s390/mm: implement software dirty bits
[deliverable/linux.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39
40 /*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46
47 /*
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
50 */
51
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
54
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
59
60 #endif /* !__ASSEMBLY__ */
61
62 /*
63 * PMD_SHIFT determines the size of the area a second-level page
64 * table can map
65 * PGDIR_SHIFT determines what a third-level page table entry can map
66 */
67 #ifndef CONFIG_64BIT
68 # define PMD_SHIFT 20
69 # define PUD_SHIFT 20
70 # define PGDIR_SHIFT 20
71 #else /* CONFIG_64BIT */
72 # define PMD_SHIFT 20
73 # define PUD_SHIFT 31
74 # define PGDIR_SHIFT 42
75 #endif /* CONFIG_64BIT */
76
77 #define PMD_SIZE (1UL << PMD_SHIFT)
78 #define PMD_MASK (~(PMD_SIZE-1))
79 #define PUD_SIZE (1UL << PUD_SHIFT)
80 #define PUD_MASK (~(PUD_SIZE-1))
81 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
82 #define PGDIR_MASK (~(PGDIR_SIZE-1))
83
84 /*
85 * entries per page directory level: the S390 is two-level, so
86 * we don't really have any PMD directory physically.
87 * for S390 segment-table entries are combined to one PGD
88 * that leads to 1024 pte per pgd
89 */
90 #define PTRS_PER_PTE 256
91 #ifndef CONFIG_64BIT
92 #define PTRS_PER_PMD 1
93 #define PTRS_PER_PUD 1
94 #else /* CONFIG_64BIT */
95 #define PTRS_PER_PMD 2048
96 #define PTRS_PER_PUD 2048
97 #endif /* CONFIG_64BIT */
98 #define PTRS_PER_PGD 2048
99
100 #define FIRST_USER_ADDRESS 0
101
102 #define pte_ERROR(e) \
103 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
104 #define pmd_ERROR(e) \
105 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
106 #define pud_ERROR(e) \
107 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
108 #define pgd_ERROR(e) \
109 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
110
111 #ifndef __ASSEMBLY__
112 /*
113 * The vmalloc and module area will always be on the topmost area of the kernel
114 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
115 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
116 * modules will reside. That makes sure that inter module branches always
117 * happen without trampolines and in addition the placement within a 2GB frame
118 * is branch prediction unit friendly.
119 */
120 extern unsigned long VMALLOC_START;
121 extern unsigned long VMALLOC_END;
122 extern struct page *vmemmap;
123
124 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
125
126 #ifdef CONFIG_64BIT
127 extern unsigned long MODULES_VADDR;
128 extern unsigned long MODULES_END;
129 #define MODULES_VADDR MODULES_VADDR
130 #define MODULES_END MODULES_END
131 #define MODULES_LEN (1UL << 31)
132 #endif
133
134 /*
135 * A 31 bit pagetable entry of S390 has following format:
136 * | PFRA | | OS |
137 * 0 0IP0
138 * 00000000001111111111222222222233
139 * 01234567890123456789012345678901
140 *
141 * I Page-Invalid Bit: Page is not available for address-translation
142 * P Page-Protection Bit: Store access not possible for page
143 *
144 * A 31 bit segmenttable entry of S390 has following format:
145 * | P-table origin | |PTL
146 * 0 IC
147 * 00000000001111111111222222222233
148 * 01234567890123456789012345678901
149 *
150 * I Segment-Invalid Bit: Segment is not available for address-translation
151 * C Common-Segment Bit: Segment is not private (PoP 3-30)
152 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
153 *
154 * The 31 bit segmenttable origin of S390 has following format:
155 *
156 * |S-table origin | | STL |
157 * X **GPS
158 * 00000000001111111111222222222233
159 * 01234567890123456789012345678901
160 *
161 * X Space-Switch event:
162 * G Segment-Invalid Bit: *
163 * P Private-Space Bit: Segment is not private (PoP 3-30)
164 * S Storage-Alteration:
165 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
166 *
167 * A 64 bit pagetable entry of S390 has following format:
168 * | PFRA |0IPC| OS |
169 * 0000000000111111111122222222223333333333444444444455555555556666
170 * 0123456789012345678901234567890123456789012345678901234567890123
171 *
172 * I Page-Invalid Bit: Page is not available for address-translation
173 * P Page-Protection Bit: Store access not possible for page
174 * C Change-bit override: HW is not required to set change bit
175 *
176 * A 64 bit segmenttable entry of S390 has following format:
177 * | P-table origin | TT
178 * 0000000000111111111122222222223333333333444444444455555555556666
179 * 0123456789012345678901234567890123456789012345678901234567890123
180 *
181 * I Segment-Invalid Bit: Segment is not available for address-translation
182 * C Common-Segment Bit: Segment is not private (PoP 3-30)
183 * P Page-Protection Bit: Store access not possible for page
184 * TT Type 00
185 *
186 * A 64 bit region table entry of S390 has following format:
187 * | S-table origin | TF TTTL
188 * 0000000000111111111122222222223333333333444444444455555555556666
189 * 0123456789012345678901234567890123456789012345678901234567890123
190 *
191 * I Segment-Invalid Bit: Segment is not available for address-translation
192 * TT Type 01
193 * TF
194 * TL Table length
195 *
196 * The 64 bit regiontable origin of S390 has following format:
197 * | region table origon | DTTL
198 * 0000000000111111111122222222223333333333444444444455555555556666
199 * 0123456789012345678901234567890123456789012345678901234567890123
200 *
201 * X Space-Switch event:
202 * G Segment-Invalid Bit:
203 * P Private-Space Bit:
204 * S Storage-Alteration:
205 * R Real space
206 * TL Table-Length:
207 *
208 * A storage key has the following format:
209 * | ACC |F|R|C|0|
210 * 0 3 4 5 6 7
211 * ACC: access key
212 * F : fetch protection bit
213 * R : referenced bit
214 * C : changed bit
215 */
216
217 /* Hardware bits in the page table entry */
218 #define _PAGE_CO 0x100 /* HW Change-bit override */
219 #define _PAGE_RO 0x200 /* HW read-only bit */
220 #define _PAGE_INVALID 0x400 /* HW invalid bit */
221
222 /* Software bits in the page table entry */
223 #define _PAGE_SWT 0x001 /* SW pte type bit t */
224 #define _PAGE_SWX 0x002 /* SW pte type bit x */
225 #define _PAGE_SWC 0x004 /* SW pte changed bit */
226 #define _PAGE_SWR 0x008 /* SW pte referenced bit */
227 #define _PAGE_SWW 0x010 /* SW pte write bit */
228 #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
