Merge remote-tracking branch 'kvm-ppc-paulus/kvm-ppc-next'
[deliverable/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
56 #define POWERNV_IOMMU_MAX_LEVELS 5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 const char *fmt, ...)
63 {
64 struct va_format vaf;
65 va_list args;
66 char pfix[32];
67
68 va_start(args, fmt);
69
70 vaf.fmt = fmt;
71 vaf.va = &args;
72
73 if (pe->flags & PNV_IODA_PE_DEV)
74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 sprintf(pfix, "%04x:%02x ",
77 pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 else if (pe->flags & PNV_IODA_PE_VF)
80 sprintf(pfix, "%04x:%02x:%2x.%d",
81 pci_domain_nr(pe->parent_dev->bus),
82 (pe->rid & 0xff00) >> 8,
83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86 printk("%spci %s: [PE# %.3d] %pV",
87 level, pfix, pe->pe_number, &vaf);
88
89 va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96 if (!str)
97 return -EINVAL;
98
99 while (*str) {
100 if (!strncmp(str, "nobypass", 8)) {
101 pnv_iommu_bypass_disabled = true;
102 pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 break;
104 }
105 str += strcspn(str, ",");
106 if (*str == ',')
107 str++;
108 }
109
110 return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 /*
117 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 * allocation code sometimes decides to put a 64-bit prefetchable
119 * BAR in the 32-bit window, so we have to compare the addresses.
120 *
121 * For simplicity we only test resource start.
122 */
123 return (r->start >= phb->ioda.m64_base &&
124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126
127 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
128 {
129 phb->ioda.pe_array[pe_no].phb = phb;
130 phb->ioda.pe_array[pe_no].pe_number = pe_no;
131
132 return &phb->ioda.pe_array[pe_no];
133 }
134
135 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
136 {
137 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
138 pr_warn("%s: Invalid PE %d on PHB#%x\n",
139 __func__, pe_no, phb->hose->global_number);
140 return;
141 }
142
143 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
144 pr_debug("%s: PE %d was reserved on PHB#%x\n",
145 __func__, pe_no, phb->hose->global_number);
146
147 pnv_ioda_init_pe(phb, pe_no);
148 }
149
150 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
151 {
152 long pe;
153
154 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
155 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
156 return pnv_ioda_init_pe(phb, pe);
157 }
158
159 return NULL;
160 }
161
162 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
163 {
164 struct pnv_phb *phb = pe->phb;
165 unsigned int pe_num = pe->pe_number;
166
167 WARN_ON(pe->pdev);
168
169 memset(pe, 0, sizeof(struct pnv_ioda_pe));
170 clear_bit(pe_num, phb->ioda.pe_alloc);
171 }
172
173 /* The default M64 BAR is shared by all PEs */
174 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
175 {
176 const char *desc;
177 struct resource *r;
178 s64 rc;
179
180 /* Configure the default M64 BAR */
181 rc = opal_pci_set_phb_mem_window(phb->opal_id,
182 OPAL_M64_WINDOW_TYPE,
183 phb->ioda.m64_bar_idx,
184 phb->ioda.m64_base,
185 0, /* unused */
186 phb->ioda.m64_size);
187 if (rc != OPAL_SUCCESS) {
188 desc = "configuring";
189 goto fail;
190 }
191
192 /* Enable the default M64 BAR */
193 rc = opal_pci_phb_mmio_enable(phb->opal_id,
194 OPAL_M64_WINDOW_TYPE,
195 phb->ioda.m64_bar_idx,
196 OPAL_ENABLE_M64_SPLIT);
197 if (rc != OPAL_SUCCESS) {
198 desc = "enabling";
199 goto fail;
200 }
201
202 /*
203 * Exclude the segments for reserved and root bus PE, which
204 * are first or last two PEs.
205 */
206 r = &phb->hose->mem_resources[1];
207 if (phb->ioda.reserved_pe_idx == 0)
208 r->start += (2 * phb->ioda.m64_segsize);
209 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
210 r->end -= (2 * phb->ioda.m64_segsize);
211 else
212 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
213 phb->ioda.reserved_pe_idx);
214
215 return 0;
216
217 fail:
218 pr_warn(" Failure %lld %s M64 BAR#%d\n",
219 rc, desc, phb->ioda.m64_bar_idx);
220 opal_pci_phb_mmio_enable(phb->opal_id,
221 OPAL_M64_WINDOW_TYPE,
222 phb->ioda.m64_bar_idx,
223 OPAL_DISABLE_M64);
224 return -EIO;
225 }
226
227 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
228 unsigned long *pe_bitmap)
229 {
230 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
231 struct pnv_phb *phb = hose->private_data;
232 struct resource *r;
233 resource_size_t base, sgsz, start, end;
234 int segno, i;
235
236 base = phb->ioda.m64_base;
237 sgsz = phb->ioda.m64_segsize;
238 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
239 r = &pdev->resource[i];
240 if (!r->parent || !pnv_pci_is_m64(phb, r))
241 continue;
242
243 start = _ALIGN_DOWN(r->start - base, sgsz);
244 end = _ALIGN_UP(r->end - base, sgsz);
245 for (segno = start / sgsz; segno < end / sgsz; segno++) {
246 if (pe_bitmap)
247 set_bit(segno, pe_bitmap);
248 else
249 pnv_ioda_reserve_pe(phb, segno);
250 }
251 }
252 }
253
254 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
255 {
256 struct resource *r;
257 int index;
258
259 /*
260 * There are 16 M64 BARs, each of which has 8 segments. So
261 * there are as many M64 segments as the maximum number of
262 * PEs, which is 128.
263 */
264 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
265 unsigned long base, segsz = phb->ioda.m64_segsize;
266 int64_t rc;
267
268 base = phb->ioda.m64_base +
269 index * PNV_IODA1_M64_SEGS * segsz;
270 rc = opal_pci_set_phb_mem_window(phb->opal_id,
271 OPAL_M64_WINDOW_TYPE, index, base, 0,
272 PNV_IODA1_M64_SEGS * segsz);
273 if (rc != OPAL_SUCCESS) {
274 pr_warn(" Error %lld setting M64 PHB#%d-BAR#%d\n",
275 rc, phb->hose->global_number, index);
276 goto fail;
277 }
278
279 rc = opal_pci_phb_mmio_enable(phb->opal_id,
280 OPAL_M64_WINDOW_TYPE, index,
281 OPAL_ENABLE_M64_SPLIT);
282 if (rc != OPAL_SUCCESS) {
283 pr_warn(" Error %lld enabling M64 PHB#%d-BAR#%d\n",
284 rc, phb->hose->global_number, index);
285 goto fail;
286 }
287 }
288
289 /*
290 * Exclude the segments for reserved and root bus PE, which
291 * are first or last two PEs.
292 */
293 r = &phb->hose->mem_resources[1];
294 if (phb->ioda.reserved_pe_idx == 0)
295 r->start += (2 * phb->ioda.m64_segsize);
296 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
297 r->end -= (2 * phb->ioda.m64_segsize);
298 else
299 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
300 phb->ioda.reserved_pe_idx, phb->hose->global_number);
301
302 return 0;
303
304 fail:
305 for ( ; index >= 0; index--)
306 opal_pci_phb_mmio_enable(phb->opal_id,
307 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
308
309 return -EIO;
310 }
311
312 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
313 unsigned long *pe_bitmap,
314 bool all)
315 {
316 struct pci_dev *pdev;
317
318 list_for_each_entry(pdev, &bus->devices, bus_list) {
319 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
320
321 if (all && pdev->subordinate)
322 pnv_ioda_reserve_m64_pe(pdev->subordinate,
323 pe_bitmap, all);
324 }
325 }
326
327 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
328 {
329 struct pci_controller *hose = pci_bus_to_host(bus);
330 struct pnv_phb *phb = hose->private_data;
331 struct pnv_ioda_pe *master_pe, *pe;
332 unsigned long size, *pe_alloc;
333 int i;
334
335 /* Root bus shouldn't use M64 */
336 if (pci_is_root_bus(bus))
337 return NULL;
338
339 /* Allocate bitmap */
340 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
341 pe_alloc = kzalloc(size, GFP_KERNEL);
342 if (!pe_alloc) {
343 pr_warn("%s: Out of memory !\n",
344 __func__);
345 return NULL;
346 }
347
348 /* Figure out reserved PE numbers by the PE */
349 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
350
351 /*
352 * the current bus might not own M64 window and that's all
353 * contributed by its child buses. For the case, we needn't
354 * pick M64 dependent PE#.
355 */
356 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
357 kfree(pe_alloc);
358 return NULL;
359 }
360
361 /*
362 * Figure out the master PE and put all slave PEs to master
363 * PE's list to form compound PE.
364 */
365 master_pe = NULL;
366 i = -1;
367 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
368 phb->ioda.total_pe_num) {
369 pe = &phb->ioda.pe_array[i];
370
371 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
372 if (!master_pe) {
373 pe->flags |= PNV_IODA_PE_MASTER;
374 INIT_LIST_HEAD(&pe->slaves);
375 master_pe = pe;
376 } else {
377 pe->flags |= PNV_IODA_PE_SLAVE;
378 pe->master = master_pe;
379 list_add_tail(&pe->list, &master_pe->slaves);
380 }
381
382 /*
383 * P7IOC supports M64DT, which helps mapping M64 segment
384 * to one particular PE#. However, PHB3 has fixed mapping
385 * between M64 segment and PE#. In order to have same logic
386 * for P7IOC and PHB3, we enforce fixed mapping between M64
387 * segment and PE# on P7IOC.
388 */
389 if (phb->type == PNV_PHB_IODA1) {
390 int64_t rc;
391
392 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
393 pe->pe_number, OPAL_M64_WINDOW_TYPE,
394 pe->pe_number / PNV_IODA1_M64_SEGS,
395 pe->pe_number % PNV_IODA1_M64_SEGS);
396 if (rc != OPAL_SUCCESS)
397 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
398 __func__, rc, phb->hose->global_number,
399 pe->pe_number);
400 }
401 }
402
403 kfree(pe_alloc);
404 return master_pe;
405 }
406
407 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
408 {
409 struct pci_controller *hose = phb->hose;
410 struct device_node *dn = hose->dn;
411 struct resource *res;
412 u32 m64_range[2], i;
413 const u32 *r;
414 u64 pci_addr;
415
416 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
417 pr_info(" Not support M64 window\n");
418 return;
419 }
420
421 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
422 pr_info(" Firmware too old to support M64 window\n");
423 return;
424 }
425
426 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
427 if (!r) {
428 pr_info(" No <ibm,opal-m64-window> on %s\n",
429 dn->full_name);
430 return;
431 }
432
433 /*
434 * Find the available M64 BAR range and pickup the last one for
435 * covering the whole 64-bits space. We support only one range.
436 */
437 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
438 m64_range, 2)) {
439 /* In absence of the property, assume 0..15 */
440 m64_range[0] = 0;
441 m64_range[1] = 16;
442 }
443 /* We only support 64 bits in our allocator */
444 if (m64_range[1] > 63) {
445 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
446 __func__, m64_range[1], phb->hose->global_number);
447 m64_range[1] = 63;
448 }
449 /* Empty range, no m64 */
450 if (m64_range[1] <= m64_range[0]) {
451 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
452 __func__, phb->hose->global_number);
453 return;
454 }
455
456 /* Configure M64 informations */
457 res = &hose->mem_resources[1];
458 res->name = dn->full_name;
459 res->start = of_translate_address(dn, r + 2);
460 res->end = res->start + of_read_number(r + 4, 2) - 1;
461 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
462 pci_addr = of_read_number(r, 2);
463 hose->mem_offset[1] = res->start - pci_addr;
464
465 phb->ioda.m64_size = resource_size(res);
466 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
467 phb->ioda.m64_base = pci_addr;
468
469 /* This lines up nicely with the display from processing OF ranges */
470 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
471 res->start, res->end, pci_addr, m64_range[0],
472 m64_range[0] + m64_range[1] - 1);
473
474 /* Mark all M64 used up by default */
475 phb->ioda.m64_bar_alloc = (unsigned long)-1;
476
477 /* Use last M64 BAR to cover M64 window */
478 m64_range[1]--;
479 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
480
481 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
482
483 /* Mark remaining ones free */
484 for (i = m64_range[0]; i < m64_range[1]; i++)
485 clear_bit(i, &phb->ioda.m64_bar_alloc);
486
487 /*
488 * Setup init functions for M64 based on IODA version, IODA3 uses
489 * the IODA2 code.
