s390/mm: implement software dirty bits
[deliverable/linux.git] / arch / s390 / mm / vmem.c
1 /*
2 * Copyright IBM Corp. 2006
3 * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4 */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18
19 static DEFINE_MUTEX(vmem_mutex);
20
21 struct memory_segment {
22 struct list_head list;
23 unsigned long start;
24 unsigned long size;
25 };
26
27 static LIST_HEAD(mem_segs);
28
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31 if (slab_is_available())
32 return (void *)__get_free_pages(GFP_KERNEL, order);
33 return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38 pud_t *pud = NULL;
39
40 #ifdef CONFIG_64BIT
41 pud = vmem_alloc_pages(2);
42 if (!pud)
43 return NULL;
44 clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46 return pud;
47 }
48
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51 pmd_t *pmd = NULL;
52
53 #ifdef CONFIG_64BIT
54 pmd = vmem_alloc_pages(2);
55 if (!pmd)
56 return NULL;
57 clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59 return pmd;
60 }
61
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64 pte_t *pte;
65
66 if (slab_is_available())
67 pte = (pte_t *) page_table_alloc(&init_mm, address);
68 else
69 pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70 if (!pte)
71 return NULL;
72 clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73 PTRS_PER_PTE * sizeof(pte_t));
74 return pte;
75 }
76
77 /*
78 * Add a physical memory range to the 1:1 mapping.
79 */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82 unsigned long end = start + size;
83 unsigned long address = start;
84 pgd_t *pg_dir;
85 pud_t *pu_dir;
86 pmd_t *pm_dir;
87 pte_t *pt_dir;
88 int ret = -ENOMEM;
89
90 while (address < end) {
91 pg_dir = pgd_offset_k(address);
92 if (pgd_none(*pg_dir)) {
93 pu_dir = vmem_pud_alloc();
94 if (!pu_dir)
95 goto out;
96 pgd_populate(&init_mm, pg_dir, pu_dir);
97 }
98 pu_dir = pud_offset(pg_dir, address);
99 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
100 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
101 !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
102 pud_val(*pu_dir) = __pa(address) |
103 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
104 (ro ? _REGION_ENTRY_RO : 0);
105 address += PUD_SIZE;
106 continue;
107 }
108 #endif
109 if (pud_none(*pu_dir)) {
110 pm_dir = vmem_pmd_alloc();
111 if (!pm_dir)
112 goto out;
113 pud_populate(&init_mm, pu_dir, pm_dir);
114 }
115 pm_dir = pmd_offset(pu_dir, address);
116 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
117 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
118 !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
119 pmd_val(*pm_dir) = __pa(address) |
120 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
121 (ro ? _SEGMENT_ENTRY_RO : 0);
122 address += PMD_SIZE;
123 continue;
124 }
125 #endif
126 if (pmd_none(*pm_dir)) {
127 pt_dir = vmem_pte_alloc(address);
128 if (!pt_dir)
129 goto out;
130 pmd_populate(&init_mm, pm_dir, pt_dir);
131 }
132
133 pt_dir = pte_offset_kernel(pm_dir, address);
134 pte_val(*pt_dir) = __pa(address) | (ro ? _PAGE_RO : 0);
135 address += PAGE_SIZE;
136 }
137 ret = 0;
138 out:
139 flush_tlb_kernel_range(start, end);
140 return ret;
141 }
142
143 /*
144 * Remove a physical memory range from the 1:1 mapping.
145 * Currently only invalidates page table entries.