229 #define __HAVE_ARCH_PTE_SPECIAL
230
231 /* Set of bits not changed in pte_modify */
232 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
233 _PAGE_SWC | _PAGE_SWR)
234
235 /* Six different types of pages. */
236 #define _PAGE_TYPE_EMPTY 0x400
237 #define _PAGE_TYPE_NONE 0x401
238 #define _PAGE_TYPE_SWAP 0x403
239 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
240 #define _PAGE_TYPE_RO 0x200
241 #define _PAGE_TYPE_RW 0x000
242
243 /*
244 * Only four types for huge pages, using the invalid bit and protection bit
245 * of a segment table entry.
246 */
247 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
248 #define _HPAGE_TYPE_NONE 0x220
249 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
250 #define _HPAGE_TYPE_RW 0x000
251
252 /*
253 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
254 * pte_none and pte_file to find out the pte type WITHOUT holding the page
255 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
256 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
257 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
258 * This change is done while holding the lock, but the intermediate step
259 * of a previously valid pte with the hw invalid bit set can be observed by
260 * handle_pte_fault. That makes it necessary that all valid pte types with
261 * the hw invalid bit set must be distinguishable from the four pte types
262 * empty, none, swap and file.
263 *
264 * irxt ipte irxt
265 * _PAGE_TYPE_EMPTY 1000 -> 1000
266 * _PAGE_TYPE_NONE 1001 -> 1001
267 * _PAGE_TYPE_SWAP 1011 -> 1011
268 * _PAGE_TYPE_FILE 11?1 -> 11?1
269 * _PAGE_TYPE_RO 0100 -> 1100
270 * _PAGE_TYPE_RW 0000 -> 1000
271 *
272 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
273 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
274 * pte_file is true for bits combinations 1101, 1111
275 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
276 */
277
278 #ifndef CONFIG_64BIT
279
280 /* Bits in the segment table address-space-control-element */
281 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
282 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
283 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
284 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
285 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
286
287 /* Bits in the segment table entry */
288 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
289 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
290 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
291 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
292 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
293
294 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
295 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
296
297 /* Page status table bits for virtualization */
298 #define RCP_ACC_BITS 0xf0000000UL
299 #define RCP_FP_BIT 0x08000000UL
300 #define RCP_PCL_BIT 0x00800000UL
301 #define RCP_HR_BIT 0x00400000UL
302 #define RCP_HC_BIT 0x00200000UL
303 #define RCP_GR_BIT 0x00040000UL
304 #define RCP_GC_BIT 0x00020000UL
305
306 /* User dirty / referenced bit for KVM's migration feature */
307 #define KVM_UR_BIT 0x00008000UL
308 #define KVM_UC_BIT 0x00004000UL
309
310 #else /* CONFIG_64BIT */
311
312 /* Bits in the segment/region table address-space-control-element */
313 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
314 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
315 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
316 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
317 #define _ASCE_REAL_SPACE 0x20 /* real space control */
318 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
319 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
320 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
321 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
322 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
323 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
324
325 /* Bits in the region table entry */
326 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
327 #define _REGION_ENTRY_RO 0x200 /* region protection bit */
328 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
329 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
330 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
331 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
332 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
333 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
334
335 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
336 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
337 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
338 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
339 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
340 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
341
342 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
343
344 /* Bits in the segment table entry */
345 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
346 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
347 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
348
349 #define _SEGMENT_ENTRY (0)
350 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
351
352 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
353 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
354 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
355 #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
356
357 /* Set of bits not changed in pmd_modify */
358 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
359 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
360
361 /* Page status table bits for virtualization */
362 #define RCP_ACC_BITS 0xf000000000000000UL
363 #define RCP_FP_BIT 0x0800000000000000UL
364 #define RCP_PCL_BIT 0x0080000000000000UL
365 #define RCP_HR_BIT 0x0040000000000000UL
366 #define RCP_HC_BIT 0x0020000000000000UL
367 #define RCP_GR_BIT 0x0004000000000000UL
368 #define RCP_GC_BIT 0x0002000000000000UL
369
370 /* User dirty / referenced bit for KVM's migration feature */
371 #define KVM_UR_BIT 0x0000800000000000UL
372 #define KVM_UC_BIT 0x0000400000000000UL
373
374 #endif /* CONFIG_64BIT */
375
376 /*
377 * A user page table pointer has the space-switch-event bit, the
378 * private-space-control bit and the storage-alteration-event-control
379 * bit set. A kernel page table pointer doesn't need them.