490 */
491 if (phb->type == PNV_PHB_IODA1)
492 phb->init_m64 = pnv_ioda1_init_m64;
493 else
494 phb->init_m64 = pnv_ioda2_init_m64;
495 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
496 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
497 }
498
499 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
500 {
501 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
502 struct pnv_ioda_pe *slave;
503 s64 rc;
504
505 /* Fetch master PE */
506 if (pe->flags & PNV_IODA_PE_SLAVE) {
507 pe = pe->master;
508 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
509 return;
510
511 pe_no = pe->pe_number;
512 }
513
514 /* Freeze master PE */
515 rc = opal_pci_eeh_freeze_set(phb->opal_id,
516 pe_no,
517 OPAL_EEH_ACTION_SET_FREEZE_ALL);
518 if (rc != OPAL_SUCCESS) {
519 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
520 __func__, rc, phb->hose->global_number, pe_no);
521 return;
522 }
523
524 /* Freeze slave PEs */
525 if (!(pe->flags & PNV_IODA_PE_MASTER))
526 return;
527
528 list_for_each_entry(slave, &pe->slaves, list) {
529 rc = opal_pci_eeh_freeze_set(phb->opal_id,
530 slave->pe_number,
531 OPAL_EEH_ACTION_SET_FREEZE_ALL);
532 if (rc != OPAL_SUCCESS)
533 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
534 __func__, rc, phb->hose->global_number,
535 slave->pe_number);
536 }
537 }
538
539 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
540 {
541 struct pnv_ioda_pe *pe, *slave;
542 s64 rc;
543
544 /* Find master PE */
545 pe = &phb->ioda.pe_array[pe_no];
546 if (pe->flags & PNV_IODA_PE_SLAVE) {
547 pe = pe->master;
548 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
549 pe_no = pe->pe_number;
550 }
551
552 /* Clear frozen state for master PE */
553 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
554 if (rc != OPAL_SUCCESS) {
555 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
556 __func__, rc, opt, phb->hose->global_number, pe_no);
557 return -EIO;
558 }
559
560 if (!(pe->flags & PNV_IODA_PE_MASTER))
561 return 0;
562
563 /* Clear frozen state for slave PEs */
564 list_for_each_entry(slave, &pe->slaves, list) {
565 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
566 slave->pe_number,
567 opt);
568 if (rc != OPAL_SUCCESS) {
569 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
570 __func__, rc, opt, phb->hose->global_number,
571 slave->pe_number);
572 return -EIO;
573 }
574 }
575
576 return 0;
577 }
578
579 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
580 {
581 struct pnv_ioda_pe *slave, *pe;
582 u8 fstate, state;
583 __be16 pcierr;
584 s64 rc;
585
586 /* Sanity check on PE number */
587 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
588 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
589
590 /*
591 * Fetch the master PE and the PE instance might be
592 * not initialized yet.
593 */
594 pe = &phb->ioda.pe_array[pe_no];
595 if (pe->flags & PNV_IODA_PE_SLAVE) {
596 pe = pe->master;
597 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
598 pe_no = pe->pe_number;
599 }
600
601 /* Check the master PE */
602 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
603 &state, &pcierr, NULL);
604 if (rc != OPAL_SUCCESS) {
605 pr_warn("%s: Failure %lld getting "
606 "PHB#%x-PE#%x state\n",
607 __func__, rc,
608 phb->hose->global_number, pe_no);
609 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
610 }
611
612 /* Check the slave PE */
613 if (!(pe->flags & PNV_IODA_PE_MASTER))
614 return state;
615
616 list_for_each_entry(slave, &pe->slaves, list) {
617 rc = opal_pci_eeh_freeze_status(phb->opal_id,
618 slave->pe_number,
619 &fstate,
620 &pcierr,
621 NULL);
622 if (rc != OPAL_SUCCESS) {
623 pr_warn("%s: Failure %lld getting "
624 "PHB#%x-PE#%x state\n",
625 __func__, rc,
626 phb->hose->global_number, slave->pe_number);
627 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
628 }
629
630 /*
631 * Override the result based on the ascending
632 * priority.
633 */
634 if (fstate > state)
635 state = fstate;
636 }
637
638 return state;
639 }
640
641 /* Currently those 2 are only used when MSIs are enabled, this will change
642 * but in the meantime, we need to protect them to avoid warnings
643 */
644 #ifdef CONFIG_PCI_MSI
645 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
646 {
647 struct pci_controller *hose = pci_bus_to_host(dev->bus);
648 struct pnv_phb *phb = hose->private_data;
649 struct pci_dn *pdn = pci_get_pdn(dev);
650
651 if (!pdn)
652 return NULL;
653 if (pdn->pe_number == IODA_INVALID_PE)
654 return NULL;
655 return &phb->ioda.pe_array[pdn->pe_number];
656 }
657 #endif /* CONFIG_PCI_MSI */
658
659 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
660 struct pnv_ioda_pe *parent,
661 struct pnv_ioda_pe *child,
662 bool is_add)
663 {
664 const char *desc = is_add ? "adding" : "removing";
665 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
666 OPAL_REMOVE_PE_FROM_DOMAIN;
667 struct pnv_ioda_pe *slave;
668 long rc;
669
670 /* Parent PE affects child PE */
671 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
672 child->pe_number, op);
673 if (rc != OPAL_SUCCESS) {
674 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
675 rc, desc);
676 return -ENXIO;
677 }
678
679 if (!(child->flags & PNV_IODA_PE_MASTER))
680 return 0;
681
682 /* Compound case: parent PE affects slave PEs */
683 list_for_each_entry(slave, &child->slaves, list) {
684 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
685 slave->pe_number, op);
686 if (rc != OPAL_SUCCESS) {
687 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
688 rc, desc);
689 return -ENXIO;
690 }
691 }
692
693 return 0;
694 }
695
696 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
697 struct pnv_ioda_pe *pe,
698 bool is_add)
699 {
700 struct pnv_ioda_pe *slave;
701 struct pci_dev *pdev = NULL;
702 int ret;
703
704 /*
705 * Clear PE frozen state. If it's master PE, we need
706 * clear slave PE frozen state as well.
707 */
708 if (is_add) {
709 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
710 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
711 if (pe->flags & PNV_IODA_PE_MASTER) {
712 list_for_each_entry(slave, &pe->slaves, list)
713 opal_pci_eeh_freeze_clear(phb->opal_id,
714 slave->pe_number,
715 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
716 }
717 }
718
719 /*
720 * Associate PE in PELT. We need add the PE into the
721 * corresponding PELT-V as well. Otherwise, the error
722 * originated from the PE might contribute to other
723 * PEs.
724 */
725 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
726 if (ret)
727 return ret;
728
729 /* For compound PEs, any one affects all of them */
730 if (pe->flags & PNV_IODA_PE_MASTER) {
731 list_for_each_entry(slave, &pe->slaves, list) {
732 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
733 if (ret)
734 return ret;
735 }
736 }
737
738 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
739 pdev = pe->pbus->self;
740 else if (pe->flags & PNV_IODA_PE_DEV)
741 pdev = pe->pdev->bus->self;
742 #ifdef CONFIG_PCI_IOV
743 else if (pe->flags & PNV_IODA_PE_VF)
744 pdev = pe->parent_dev;
745 #endif /* CONFIG_PCI_IOV */
746 while (pdev) {
747 struct pci_dn *pdn = pci_get_pdn(pdev);
748 struct pnv_ioda_pe *parent;
749
750 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
751 parent = &phb->ioda.pe_array[pdn->pe_number];
752 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
753 if (ret)
754 return ret;
755 }
756
757 pdev = pdev->bus->self;
758 }
759
760 return 0;
761 }
762
763 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
764 {
765 struct pci_dev *parent;
766 uint8_t bcomp, dcomp, fcomp;
767 int64_t rc;
768 long rid_end, rid;
769
770 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
771 if (pe->pbus) {
772 int count;
773
774 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
775 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
776 parent = pe->pbus->self;
777 if (pe->flags & PNV_IODA_PE_BUS_ALL)
778 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
779 else
780 count = 1;
781
782 switch(count) {
783 case 1: bcomp = OpalPciBusAll; break;
784 case 2: bcomp = OpalPciBus7Bits; break;
785 case 4: bcomp = OpalPciBus6Bits; break;
786 case 8: bcomp = OpalPciBus5Bits; break;
787 case 16: bcomp = OpalPciBus4Bits; break;
788 case 32: bcomp = OpalPciBus3Bits; break;
789 default:
790 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
791 count);
792 /* Do an exact match only */
793 bcomp = OpalPciBusAll;
794 }
795 rid_end = pe->rid + (count << 8);
796 } else {
797 #ifdef CONFIG_PCI_IOV
798 if (pe->flags & PNV_IODA_PE_VF)
799 parent = pe->parent_dev;
800 else
801 #endif
802 parent = pe->pdev->bus->self;
803 bcomp = OpalPciBusAll;
804 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
805 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
806 rid_end = pe->rid + 1;
807 }
808
809 /* Clear the reverse map */
810 for (rid = pe->rid; rid < rid_end; rid++)
811 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
812
813 /* Release from all parents PELT-V */
814 while (parent) {
815 struct pci_dn *pdn = pci_get_pdn(parent);
816 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
817 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
818 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
819 /* XXX What to do in case of error ? */
820 }
821 parent = parent->bus->self;
822 }
823
824 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
825 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
826
827 /* Disassociate PE in PELT */
828 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
829 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
830 if (rc)
831 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
832 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
833 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
834 if (rc)
835 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
836
837 pe->pbus = NULL;
838 pe->pdev = NULL;
839 #ifdef CONFIG_PCI_IOV
840 pe->parent_dev = NULL;
841 #endif
842
843 return 0;
844 }
845
846 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
847 {
848 struct pci_dev *parent;
849 uint8_t bcomp, dcomp, fcomp;
850 long rc, rid_end, rid;
851
852 /* Bus validation ? */
853 if (pe->pbus) {
854 int count;
855
856 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
857 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
858 parent = pe->pbus->self;
859 if (pe->flags & PNV_IODA_PE_BUS_ALL)
860 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
861 else
862 count = 1;
863
864 switch(count) {
865 case 1: bcomp = OpalPciBusAll; break;
866 case 2: bcomp = OpalPciBus7Bits; break;
867 case 4: bcomp = OpalPciBus6Bits; break;
868 case 8: bcomp = OpalPciBus5Bits; break;
869 case 16: bcomp = OpalPciBus4Bits; break;
870 case 32: bcomp = OpalPciBus3Bits; break;
871 default:
872 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
873 count);
874 /* Do an exact match only */
875 bcomp = OpalPciBusAll;
876 }
877 rid_end = pe->rid + (count << 8);
878 } else {
879 #ifdef CONFIG_PCI_IOV
880 if (pe->flags & PNV_IODA_PE_VF)
881 parent = pe->parent_dev;
882 else
883 #endif /* CONFIG_PCI_IOV */
884 parent = pe->pdev->bus->self;
885 bcomp = OpalPciBusAll;
886 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
887 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
888 rid_end = pe->rid + 1;
889 }
890
891 /*
892 * Associate PE in PELT. We need add the PE into the
893 * corresponding PELT-V as well. Otherwise, the error
894 * originated from the PE might contribute to other
895 * PEs.
896 */
897 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
898 bcomp, dcomp, fcomp, OPAL_MAP_PE);
899 if (rc) {
900 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
901 return -ENXIO;
902 }
903
904 /*
905 * Configure PELTV. NPUs don't have a PELTV table so skip
906 * configuration on them.
907 */
908 if (phb->type != PNV_PHB_NPU)
909 pnv_ioda_set_peltv(phb, pe, true);
910
911 /* Setup reverse map */
912 for (rid = pe->rid; rid < rid_end; rid++)
913 phb->ioda.pe_rmap[rid] = pe->pe_number;
914
915 /* Setup one MVTs on IODA1 */
916 if (phb->type != PNV_PHB_IODA1) {
917 pe->mve_number = 0;
918 goto out;
919 }
920
921 pe->mve_number = pe->pe_number;
922 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
923 if (rc != OPAL_SUCCESS) {
924 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
925 rc, pe->mve_number);
926 pe->mve_number = -1;
927 } else {
928 rc = opal_pci_set_mve_enable(phb->opal_id,
929 pe->mve_number, OPAL_ENABLE_MVE);
930 if (rc) {
931 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
932 rc, pe->mve_number);
933 pe->mve_number = -1;
934 }
935 }
936
937 out:
938 return 0;
939 }
940
941 #ifdef CONFIG_PCI_IOV
942 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
943 {
944 struct pci_dn *pdn = pci_get_pdn(dev);
945 int i;
946 struct resource *res, res2;
947 resource_size_t size;
948 u16 num_vfs;
949
950 if (!dev->is_physfn)
951 return -EINVAL;
952
953 /*
954 * "offset" is in VFs. The M64 windows are sized so that when they
955 * are segmented, each segment is the same size as the IOV BAR.
956 * Each segment is in a separate PE, and the high order bits of the
957 * address are the PE number. Therefore, each VF's BAR is in a
958 * separate PE, and changing the IOV BAR start address changes the
959 * range of PEs the VFs are in.
960 */
961 num_vfs = pdn->num_vfs;
962 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
963 res = &dev->resource[i + PCI_IOV_RESOURCES];
964 if (!res->flags || !res->parent)
965 continue;
966
967 /*
968 * The actual IOV BAR range is determined by the start address
969 * and the actual size for num_vfs VFs BAR. This check is to
970 * make sure that after shifting, the range will not overlap
971 * with another device.
972 */
973 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
974 res2.flags = res->flags;
975 res2.start = res->start + (size * offset);
976 res2.end = res2.start + (size * num_vfs) - 1;
977
978 if (res2.end > res->end) {
979 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
980 i, &res2, res, num_vfs, offset);
981 return -EBUSY;
982 }
983 }
984
985 /*
986 * After doing so, there would be a "hole" in the /proc/iomem when
987 * offset is a positive value. It looks like the device return some
988 * mmio back to the system, which actually no one could use it.
