Merge remote-tracking branch 'tip/auto-latest'
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <linux/err.h>
40
41 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
42 #include <linux/elf-em.h>
43 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
44 #define __AUDIT_ARCH_64BIT 0x80000000
45 #define __AUDIT_ARCH_LE 0x40000000
46
47 .code64
48 .section .entry.text, "ax"
49
50 #ifdef CONFIG_PARAVIRT
51 ENTRY(native_usergs_sysret64)
52 swapgs
53 sysretq
54 ENDPROC(native_usergs_sysret64)
55 #endif /* CONFIG_PARAVIRT */
56
57 .macro TRACE_IRQS_IRETQ
58 #ifdef CONFIG_TRACE_IRQFLAGS
59 bt $9, EFLAGS(%rsp) /* interrupts off? */
60 jnc 1f
61 TRACE_IRQS_ON
62 1:
63 #endif
64 .endm
65
66 /*
67 * When dynamic function tracer is enabled it will add a breakpoint
68 * to all locations that it is about to modify, sync CPUs, update
69 * all the code, sync CPUs, then remove the breakpoints. In this time
70 * if lockdep is enabled, it might jump back into the debug handler
71 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
72 *
73 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
74 * make sure the stack pointer does not get reset back to the top
75 * of the debug stack, and instead just reuses the current stack.
76 */
77 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
78
79 .macro TRACE_IRQS_OFF_DEBUG
80 call debug_stack_set_zero
81 TRACE_IRQS_OFF
82 call debug_stack_reset
83 .endm
84
85 .macro TRACE_IRQS_ON_DEBUG
86 call debug_stack_set_zero
87 TRACE_IRQS_ON
88 call debug_stack_reset
89 .endm
90
91 .macro TRACE_IRQS_IRETQ_DEBUG
92 bt $9, EFLAGS(%rsp) /* interrupts off? */
93 jnc 1f
94 TRACE_IRQS_ON_DEBUG
95 1:
96 .endm
97
98 #else
99 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
100 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
101 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
102 #endif
103
104 /*
105 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
106 *
107 * This is the only entry point used for 64-bit system calls. The
108 * hardware interface is reasonably well designed and the register to
109 * argument mapping Linux uses fits well with the registers that are
110 * available when SYSCALL is used.
111 *
112 * SYSCALL instructions can be found inlined in libc implementations as
113 * well as some other programs and libraries. There are also a handful
114 * of SYSCALL instructions in the vDSO used, for example, as a
115 * clock_gettimeofday fallback.
116 *
117 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
118 * then loads new ss, cs, and rip from previously programmed MSRs.
119 * rflags gets masked by a value from another MSR (so CLD and CLAC
120 * are not needed). SYSCALL does not save anything on the stack
121 * and does not change rsp.
122 *
123 * Registers on entry:
124 * rax system call number
125 * rcx return address
126 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
127 * rdi arg0
128 * rsi arg1
129 * rdx arg2
130 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
131 * r8 arg4
132 * r9 arg5
133 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
134 *
135 * Only called from user space.
136 *
137 * When user can change pt_regs->foo always force IRET. That is because
138 * it deals with uncanonical addresses better. SYSRET has trouble
139 * with them due to bugs in both AMD and Intel CPUs.
140 */
141
142 ENTRY(entry_SYSCALL_64)
143 /*
144 * Interrupts are off on entry.
145 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
146 * it is too small to ever cause noticeable irq latency.
147 */
148 SWAPGS_UNSAFE_STACK
149 /*
150 * A hypervisor implementation might want to use a label
151 * after the swapgs, so that it can do the swapgs
152 * for the guest and jump here on syscall.
153 */
154 GLOBAL(entry_SYSCALL_64_after_swapgs)
155
156 movq %rsp, PER_CPU_VAR(rsp_scratch)
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 TRACE_IRQS_OFF
160
161 /* Construct struct pt_regs on stack */
162 pushq $__USER_DS /* pt_regs->ss */
163 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
164 pushq %r11 /* pt_regs->flags */
165 pushq $__USER_CS /* pt_regs->cs */
166 pushq %rcx /* pt_regs->ip */
167 pushq %rax /* pt_regs->orig_ax */
168 pushq %rdi /* pt_regs->di */
169 pushq %rsi /* pt_regs->si */
170 pushq %rdx /* pt_regs->dx */
171 pushq %rcx /* pt_regs->cx */
172 pushq $-ENOSYS /* pt_regs->ax */
173 pushq %r8 /* pt_regs->r8 */
174 pushq %r9 /* pt_regs->r9 */
175 pushq %r10 /* pt_regs->r10 */
176 pushq %r11 /* pt_regs->r11 */
177 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
178
179 /*
180 * If we need to do entry work or if we guess we'll need to do
181 * exit work, go straight to the slow path.