380 */
381 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
382 _ASCE_ALT_EVENT)
383
384 /*
385 * Page protection definitions.
386 */
387 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
388 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
389 #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
390 #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
391
392 #define PAGE_KERNEL PAGE_RWC
393 #define PAGE_SHARED PAGE_KERNEL
394 #define PAGE_COPY PAGE_RO
395
396 /*
397 * On s390 the page table entry has an invalid bit and a read-only bit.
398 * Read permission implies execute permission and write permission
399 * implies read permission.
400 */
401 /*xwr*/
402 #define __P000 PAGE_NONE
403 #define __P001 PAGE_RO
404 #define __P010 PAGE_RO
405 #define __P011 PAGE_RO
406 #define __P100 PAGE_RO
407 #define __P101 PAGE_RO
408 #define __P110 PAGE_RO
409 #define __P111 PAGE_RO
410
411 #define __S000 PAGE_NONE
412 #define __S001 PAGE_RO
413 #define __S010 PAGE_RW
414 #define __S011 PAGE_RW
415 #define __S100 PAGE_RO
416 #define __S101 PAGE_RO
417 #define __S110 PAGE_RW
418 #define __S111 PAGE_RW
419
420 static inline int mm_exclusive(struct mm_struct *mm)
421 {
422 return likely(mm == current->active_mm &&
423 atomic_read(&mm->context.attach_count) <= 1);
424 }
425
426 static inline int mm_has_pgste(struct mm_struct *mm)
427 {
428 #ifdef CONFIG_PGSTE
429 if (unlikely(mm->context.has_pgste))
430 return 1;
431 #endif
432 return 0;
433 }
434 /*
435 * pgd/pmd/pte query functions
436 */
437 #ifndef CONFIG_64BIT
438
439 static inline int pgd_present(pgd_t pgd) { return 1; }
440 static inline int pgd_none(pgd_t pgd) { return 0; }
441 static inline int pgd_bad(pgd_t pgd) { return 0; }
442
443 static inline int pud_present(pud_t pud) { return 1; }
444 static inline int pud_none(pud_t pud) { return 0; }
445 static inline int pud_large(pud_t pud) { return 0; }
446 static inline int pud_bad(pud_t pud) { return 0; }
447
448 #else /* CONFIG_64BIT */
449
450 static inline int pgd_present(pgd_t pgd)
451 {
452 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
453 return 1;
454 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
455 }
456
457 static inline int pgd_none(pgd_t pgd)
458 {
459 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
460 return 0;
461 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
462 }
463
464 static inline int pgd_bad(pgd_t pgd)
465 {
466 /*
467 * With dynamic page table levels the pgd can be a region table
468 * entry or a segment table entry. Check for the bit that are
469 * invalid for either table entry.
470 */
471 unsigned long mask =
472 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
473 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
474 return (pgd_val(pgd) & mask) != 0;
475 }
476
477 static inline int pud_present(pud_t pud)
478 {
479 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
480 return 1;
481 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
482 }
483
484 static inline int pud_none(pud_t pud)
485 {
486 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
487 return 0;
488 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
489 }
490
491 static inline int pud_large(pud_t pud)
492 {
493 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
494 return 0;
495 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
496 }
497
498 static inline int pud_bad(pud_t pud)
499 {
500 /*
501 * With dynamic page table levels the pud can be a region table
502 * entry or a segment table entry. Check for the bit that are
503 * invalid for either table entry.