989 */
990 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
991 res = &dev->resource[i + PCI_IOV_RESOURCES];
992 if (!res->flags || !res->parent)
993 continue;
994
995 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
996 res2 = *res;
997 res->start += size * offset;
998
999 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1000 i, &res2, res, (offset > 0) ? "En" : "Dis",
1001 num_vfs, offset);
1002 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1003 }
1004 return 0;
1005 }
1006 #endif /* CONFIG_PCI_IOV */
1007
1008 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1009 {
1010 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1011 struct pnv_phb *phb = hose->private_data;
1012 struct pci_dn *pdn = pci_get_pdn(dev);
1013 struct pnv_ioda_pe *pe;
1014
1015 if (!pdn) {
1016 pr_err("%s: Device tree node not associated properly\n",
1017 pci_name(dev));
1018 return NULL;
1019 }
1020 if (pdn->pe_number != IODA_INVALID_PE)
1021 return NULL;
1022
1023 pe = pnv_ioda_alloc_pe(phb);
1024 if (!pe) {
1025 pr_warning("%s: Not enough PE# available, disabling device\n",
1026 pci_name(dev));
1027 return NULL;
1028 }
1029
1030 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1031 * pointer in the PE data structure, both should be destroyed at the
1032 * same time. However, this needs to be looked at more closely again
1033 * once we actually start removing things (Hotplug, SR-IOV, ...)
1034 *
1035 * At some point we want to remove the PDN completely anyways
1036 */
1037 pci_dev_get(dev);
1038 pdn->pcidev = dev;
1039 pdn->pe_number = pe->pe_number;
1040 pe->flags = PNV_IODA_PE_DEV;
1041 pe->pdev = dev;
1042 pe->pbus = NULL;
1043 pe->mve_number = -1;
1044 pe->rid = dev->bus->number << 8 | pdn->devfn;
1045
1046 pe_info(pe, "Associated device to PE\n");
1047
1048 if (pnv_ioda_configure_pe(phb, pe)) {
1049 /* XXX What do we do here ? */
1050 pnv_ioda_free_pe(pe);
1051 pdn->pe_number = IODA_INVALID_PE;
1052 pe->pdev = NULL;
1053 pci_dev_put(dev);
1054 return NULL;
1055 }
1056
1057 /* Put PE to the list */
1058 list_add_tail(&pe->list, &phb->ioda.pe_list);
1059
1060 return pe;
1061 }
1062
1063 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1064 {
1065 struct pci_dev *dev;
1066
1067 list_for_each_entry(dev, &bus->devices, bus_list) {
1068 struct pci_dn *pdn = pci_get_pdn(dev);
1069
1070 if (pdn == NULL) {
1071 pr_warn("%s: No device node associated with device !\n",
1072 pci_name(dev));
1073 continue;
1074 }
1075
1076 /*
1077 * In partial hotplug case, the PCI device might be still
1078 * associated with the PE and needn't attach it to the PE
1079 * again.
1080 */
1081 if (pdn->pe_number != IODA_INVALID_PE)
1082 continue;
1083
1084 pe->device_count++;
1085 pdn->pcidev = dev;
1086 pdn->pe_number = pe->pe_number;
1087 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1088 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1089 }
1090 }
1091
1092 /*
1093 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1094 * single PCI bus. Another one that contains the primary PCI bus and its
1095 * subordinate PCI devices and buses. The second type of PE is normally
1096 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1097 */
1098 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1099 {
1100 struct pci_controller *hose = pci_bus_to_host(bus);
1101 struct pnv_phb *phb = hose->private_data;
1102 struct pnv_ioda_pe *pe = NULL;
1103 unsigned int pe_num;
1104
1105 /*
1106 * In partial hotplug case, the PE instance might be still alive.
1107 * We should reuse it instead of allocating a new one.
1108 */
1109 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1110 if (pe_num != IODA_INVALID_PE) {
1111 pe = &phb->ioda.pe_array[pe_num];
1112 pnv_ioda_setup_same_PE(bus, pe);
1113 return NULL;
1114 }
1115
1116 /* PE number for root bus should have been reserved */
1117 if (pci_is_root_bus(bus) &&
1118 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1119 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1120
1121 /* Check if PE is determined by M64 */
1122 if (!pe && phb->pick_m64_pe)
1123 pe = phb->pick_m64_pe(bus, all);
1124
1125 /* The PE number isn't pinned by M64 */
1126 if (!pe)
1127 pe = pnv_ioda_alloc_pe(phb);
1128
1129 if (!pe) {
1130 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1131 __func__, pci_domain_nr(bus), bus->number);
1132 return NULL;
1133 }
1134
1135 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1136 pe->pbus = bus;
1137 pe->pdev = NULL;
1138 pe->mve_number = -1;
1139 pe->rid = bus->busn_res.start << 8;
1140
1141 if (all)
1142 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1143 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1144 else
1145 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1146 bus->busn_res.start, pe->pe_number);
1147
1148 if (pnv_ioda_configure_pe(phb, pe)) {
1149 /* XXX What do we do here ? */
1150 pnv_ioda_free_pe(pe);
1151 pe->pbus = NULL;
1152 return NULL;
1153 }
1154
1155 /* Associate it with all child devices */
1156 pnv_ioda_setup_same_PE(bus, pe);
1157
1158 /* Put PE to the list */
1159 list_add_tail(&pe->list, &phb->ioda.pe_list);
1160
1161 return pe;
1162 }
1163
1164 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1165 {
1166 int pe_num, found_pe = false, rc;
1167 long rid;
1168 struct pnv_ioda_pe *pe;
1169 struct pci_dev *gpu_pdev;
1170 struct pci_dn *npu_pdn;
1171 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1172 struct pnv_phb *phb = hose->private_data;
1173
1174 /*
1175 * Due to a hardware errata PE#0 on the NPU is reserved for
1176 * error handling. This means we only have three PEs remaining
1177 * which need to be assigned to four links, implying some
1178 * links must share PEs.
1179 *
1180 * To achieve this we assign PEs such that NPUs linking the
1181 * same GPU get assigned the same PE.
1182 */
1183 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1184 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1185 pe = &phb->ioda.pe_array[pe_num];
1186 if (!pe->pdev)
1187 continue;
1188
1189 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1190 /*
1191 * This device has the same peer GPU so should
1192 * be assigned the same PE as the existing
1193 * peer NPU.
1194 */
1195 dev_info(&npu_pdev->dev,
1196 "Associating to existing PE %d\n", pe_num);
1197 pci_dev_get(npu_pdev);
1198 npu_pdn = pci_get_pdn(npu_pdev);
1199 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1200 npu_pdn->pcidev = npu_pdev;
1201 npu_pdn->pe_number = pe_num;
1202 phb->ioda.pe_rmap[rid] = pe->pe_number;
1203
1204 /* Map the PE to this link */
1205 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1206 OpalPciBusAll,
1207 OPAL_COMPARE_RID_DEVICE_NUMBER,
1208 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1209 OPAL_MAP_PE);
1210 WARN_ON(rc != OPAL_SUCCESS);
1211 found_pe = true;
1212 break;
1213 }
1214 }
1215
1216 if (!found_pe)
1217 /*
1218 * Could not find an existing PE so allocate a new
1219 * one.
1220 */
1221 return pnv_ioda_setup_dev_PE(npu_pdev);
1222 else
1223 return pe;
1224 }
1225
1226 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1227 {
1228 struct pci_dev *pdev;
1229
1230 list_for_each_entry(pdev, &bus->devices, bus_list)
1231 pnv_ioda_setup_npu_PE(pdev);
1232 }
1233
1234 static void pnv_pci_ioda_setup_PEs(void)
1235 {
1236 struct pci_controller *hose, *tmp;
1237 struct pnv_phb *phb;
1238
1239 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1240 phb = hose->private_data;
1241 if (phb->type == PNV_PHB_NPU) {
1242 /* PE#0 is needed for error reporting */
1243 pnv_ioda_reserve_pe(phb, 0);
1244 pnv_ioda_setup_npu_PEs(hose->bus);
1245 }
1246 }
1247 }
1248
1249 #ifdef CONFIG_PCI_IOV
1250 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1251 {
1252 struct pci_bus *bus;
1253 struct pci_controller *hose;
1254 struct pnv_phb *phb;
1255 struct pci_dn *pdn;
1256 int i, j;
1257 int m64_bars;
1258
1259 bus = pdev->bus;
1260 hose = pci_bus_to_host(bus);
1261 phb = hose->private_data;
1262 pdn = pci_get_pdn(pdev);
1263
1264 if (pdn->m64_single_mode)
1265 m64_bars = num_vfs;
1266 else
1267 m64_bars = 1;
1268
1269 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1270 for (j = 0; j < m64_bars; j++) {
1271 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1272 continue;
1273 opal_pci_phb_mmio_enable(phb->opal_id,
1274 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1275 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1276 pdn->m64_map[j][i] = IODA_INVALID_M64;
1277 }
1278
1279 kfree(pdn->m64_map);
1280 return 0;
1281 }
1282
1283 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1284 {
1285 struct pci_bus *bus;
1286 struct pci_controller *hose;
1287 struct pnv_phb *phb;
1288 struct pci_dn *pdn;
1289 unsigned int win;
1290 struct resource *res;
1291 int i, j;
1292 int64_t rc;
1293 int total_vfs;
1294 resource_size_t size, start;
1295 int pe_num;
1296 int m64_bars;
1297
1298 bus = pdev->bus;
1299 hose = pci_bus_to_host(bus);
1300 phb = hose->private_data;
1301 pdn = pci_get_pdn(pdev);
1302 total_vfs = pci_sriov_get_totalvfs(pdev);
1303
1304 if (pdn->m64_single_mode)
1305 m64_bars = num_vfs;
1306 else
1307 m64_bars = 1;
1308
1309 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1310 if (!pdn->m64_map)
1311 return -ENOMEM;
1312 /* Initialize the m64_map to IODA_INVALID_M64 */
1313 for (i = 0; i < m64_bars ; i++)
1314 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1315 pdn->m64_map[i][j] = IODA_INVALID_M64;
1316
1317
1318 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1319 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1320 if (!res->flags || !res->parent)
1321 continue;
1322
1323 for (j = 0; j < m64_bars; j++) {
1324 do {
1325 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1326 phb->ioda.m64_bar_idx + 1, 0);
1327
1328 if (win >= phb->ioda.m64_bar_idx + 1)
1329 goto m64_failed;
1330 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1331
1332 pdn->m64_map[j][i] = win;
1333
1334 if (pdn->m64_single_mode) {
1335 size = pci_iov_resource_size(pdev,
1336 PCI_IOV_RESOURCES + i);
1337 start = res->start + size * j;
1338 } else {
1339 size = resource_size(res);
1340 start = res->start;
1341 }
1342
1343 /* Map the M64 here */
1344 if (pdn->m64_single_mode) {
1345 pe_num = pdn->pe_num_map[j];
1346 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1347 pe_num, OPAL_M64_WINDOW_TYPE,
1348 pdn->m64_map[j][i], 0);
1349 }
1350
1351 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1352 OPAL_M64_WINDOW_TYPE,
1353 pdn->m64_map[j][i],
1354 start,
1355 0, /* unused */
1356 size);
1357
1358
1359 if (rc != OPAL_SUCCESS) {
1360 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1361 win, rc);
1362 goto m64_failed;
1363 }
1364
1365 if (pdn->m64_single_mode)
1366 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1367 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1368 else
1369 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1370 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1371
1372 if (rc != OPAL_SUCCESS) {
1373 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1374 win, rc);
1375 goto m64_failed;
1376 }
1377 }
1378 }
1379 return 0;
1380
1381 m64_failed:
1382 pnv_pci_vf_release_m64(pdev, num_vfs);
1383 return -EBUSY;
1384 }
1385
1386 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1387 int num);
1388 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1389
1390 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1391 {
1392 struct iommu_table *tbl;
1393 int64_t rc;
1394
1395 tbl = pe->table_group.tables[0];
1396 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1397 if (rc)
1398 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1399
1400 pnv_pci_ioda2_set_bypass(pe, false);
1401 if (pe->table_group.group) {
1402 iommu_group_put(pe->table_group.group);
1403 BUG_ON(pe->table_group.group);
1404 }
1405 pnv_pci_ioda2_table_free_pages(tbl);
1406 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1407 }
1408
1409 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1410 {
1411 struct pci_bus *bus;
1412 struct pci_controller *hose;
1413 struct pnv_phb *phb;
1414 struct pnv_ioda_pe *pe, *pe_n;
1415 struct pci_dn *pdn;
1416
1417 bus = pdev->bus;
1418 hose = pci_bus_to_host(bus);
1419 phb = hose->private_data;
1420 pdn = pci_get_pdn(pdev);
1421
1422 if (!pdev->is_physfn)
1423 return;
1424
1425 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1426 if (pe->parent_dev != pdev)
1427 continue;
1428
1429 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1430
1431 /* Remove from list */
1432 mutex_lock(&phb->ioda.pe_list_mutex);
1433 list_del(&pe->list);
1434 mutex_unlock(&phb->ioda.pe_list_mutex);
1435
1436 pnv_ioda_deconfigure_pe(phb, pe);
1437
1438 pnv_ioda_free_pe(pe);
1439 }
1440 }
1441
1442 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1443 {
1444 struct pci_bus *bus;
1445 struct pci_controller *hose;
1446 struct pnv_phb *phb;
1447 struct pnv_ioda_pe *pe;
1448 struct pci_dn *pdn;
1449 struct pci_sriov *iov;
1450 u16 num_vfs, i;
1451
1452 bus = pdev->bus;
1453 hose = pci_bus_to_host(bus);
1454 phb = hose->private_data;
1455 pdn = pci_get_pdn(pdev);
1456 iov = pdev->sriov;
1457 num_vfs = pdn->num_vfs;
1458
1459 /* Release VF PEs */
1460 pnv_ioda_release_vf_PE(pdev);
1461
1462 if (phb->type == PNV_PHB_IODA2) {
1463 if (!pdn->m64_single_mode)
1464 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1465
1466 /* Release M64 windows */
1467 pnv_pci_vf_release_m64(pdev, num_vfs);
1468
1469 /* Release PE numbers */
1470 if (pdn->m64_single_mode) {
1471 for (i = 0; i < num_vfs; i++) {
1472 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1473 continue;
1474
1475 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1476 pnv_ioda_free_pe(pe);
1477 }
1478 } else
1479 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1480 /* Releasing pe_num_map */
1481 kfree(pdn->pe_num_map);
1482 }
1483 }
1484
1485 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1486 struct pnv_ioda_pe *pe);
1487 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1488 {
1489 struct pci_bus *bus;
1490 struct pci_controller *hose;
1491 struct pnv_phb *phb;
1492 struct pnv_ioda_pe *pe;
1493 int pe_num;
1494 u16 vf_index;
1495 struct pci_dn *pdn;
1496
1497 bus = pdev->bus;
1498 hose = pci_bus_to_host(bus);
1499 phb = hose->private_data;
1500 pdn = pci_get_pdn(pdev);
1501
1502 if (!pdev->is_physfn)
1503 return;
1504
1505 /* Reserve PE for each VF */
1506 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1507 if (pdn->m64_single_mode)
1508 pe_num = pdn->pe_num_map[vf_index];
1509 else
1510 pe_num = *pdn->pe_num_map + vf_index;
1511
1512 pe = &phb->ioda.pe_array[pe_num];
1513 pe->pe_number = pe_num;
1514 pe->phb = phb;
1515 pe->flags = PNV_IODA_PE_VF;
1516 pe->pbus = NULL;
1517 pe->parent_dev = pdev;
1518 pe->mve_number = -1;
1519 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1520 pci_iov_virtfn_devfn(pdev, vf_index);
1521
1522 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1523 hose->global_number, pdev->bus->number,
1524 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1525 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1526
1527 if (pnv_ioda_configure_pe(phb, pe)) {
1528 /* XXX What do we do here ? */
1529 pnv_ioda_free_pe(pe);
1530 pe->pdev = NULL;
1531 continue;
1532 }
1533
1534 /* Put PE to the list */
1535 mutex_lock(&phb->ioda.pe_list_mutex);
1536 list_add_tail(&pe->list, &phb->ioda.pe_list);
1537 mutex_unlock(&phb->ioda.pe_list_mutex);
1538
1539 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1540 }
1541 }
1542
1543 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1544 {
1545 struct pci_bus *bus;
1546 struct pci_controller *hose;
1547 struct pnv_phb *phb;
1548 struct pnv_ioda_pe *pe;
1549 struct pci_dn *pdn;
1550 int ret;
1551 u16 i;
1552
1553 bus = pdev->bus;
1554 hose = pci_bus_to_host(bus);
1555 phb = hose->private_data;
1556 pdn = pci_get_pdn(pdev);
1557
1558 if (phb->type == PNV_PHB_IODA2) {
1559 if (!pdn->vfs_expanded) {
1560 dev_info(&pdev->dev, "don't support this SRIOV device"
1561 " with non 64bit-prefetchable IOV BAR\n");
1562 return -ENOSPC;
1563 }
1564
1565 /*
1566 * When M64 BARs functions in Single PE mode, the number of VFs
1567 * could be enabled must be less than the number of M64 BARs.