182 */
183 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
184 jnz entry_SYSCALL64_slow_path
185
186 entry_SYSCALL_64_fastpath:
187 /*
188 * Easy case: enable interrupts and issue the syscall. If the syscall
189 * needs pt_regs, we'll call a stub that disables interrupts again
190 * and jumps to the slow path.
191 */
192 TRACE_IRQS_ON
193 ENABLE_INTERRUPTS(CLBR_NONE)
194 #if __SYSCALL_MASK == ~0
195 cmpq $__NR_syscall_max, %rax
196 #else
197 andl $__SYSCALL_MASK, %eax
198 cmpl $__NR_syscall_max, %eax
199 #endif
200 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
201 movq %r10, %rcx
202
203 /*
204 * This call instruction is handled specially in stub_ptregs_64.
205 * It might end up jumping to the slow path. If it jumps, RAX
206 * and all argument registers are clobbered.
207 */
208 call *sys_call_table(, %rax, 8)
209 .Lentry_SYSCALL_64_after_fastpath_call:
210
211 movq %rax, RAX(%rsp)
212 1:
213
214 /*
215 * If we get here, then we know that pt_regs is clean for SYSRET64.
216 * If we see that no exit work is required (which we are required
217 * to check with IRQs off), then we can go straight to SYSRET64.
218 */
219 DISABLE_INTERRUPTS(CLBR_NONE)
220 TRACE_IRQS_OFF
221 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
222 jnz 1f
223
224 LOCKDEP_SYS_EXIT
225 TRACE_IRQS_ON /* user mode is traced as IRQs on */
226 movq RIP(%rsp), %rcx
227 movq EFLAGS(%rsp), %r11
228 RESTORE_C_REGS_EXCEPT_RCX_R11
229 movq RSP(%rsp), %rsp
230 USERGS_SYSRET64
231
232 1:
233 /*
234 * The fast path looked good when we started, but something changed
235 * along the way and we need to switch to the slow path. Calling
236 * raise(3) will trigger this, for example. IRQs are off.
237 */
238 TRACE_IRQS_ON
239 ENABLE_INTERRUPTS(CLBR_NONE)
240 SAVE_EXTRA_REGS
241 movq %rsp, %rdi
242 call syscall_return_slowpath /* returns with IRQs disabled */
243 jmp return_from_SYSCALL_64
244
245 entry_SYSCALL64_slow_path:
246 /* IRQs are off. */
247 SAVE_EXTRA_REGS
248 movq %rsp, %rdi
249 call do_syscall_64 /* returns with IRQs disabled */
250
251 return_from_SYSCALL_64:
252 RESTORE_EXTRA_REGS
253 TRACE_IRQS_IRETQ /* we're about to change IF */
254
255 /*
256 * Try to use SYSRET instead of IRET if we're returning to
257 * a completely clean 64-bit userspace context.
258 */
259 movq RCX(%rsp), %rcx
260 movq RIP(%rsp), %r11
261 cmpq %rcx, %r11 /* RCX == RIP */
262 jne opportunistic_sysret_failed
263
264 /*
265 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
266 * in kernel space. This essentially lets the user take over
267 * the kernel, since userspace controls RSP.
268 *
269 * If width of "canonical tail" ever becomes variable, this will need
270 * to be updated to remain correct on both old and new CPUs.
271 */
272 .ifne __VIRTUAL_MASK_SHIFT - 47
273 .error "virtual address width changed -- SYSRET checks need update"
274 .endif
275
276 /* Change top 16 bits to be the sign-extension of 47th bit */
277 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
279
280 /* If this changed %rcx, it was not canonical */
281 cmpq %rcx, %r11
282 jne opportunistic_sysret_failed
283
284 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
285 jne opportunistic_sysret_failed
286
287 movq R11(%rsp), %r11
288 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
289 jne opportunistic_sysret_failed
290
291 /*
292 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
293 * restore RF properly. If the slowpath sets it for whatever reason, we
294 * need to restore it correctly.