504 */
505 unsigned long mask =
506 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
507 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
508 return (pud_val(pud) & mask) != 0;
509 }
510
511 #endif /* CONFIG_64BIT */
512
513 static inline int pmd_present(pmd_t pmd)
514 {
515 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
516 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
517 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
518 }
519
520 static inline int pmd_none(pmd_t pmd)
521 {
522 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
523 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
524 }
525
526 static inline int pmd_large(pmd_t pmd)
527 {
528 #ifdef CONFIG_64BIT
529 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
530 #else
531 return 0;
532 #endif
533 }
534
535 static inline int pmd_bad(pmd_t pmd)
536 {
537 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
538 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
539 }
540
541 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
542 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
543 unsigned long addr, pmd_t *pmdp);
544
545 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
546 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
547 unsigned long address, pmd_t *pmdp,
548 pmd_t entry, int dirty);
549
550 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
551 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
552 unsigned long address, pmd_t *pmdp);
553
554 #define __HAVE_ARCH_PMD_WRITE
555 static inline int pmd_write(pmd_t pmd)
556 {
557 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
558 }
559
560 static inline int pmd_young(pmd_t pmd)
561 {
562 return 0;
563 }
564
565 static inline int pte_none(pte_t pte)
566 {
567 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
568 }
569
570 static inline int pte_present(pte_t pte)
571 {
572 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
573 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
574 (!(pte_val(pte) & _PAGE_INVALID) &&
575 !(pte_val(pte) & _PAGE_SWT));
576 }
577
578 static inline int pte_file(pte_t pte)
579 {
580 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
581 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
582 }
583
584 static inline int pte_special(pte_t pte)
585 {
586 return (pte_val(pte) & _PAGE_SPECIAL);
587 }
588
589 #define __HAVE_ARCH_PTE_SAME
590 static inline int pte_same(pte_t a, pte_t b)
591 {
592 return pte_val(a) == pte_val(b);
593 }
594
595 static inline pgste_t pgste_get_lock(pte_t *ptep)
596 {
597 unsigned long new = 0;
598 #ifdef CONFIG_PGSTE
599 unsigned long old;
600
601 preempt_disable();
602 asm(
603 " lg %0,%2\n"
604 "0: lgr %1,%0\n"
605 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
606 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
607 " csg %0,%1,%2\n"
608 " jl 0b\n"
609 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
610 : "Q" (ptep[PTRS_PER_PTE]) : "cc");
611 #endif
612 return __pgste(new);
613 }
614
615 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
616 {
617 #ifdef CONFIG_PGSTE
618 asm(
619 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
620 " stg %1,%0\n"
621 : "=Q" (ptep[PTRS_PER_PTE])
622 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
623 preempt_enable();
624 #endif
625 }
626
627 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
628 {
629 #ifdef CONFIG_PGSTE
630 unsigned long address, bits;
631 unsigned char skey;
632
633 if (!pte_present(*ptep))
634 return pgste;
635 address = pte_val(*ptep) & PAGE_MASK;
636 skey = page_get_storage_key(address);
637 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
638 /* Clear page changed & referenced bit in the storage key */
639 if (bits & _PAGE_CHANGED)
640 page_set_storage_key(address, skey ^ bits, 0);
641 else if (bits)
642 page_reset_referenced(address);
643 /* Transfer page changed & referenced bit to guest bits in pgste */
644 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
645 /* Get host changed & referenced bits from pgste */
646 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
647 /* Transfer page changed & referenced bit to kvm user bits */
648 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
649 /* Clear relevant host bits in pgste. */
650 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
651 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
652 /* Copy page access key and fetch protection bit to pgste */
653 pgste_val(pgste) |=
654 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
655 /* Transfer referenced bit to pte */
656 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
657 #endif
658 return pgste;
659
660 }
661
662 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
663 {
664 #ifdef CONFIG_PGSTE
665 int young;
666
667 if (!pte_present(*ptep))
668 return pgste;
669 /* Get referenced bit from storage key */
670 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
671 if (young)
672 pgste_val(pgste) |= RCP_GR_BIT;
673 /* Get host referenced bit from pgste */
674 if (pgste_val(pgste) & RCP_HR_BIT) {
675 pgste_val(pgste) &= ~RCP_HR_BIT;
676 young = 1;
677 }
678 /* Transfer referenced bit to kvm user bits and pte */
679 if (young) {
680 pgste_val(pgste) |= KVM_UR_BIT;
681 pte_val(*ptep) |= _PAGE_SWR;
682 }
683 #endif
684 return pgste;
685 }
686
687 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
688 {
689 #ifdef CONFIG_PGSTE
690 unsigned long address;
691 unsigned long okey, nkey;
692
693 if (!pte_present(entry))
694 return;
695 address = pte_val(entry) & PAGE_MASK;
696 okey = nkey = page_get_storage_key(address);
697 nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
698 /* Set page access key and fetch protection bit from pgste */
699 nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
700 if (okey != nkey)
701 page_set_storage_key(address, nkey, 0);
702 #endif
703 }
704
705 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
706 {
707 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
708 /*
709 * Without enhanced suppression-on-protection force
710 * the dirty bit on for all writable ptes.
711 */
712 pte_val(entry) |= _PAGE_SWC;
713 pte_val(entry) &= ~_PAGE_RO;
714 }
715 *ptep = entry;
716 }
717
718 /**
719 * struct gmap_struct - guest address space
720 * @mm: pointer to the parent mm_struct
721 * @table: pointer to the page directory
722 * @asce: address space control element for gmap page table
723 * @crst_list: list of all crst tables used in the guest address space
724 */
725 struct gmap {
726 struct list_head list;
727 struct mm_struct *mm;
728 unsigned long *table;
729 unsigned long asce;
730 struct list_head crst_list;
731 };
732
733 /**
734 * struct gmap_rmap - reverse mapping for segment table entries
735 * @next: pointer to the next gmap_rmap structure in the list
736 * @entry: pointer to a segment table entry
737 */
738 struct gmap_rmap {
739 struct list_head list;
740 unsigned long *entry;
741 };
742
743 /**
744 * struct gmap_pgtable - gmap information attached to a page table
745 * @vmaddr: address of the 1MB segment in the process virtual memory
746 * @mapper: list of segment table entries maping a page table
747 */
748 struct gmap_pgtable {
749 unsigned long vmaddr;
750 struct list_head mapper;
751 };
752
753 struct gmap *gmap_alloc(struct mm_struct *mm);
754 void gmap_free(struct gmap *gmap);
755 void gmap_enable(struct gmap *gmap);
756 void gmap_disable(struct gmap *gmap);
757 int gmap_map_segment(struct gmap *gmap, unsigned long from,
758 unsigned long to, unsigned long length);
759 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
760 unsigned long __gmap_fault(unsigned long address, struct gmap *);
761 unsigned long gmap_fault(unsigned long address, struct gmap *);
762 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
763
764 /*
765 * Certain architectures need to do special things when PTEs
766 * within a page table are directly modified. Thus, the following
767 * hook is made available.