1568 */
1569 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1570 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1571 return -EBUSY;
1572 }
1573
1574 /* Allocating pe_num_map */
1575 if (pdn->m64_single_mode)
1576 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1577 GFP_KERNEL);
1578 else
1579 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1580
1581 if (!pdn->pe_num_map)
1582 return -ENOMEM;
1583
1584 if (pdn->m64_single_mode)
1585 for (i = 0; i < num_vfs; i++)
1586 pdn->pe_num_map[i] = IODA_INVALID_PE;
1587
1588 /* Calculate available PE for required VFs */
1589 if (pdn->m64_single_mode) {
1590 for (i = 0; i < num_vfs; i++) {
1591 pe = pnv_ioda_alloc_pe(phb);
1592 if (!pe) {
1593 ret = -EBUSY;
1594 goto m64_failed;
1595 }
1596
1597 pdn->pe_num_map[i] = pe->pe_number;
1598 }
1599 } else {
1600 mutex_lock(&phb->ioda.pe_alloc_mutex);
1601 *pdn->pe_num_map = bitmap_find_next_zero_area(
1602 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1603 0, num_vfs, 0);
1604 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1605 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1606 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1607 kfree(pdn->pe_num_map);
1608 return -EBUSY;
1609 }
1610 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1611 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1612 }
1613 pdn->num_vfs = num_vfs;
1614
1615 /* Assign M64 window accordingly */
1616 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1617 if (ret) {
1618 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1619 goto m64_failed;
1620 }
1621
1622 /*
1623 * When using one M64 BAR to map one IOV BAR, we need to shift
1624 * the IOV BAR according to the PE# allocated to the VFs.
1625 * Otherwise, the PE# for the VF will conflict with others.
1626 */
1627 if (!pdn->m64_single_mode) {
1628 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1629 if (ret)
1630 goto m64_failed;
1631 }
1632 }
1633
1634 /* Setup VF PEs */
1635 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1636
1637 return 0;
1638
1639 m64_failed:
1640 if (pdn->m64_single_mode) {
1641 for (i = 0; i < num_vfs; i++) {
1642 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1643 continue;
1644
1645 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1646 pnv_ioda_free_pe(pe);
1647 }
1648 } else
1649 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1650
1651 /* Releasing pe_num_map */
1652 kfree(pdn->pe_num_map);
1653
1654 return ret;
1655 }
1656
1657 int pcibios_sriov_disable(struct pci_dev *pdev)
1658 {
1659 pnv_pci_sriov_disable(pdev);
1660
1661 /* Release PCI data */
1662 remove_dev_pci_data(pdev);
1663 return 0;
1664 }
1665
1666 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1667 {
1668 /* Allocate PCI data */
1669 add_dev_pci_data(pdev);
1670
1671 return pnv_pci_sriov_enable(pdev, num_vfs);
1672 }
1673 #endif /* CONFIG_PCI_IOV */
1674
1675 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1676 {
1677 struct pci_dn *pdn = pci_get_pdn(pdev);
1678 struct pnv_ioda_pe *pe;
1679
1680 /*
1681 * The function can be called while the PE#
1682 * hasn't been assigned. Do nothing for the
1683 * case.
1684 */
1685 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1686 return;
1687
1688 pe = &phb->ioda.pe_array[pdn->pe_number];
1689 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1690 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1691 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1692 /*
1693 * Note: iommu_add_device() will fail here as
1694 * for physical PE: the device is already added by now;
1695 * for virtual PE: sysfs entries are not ready yet and
1696 * tce_iommu_bus_notifier will add the device to a group later.
1697 */
1698 }
1699
1700 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1701 {
1702 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1703 struct pnv_phb *phb = hose->private_data;
1704 struct pci_dn *pdn = pci_get_pdn(pdev);
1705 struct pnv_ioda_pe *pe;
1706 uint64_t top;
1707 bool bypass = false;
1708
1709 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1710 return -ENODEV;;
1711
1712 pe = &phb->ioda.pe_array[pdn->pe_number];
1713 if (pe->tce_bypass_enabled) {
1714 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1715 bypass = (dma_mask >= top);
1716 }
1717
1718 if (bypass) {
1719 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1720 set_dma_ops(&pdev->dev, &dma_direct_ops);
1721 } else {
1722 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1723 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1724 }
1725 *pdev->dev.dma_mask = dma_mask;
1726
1727 /* Update peer npu devices */
1728 pnv_npu_try_dma_set_bypass(pdev, bypass);
1729
1730 return 0;
1731 }
1732
1733 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1734 {
1735 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1736 struct pnv_phb *phb = hose->private_data;
1737 struct pci_dn *pdn = pci_get_pdn(pdev);
1738 struct pnv_ioda_pe *pe;
1739 u64 end, mask;
1740
1741 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1742 return 0;
1743
1744 pe = &phb->ioda.pe_array[pdn->pe_number];
1745 if (!pe->tce_bypass_enabled)
1746 return __dma_get_required_mask(&pdev->dev);
1747
1748
1749 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1750 mask = 1ULL << (fls64(end) - 1);
1751 mask += mask - 1;
1752
1753 return mask;
1754 }
1755
1756 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1757 struct pci_bus *bus)
1758 {
1759 struct pci_dev *dev;
1760
1761 list_for_each_entry(dev, &bus->devices, bus_list) {
1762 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1763 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1764 iommu_add_device(&dev->dev);
1765
1766 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1767 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1768 }
1769 }
1770
1771 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1772 bool real_mode)
1773 {
1774 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1775 (phb->regs + 0x210);
1776 }
1777
1778 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1779 unsigned long index, unsigned long npages, bool rm)
1780 {
1781 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1782 &tbl->it_group_list, struct iommu_table_group_link,
1783 next);
1784 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1785 struct pnv_ioda_pe, table_group);
1786 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1787 unsigned long start, end, inc;
1788
1789 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1790 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1791 npages - 1);
1792
1793 /* p7ioc-style invalidation, 2 TCEs per write */
1794 start |= (1ull << 63);
1795 end |= (1ull << 63);
1796 inc = 16;
1797 end |= inc - 1; /* round up end to be different than start */
1798
1799 mb(); /* Ensure above stores are visible */
1800 while (start <= end) {
1801 if (rm)
1802 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1803 else
1804 __raw_writeq(cpu_to_be64(start), invalidate);
1805 start += inc;
1806 }
1807
1808 /*
1809 * The iommu layer will do another mb() for us on build()
1810 * and we don't care on free()
1811 */
1812 }
1813
1814 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1815 long npages, unsigned long uaddr,
1816 enum dma_data_direction direction,
1817 unsigned long attrs)
1818 {
1819 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1820 attrs);
1821
1822 if (!ret)
1823 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1824
1825 return ret;
1826 }
1827
1828 #ifdef CONFIG_IOMMU_API
1829 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1830 unsigned long *hpa, enum dma_data_direction *direction)
1831 {
1832 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1833
1834 if (!ret)
1835 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1836
1837 return ret;
1838 }
1839 #endif
1840
1841 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1842 long npages)
1843 {
1844 pnv_tce_free(tbl, index, npages);
1845
1846 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1847 }
1848
1849 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1850 .set = pnv_ioda1_tce_build,
1851 #ifdef CONFIG_IOMMU_API
1852 .exchange = pnv_ioda1_tce_xchg,
1853 #endif
1854 .clear = pnv_ioda1_tce_free,
1855 .get = pnv_tce_get,
1856 };
1857
1858 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1859 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1860 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1861
1862 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1863 {
1864 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1865 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1866
1867 mb(); /* Ensure previous TCE table stores are visible */
1868 if (rm)
1869 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1870 else
1871 __raw_writeq(cpu_to_be64(val), invalidate);
1872 }
1873
1874 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1875 {
1876 /* 01xb - invalidate TCEs that match the specified PE# */
1877 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1878 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1879
1880 mb(); /* Ensure above stores are visible */
1881 __raw_writeq(cpu_to_be64(val), invalidate);
1882 }
1883
1884 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1885 unsigned shift, unsigned long index,
1886 unsigned long npages)
1887 {
1888 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1889 unsigned long start, end, inc;
1890
1891 /* We'll invalidate DMA address in PE scope */
1892 start = PHB3_TCE_KILL_INVAL_ONE;
1893 start |= (pe->pe_number & 0xFF);
1894 end = start;
1895
1896 /* Figure out the start, end and step */
1897 start |= (index << shift);
1898 end |= ((index + npages - 1) << shift);
1899 inc = (0x1ull << shift);
1900 mb();
1901
1902 while (start <= end) {
1903 if (rm)
1904 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1905 else
1906 __raw_writeq(cpu_to_be64(start), invalidate);
1907 start += inc;
1908 }
1909 }
1910
1911 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1912 {
1913 struct pnv_phb *phb = pe->phb;
1914
1915 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1916 pnv_pci_phb3_tce_invalidate_pe(pe);
1917 else
1918 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1919 pe->pe_number, 0, 0, 0);
1920 }
1921
1922 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1923 unsigned long index, unsigned long npages, bool rm)
1924 {
1925 struct iommu_table_group_link *tgl;
1926
1927 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1928 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1929 struct pnv_ioda_pe, table_group);
1930 struct pnv_phb *phb = pe->phb;
1931 unsigned int shift = tbl->it_page_shift;
1932
1933 if (phb->type == PNV_PHB_NPU) {
1934 /*
1935 * The NVLink hardware does not support TCE kill
1936 * per TCE entry so we have to invalidate
1937 * the entire cache for it.