295 *
296 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
297 * trap from userspace immediately after SYSRET. This would cause an
298 * infinite loop whenever #DB happens with register state that satisfies
299 * the opportunistic SYSRET conditions. For example, single-stepping
300 * this user code:
301 *
302 * movq $stuck_here, %rcx
303 * pushfq
304 * popq %r11
305 * stuck_here:
306 *
307 * would never get past 'stuck_here'.
308 */
309 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
310 jnz opportunistic_sysret_failed
311
312 /* nothing to check for RSP */
313
314 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
315 jne opportunistic_sysret_failed
316
317 /*
318 * We win! This label is here just for ease of understanding
319 * perf profiles. Nothing jumps here.
320 */
321 syscall_return_via_sysret:
322 /* rcx and r11 are already restored (see code above) */
323 RESTORE_C_REGS_EXCEPT_RCX_R11
324 movq RSP(%rsp), %rsp
325 USERGS_SYSRET64
326
327 opportunistic_sysret_failed:
328 SWAPGS
329 jmp restore_c_regs_and_iret
330 END(entry_SYSCALL_64)
331
332 ENTRY(stub_ptregs_64)
333 /*
334 * Syscalls marked as needing ptregs land here.
335 * If we are on the fast path, we need to save the extra regs,
336 * which we achieve by trying again on the slow path. If we are on
337 * the slow path, the extra regs are already saved.
338 *
339 * RAX stores a pointer to the C function implementing the syscall.
340 * IRQs are on.
341 */
342 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
343 jne 1f
344
345 /*
346 * Called from fast path -- disable IRQs again, pop return address
347 * and jump to slow path
348 */
349 DISABLE_INTERRUPTS(CLBR_NONE)
350 TRACE_IRQS_OFF
351 popq %rax
352 jmp entry_SYSCALL64_slow_path
353
354 1:
355 jmp *%rax /* Called from C */
356 END(stub_ptregs_64)
357
358 .macro ptregs_stub func
359 ENTRY(ptregs_\func)
360 leaq \func(%rip), %rax
361 jmp stub_ptregs_64
362 END(ptregs_\func)
363 .endm
364
365 /* Instantiate ptregs_stub for each ptregs-using syscall */
366 #define __SYSCALL_64_QUAL_(sym)
367 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
368 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
369 #include <asm/syscalls_64.h>
370
371 /*
372 * %rdi: prev task
373 * %rsi: next task
374 */
375 ENTRY(__switch_to_asm)
376 /*
377 * Save callee-saved registers
378 * This must match the order in inactive_task_frame
379 */
380 pushq %rbp
381 pushq %rbx
382 pushq %r12
383 pushq %r13
384 pushq %r14
385 pushq %r15
386
387 /* switch stack */
388 movq %rsp, TASK_threadsp(%rdi)
389 movq TASK_threadsp(%rsi), %rsp
390
391 #ifdef CONFIG_CC_STACKPROTECTOR
392 movq TASK_stack_canary(%rsi), %rbx
393 movq %rbx, PER_CPU_VAR(irq_stack_union)+stack_canary_offset
394 #endif
395
396 /* restore callee-saved registers */
397 popq %r15
398 popq %r14
399 popq %r13
400 popq %r12
401 popq %rbx
402 popq %rbp
403
404 jmp __switch_to
405 END(__switch_to_asm)
406
407 /*
408 * A newly forked process directly context switches into this address.
409 *
410 * rax: prev task we switched from
411 * rbx: kernel thread func (NULL for user thread)
412 * r12: kernel thread arg
413 */
414 ENTRY(ret_from_fork)
415 movq %rax, %rdi
416 call schedule_tail /* rdi: 'prev' task parameter */
417
418 testq %rbx, %rbx /* from kernel_thread? */
419 jnz 1f /* kernel threads are uncommon */
420
421 2:
422 movq %rsp, %rdi
423 call syscall_return_slowpath /* returns with IRQs disabled */
424 TRACE_IRQS_ON /* user mode is traced as IRQS on */
425 SWAPGS
426 jmp restore_regs_and_iret
427
428 1:
429 /* kernel thread */
430 movq %r12, %rdi
431 call *%rbx
432 /*
433 * A kernel thread is allowed to return here after successfully
434 * calling do_execve(). Exit to userspace to complete the execve()
435 * syscall.