768 */
769 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
770 pte_t *ptep, pte_t entry)
771 {
772 pgste_t pgste;
773
774 if (mm_has_pgste(mm)) {
775 pgste = pgste_get_lock(ptep);
776 pgste_set_key(ptep, pgste, entry);
777 pgste_set_pte(ptep, entry);
778 pgste_set_unlock(ptep, pgste);
779 } else {
780 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
781 pte_val(entry) |= _PAGE_CO;
782 *ptep = entry;
783 }
784 }
785
786 /*
787 * query functions pte_write/pte_dirty/pte_young only work if
788 * pte_present() is true. Undefined behaviour if not..
789 */
790 static inline int pte_write(pte_t pte)
791 {
792 return (pte_val(pte) & _PAGE_SWW) != 0;
793 }
794
795 static inline int pte_dirty(pte_t pte)
796 {
797 return (pte_val(pte) & _PAGE_SWC) != 0;
798 }
799
800 static inline int pte_young(pte_t pte)
801 {
802 #ifdef CONFIG_PGSTE
803 if (pte_val(pte) & _PAGE_SWR)
804 return 1;
805 #endif
806 return 0;
807 }
808
809 /*
810 * pgd/pmd/pte modification functions
811 */
812
813 static inline void pgd_clear(pgd_t *pgd)
814 {
815 #ifdef CONFIG_64BIT
816 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
817 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
818 #endif
819 }
820
821 static inline void pud_clear(pud_t *pud)
822 {
823 #ifdef CONFIG_64BIT
824 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
825 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
826 #endif
827 }
828
829 static inline void pmd_clear(pmd_t *pmdp)
830 {
831 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
832 }
833
834 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
835 {
836 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
837 }
838
839 /*
840 * The following pte modification functions only work if
841 * pte_present() is true. Undefined behaviour if not..
842 */
843 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
844 {
845 pte_val(pte) &= _PAGE_CHG_MASK;
846 pte_val(pte) |= pgprot_val(newprot);
847 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
848 pte_val(pte) &= ~_PAGE_RO;
849 return pte;
850 }
851
852 static inline pte_t pte_wrprotect(pte_t pte)
853 {
854 pte_val(pte) &= ~_PAGE_SWW;
855 /* Do not clobber _PAGE_TYPE_NONE pages! */
856 if (!(pte_val(pte) & _PAGE_INVALID))
857 pte_val(pte) |= _PAGE_RO;
858 return pte;
859 }
860
861 static inline pte_t pte_mkwrite(pte_t pte)
862 {
863 pte_val(pte) |= _PAGE_SWW;
864 if (pte_val(pte) & _PAGE_SWC)
865 pte_val(pte) &= ~_PAGE_RO;
866 return pte;
867 }
868
869 static inline pte_t pte_mkclean(pte_t pte)
870 {
871 pte_val(pte) &= ~_PAGE_SWC;
872 /* Do not clobber _PAGE_TYPE_NONE pages! */
873 if (!(pte_val(pte) & _PAGE_INVALID))
874 pte_val(pte) |= _PAGE_RO;
875 return pte;
876 }
877
878 static inline pte_t pte_mkdirty(pte_t pte)
879 {
880 pte_val(pte) |= _PAGE_SWC;
881 if (pte_val(pte) & _PAGE_SWW)
882 pte_val(pte) &= ~_PAGE_RO;
883 return pte;
884 }
885
886 static inline pte_t pte_mkold(pte_t pte)
887 {
888 #ifdef CONFIG_PGSTE
889 pte_val(pte) &= ~_PAGE_SWR;
890 #endif
891 return pte;
892 }
893
894 static inline pte_t pte_mkyoung(pte_t pte)
895 {
896 return pte;
897 }
898
899 static inline pte_t pte_mkspecial(pte_t pte)
900 {
901 pte_val(pte) |= _PAGE_SPECIAL;
902 return pte;
903 }
904
905 #ifdef CONFIG_HUGETLB_PAGE
906 static inline pte_t pte_mkhuge(pte_t pte)
907 {
908 /*
909 * PROT_NONE needs to be remapped from the pte type to the ste type.
910 * The HW invalid bit is also different for pte and ste. The pte
911 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
912 * bit, so we don't have to clear it.
913 */
914 if (pte_val(pte) & _PAGE_INVALID) {
915 if (pte_val(pte) & _PAGE_SWT)
916 pte_val(pte) |= _HPAGE_TYPE_NONE;
917 pte_val(pte) |= _SEGMENT_ENTRY_INV;
918 }
919 /*
920 * Clear SW pte bits, there are no SW bits in a segment table entry.
921 */
922 pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX | _PAGE_SWC |
923 _PAGE_SWR | _PAGE_SWW);
924 /*
925 * Also set the change-override bit because we don't need dirty bit
926 * tracking for hugetlbfs pages.
927 */
928 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
929 return pte;
930 }
931 #endif
932
933 /*
934 * Get (and clear) the user dirty bit for a pte.