1938 */
1939 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1940 continue;
1941 }
1942 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1943 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1944 index, npages);
1945 else if (rm)
1946 opal_rm_pci_tce_kill(phb->opal_id,
1947 OPAL_PCI_TCE_KILL_PAGES,
1948 pe->pe_number, 1u << shift,
1949 index << shift, npages);
1950 else
1951 opal_pci_tce_kill(phb->opal_id,
1952 OPAL_PCI_TCE_KILL_PAGES,
1953 pe->pe_number, 1u << shift,
1954 index << shift, npages);
1955 }
1956 }
1957
1958 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1959 long npages, unsigned long uaddr,
1960 enum dma_data_direction direction,
1961 unsigned long attrs)
1962 {
1963 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1964 attrs);
1965
1966 if (!ret)
1967 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1968
1969 return ret;
1970 }
1971
1972 #ifdef CONFIG_IOMMU_API
1973 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1974 unsigned long *hpa, enum dma_data_direction *direction)
1975 {
1976 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1977
1978 if (!ret)
1979 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1980
1981 return ret;
1982 }
1983 #endif
1984
1985 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1986 long npages)
1987 {
1988 pnv_tce_free(tbl, index, npages);
1989
1990 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1991 }
1992
1993 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1994 {
1995 pnv_pci_ioda2_table_free_pages(tbl);
1996 iommu_free_table(tbl, "pnv");
1997 }
1998
1999 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2000 .set = pnv_ioda2_tce_build,
2001 #ifdef CONFIG_IOMMU_API
2002 .exchange = pnv_ioda2_tce_xchg,
2003 #endif
2004 .clear = pnv_ioda2_tce_free,
2005 .get = pnv_tce_get,
2006 .free = pnv_ioda2_table_free,
2007 };
2008
2009 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2010 {
2011 unsigned int *weight = (unsigned int *)data;
2012
2013 /* This is quite simplistic. The "base" weight of a device
2014 * is 10. 0 means no DMA is to be accounted for it.
2015 */
2016 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2017 return 0;
2018
2019 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2020 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2021 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2022 *weight += 3;
2023 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2024 *weight += 15;
2025 else
2026 *weight += 10;
2027
2028 return 0;
2029 }
2030
2031 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2032 {
2033 unsigned int weight = 0;
2034
2035 /* SRIOV VF has same DMA32 weight as its PF */
2036 #ifdef CONFIG_PCI_IOV
2037 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2038 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2039 return weight;
2040 }
2041 #endif
2042
2043 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2044 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2045 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2046 struct pci_dev *pdev;
2047
2048 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2049 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2050 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2051 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2052 }
2053
2054 return weight;
2055 }
2056
2057 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2058 struct pnv_ioda_pe *pe)
2059 {
2060
2061 struct page *tce_mem = NULL;
2062 struct iommu_table *tbl;
2063 unsigned int weight, total_weight = 0;
2064 unsigned int tce32_segsz, base, segs, avail, i;
2065 int64_t rc;
2066 void *addr;
2067
2068 /* XXX FIXME: Handle 64-bit only DMA devices */
2069 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2070 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2071 weight = pnv_pci_ioda_pe_dma_weight(pe);
2072 if (!weight)
2073 return;
2074
2075 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2076 &total_weight);
2077 segs = (weight * phb->ioda.dma32_count) / total_weight;
2078 if (!segs)
2079 segs = 1;
2080
2081 /*
2082 * Allocate contiguous DMA32 segments. We begin with the expected
2083 * number of segments. With one more attempt, the number of DMA32
2084 * segments to be allocated is decreased by one until one segment
2085 * is allocated successfully.
2086 */
2087 do {
2088 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2089 for (avail = 0, i = base; i < base + segs; i++) {
2090 if (phb->ioda.dma32_segmap[i] ==
2091 IODA_INVALID_PE)
2092 avail++;
2093 }
2094
2095 if (avail == segs)
2096 goto found;
2097 }
2098 } while (--segs);
2099
2100 if (!segs) {
2101 pe_warn(pe, "No available DMA32 segments\n");
2102 return;
2103 }
2104
2105 found:
2106 tbl = pnv_pci_table_alloc(phb->hose->node);
2107 iommu_register_group(&pe->table_group, phb->hose->global_number,
2108 pe->pe_number);
2109 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2110
2111 /* Grab a 32-bit TCE table */
2112 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2113 weight, total_weight, base, segs);
2114 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2115 base * PNV_IODA1_DMA32_SEGSIZE,
2116 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2117
2118 /* XXX Currently, we allocate one big contiguous table for the
2119 * TCEs. We only really need one chunk per 256M of TCE space
2120 * (ie per segment) but that's an optimization for later, it
2121 * requires some added smarts with our get/put_tce implementation
2122 *
2123 * Each TCE page is 4KB in size and each TCE entry occupies 8
2124 * bytes
2125 */
2126 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2127 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2128 get_order(tce32_segsz * segs));
2129 if (!tce_mem) {
2130 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2131 goto fail;
2132 }
2133 addr = page_address(tce_mem);
2134 memset(addr, 0, tce32_segsz * segs);
2135
2136 /* Configure HW */
2137 for (i = 0; i < segs; i++) {
2138 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2139 pe->pe_number,
2140 base + i, 1,
2141 __pa(addr) + tce32_segsz * i,
2142 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2143 if (rc) {
2144 pe_err(pe, " Failed to configure 32-bit TCE table,"
2145 " err %ld\n", rc);
2146 goto fail;
2147 }
2148 }
2149
2150 /* Setup DMA32 segment mapping */
2151 for (i = base; i < base + segs; i++)
2152 phb->ioda.dma32_segmap[i] = pe->pe_number;
2153
2154 /* Setup linux iommu table */
2155 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2156 base * PNV_IODA1_DMA32_SEGSIZE,
2157 IOMMU_PAGE_SHIFT_4K);
2158
2159 tbl->it_ops = &pnv_ioda1_iommu_ops;
2160 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2161 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2162 iommu_init_table(tbl, phb->hose->node);
2163
2164 if (pe->flags & PNV_IODA_PE_DEV) {
2165 /*
2166 * Setting table base here only for carrying iommu_group
2167 * further down to let iommu_add_device() do the job.
2168 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2169 */
2170 set_iommu_table_base(&pe->pdev->dev, tbl);
2171 iommu_add_device(&pe->pdev->dev);
2172 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2173 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2174
2175 return;
2176 fail:
2177 /* XXX Failure: Try to fallback to 64-bit only ? */
2178 if (tce_mem)
2179 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2180 if (tbl) {
2181 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2182 iommu_free_table(tbl, "pnv");
2183 }
2184 }
2185
2186 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2187 int num, struct iommu_table *tbl)
2188 {
2189 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2190 table_group);
2191 struct pnv_phb *phb = pe->phb;
2192 int64_t rc;
2193 const unsigned long size = tbl->it_indirect_levels ?
2194 tbl->it_level_size : tbl->it_size;
2195 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2196 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2197
2198 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2199 start_addr, start_addr + win_size - 1,
2200 IOMMU_PAGE_SIZE(tbl));
2201
2202 /*
2203 * Map TCE table through TVT. The TVE index is the PE number
2204 * shifted by 1 bit for 32-bits DMA space.
2205 */
2206 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2207 pe->pe_number,
2208 (pe->pe_number << 1) + num,
2209 tbl->it_indirect_levels + 1,
2210 __pa(tbl->it_base),
2211 size << 3,
2212 IOMMU_PAGE_SIZE(tbl));
2213 if (rc) {
2214 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2215 return rc;
2216 }
2217
2218 pnv_pci_link_table_and_group(phb->hose->node, num,
2219 tbl, &pe->table_group);
2220 pnv_pci_phb3_tce_invalidate_pe(pe);
2221
2222 return 0;
2223 }
2224
2225 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2226 {
2227 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2228 int64_t rc;
2229
2230 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2231 if (enable) {
2232 phys_addr_t top = memblock_end_of_DRAM();
2233
2234 top = roundup_pow_of_two(top);
2235 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2236 pe->pe_number,
2237 window_id,
2238 pe->tce_bypass_base,
2239 top);
2240 } else {
2241 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2242 pe->pe_number,
2243 window_id,
2244 pe->tce_bypass_base,
2245 0);
2246 }
2247 if (rc)
2248 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2249 else
2250 pe->tce_bypass_enabled = enable;
2251 }
2252
2253 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2254 __u32 page_shift, __u64 window_size, __u32 levels,
2255 struct iommu_table *tbl);
2256
2257 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2258 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2259 struct iommu_table **ptbl)
2260 {
2261 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2262 table_group);
2263 int nid = pe->phb->hose->node;
2264 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2265 long ret;
2266 struct iommu_table *tbl;
2267
2268 tbl = pnv_pci_table_alloc(nid);
2269 if (!tbl)
2270 return -ENOMEM;
2271
2272 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2273 bus_offset, page_shift, window_size,
2274 levels, tbl);
2275 if (ret) {
2276 iommu_free_table(tbl, "pnv");
2277 return ret;
2278 }
2279
2280 tbl->it_ops = &pnv_ioda2_iommu_ops;
2281
2282 *ptbl = tbl;
2283
2284 return 0;
2285 }
2286
2287 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2288 {
2289 struct iommu_table *tbl = NULL;
2290 long rc;
2291
2292 /*
2293 * crashkernel= specifies the kdump kernel's maximum memory at
2294 * some offset and there is no guaranteed the result is a power
2295 * of 2, which will cause errors later.
2296 */
2297 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2298
2299 /*
2300 * In memory constrained environments, e.g. kdump kernel, the
2301 * DMA window can be larger than available memory, which will
2302 * cause errors later.
2303 */
2304 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2305
2306 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2307 IOMMU_PAGE_SHIFT_4K,
2308 window_size,
2309 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2310 if (rc) {
2311 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2312 rc);
2313 return rc;
2314 }
2315
2316 iommu_init_table(tbl, pe->phb->hose->node);
2317
2318 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2319 if (rc) {
2320 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2321 rc);
2322 pnv_ioda2_table_free(tbl);
2323 return rc;
2324 }
2325
2326 if (!pnv_iommu_bypass_disabled)
2327 pnv_pci_ioda2_set_bypass(pe, true);
2328
2329 /*
2330 * Setting table base here only for carrying iommu_group
2331 * further down to let iommu_add_device() do the job.
2332 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2333 */
2334 if (pe->flags & PNV_IODA_PE_DEV)
2335 set_iommu_table_base(&pe->pdev->dev, tbl);
2336
2337 return 0;
2338 }
2339
2340 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2341 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2342 int num)
2343 {
2344 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2345 table_group);
2346 struct pnv_phb *phb = pe->phb;
2347 long ret;
2348
2349 pe_info(pe, "Removing DMA window #%d\n", num);
2350
2351 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2352 (pe->pe_number << 1) + num,
2353 0/* levels */, 0/* table address */,
2354 0/* table size */, 0/* page size */);
2355 if (ret)
2356 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2357 else
2358 pnv_pci_phb3_tce_invalidate_pe(pe);
2359
2360 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2361
2362 return ret;
2363 }
2364 #endif
2365
2366 #ifdef CONFIG_IOMMU_API
2367 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2368 __u64 window_size, __u32 levels)
2369 {
2370 unsigned long bytes = 0;
2371 const unsigned window_shift = ilog2(window_size);
2372 unsigned entries_shift = window_shift - page_shift;
2373 unsigned table_shift = entries_shift + 3;
2374 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2375 unsigned long direct_table_size;
2376
2377 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2378 (window_size > memory_hotplug_max()) ||
2379 !is_power_of_2(window_size))
2380 return 0;
2381
2382 /* Calculate a direct table size from window_size and levels */
2383 entries_shift = (entries_shift + levels - 1) / levels;
2384 table_shift = entries_shift + 3;
2385 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2386 direct_table_size = 1UL << table_shift;
2387
2388 for ( ; levels; --levels) {
2389 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2390
2391 tce_table_size /= direct_table_size;
2392 tce_table_size <<= 3;
2393 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2394 }
2395
2396 return bytes;
2397 }
2398
2399 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2400 {
2401 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2402 table_group);
2403 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2404 struct iommu_table *tbl = pe->table_group.tables[0];
2405
2406 pnv_pci_ioda2_set_bypass(pe, false);
2407 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2408 pnv_ioda2_table_free(tbl);
2409 }
2410
2411 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2412 {
2413 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2414 table_group);
2415
2416 pnv_pci_ioda2_setup_default_config(pe);
2417 }
2418
2419 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2420 .get_table_size = pnv_pci_ioda2_get_table_size,
2421 .create_table = pnv_pci_ioda2_create_table,
2422 .set_window = pnv_pci_ioda2_set_window,
2423 .unset_window = pnv_pci_ioda2_unset_window,
2424 .take_ownership = pnv_ioda2_take_ownership,
2425 .release_ownership = pnv_ioda2_release_ownership,
2426 };
2427
2428 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2429 {
2430 struct pci_controller *hose;
2431 struct pnv_phb *phb;
2432 struct pnv_ioda_pe **ptmppe = opaque;
2433 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2434 struct pci_dn *pdn = pci_get_pdn(pdev);
2435
2436 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2437 return 0;
2438
2439 hose = pci_bus_to_host(pdev->bus);
2440 phb = hose->private_data;
2441 if (phb->type != PNV_PHB_NPU)
2442 return 0;
2443
2444 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2445
2446 return 1;
2447 }
2448
2449 /*
2450 * This returns PE of associated NPU.
