967 * The Mips memory init uses the first memory location for
968 * some memory vectors. When SPARSEMEM is in use, it doesn't
969 * verify that the size is big enough for the final
970 * vectors. Making the smallest chuck 4MB seems to be enough
971 * to consistently work.
972 */
973 mem_alloc_size = 4 << 20;
974 if (mem_alloc_size > max_memory)
975 mem_alloc_size = max_memory;
976
977 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
978 #ifdef CONFIG_CRASH_DUMP
979 add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
980 total += max_memory;
981 #else
982 #ifdef CONFIG_KEXEC
983 if (crashk_size > 0) {
984 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
985 crashk_end = crashk_base + crashk_size;
986 }
987 #endif
988 /*
989 * When allocating memory, we want incrementing addresses from
990 * bootmem_alloc so the code in add_memory_region can merge
991 * regions next to each other.
992 */
993 cvmx_bootmem_lock();
994 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
995 && (total < max_memory)) {
996 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
997 __pa_symbol(&_end), -1,
998 0x100000,
999 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1000 if (memory >= 0) {
1001 u64 size = mem_alloc_size;
1002 #ifdef CONFIG_KEXEC
1003 uint64_t end;
1004 #endif
1005
1006 /*
1007 * exclude a page at the beginning and end of
1008 * the 256MB PCIe 'hole' so the kernel will not
1009 * try to allocate multi-page buffers that
1010 * span the discontinuity.
1011 */
1012 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1013 &memory, &size);
1014 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1015 CVMX_PCIE_BAR1_PHYS_SIZE,
1016 &memory, &size);
1017 #ifdef CONFIG_KEXEC
1018 end = memory + mem_alloc_size;
1019
1020 /*
1021 * This function automatically merges address regions
1022 * next to each other if they are received in
1023 * incrementing order
1024 */
1025 if (memory < crashk_base && end > crashk_end) {
1026 /* region is fully in */
1027 add_memory_region(memory,
1028 crashk_base - memory,
1029 BOOT_MEM_RAM);
1030 total += crashk_base - memory;
1031 add_memory_region(crashk_end,
1032 end - crashk_end,
1033 BOOT_MEM_RAM);
1034 total += end - crashk_end;
1035 continue;
1036 }
1037
1038 if (memory >= crashk_base && end <= crashk_end)
1039 /*
1040 * Entire memory region is within the new
1041 * kernel's memory, ignore it.
1042 */
1043 continue;
1044
1045 if (memory > crashk_base && memory < crashk_end &&
1046 end > crashk_end) {
1047 /*
1048 * Overlap with the beginning of the region,
1049 * reserve the beginning.
1050 */
1051 mem_alloc_size -= crashk_end - memory;
1052 memory = crashk_end;
1053 } else if (memory < crashk_base && end > crashk_base &&
1054 end < crashk_end)
1055 /*
1056 * Overlap with the beginning of the region,
1057 * chop of end.
1058 */
1059 mem_alloc_size -= end - crashk_base;
1060 #endif
1061 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1062 total += mem_alloc_size;
1063 /* Recovering mem_alloc_size */
1064 mem_alloc_size = 4 << 20;
1065 } else {
1066 break;
1067 }
1068 }
1069 cvmx_bootmem_unlock();
1070 /* Add the memory region for the kernel. */
1071 kernel_start = (unsigned long) _text;
1072 kernel_size = _end - _text;
1073
1074 /* Adjust for physical offset. */
1075 kernel_start &= ~0xffffffff80000000ULL;
1076 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1077 #endif /* CONFIG_CRASH_DUMP */
1078
1079 #ifdef CONFIG_CAVIUM_RESERVE32
1080 /*
1081 * Now that we've allocated the kernel memory it is safe to
1082 * free the reserved region. We free it here so that builtin
1083 * drivers can use the memory.
1084 */
1085 if (octeon_reserve32_memory)
1086 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1087 #endif /* CONFIG_CAVIUM_RESERVE32 */
1088
1089 if (total == 0)
1090 panic("Unable to allocate memory from "
1091 "cvmx_bootmem_phy_alloc");
1092 }
1093
1094 /*
1095 * Emit one character to the boot UART. Exported for use by the
1096 * watchdog timer.