935 */
936 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
937 pte_t *ptep)
938 {
939 pgste_t pgste;
940 int dirty = 0;
941
942 if (mm_has_pgste(mm)) {
943 pgste = pgste_get_lock(ptep);
944 pgste = pgste_update_all(ptep, pgste);
945 dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
946 pgste_val(pgste) &= ~KVM_UC_BIT;
947 pgste_set_unlock(ptep, pgste);
948 return dirty;
949 }
950 return dirty;
951 }
952
953 /*
954 * Get (and clear) the user referenced bit for a pte.
955 */
956 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
957 pte_t *ptep)
958 {
959 pgste_t pgste;
960 int young = 0;
961
962 if (mm_has_pgste(mm)) {
963 pgste = pgste_get_lock(ptep);
964 pgste = pgste_update_young(ptep, pgste);
965 young = !!(pgste_val(pgste) & KVM_UR_BIT);
966 pgste_val(pgste) &= ~KVM_UR_BIT;
967 pgste_set_unlock(ptep, pgste);
968 }
969 return young;
970 }
971
972 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
973 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
974 unsigned long addr, pte_t *ptep)
975 {
976 pgste_t pgste;
977 pte_t pte;
978
979 if (mm_has_pgste(vma->vm_mm)) {
980 pgste = pgste_get_lock(ptep);
981 pgste = pgste_update_young(ptep, pgste);
982 pte = *ptep;
983 *ptep = pte_mkold(pte);
984 pgste_set_unlock(ptep, pgste);
985 return pte_young(pte);
986 }
987 return 0;
988 }
989
990 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
991 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
992 unsigned long address, pte_t *ptep)
993 {
994 /* No need to flush TLB
995 * On s390 reference bits are in storage key and never in TLB
996 * With virtualization we handle the reference bit, without we
997 * we can simply return */
998 return ptep_test_and_clear_young(vma, address, ptep);
999 }
1000
1001 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1002 {
1003 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1004 #ifndef CONFIG_64BIT
1005 /* pto must point to the start of the segment table */
1006 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1007 #else
1008 /* ipte in zarch mode can do the math */
1009 pte_t *pto = ptep;
1010 #endif
1011 asm volatile(
1012 " ipte %2,%3"
1013 : "=m" (*ptep) : "m" (*ptep),
1014 "a" (pto), "a" (address));
1015 }
1016 }
1017
1018 /*
1019 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1020 * both clear the TLB for the unmapped pte. The reason is that
1021 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1022 * to modify an active pte. The sequence is
1023 * 1) ptep_get_and_clear
1024 * 2) set_pte_at
1025 * 3) flush_tlb_range
1026 * On s390 the tlb needs to get flushed with the modification of the pte
1027 * if the pte is active. The only way how this can be implemented is to
1028 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1029 * is a nop.
1030 */
1031 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1032 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1033 unsigned long address, pte_t *ptep)
1034 {
1035 pgste_t pgste;
1036 pte_t pte;
1037
1038 mm->context.flush_mm = 1;
1039 if (mm_has_pgste(mm))
1040 pgste = pgste_get_lock(ptep);
1041
1042 pte = *ptep;
1043 if (!mm_exclusive(mm))
1044 __ptep_ipte(address, ptep);
1045 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1046
1047 if (mm_has_pgste(mm)) {
1048 pgste = pgste_update_all(&pte, pgste);
1049 pgste_set_unlock(ptep, pgste);
1050 }
1051 return pte;
1052 }
1053
1054 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1055 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1056 unsigned long address,
1057 pte_t *ptep)
1058 {
1059 pte_t pte;
1060
1061 mm->context.flush_mm = 1;
1062 if (mm_has_pgste(mm))
1063 pgste_get_lock(ptep);
1064
1065 pte = *ptep;
1066 if (!mm_exclusive(mm))
1067 __ptep_ipte(address, ptep);
1068 return pte;
1069 }
1070
1071 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1072 unsigned long address,
1073 pte_t *ptep, pte_t pte)
1074 {
1075 if (mm_has_pgste(mm)) {
1076 pgste_set_pte(ptep, pte);
1077 pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
1078 } else
1079 *ptep = pte;
1080 }
1081
1082 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1083 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1084 unsigned long address, pte_t *ptep)
1085 {
1086 pgste_t pgste;
1087 pte_t pte;
1088
1089 if (mm_has_pgste(vma->vm_mm))
1090 pgste = pgste_get_lock(ptep);
1091
1092 pte = *ptep;
1093 __ptep_ipte(address, ptep);
1094 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1095
1096 if (mm_has_pgste(vma->vm_mm)) {
1097 pgste = pgste_update_all(&pte, pgste);
1098 pgste_set_unlock(ptep, pgste);
1099 }
1100 return pte;
1101 }
1102
1103 /*
1104 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1105 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1106 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1107 * cannot be accessed while the batched unmap is running. In this case
1108 * full==1 and a simple pte_clear is enough. See tlb.h.