2451 * This assumes that NPU is in the same IOMMU group with GPU and there is
2452 * no other PEs.
2453 */
2454 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2455 struct iommu_table_group *table_group)
2456 {
2457 struct pnv_ioda_pe *npe = NULL;
2458 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2459 gpe_table_group_to_npe_cb);
2460
2461 BUG_ON(!ret || !npe);
2462
2463 return npe;
2464 }
2465
2466 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2467 int num, struct iommu_table *tbl)
2468 {
2469 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2470
2471 if (ret)
2472 return ret;
2473
2474 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2475 if (ret)
2476 pnv_pci_ioda2_unset_window(table_group, num);
2477
2478 return ret;
2479 }
2480
2481 static long pnv_pci_ioda2_npu_unset_window(
2482 struct iommu_table_group *table_group,
2483 int num)
2484 {
2485 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2486
2487 if (ret)
2488 return ret;
2489
2490 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2491 }
2492
2493 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2494 {
2495 /*
2496 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2497 * the iommu_table if 32bit DMA is enabled.
2498 */
2499 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2500 pnv_ioda2_take_ownership(table_group);
2501 }
2502
2503 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2504 .get_table_size = pnv_pci_ioda2_get_table_size,
2505 .create_table = pnv_pci_ioda2_create_table,
2506 .set_window = pnv_pci_ioda2_npu_set_window,
2507 .unset_window = pnv_pci_ioda2_npu_unset_window,
2508 .take_ownership = pnv_ioda2_npu_take_ownership,
2509 .release_ownership = pnv_ioda2_release_ownership,
2510 };
2511
2512 static void pnv_pci_ioda_setup_iommu_api(void)
2513 {
2514 struct pci_controller *hose, *tmp;
2515 struct pnv_phb *phb;
2516 struct pnv_ioda_pe *pe, *gpe;
2517
2518 /*
2519 * Now we have all PHBs discovered, time to add NPU devices to
2520 * the corresponding IOMMU groups.
2521 */
2522 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2523 phb = hose->private_data;
2524
2525 if (phb->type != PNV_PHB_NPU)
2526 continue;
2527
2528 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2529 gpe = pnv_pci_npu_setup_iommu(pe);
2530 if (gpe)
2531 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2532 }
2533 }
2534 }
2535 #else /* !CONFIG_IOMMU_API */
2536 static void pnv_pci_ioda_setup_iommu_api(void) { };
2537 #endif
2538
2539 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2540 unsigned levels, unsigned long limit,
2541 unsigned long *current_offset, unsigned long *total_allocated)
2542 {
2543 struct page *tce_mem = NULL;
2544 __be64 *addr, *tmp;
2545 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2546 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2547 unsigned entries = 1UL << (shift - 3);
2548 long i;
2549
2550 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2551 if (!tce_mem) {
2552 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2553 return NULL;
2554 }
2555 addr = page_address(tce_mem);
2556 memset(addr, 0, allocated);
2557 *total_allocated += allocated;
2558
2559 --levels;
2560 if (!levels) {
2561 *current_offset += allocated;
2562 return addr;
2563 }
2564
2565 for (i = 0; i < entries; ++i) {
2566 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2567 levels, limit, current_offset, total_allocated);
2568 if (!tmp)
2569 break;
2570
2571 addr[i] = cpu_to_be64(__pa(tmp) |
2572 TCE_PCI_READ | TCE_PCI_WRITE);
2573
2574 if (*current_offset >= limit)
2575 break;
2576 }
2577
2578 return addr;
2579 }
2580
2581 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2582 unsigned long size, unsigned level);
2583
2584 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2585 __u32 page_shift, __u64 window_size, __u32 levels,
2586 struct iommu_table *tbl)
2587 {
2588 void *addr;
2589 unsigned long offset = 0, level_shift, total_allocated = 0;
2590 const unsigned window_shift = ilog2(window_size);
2591 unsigned entries_shift = window_shift - page_shift;
2592 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2593 const unsigned long tce_table_size = 1UL << table_shift;
2594
2595 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2596 return -EINVAL;
2597
2598 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2599 return -EINVAL;
2600
2601 /* Adjust direct table size from window_size and levels */
2602 entries_shift = (entries_shift + levels - 1) / levels;
2603 level_shift = entries_shift + 3;
2604 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2605
2606 /* Allocate TCE table */
2607 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2608 levels, tce_table_size, &offset, &total_allocated);
2609
2610 /* addr==NULL means that the first level allocation failed */
2611 if (!addr)
2612 return -ENOMEM;
2613
2614 /*
2615 * First level was allocated but some lower level failed as
2616 * we did not allocate as much as we wanted,
2617 * release partially allocated table.
2618 */
2619 if (offset < tce_table_size) {
2620 pnv_pci_ioda2_table_do_free_pages(addr,
2621 1ULL << (level_shift - 3), levels - 1);
2622 return -ENOMEM;
2623 }
2624
2625 /* Setup linux iommu table */
2626 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2627 page_shift);
2628 tbl->it_level_size = 1ULL << (level_shift - 3);
2629 tbl->it_indirect_levels = levels - 1;
2630 tbl->it_allocated_size = total_allocated;
2631
2632 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2633 window_size, tce_table_size, bus_offset);
2634
2635 return 0;
2636 }
2637
2638 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2639 unsigned long size, unsigned level)
2640 {
2641 const unsigned long addr_ul = (unsigned long) addr &
2642 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2643
2644 if (level) {
2645 long i;
2646 u64 *tmp = (u64 *) addr_ul;
2647
2648 for (i = 0; i < size; ++i) {
2649 unsigned long hpa = be64_to_cpu(tmp[i]);
2650
2651 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2652 continue;
2653
2654 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2655 level - 1);
2656 }
2657 }
2658
2659 free_pages(addr_ul, get_order(size << 3));
2660 }
2661
2662 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2663 {
2664 const unsigned long size = tbl->it_indirect_levels ?
2665 tbl->it_level_size : tbl->it_size;
2666
2667 if (!tbl->it_size)
2668 return;
2669
2670 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2671 tbl->it_indirect_levels);
2672 }
2673
2674 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2675 struct pnv_ioda_pe *pe)
2676 {
2677 int64_t rc;
2678
2679 if (!pnv_pci_ioda_pe_dma_weight(pe))
2680 return;
2681
2682 /* TVE #1 is selected by PCI address bit 59 */
2683 pe->tce_bypass_base = 1ull << 59;
2684
2685 iommu_register_group(&pe->table_group, phb->hose->global_number,
2686 pe->pe_number);
2687
2688 /* The PE will reserve all possible 32-bits space */
2689 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2690 phb->ioda.m32_pci_base);
2691
2692 /* Setup linux iommu table */
2693 pe->table_group.tce32_start = 0;
2694 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2695 pe->table_group.max_dynamic_windows_supported =
2696 IOMMU_TABLE_GROUP_MAX_TABLES;
2697 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2698 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2699 #ifdef CONFIG_IOMMU_API
2700 pe->table_group.ops = &pnv_pci_ioda2_ops;
2701 #endif
2702
2703 rc = pnv_pci_ioda2_setup_default_config(pe);
2704 if (rc)
2705 return;
2706
2707 if (pe->flags & PNV_IODA_PE_DEV)
2708 iommu_add_device(&pe->pdev->dev);
2709 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2710 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2711 }
2712
2713 #ifdef CONFIG_PCI_MSI
2714 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2715 {
2716 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2717 ioda.irq_chip);
2718
2719 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2720 }
2721
2722 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2723 {
2724 int64_t rc;
2725 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2726 struct irq_chip *chip = irq_data_get_irq_chip(d);
2727
2728 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2729 WARN_ON_ONCE(rc);
2730
2731 icp_native_eoi(d);
2732 }
2733
2734
2735 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2736 {
2737 struct irq_data *idata;
2738 struct irq_chip *ichip;
2739
2740 /* The MSI EOI OPAL call is only needed on PHB3 */
2741 if (phb->model != PNV_PHB_MODEL_PHB3)
2742 return;
2743
2744 if (!phb->ioda.irq_chip_init) {
2745 /*
2746 * First time we setup an MSI IRQ, we need to setup the
2747 * corresponding IRQ chip to route correctly.
2748 */
2749 idata = irq_get_irq_data(virq);
2750 ichip = irq_data_get_irq_chip(idata);
2751 phb->ioda.irq_chip_init = 1;
2752 phb->ioda.irq_chip = *ichip;
2753 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2754 }
2755 irq_set_chip(virq, &phb->ioda.irq_chip);
2756 }
2757
2758 /*
2759 * Returns true iff chip is something that we could call
2760 * pnv_opal_pci_msi_eoi for.
2761 */
2762 bool is_pnv_opal_msi(struct irq_chip *chip)
2763 {
2764 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2765 }
2766 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2767
2768 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2769 unsigned int hwirq, unsigned int virq,
2770 unsigned int is_64, struct msi_msg *msg)
2771 {
2772 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2773 unsigned int xive_num = hwirq - phb->msi_base;
2774 __be32 data;
2775 int rc;
2776
2777 /* No PE assigned ? bail out ... no MSI for you ! */
2778 if (pe == NULL)
2779 return -ENXIO;
2780
2781 /* Check if we have an MVE */
2782 if (pe->mve_number < 0)
2783 return -ENXIO;
2784
2785 /* Force 32-bit MSI on some broken devices */
2786 if (dev->no_64bit_msi)
2787 is_64 = 0;
2788
2789 /* Assign XIVE to PE */
2790 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2791 if (rc) {
2792 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2793 pci_name(dev), rc, xive_num);
2794 return -EIO;
2795 }
2796
2797 if (is_64) {
2798 __be64 addr64;
2799
2800 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2801 &addr64, &data);
2802 if (rc) {
2803 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2804 pci_name(dev), rc);
2805 return -EIO;
2806 }
2807 msg->address_hi = be64_to_cpu(addr64) >> 32;
2808 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2809 } else {
2810 __be32 addr32;
2811
2812 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2813 &addr32, &data);
2814 if (rc) {
2815 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2816 pci_name(dev), rc);
2817 return -EIO;
2818 }
2819 msg->address_hi = 0;
2820 msg->address_lo = be32_to_cpu(addr32);
2821 }
2822 msg->data = be32_to_cpu(data);
2823
2824 pnv_set_msi_irq_chip(phb, virq);
2825
2826 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2827 " address=%x_%08x data=%x PE# %d\n",
2828 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2829 msg->address_hi, msg->address_lo, data, pe->pe_number);
2830
2831 return 0;
2832 }
2833
2834 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2835 {
2836 unsigned int count;
2837 const __be32 *prop = of_get_property(phb->hose->dn,
2838 "ibm,opal-msi-ranges", NULL);
2839 if (!prop) {
2840 /* BML Fallback */
2841 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2842 }
2843 if (!prop)
2844 return;
2845
2846 phb->msi_base = be32_to_cpup(prop);
2847 count = be32_to_cpup(prop + 1);
2848 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2849 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2850 phb->hose->global_number);
2851 return;
2852 }
2853
2854 phb->msi_setup = pnv_pci_ioda_msi_setup;
2855 phb->msi32_support = 1;
2856 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2857 count, phb->msi_base);
2858 }
2859 #else
2860 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2861 #endif /* CONFIG_PCI_MSI */
2862
2863 #ifdef CONFIG_PCI_IOV
2864 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2865 {
2866 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2867 struct pnv_phb *phb = hose->private_data;
2868 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2869 struct resource *res;
2870 int i;
2871 resource_size_t size, total_vf_bar_sz;
2872 struct pci_dn *pdn;
2873 int mul, total_vfs;
2874
2875 if (!pdev->is_physfn || pdev->is_added)
2876 return;
2877
2878 pdn = pci_get_pdn(pdev);
2879 pdn->vfs_expanded = 0;
2880 pdn->m64_single_mode = false;
2881
2882 total_vfs = pci_sriov_get_totalvfs(pdev);
2883 mul = phb->ioda.total_pe_num;
2884 total_vf_bar_sz = 0;
2885
2886 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2887 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2888 if (!res->flags || res->parent)
2889 continue;
2890 if (!pnv_pci_is_m64(phb, res)) {
2891 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2892 " non M64 VF BAR%d: %pR. \n",
2893 i, res);
2894 goto truncate_iov;
2895 }
2896
2897 total_vf_bar_sz += pci_iov_resource_size(pdev,
2898 i + PCI_IOV_RESOURCES);
2899
2900 /*
2901 * If bigger than quarter of M64 segment size, just round up
2902 * power of two.
2903 *
2904 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2905 * with other devices, IOV BAR size is expanded to be
2906 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2907 * segment size , the expanded size would equal to half of the
2908 * whole M64 space size, which will exhaust the M64 Space and
2909 * limit the system flexibility. This is a design decision to
2910 * set the boundary to quarter of the M64 segment size.