436 */
437 movq $0, RAX(%rsp)
438 jmp 2b
439 END(ret_from_fork)
440
441 /*
442 * Build the entry stubs with some assembler magic.
443 * We pack 1 stub into every 8-byte block.
444 */
445 .align 8
446 ENTRY(irq_entries_start)
447 vector=FIRST_EXTERNAL_VECTOR
448 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
449 pushq $(~vector+0x80) /* Note: always in signed byte range */
450 vector=vector+1
451 jmp common_interrupt
452 .align 8
453 .endr
454 END(irq_entries_start)
455
456 /*
457 * Interrupt entry/exit.
458 *
459 * Interrupt entry points save only callee clobbered registers in fast path.
460 *
461 * Entry runs with interrupts off.
462 */
463
464 /* 0(%rsp): ~(interrupt number) */
465 .macro interrupt func
466 cld
467 ALLOC_PT_GPREGS_ON_STACK
468 SAVE_C_REGS
469 SAVE_EXTRA_REGS
470
471 testb $3, CS(%rsp)
472 jz 1f
473
474 /*
475 * IRQ from user mode. Switch to kernel gsbase and inform context
476 * tracking that we're in kernel mode.
477 */
478 SWAPGS
479
480 /*
481 * We need to tell lockdep that IRQs are off. We can't do this until
482 * we fix gsbase, and we should do it before enter_from_user_mode
483 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
484 * the simplest way to handle it is to just call it twice if
485 * we enter from user mode. There's no reason to optimize this since
486 * TRACE_IRQS_OFF is a no-op if lockdep is off.
487 */
488 TRACE_IRQS_OFF
489
490 CALL_enter_from_user_mode
491
492 1:
493 /*
494 * Save previous stack pointer, optionally switch to interrupt stack.
495 * irq_count is used to check if a CPU is already on an interrupt stack
496 * or not. While this is essentially redundant with preempt_count it is
497 * a little cheaper to use a separate counter in the PDA (short of
498 * moving irq_enter into assembly, which would be too much work)
499 */
500 movq %rsp, %rdi
501 incl PER_CPU_VAR(irq_count)
502 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
503 pushq %rdi
504 /* We entered an interrupt context - irqs are off: */
505 TRACE_IRQS_OFF
506
507 call \func /* rdi points to pt_regs */
508 .endm
509
510 /*
511 * The interrupt stubs push (~vector+0x80) onto the stack and
512 * then jump to common_interrupt.
513 */
514 .p2align CONFIG_X86_L1_CACHE_SHIFT
515 common_interrupt:
516 ASM_CLAC
517 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
518 interrupt do_IRQ
519 /* 0(%rsp): old RSP */
520 ret_from_intr:
521 DISABLE_INTERRUPTS(CLBR_NONE)
522 TRACE_IRQS_OFF
523 decl PER_CPU_VAR(irq_count)
524
525 /* Restore saved previous stack */
526 popq %rsp
527
528 testb $3, CS(%rsp)
529 jz retint_kernel
530
531 /* Interrupt came from user space */
532 GLOBAL(retint_user)
533 mov %rsp,%rdi
534 call prepare_exit_to_usermode
535 TRACE_IRQS_IRETQ
536 SWAPGS
537 jmp restore_regs_and_iret
538
539 /* Returning to kernel space */
540 retint_kernel:
541 #ifdef CONFIG_PREEMPT
542 /* Interrupts are off */
543 /* Check if we need preemption */
544 bt $9, EFLAGS(%rsp) /* were interrupts off? */
545 jnc 1f
546 0: cmpl $0, PER_CPU_VAR(__preempt_count)
547 jnz 1f
548 call preempt_schedule_irq
549 jmp 0b
550 1:
551 #endif
552 /*
553 * The iretq could re-enable interrupts:
554 */
555 TRACE_IRQS_IRETQ
556
557 /*
558 * At this label, code paths which return to kernel and to user,
559 * which come from interrupts/exception and from syscalls, merge.