1109 */
1110 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1111 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1112 unsigned long address,
1113 pte_t *ptep, int full)
1114 {
1115 pgste_t pgste;
1116 pte_t pte;
1117
1118 if (mm_has_pgste(mm))
1119 pgste = pgste_get_lock(ptep);
1120
1121 pte = *ptep;
1122 if (!full)
1123 __ptep_ipte(address, ptep);
1124 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1125
1126 if (mm_has_pgste(mm)) {
1127 pgste = pgste_update_all(&pte, pgste);
1128 pgste_set_unlock(ptep, pgste);
1129 }
1130 return pte;
1131 }
1132
1133 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1134 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1135 unsigned long address, pte_t *ptep)
1136 {
1137 pgste_t pgste;
1138 pte_t pte = *ptep;
1139
1140 if (pte_write(pte)) {
1141 mm->context.flush_mm = 1;
1142 if (mm_has_pgste(mm))
1143 pgste = pgste_get_lock(ptep);
1144
1145 if (!mm_exclusive(mm))
1146 __ptep_ipte(address, ptep);
1147 pte = pte_wrprotect(pte);
1148
1149 if (mm_has_pgste(mm)) {
1150 pgste_set_pte(ptep, pte);
1151 pgste_set_unlock(ptep, pgste);
1152 } else
1153 *ptep = pte;
1154 }
1155 return pte;
1156 }
1157
1158 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1159 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1160 unsigned long address, pte_t *ptep,
1161 pte_t entry, int dirty)
1162 {
1163 pgste_t pgste;
1164
1165 if (pte_same(*ptep, entry))
1166 return 0;
1167 if (mm_has_pgste(vma->vm_mm))
1168 pgste = pgste_get_lock(ptep);
1169
1170 __ptep_ipte(address, ptep);
1171
1172 if (mm_has_pgste(vma->vm_mm)) {
1173 pgste_set_pte(ptep, entry);
1174 pgste_set_unlock(ptep, pgste);
1175 } else
1176 *ptep = entry;
1177 return 1;
1178 }
1179
1180 /*
1181 * Conversion functions: convert a page and protection to a page entry,
1182 * and a page entry and page directory to the page they refer to.
1183 */
1184 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1185 {
1186 pte_t __pte;
1187 pte_val(__pte) = physpage + pgprot_val(pgprot);
1188 return __pte;
1189 }
1190
1191 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1192 {
1193 unsigned long physpage = page_to_phys(page);
1194 pte_t __pte = mk_pte_phys(physpage, pgprot);
1195
1196 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1197 pte_val(__pte) |= _PAGE_SWC;
1198 pte_val(__pte) &= ~_PAGE_RO;
1199 }
1200 return __pte;
1201 }
1202
1203 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1204 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1205 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1206 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1207
1208 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1209 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1210
1211 #ifndef CONFIG_64BIT
1212
1213 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1214 #define pud_deref(pmd) ({ BUG(); 0UL; })
1215 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1216
1217 #define pud_offset(pgd, address) ((pud_t *) pgd)
1218 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1219
1220 #else /* CONFIG_64BIT */
1221
1222 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1223 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1224 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1225
1226 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1227 {
1228 pud_t *pud = (pud_t *) pgd;
1229 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1230 pud = (pud_t *) pgd_deref(*pgd);
1231 return pud + pud_index(address);
1232 }
1233
1234 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1235 {
1236 pmd_t *pmd = (pmd_t *) pud;
1237 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1238 pmd = (pmd_t *) pud_deref(*pud);
1239 return pmd + pmd_index(address);
1240 }
1241
1242 #endif /* CONFIG_64BIT */
1243
1244 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1245 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1246 #define pte_page(x) pfn_to_page(pte_pfn(x))
1247
1248 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1249
1250 /* Find an entry in the lowest level page table.. */
1251 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1252 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1253 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1254 #define pte_unmap(pte) do { } while (0)
1255
1256 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1257 {
1258 unsigned long sto = (unsigned long) pmdp -
1259 pmd_index(address) * sizeof(pmd_t);
1260
1261 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1262 asm volatile(
1263 " .insn rrf,0xb98e0000,%2,%3,0,0"
1264 : "=m" (*pmdp)
1265 : "m" (*pmdp), "a" (sto),
1266 "a" ((address & HPAGE_MASK))
1267 : "cc"
1268 );
1269 }
1270 }
1271
1272 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1273
1274 #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
1275 #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
1276 #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
1277
1278 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1279 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
1280
1281 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1282 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
1283
1284 static inline int pmd_trans_splitting(pmd_t pmd)
1285 {
1286 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1287 }
1288
1289 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1290 pmd_t *pmdp, pmd_t entry)
1291 {
1292 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1293 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1294 *pmdp = entry;
1295 }
1296
1297 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1298 {
1299 /*
1300 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1301 * Convert to segment table entry format.