2911 */
2912 if (total_vf_bar_sz > gate) {
2913 mul = roundup_pow_of_two(total_vfs);
2914 dev_info(&pdev->dev,
2915 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2916 total_vf_bar_sz, gate, mul);
2917 pdn->m64_single_mode = true;
2918 break;
2919 }
2920 }
2921
2922 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2923 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2924 if (!res->flags || res->parent)
2925 continue;
2926
2927 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2928 /*
2929 * On PHB3, the minimum size alignment of M64 BAR in single
2930 * mode is 32MB.
2931 */
2932 if (pdn->m64_single_mode && (size < SZ_32M))
2933 goto truncate_iov;
2934 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2935 res->end = res->start + size * mul - 1;
2936 dev_dbg(&pdev->dev, " %pR\n", res);
2937 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2938 i, res, mul);
2939 }
2940 pdn->vfs_expanded = mul;
2941
2942 return;
2943
2944 truncate_iov:
2945 /* To save MMIO space, IOV BAR is truncated. */
2946 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2947 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2948 res->flags = 0;
2949 res->end = res->start - 1;
2950 }
2951 }
2952 #endif /* CONFIG_PCI_IOV */
2953
2954 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2955 struct resource *res)
2956 {
2957 struct pnv_phb *phb = pe->phb;
2958 struct pci_bus_region region;
2959 int index;
2960 int64_t rc;
2961
2962 if (!res || !res->flags || res->start > res->end)
2963 return;
2964
2965 if (res->flags & IORESOURCE_IO) {
2966 region.start = res->start - phb->ioda.io_pci_base;
2967 region.end = res->end - phb->ioda.io_pci_base;
2968 index = region.start / phb->ioda.io_segsize;
2969
2970 while (index < phb->ioda.total_pe_num &&
2971 region.start <= region.end) {
2972 phb->ioda.io_segmap[index] = pe->pe_number;
2973 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2974 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2975 if (rc != OPAL_SUCCESS) {
2976 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2977 __func__, rc, index, pe->pe_number);
2978 break;
2979 }
2980
2981 region.start += phb->ioda.io_segsize;
2982 index++;
2983 }
2984 } else if ((res->flags & IORESOURCE_MEM) &&
2985 !pnv_pci_is_m64(phb, res)) {
2986 region.start = res->start -
2987 phb->hose->mem_offset[0] -
2988 phb->ioda.m32_pci_base;
2989 region.end = res->end -
2990 phb->hose->mem_offset[0] -
2991 phb->ioda.m32_pci_base;
2992 index = region.start / phb->ioda.m32_segsize;
2993
2994 while (index < phb->ioda.total_pe_num &&
2995 region.start <= region.end) {
2996 phb->ioda.m32_segmap[index] = pe->pe_number;
2997 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2998 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2999 if (rc != OPAL_SUCCESS) {
3000 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
3001 __func__, rc, index, pe->pe_number);
3002 break;
3003 }
3004
3005 region.start += phb->ioda.m32_segsize;
3006 index++;
3007 }
3008 }
3009 }
3010
3011 /*
3012 * This function is supposed to be called on basis of PE from top
3013 * to bottom style. So the the I/O or MMIO segment assigned to
3014 * parent PE could be overrided by its child PEs if necessary.
3015 */
3016 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3017 {
3018 struct pci_dev *pdev;
3019 int i;
3020
3021 /*
3022 * NOTE: We only care PCI bus based PE for now. For PCI
3023 * device based PE, for example SRIOV sensitive VF should
3024 * be figured out later.
3025 */
3026 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3027
3028 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3029 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3030 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3031
3032 /*
3033 * If the PE contains all subordinate PCI buses, the
3034 * windows of the child bridges should be mapped to
3035 * the PE as well.
3036 */
3037 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3038 continue;
3039 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3040 pnv_ioda_setup_pe_res(pe,
3041 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3042 }
3043 }
3044
3045 static void pnv_pci_ioda_create_dbgfs(void)
3046 {
3047 #ifdef CONFIG_DEBUG_FS
3048 struct pci_controller *hose, *tmp;
3049 struct pnv_phb *phb;
3050 char name[16];
3051
3052 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3053 phb = hose->private_data;
3054
3055 /* Notify initialization of PHB done */
3056 phb->initialized = 1;
3057
3058 sprintf(name, "PCI%04x", hose->global_number);
3059 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3060 if (!phb->dbgfs)
3061 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3062 __func__, hose->global_number);
3063 }
3064 #endif /* CONFIG_DEBUG_FS */
3065 }
3066
3067 static void pnv_pci_ioda_fixup(void)
3068 {
3069 pnv_pci_ioda_setup_PEs();
3070 pnv_pci_ioda_setup_iommu_api();
3071 pnv_pci_ioda_create_dbgfs();
3072
3073 #ifdef CONFIG_EEH
3074 eeh_init();
3075 eeh_addr_cache_build();
3076 #endif
3077 }
3078
3079 /*
3080 * Returns the alignment for I/O or memory windows for P2P
3081 * bridges. That actually depends on how PEs are segmented.
3082 * For now, we return I/O or M32 segment size for PE sensitive
3083 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3084 * 1MiB for memory) will be returned.
3085 *
3086 * The current PCI bus might be put into one PE, which was
3087 * create against the parent PCI bridge. For that case, we
3088 * needn't enlarge the alignment so that we can save some
3089 * resources.
3090 */
3091 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3092 unsigned long type)
3093 {
3094 struct pci_dev *bridge;
3095 struct pci_controller *hose = pci_bus_to_host(bus);
3096 struct pnv_phb *phb = hose->private_data;
3097 int num_pci_bridges = 0;
3098
3099 bridge = bus->self;
3100 while (bridge) {
3101 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3102 num_pci_bridges++;
3103 if (num_pci_bridges >= 2)
3104 return 1;
3105 }
3106
3107 bridge = bridge->bus->self;
3108 }
3109
3110 /*
3111 * We fall back to M32 if M64 isn't supported. We enforce the M64
3112 * alignment for any 64-bit resource, PCIe doesn't care and
3113 * bridges only do 64-bit prefetchable anyway.
3114 */
3115 if (phb->ioda.m64_segsize && (type & IORESOURCE_MEM_64))
3116 return phb->ioda.m64_segsize;
3117 if (type & IORESOURCE_MEM)
3118 return phb->ioda.m32_segsize;
3119
3120 return phb->ioda.io_segsize;
3121 }
3122
3123 /*
3124 * We are updating root port or the upstream port of the
3125 * bridge behind the root port with PHB's windows in order
3126 * to accommodate the changes on required resources during
3127 * PCI (slot) hotplug, which is connected to either root
3128 * port or the downstream ports of PCIe switch behind the
3129 * root port.
3130 */
3131 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3132 unsigned long type)
3133 {
3134 struct pci_controller *hose = pci_bus_to_host(bus);
3135 struct pnv_phb *phb = hose->private_data;
3136 struct pci_dev *bridge = bus->self;
3137 struct resource *r, *w;
3138 bool msi_region = false;
3139 int i;
3140
3141 /* Check if we need apply fixup to the bridge's windows */
3142 if (!pci_is_root_bus(bridge->bus) &&
3143 !pci_is_root_bus(bridge->bus->self->bus))
3144 return;
3145
3146 /* Fixup the resources */
3147 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3148 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3149 if (!r->flags || !r->parent)
3150 continue;
3151
3152 w = NULL;
3153 if (r->flags & type & IORESOURCE_IO)
3154 w = &hose->io_resource;
3155 else if (pnv_pci_is_m64(phb, r) &&
3156 (type & IORESOURCE_PREFETCH) &&
3157 phb->ioda.m64_segsize)
3158 w = &hose->mem_resources[1];
3159 else if (r->flags & type & IORESOURCE_MEM) {
3160 w = &hose->mem_resources[0];
3161 msi_region = true;
3162 }
3163
3164 r->start = w->start;
3165 r->end = w->end;
3166
3167 /* The 64KB 32-bits MSI region shouldn't be included in
3168 * the 32-bits bridge window. Otherwise, we can see strange
3169 * issues. One of them is EEH error observed on Garrison.
3170 *
3171 * Exclude top 1MB region which is the minimal alignment of
3172 * 32-bits bridge window.
3173 */
3174 if (msi_region) {
3175 r->end += 0x10000;
3176 r->end -= 0x100000;
3177 }
3178 }
3179 }
3180
3181 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3182 {
3183 struct pci_controller *hose = pci_bus_to_host(bus);
3184 struct pnv_phb *phb = hose->private_data;
3185 struct pci_dev *bridge = bus->self;
3186 struct pnv_ioda_pe *pe;
3187 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3188
3189 /* Extend bridge's windows if necessary */
3190 pnv_pci_fixup_bridge_resources(bus, type);
3191
3192 /* The PE for root bus should be realized before any one else */
3193 if (!phb->ioda.root_pe_populated) {
3194 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3195 if (pe) {
3196 phb->ioda.root_pe_idx = pe->pe_number;
3197 phb->ioda.root_pe_populated = true;
3198 }
3199 }
3200
3201 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3202 if (list_empty(&bus->devices))
3203 return;
3204
3205 /* Reserve PEs according to used M64 resources */
3206 if (phb->reserve_m64_pe)
3207 phb->reserve_m64_pe(bus, NULL, all);
3208
3209 /*
3210 * Assign PE. We might run here because of partial hotplug.
3211 * For the case, we just pick up the existing PE and should
3212 * not allocate resources again.
3213 */
3214 pe = pnv_ioda_setup_bus_PE(bus, all);
3215 if (!pe)
3216 return;
3217
3218 pnv_ioda_setup_pe_seg(pe);
3219 switch (phb->type) {
3220 case PNV_PHB_IODA1:
3221 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3222 break;
3223 case PNV_PHB_IODA2:
3224 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3225 break;
3226 default:
3227 pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3228 __func__, phb->hose->global_number, phb->type);
3229 }
3230 }
3231
3232 #ifdef CONFIG_PCI_IOV
3233 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3234 int resno)
3235 {
3236 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3237 struct pnv_phb *phb = hose->private_data;
3238 struct pci_dn *pdn = pci_get_pdn(pdev);
3239 resource_size_t align;
3240
3241 /*
3242 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3243 * SR-IOV. While from hardware perspective, the range mapped by M64
3244 * BAR should be size aligned.
3245 *
3246 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3247 * powernv-specific hardware restriction is gone. But if just use the
3248 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3249 * in one segment of M64 #15, which introduces the PE conflict between
3250 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3251 * m64_segsize.
3252 *
3253 * This function returns the total IOV BAR size if M64 BAR is in
3254 * Shared PE mode or just VF BAR size if not.
3255 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3256 * M64 segment size if IOV BAR size is less.
3257 */
3258 align = pci_iov_resource_size(pdev, resno);
3259 if (!pdn->vfs_expanded)
3260 return align;
3261 if (pdn->m64_single_mode)
3262 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3263
3264 return pdn->vfs_expanded * align;
3265 }
3266 #endif /* CONFIG_PCI_IOV */
3267
3268 /* Prevent enabling devices for which we couldn't properly
3269 * assign a PE
3270 */
3271 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3272 {
3273 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3274 struct pnv_phb *phb = hose->private_data;
3275 struct pci_dn *pdn;
3276
3277 /* The function is probably called while the PEs have
3278 * not be created yet. For example, resource reassignment
3279 * during PCI probe period. We just skip the check if
3280 * PEs isn't ready.