1097 */
1098 int prom_putchar(char c)
1099 {
1100 uint64_t lsrval;
1101
1102 /* Spin until there is room */
1103 do {
1104 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1105 } while ((lsrval & 0x20) == 0);
1106
1107 /* Write the byte */
1108 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1109 return 1;
1110 }
1111 EXPORT_SYMBOL(prom_putchar);
1112
1113 void __init prom_free_prom_memory(void)
1114 {
1115 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1116 /* Check for presence of Core-14449 fix. */
1117 u32 insn;
1118 u32 *foo;
1119
1120 foo = &insn;
1121
1122 asm volatile("# before" : : : "memory");
1123 prefetch(foo);
1124 asm volatile(
1125 ".set push\n\t"
1126 ".set noreorder\n\t"
1127 "bal 1f\n\t"
1128 "nop\n"
1129 "1:\tlw %0,-12($31)\n\t"
1130 ".set pop\n\t"
1131 : "=r" (insn) : : "$31", "memory");
1132
1133 if ((insn >> 26) != 0x33)
1134 panic("No PREF instruction at Core-14449 probe point.");
1135
1136 if (((insn >> 16) & 0x1f) != 28)
1137 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1138 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1139 insn);
1140 }
1141 }
1142
1143 void __init octeon_fill_mac_addresses(void);
1144 int octeon_prune_device_tree(void);
1145
1146 extern const char __appended_dtb;
1147 extern const char __dtb_octeon_3xxx_begin;
1148 extern const char __dtb_octeon_68xx_begin;
1149 void __init device_tree_init(void)
1150 {
1151 const void *fdt;
1152 bool do_prune;
1153 bool fill_mac;
1154
1155 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1156 if (!fdt_check_header(&__appended_dtb)) {
1157 fdt = &__appended_dtb;
1158 do_prune = false;
1159 fill_mac = true;
1160 pr_info("Using appended Device Tree.\n");
1161 } else
1162 #endif
1163 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1164 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1165 if (fdt_check_header(fdt))
1166 panic("Corrupt Device Tree passed to kernel.");
1167 do_prune = false;
1168 fill_mac = false;
1169 pr_info("Using passed Device Tree.\n");
1170 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1171 fdt = &__dtb_octeon_68xx_begin;
1172 do_prune = true;
1173 fill_mac = true;
1174 } else {
1175 fdt = &__dtb_octeon_3xxx_begin;
1176 do_prune = true;
1177 fill_mac = true;
1178 }
1179
1180 initial_boot_params = (void *)fdt;
1181
1182 if (do_prune) {
1183 octeon_prune_device_tree();
1184 pr_info("Using internal Device Tree.\n");
1185 }
1186 if (fill_mac)
1187 octeon_fill_mac_addresses();
1188 unflatten_and_copy_device_tree();
1189 init_octeon_system_type();
1190 }
1191
1192 static int __initdata disable_octeon_edac_p;
1193
1194 static int __init disable_octeon_edac(char *str)
1195 {
1196 disable_octeon_edac_p = 1;
1197 return 0;
1198 }
1199 early_param("disable_octeon_edac", disable_octeon_edac);
1200
1201 static char *edac_device_names[] = {
1202 "octeon_l2c_edac",
1203 "octeon_pc_edac",
1204 };
1205
1206 static int __init edac_devinit(void)
1207 {
1208 struct platform_device *dev;
1209 int i, err = 0;
1210 int num_lmc;
1211 char *name;
1212
1213 if (disable_octeon_edac_p)
1214 return 0;
1215
1216 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1217 name = edac_device_names[i];
1218 dev = platform_device_register_simple(name, -1, NULL, 0);
1219 if (IS_ERR(dev)) {
1220 pr_err("Registration of %s failed!\n", name);
1221 err = PTR_ERR(dev);
1222 }
1223 }
1224
1225 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1226 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1227 for (i = 0; i < num_lmc; i++) {
1228 dev = platform_device_register_simple("octeon_lmc_edac",
1229 i, NULL, 0);
1230 if (IS_ERR(dev)) {
1231 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1232 err = PTR_ERR(dev);
1233 }
1234 }
1235
1236 return err;
1237 }
1238 device_initcall(edac_devinit);
1239
1240 static void __initdata *octeon_dummy_iospace;
1241
1242 static int __init octeon_no_pci_init(void)
1243 {
1244 /*
1245 * Initially assume there is no PCI. The PCI/PCIe platform code will
1246 * later re-initialize these to correct values if they are present.
1247 */
1248 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1249 set_io_port_base((unsigned long)octeon_dummy_iospace);
1250 ioport_resource.start = MAX_RESOURCE;
1251 ioport_resource.end = 0;
1252 return 0;
1253 }
1254 core_initcall(octeon_no_pci_init);
1255
1256 static int __init octeon_no_pci_release(void)
1257 {
1258 /*
1259 * Release the allocated memory if a real IO space is there.
1260 */
1261 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1262 vfree(octeon_dummy_iospace);
1263 return 0;
1264 }
1265 late_initcall(octeon_no_pci_release);
This page took 0.060142 seconds and 5 git commands to generate.