146 */
147 static void vmem_remove_range(unsigned long start, unsigned long size)
148 {
149 unsigned long end = start + size;
150 unsigned long address = start;
151 pgd_t *pg_dir;
152 pud_t *pu_dir;
153 pmd_t *pm_dir;
154 pte_t *pt_dir;
155 pte_t pte;
156
157 pte_val(pte) = _PAGE_TYPE_EMPTY;
158 while (address < end) {
159 pg_dir = pgd_offset_k(address);
160 if (pgd_none(*pg_dir)) {
161 address += PGDIR_SIZE;
162 continue;
163 }
164 pu_dir = pud_offset(pg_dir, address);
165 if (pud_none(*pu_dir)) {
166 address += PUD_SIZE;
167 continue;
168 }
169 if (pud_large(*pu_dir)) {
170 pud_clear(pu_dir);
171 address += PUD_SIZE;
172 continue;
173 }
174 pm_dir = pmd_offset(pu_dir, address);
175 if (pmd_none(*pm_dir)) {
176 address += PMD_SIZE;
177 continue;
178 }
179 if (pmd_large(*pm_dir)) {
180 pmd_clear(pm_dir);
181 address += PMD_SIZE;
182 continue;
183 }
184 pt_dir = pte_offset_kernel(pm_dir, address);
185 *pt_dir = pte;
186 address += PAGE_SIZE;
187 }
188 flush_tlb_kernel_range(start, end);
189 }
190
191 /*
192 * Add a backed mem_map array to the virtual mem_map array.
193 */
194 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
195 {
196 unsigned long address, start_addr, end_addr;
197 pgd_t *pg_dir;
198 pud_t *pu_dir;
199 pmd_t *pm_dir;
200 pte_t *pt_dir;
201 int ret = -ENOMEM;
202
203 start_addr = (unsigned long) start;
204 end_addr = (unsigned long) (start + nr);
205
206 for (address = start_addr; address < end_addr;) {
207 pg_dir = pgd_offset_k(address);
208 if (pgd_none(*pg_dir)) {
209 pu_dir = vmem_pud_alloc();
210 if (!pu_dir)
211 goto out;
212 pgd_populate(&init_mm, pg_dir, pu_dir);
213 }
214
215 pu_dir = pud_offset(pg_dir, address);
216 if (pud_none(*pu_dir)) {
217 pm_dir = vmem_pmd_alloc();
218 if (!pm_dir)
219 goto out;
220 pud_populate(&init_mm, pu_dir, pm_dir);
221 }
222
223 pm_dir = pmd_offset(pu_dir, address);
224 if (pmd_none(*pm_dir)) {
225 #ifdef CONFIG_64BIT
226 /* Use 1MB frames for vmemmap if available. We always
227 * use large frames even if they are only partially
228 * used.
229 * Otherwise we would have also page tables since
230 * vmemmap_populate gets called for each section
231 * separately. */
232 if (MACHINE_HAS_EDAT1) {
233 void *new_page;
234
235 new_page = vmemmap_alloc_block(PMD_SIZE, node);
236 if (!new_page)
237 goto out;
238 pmd_val(*pm_dir) = __pa(new_page) |
239 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
240 address = (address + PMD_SIZE) & PMD_MASK;
241 continue;
242 }
243 #endif
244 pt_dir = vmem_pte_alloc(address);
245 if (!pt_dir)
246 goto out;
247 pmd_populate(&init_mm, pm_dir, pt_dir);
248 } else if (pmd_large(*pm_dir)) {
249 address = (address + PMD_SIZE) & PMD_MASK;
250 continue;
251 }
252
253 pt_dir = pte_offset_kernel(pm_dir, address);
254 if (pte_none(*pt_dir)) {
255 unsigned long new_page;
256
257 new_page =__pa(vmem_alloc_pages(0));
258 if (!new_page)
259 goto out;
260 pte_val(*pt_dir) = __pa(new_page);
261 }
262 address += PAGE_SIZE;
263 }
264 memset(start, 0, nr * sizeof(struct page));
265 ret = 0;
266 out:
267 flush_tlb_kernel_range(start_addr, end_addr);
268 return ret;
269 }
270
271 /*
272 * Add memory segment to the segment list if it doesn't overlap with
273 * an already present segment.
274 */
275 static int insert_memory_segment(struct memory_segment *seg)
276 {
277 struct memory_segment *tmp;
278
279 if (seg->start + seg->size > VMEM_MAX_PHYS ||
280 seg->start + seg->size < seg->start)
281 return -ERANGE;
282
283 list_for_each_entry(tmp, &mem_segs, list) {
284 if (seg->start >= tmp->start + tmp->size)
285 continue;
286 if (seg->start + seg->size <= tmp->start)
287 continue;
288 return -ENOSPC;
289 }
290 list_add(&seg->list, &mem_segs);
291 return 0;
292 }
293
294 /*
295 * Remove memory segment from the segment list.