3281 */
3282 if (!phb->initialized)
3283 return true;
3284
3285 pdn = pci_get_pdn(dev);
3286 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3287 return false;
3288
3289 return true;
3290 }
3291
3292 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3293 int num)
3294 {
3295 struct pnv_ioda_pe *pe = container_of(table_group,
3296 struct pnv_ioda_pe, table_group);
3297 struct pnv_phb *phb = pe->phb;
3298 unsigned int idx;
3299 long rc;
3300
3301 pe_info(pe, "Removing DMA window #%d\n", num);
3302 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3303 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3304 continue;
3305
3306 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3307 idx, 0, 0ul, 0ul, 0ul);
3308 if (rc != OPAL_SUCCESS) {
3309 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3310 rc, idx);
3311 return rc;
3312 }
3313
3314 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3315 }
3316
3317 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3318 return OPAL_SUCCESS;
3319 }
3320
3321 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3322 {
3323 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3324 struct iommu_table *tbl = pe->table_group.tables[0];
3325 int64_t rc;
3326
3327 if (!weight)
3328 return;
3329
3330 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3331 if (rc != OPAL_SUCCESS)
3332 return;
3333
3334 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3335 if (pe->table_group.group) {
3336 iommu_group_put(pe->table_group.group);
3337 WARN_ON(pe->table_group.group);
3338 }
3339
3340 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3341 iommu_free_table(tbl, "pnv");
3342 }
3343
3344 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3345 {
3346 struct iommu_table *tbl = pe->table_group.tables[0];
3347 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3348 #ifdef CONFIG_IOMMU_API
3349 int64_t rc;
3350 #endif
3351
3352 if (!weight)
3353 return;
3354
3355 #ifdef CONFIG_IOMMU_API
3356 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3357 if (rc)
3358 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3359 #endif
3360
3361 pnv_pci_ioda2_set_bypass(pe, false);
3362 if (pe->table_group.group) {
3363 iommu_group_put(pe->table_group.group);
3364 WARN_ON(pe->table_group.group);
3365 }
3366
3367 pnv_pci_ioda2_table_free_pages(tbl);
3368 iommu_free_table(tbl, "pnv");
3369 }
3370
3371 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3372 unsigned short win,
3373 unsigned int *map)
3374 {
3375 struct pnv_phb *phb = pe->phb;
3376 int idx;
3377 int64_t rc;
3378
3379 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3380 if (map[idx] != pe->pe_number)
3381 continue;
3382
3383 if (win == OPAL_M64_WINDOW_TYPE)
3384 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3385 phb->ioda.reserved_pe_idx, win,
3386 idx / PNV_IODA1_M64_SEGS,
3387 idx % PNV_IODA1_M64_SEGS);
3388 else
3389 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3390 phb->ioda.reserved_pe_idx, win, 0, idx);
3391
3392 if (rc != OPAL_SUCCESS)
3393 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3394 rc, win, idx);
3395
3396 map[idx] = IODA_INVALID_PE;
3397 }
3398 }
3399
3400 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3401 {
3402 struct pnv_phb *phb = pe->phb;
3403
3404 if (phb->type == PNV_PHB_IODA1) {
3405 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3406 phb->ioda.io_segmap);
3407 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3408 phb->ioda.m32_segmap);
3409 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3410 phb->ioda.m64_segmap);
3411 } else if (phb->type == PNV_PHB_IODA2) {
3412 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3413 phb->ioda.m32_segmap);
3414 }
3415 }
3416
3417 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3418 {
3419 struct pnv_phb *phb = pe->phb;
3420 struct pnv_ioda_pe *slave, *tmp;
3421
3422 list_del(&pe->list);
3423 switch (phb->type) {
3424 case PNV_PHB_IODA1:
3425 pnv_pci_ioda1_release_pe_dma(pe);
3426 break;
3427 case PNV_PHB_IODA2:
3428 pnv_pci_ioda2_release_pe_dma(pe);
3429 break;
3430 default:
3431 WARN_ON(1);
3432 }
3433
3434 pnv_ioda_release_pe_seg(pe);
3435 pnv_ioda_deconfigure_pe(pe->phb, pe);
3436
3437 /* Release slave PEs in the compound PE */
3438 if (pe->flags & PNV_IODA_PE_MASTER) {
3439 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3440 list_del(&slave->list);
3441 pnv_ioda_free_pe(slave);
3442 }
3443 }
3444
3445 pnv_ioda_free_pe(pe);
3446 }
3447
3448 static void pnv_pci_release_device(struct pci_dev *pdev)
3449 {
3450 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3451 struct pnv_phb *phb = hose->private_data;
3452 struct pci_dn *pdn = pci_get_pdn(pdev);
3453 struct pnv_ioda_pe *pe;
3454
3455 if (pdev->is_virtfn)
3456 return;
3457
3458 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3459 return;
3460
3461 pe = &phb->ioda.pe_array[pdn->pe_number];
3462 WARN_ON(--pe->device_count < 0);
3463 if (pe->device_count == 0)
3464 pnv_ioda_release_pe(pe);
3465 }
3466
3467 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3468 {
3469 struct pnv_phb *phb = hose->private_data;
3470
3471 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3472 OPAL_ASSERT_RESET);
3473 }
3474
3475 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3476 .dma_dev_setup = pnv_pci_dma_dev_setup,
3477 .dma_bus_setup = pnv_pci_dma_bus_setup,
3478 #ifdef CONFIG_PCI_MSI
3479 .setup_msi_irqs = pnv_setup_msi_irqs,
3480 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3481 #endif
3482 .enable_device_hook = pnv_pci_enable_device_hook,
3483 .release_device = pnv_pci_release_device,
3484 .window_alignment = pnv_pci_window_alignment,
3485 .setup_bridge = pnv_pci_setup_bridge,
3486 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3487 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3488 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3489 .shutdown = pnv_pci_ioda_shutdown,
3490 };
3491
3492 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3493 {
3494 dev_err_once(&npdev->dev,
3495 "%s operation unsupported for NVLink devices\n",
3496 __func__);
3497 return -EPERM;
3498 }
3499
3500 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3501 .dma_dev_setup = pnv_pci_dma_dev_setup,
3502 #ifdef CONFIG_PCI_MSI
3503 .setup_msi_irqs = pnv_setup_msi_irqs,
3504 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3505 #endif
3506 .enable_device_hook = pnv_pci_enable_device_hook,
3507 .window_alignment = pnv_pci_window_alignment,
3508 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3509 .dma_set_mask = pnv_npu_dma_set_mask,
3510 .shutdown = pnv_pci_ioda_shutdown,
3511 };
3512
3513 #ifdef CONFIG_CXL_BASE
3514 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3515 .dma_dev_setup = pnv_pci_dma_dev_setup,
3516 .dma_bus_setup = pnv_pci_dma_bus_setup,
3517 #ifdef CONFIG_PCI_MSI
3518 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs,
3519 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs,
3520 #endif
3521 .enable_device_hook = pnv_cxl_enable_device_hook,
3522 .disable_device = pnv_cxl_disable_device,
3523 .release_device = pnv_pci_release_device,
3524 .window_alignment = pnv_pci_window_alignment,
3525 .setup_bridge = pnv_pci_setup_bridge,
3526 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3527 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3528 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3529 .shutdown = pnv_pci_ioda_shutdown,
3530 };
3531 #endif
3532
3533 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3534 u64 hub_id, int ioda_type)
3535 {
3536 struct pci_controller *hose;
3537 struct pnv_phb *phb;
3538 unsigned long size, m64map_off, m32map_off, pemap_off;
3539 unsigned long iomap_off = 0, dma32map_off = 0;
3540 struct resource r;
3541 const __be64 *prop64;
3542 const __be32 *prop32;
3543 int len;
3544 unsigned int segno;
3545 u64 phb_id;
3546 void *aux;
3547 long rc;
3548
3549 if (!of_device_is_available(np))
3550 return;
3551
3552 pr_info("Initializing %s PHB (%s)\n",
3553 pnv_phb_names[ioda_type], of_node_full_name(np));
3554
3555 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3556 if (!prop64) {
3557 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3558 return;
3559 }
3560 phb_id = be64_to_cpup(prop64);
3561 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3562
3563 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3564
3565 /* Allocate PCI controller */
3566 phb->hose = hose = pcibios_alloc_controller(np);
3567 if (!phb->hose) {
3568 pr_err(" Can't allocate PCI controller for %s\n",
3569 np->full_name);
3570 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3571 return;
3572 }
3573
3574 spin_lock_init(&phb->lock);
3575 prop32 = of_get_property(np, "bus-range", &len);
3576 if (prop32 && len == 8) {
3577 hose->first_busno = be32_to_cpu(prop32[0]);
3578 hose->last_busno = be32_to_cpu(prop32[1]);
3579 } else {
3580 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3581 hose->first_busno = 0;
3582 hose->last_busno = 0xff;
3583 }
3584 hose->private_data = phb;
3585 phb->hub_id = hub_id;
3586 phb->opal_id = phb_id;
3587 phb->type = ioda_type;
3588 mutex_init(&phb->ioda.pe_alloc_mutex);
3589
3590 /* Detect specific models for error handling */
3591 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3592 phb->model = PNV_PHB_MODEL_P7IOC;
3593 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3594 phb->model = PNV_PHB_MODEL_PHB3;
3595 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3596 phb->model = PNV_PHB_MODEL_NPU;
3597 else
3598 phb->model = PNV_PHB_MODEL_UNKNOWN;
3599
3600 /* Parse 32-bit and IO ranges (if any) */
3601 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3602
3603 /* Get registers */
3604 if (!of_address_to_resource(np, 0, &r)) {
3605 phb->regs_phys = r.start;
3606 phb->regs = ioremap(r.start, resource_size(&r));
3607 if (phb->regs == NULL)
3608 pr_err(" Failed to map registers !\n");
3609 }
3610
3611 /* Initialize more IODA stuff */
3612 phb->ioda.total_pe_num = 1;
3613 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3614 if (prop32)
3615 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3616 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3617 if (prop32)
3618 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3619
3620 /* Invalidate RID to PE# mapping */
3621 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3622 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3623
3624 /* Parse 64-bit MMIO range */
3625 pnv_ioda_parse_m64_window(phb);
3626
3627 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3628 /* FW Has already off top 64k of M32 space (MSI space) */
3629 phb->ioda.m32_size += 0x10000;
3630
3631 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3632 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3633 phb->ioda.io_size = hose->pci_io_size;
3634 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3635 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3636
3637 /* Calculate how many 32-bit TCE segments we have */
3638 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3639 PNV_IODA1_DMA32_SEGSIZE;
3640
3641 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3642 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3643 sizeof(unsigned long));
3644 m64map_off = size;
3645 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3646 m32map_off = size;
3647 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3648 if (phb->type == PNV_PHB_IODA1) {
3649 iomap_off = size;
3650 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3651 dma32map_off = size;
3652 size += phb->ioda.dma32_count *
3653 sizeof(phb->ioda.dma32_segmap[0]);
3654 }
3655 pemap_off = size;
3656 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3657 aux = memblock_virt_alloc(size, 0);
3658 phb->ioda.pe_alloc = aux;
3659 phb->ioda.m64_segmap = aux + m64map_off;
3660 phb->ioda.m32_segmap = aux + m32map_off;
3661 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3662 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3663 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3664 }
3665 if (phb->type == PNV_PHB_IODA1) {
3666 phb->ioda.io_segmap = aux + iomap_off;
3667 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3668 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3669
3670 phb->ioda.dma32_segmap = aux + dma32map_off;
3671 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3672 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3673 }
3674 phb->ioda.pe_array = aux + pemap_off;
3675
3676 /*
3677 * Choose PE number for root bus, which shouldn't have
3678 * M64 resources consumed by its child devices. To pick
3679 * the PE number adjacent to the reserved one if possible.
3680 */
3681 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3682 if (phb->ioda.reserved_pe_idx == 0) {
3683 phb->ioda.root_pe_idx = 1;
3684 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3685 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3686 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3687 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3688 } else {
3689 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3690 }
3691
3692 INIT_LIST_HEAD(&phb->ioda.pe_list);
3693 mutex_init(&phb->ioda.pe_list_mutex);
3694
3695 /* Calculate how many 32-bit TCE segments we have */
3696 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3697 PNV_IODA1_DMA32_SEGSIZE;
3698
3699 #if 0 /* We should really do that ... */
3700 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3701 window_type,
3702 window_num,
3703 starting_real_address,
3704 starting_pci_address,
3705 segment_size);
3706 #endif
3707
3708 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3709 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3710 phb->ioda.m32_size, phb->ioda.m32_segsize);
3711 if (phb->ioda.m64_size)
3712 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3713 phb->ioda.m64_size, phb->ioda.m64_segsize);
3714 if (phb->ioda.io_size)
3715 pr_info(" IO: 0x%x [segment=0x%x]\n",
3716 phb->ioda.io_size, phb->ioda.io_segsize);
3717
3718
3719 phb->hose->ops = &pnv_pci_ops;
3720 phb->get_pe_state = pnv_ioda_get_pe_state;
3721 phb->freeze_pe = pnv_ioda_freeze_pe;
3722 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3723
3724 /* Setup MSI support */
3725 pnv_pci_init_ioda_msis(phb);
3726
3727 /*
3728 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3729 * to let the PCI core do resource assignment. It's supposed
3730 * that the PCI core will do correct I/O and MMIO alignment
3731 * for the P2P bridge bars so that each PCI bus (excluding
3732 * the child P2P bridges) can form individual PE.
3733 */
3734 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3735
3736 if (phb->type == PNV_PHB_NPU) {
3737 hose->controller_ops = pnv_npu_ioda_controller_ops;
3738 } else {
3739 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3740 hose->controller_ops = pnv_pci_ioda_controller_ops;
3741 }
3742
3743 #ifdef CONFIG_PCI_IOV
3744 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3745 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3746 #endif
3747
3748 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3749
3750 /* Reset IODA tables to a clean state */
3751 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3752 if (rc)
3753 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3754
3755 /* If we're running in kdump kerenl, the previous kerenl never
3756 * shutdown PCI devices correctly. We already got IODA table
3757 * cleaned out. So we have to issue PHB reset to stop all PCI
3758 * transactions from previous kerenl.
3759 */
3760 if (is_kdump_kernel()) {
3761 pr_info(" Issue PHB reset ...\n");
3762 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3763 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3764 }
3765
3766 /* Remove M64 resource if we can't configure it successfully */
3767 if (!phb->init_m64 || phb->init_m64(phb))
3768 hose->mem_resources[1].flags = 0;
3769 }
3770
3771 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3772 {
3773 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3774 }
3775
3776 void __init pnv_pci_init_npu_phb(struct device_node *np)
3777 {
3778 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3779 }
3780
3781 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3782 {
3783 struct device_node *phbn;
3784 const __be64 *prop64;
3785 u64 hub_id;
3786
3787 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3788
3789 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3790 if (!prop64) {
3791 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3792 return;
3793 }
3794 hub_id = be64_to_cpup(prop64);
3795 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3796
3797 /* Count child PHBs */
3798 for_each_child_of_node(np, phbn) {
3799 /* Look for IODA1 PHBs */
3800 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3801 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3802 }
3803 }
This page took 0.120982 seconds and 5 git commands to generate.