1302 */
1303 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1304 return pgprot_val(SEGMENT_NONE);
1305 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1306 return pgprot_val(SEGMENT_RO);
1307 return pgprot_val(SEGMENT_RW);
1308 }
1309
1310 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1311 {
1312 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1313 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1314 return pmd;
1315 }
1316
1317 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1318 {
1319 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1320 return pmd;
1321 }
1322
1323 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1324 {
1325 /* Do not clobber _HPAGE_TYPE_NONE pages! */
1326 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1327 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1328 return pmd;
1329 }
1330
1331 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1332 {
1333 pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1334 return pmd;
1335 }
1336
1337 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1338 {
1339 /* No dirty bit in the segment table entry. */
1340 return pmd;
1341 }
1342
1343 static inline pmd_t pmd_mkold(pmd_t pmd)
1344 {
1345 /* No referenced bit in the segment table entry. */
1346 return pmd;
1347 }
1348
1349 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1350 {
1351 /* No referenced bit in the segment table entry. */
1352 return pmd;
1353 }
1354
1355 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1356 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1357 unsigned long address, pmd_t *pmdp)
1358 {
1359 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1360 long tmp, rc;
1361 int counter;
1362
1363 rc = 0;
1364 if (MACHINE_HAS_RRBM) {
1365 counter = PTRS_PER_PTE >> 6;
1366 asm volatile(
1367 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1368 " ogr %1,%0\n"
1369 " la %3,0(%4,%3)\n"
1370 " brct %2,0b\n"
1371 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1372 "+a" (pmd_addr)
1373 : "a" (64 * 4096UL) : "cc");
1374 rc = !!rc;
1375 } else {
1376 counter = PTRS_PER_PTE;
1377 asm volatile(
1378 "0: rrbe 0,%2\n"
1379 " la %2,0(%3,%2)\n"
1380 " brc 12,1f\n"
1381 " lhi %0,1\n"
1382 "1: brct %1,0b\n"
1383 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1384 : "a" (4096UL) : "cc");
1385 }
1386 return rc;
1387 }
1388
1389 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1390 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1391 unsigned long address, pmd_t *pmdp)
1392 {
1393 pmd_t pmd = *pmdp;
1394
1395 __pmd_idte(address, pmdp);
1396 pmd_clear(pmdp);
1397 return pmd;
1398 }
1399
1400 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1401 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1402 unsigned long address, pmd_t *pmdp)
1403 {
1404 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1405 }
1406
1407 #define __HAVE_ARCH_PMDP_INVALIDATE
1408 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1409 unsigned long address, pmd_t *pmdp)
1410 {
1411 __pmd_idte(address, pmdp);
1412 }
1413
1414 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1415 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1416 unsigned long address, pmd_t *pmdp)
1417 {
1418 pmd_t pmd = *pmdp;
1419
1420 if (pmd_write(pmd)) {
1421 __pmd_idte(address, pmdp);
1422 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1423 }
1424 }
1425
1426 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1427 {
1428 pmd_t __pmd;
1429 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1430 return __pmd;
1431 }
1432
1433 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1434 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1435
1436 static inline int pmd_trans_huge(pmd_t pmd)
1437 {
1438 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1439 }
1440
1441 static inline int has_transparent_hugepage(void)
1442 {
1443 return MACHINE_HAS_HPAGE ? 1 : 0;
1444 }
1445
1446 static inline unsigned long pmd_pfn(pmd_t pmd)
1447 {
1448 return pmd_val(pmd) >> PAGE_SHIFT;
1449 }
1450 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1451
1452 /*
1453 * 31 bit swap entry format:
1454 * A page-table entry has some bits we have to treat in a special way.
1455 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1456 * exception will occur instead of a page translation exception. The
1457 * specifiation exception has the bad habit not to store necessary
1458 * information in the lowcore.
1459 * Bit 21 and bit 22 are the page invalid bit and the page protection
1460 * bit. We set both to indicate a swapped page.
1461 * Bit 30 and 31 are used to distinguish the different page types. For
1462 * a swapped page these bits need to be zero.
1463 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1464 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1465 * plus 24 for the offset.
1466 * 0| offset |0110|o|type |00|
1467 * 0 0000000001111111111 2222 2 22222 33
1468 * 0 1234567890123456789 0123 4 56789 01
1469 *
1470 * 64 bit swap entry format:
1471 * A page-table entry has some bits we have to treat in a special way.
1472 * Bits 52 and bit 55 have to be zero, otherwise an specification
1473 * exception will occur instead of a page translation exception. The
1474 * specifiation exception has the bad habit not to store necessary
1475 * information in the lowcore.
1476 * Bit 53 and bit 54 are the page invalid bit and the page protection
1477 * bit. We set both to indicate a swapped page.
1478 * Bit 62 and 63 are used to distinguish the different page types. For
1479 * a swapped page these bits need to be zero.
1480 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1481 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1482 * plus 56 for the offset.
1483 * | offset |0110|o|type |00|
1484 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1485 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1486 */
1487 #ifndef CONFIG_64BIT
1488 #define __SWP_OFFSET_MASK (~0UL >> 12)
1489 #else
1490 #define __SWP_OFFSET_MASK (~0UL >> 11)
1491 #endif
1492 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1493 {
1494 pte_t pte;
1495 offset &= __SWP_OFFSET_MASK;
1496 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1497 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1498 return pte;
1499 }
1500
1501 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1502 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1503 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1504
1505 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1506 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1507
1508 #ifndef CONFIG_64BIT
1509 # define PTE_FILE_MAX_BITS 26
1510 #else /* CONFIG_64BIT */
1511 # define PTE_FILE_MAX_BITS 59
1512 #endif /* CONFIG_64BIT */
1513
1514 #define pte_to_pgoff(__pte) \
1515 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1516
1517 #define pgoff_to_pte(__off) \
1518 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1519 | _PAGE_TYPE_FILE })
1520
1521 #endif /* !__ASSEMBLY__ */
1522
1523 #define kern_addr_valid(addr) (1)
1524
1525 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1526 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1527 extern int s390_enable_sie(void);
1528
1529 /*
1530 * No page table caches to initialise
1531 */
1532 #define pgtable_cache_init() do { } while (0)
1533
1534 #include <asm-generic/pgtable.h>
1535
1536 #endif /* _S390_PAGE_H */
This page took 0.062604 seconds and 5 git commands to generate.