296 */
297 static void remove_memory_segment(struct memory_segment *seg)
298 {
299 list_del(&seg->list);
300 }
301
302 static void __remove_shared_memory(struct memory_segment *seg)
303 {
304 remove_memory_segment(seg);
305 vmem_remove_range(seg->start, seg->size);
306 }
307
308 int vmem_remove_mapping(unsigned long start, unsigned long size)
309 {
310 struct memory_segment *seg;
311 int ret;
312
313 mutex_lock(&vmem_mutex);
314
315 ret = -ENOENT;
316 list_for_each_entry(seg, &mem_segs, list) {
317 if (seg->start == start && seg->size == size)
318 break;
319 }
320
321 if (seg->start != start || seg->size != size)
322 goto out;
323
324 ret = 0;
325 __remove_shared_memory(seg);
326 kfree(seg);
327 out:
328 mutex_unlock(&vmem_mutex);
329 return ret;
330 }
331
332 int vmem_add_mapping(unsigned long start, unsigned long size)
333 {
334 struct memory_segment *seg;
335 int ret;
336
337 mutex_lock(&vmem_mutex);
338 ret = -ENOMEM;
339 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
340 if (!seg)
341 goto out;
342 seg->start = start;
343 seg->size = size;
344
345 ret = insert_memory_segment(seg);
346 if (ret)
347 goto out_free;
348
349 ret = vmem_add_mem(start, size, 0);
350 if (ret)
351 goto out_remove;
352 goto out;
353
354 out_remove:
355 __remove_shared_memory(seg);
356 out_free:
357 kfree(seg);
358 out:
359 mutex_unlock(&vmem_mutex);
360 return ret;
361 }
362
363 /*
364 * map whole physical memory to virtual memory (identity mapping)
365 * we reserve enough space in the vmalloc area for vmemmap to hotplug
366 * additional memory segments.
367 */
368 void __init vmem_map_init(void)
369 {
370 unsigned long ro_start, ro_end;
371 unsigned long start, end;
372 int i;
373
374 ro_start = PFN_ALIGN((unsigned long)&_stext);
375 ro_end = (unsigned long)&_eshared & PAGE_MASK;
376 for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
377 if (memory_chunk[i].type == CHUNK_CRASHK ||
378 memory_chunk[i].type == CHUNK_OLDMEM)
379 continue;
380 start = memory_chunk[i].addr;
381 end = memory_chunk[i].addr + memory_chunk[i].size;
382 if (start >= ro_end || end <= ro_start)
383 vmem_add_mem(start, end - start, 0);
384 else if (start >= ro_start && end <= ro_end)
385 vmem_add_mem(start, end - start, 1);
386 else if (start >= ro_start) {
387 vmem_add_mem(start, ro_end - start, 1);
388 vmem_add_mem(ro_end, end - ro_end, 0);
389 } else if (end < ro_end) {
390 vmem_add_mem(start, ro_start - start, 0);
391 vmem_add_mem(ro_start, end - ro_start, 1);
392 } else {
393 vmem_add_mem(start, ro_start - start, 0);
394 vmem_add_mem(ro_start, ro_end - ro_start, 1);
395 vmem_add_mem(ro_end, end - ro_end, 0);
396 }
397 }
398 }
399
400 /*
401 * Convert memory chunk array to a memory segment list so there is a single
402 * list that contains both r/w memory and shared memory segments.
403 */
404 static int __init vmem_convert_memory_chunk(void)
405 {
406 struct memory_segment *seg;
407 int i;
408
409 mutex_lock(&vmem_mutex);
410 for (i = 0; i < MEMORY_CHUNKS; i++) {
411 if (!memory_chunk[i].size)
412 continue;
413 if (memory_chunk[i].type == CHUNK_CRASHK ||
414 memory_chunk[i].type == CHUNK_OLDMEM)
415 continue;
416 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
417 if (!seg)
418 panic("Out of memory...\n");
419 seg->start = memory_chunk[i].addr;
420 seg->size = memory_chunk[i].size;
421 insert_memory_segment(seg);
422 }
423 mutex_unlock(&vmem_mutex);
424 return 0;
425 }
426
427 core_initcall(vmem_convert_memory_chunk);
This page took 0.046454 seconds and 5 git commands to generate.