560 */
561 GLOBAL(restore_regs_and_iret)
562 RESTORE_EXTRA_REGS
563 restore_c_regs_and_iret:
564 RESTORE_C_REGS
565 REMOVE_PT_GPREGS_FROM_STACK 8
566 INTERRUPT_RETURN
567
568 ENTRY(native_iret)
569 /*
570 * Are we returning to a stack segment from the LDT? Note: in
571 * 64-bit mode SS:RSP on the exception stack is always valid.
572 */
573 #ifdef CONFIG_X86_ESPFIX64
574 testb $4, (SS-RIP)(%rsp)
575 jnz native_irq_return_ldt
576 #endif
577
578 .global native_irq_return_iret
579 native_irq_return_iret:
580 /*
581 * This may fault. Non-paranoid faults on return to userspace are
582 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
583 * Double-faults due to espfix64 are handled in do_double_fault.
584 * Other faults here are fatal.
585 */
586 iretq
587
588 #ifdef CONFIG_X86_ESPFIX64
589 native_irq_return_ldt:
590 pushq %rax
591 pushq %rdi
592 SWAPGS
593 movq PER_CPU_VAR(espfix_waddr), %rdi
594 movq %rax, (0*8)(%rdi) /* RAX */
595 movq (2*8)(%rsp), %rax /* RIP */
596 movq %rax, (1*8)(%rdi)
597 movq (3*8)(%rsp), %rax /* CS */
598 movq %rax, (2*8)(%rdi)
599 movq (4*8)(%rsp), %rax /* RFLAGS */
600 movq %rax, (3*8)(%rdi)
601 movq (6*8)(%rsp), %rax /* SS */
602 movq %rax, (5*8)(%rdi)
603 movq (5*8)(%rsp), %rax /* RSP */
604 movq %rax, (4*8)(%rdi)
605 andl $0xffff0000, %eax
606 popq %rdi
607 orq PER_CPU_VAR(espfix_stack), %rax
608 SWAPGS
609 movq %rax, %rsp
610 popq %rax
611 jmp native_irq_return_iret
612 #endif
613 END(common_interrupt)
614
615 /*
616 * APIC interrupts.
617 */
618 .macro apicinterrupt3 num sym do_sym
619 ENTRY(\sym)
620 ASM_CLAC
621 pushq $~(\num)
622 .Lcommon_\sym:
623 interrupt \do_sym
624 jmp ret_from_intr
625 END(\sym)
626 .endm
627
628 #ifdef CONFIG_TRACING
629 #define trace(sym) trace_##sym
630 #define smp_trace(sym) smp_trace_##sym
631
632 .macro trace_apicinterrupt num sym
633 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
634 .endm
635 #else
636 .macro trace_apicinterrupt num sym do_sym
637 .endm
638 #endif
639
640 /* Make sure APIC interrupt handlers end up in the irqentry section: */
641 #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
642 # define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
643 # define POP_SECTION_IRQENTRY .popsection
644 #else
645 # define PUSH_SECTION_IRQENTRY
646 # define POP_SECTION_IRQENTRY
647 #endif
648
649 .macro apicinterrupt num sym do_sym
650 PUSH_SECTION_IRQENTRY
651 apicinterrupt3 \num \sym \do_sym
652 trace_apicinterrupt \num \sym
653 POP_SECTION_IRQENTRY
654 .endm
655
656 #ifdef CONFIG_SMP
657 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
658 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
659 #endif
660
661 #ifdef CONFIG_X86_UV
662 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
663 #endif
664
665 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
666 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
667
668 #ifdef CONFIG_HAVE_KVM
669 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
670 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
671 #endif
672
673 #ifdef CONFIG_X86_MCE_THRESHOLD
674 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
675 #endif
676
677 #ifdef CONFIG_X86_MCE_AMD
678 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
679 #endif
680
681 #ifdef CONFIG_X86_THERMAL_VECTOR
682 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
683 #endif
684
685 #ifdef CONFIG_SMP
686 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
687 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
688 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
689 #endif
690
691 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
692 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
693
694 #ifdef CONFIG_IRQ_WORK
695 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
696 #endif
697
698 /*
699 * Exception entry points.
700 */
701 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
702
703 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
704 ENTRY(\sym)
705 /* Sanity check */
706 .if \shift_ist != -1 && \paranoid == 0
707 .error "using shift_ist requires paranoid=1"
708 .endif
709
710 ASM_CLAC
711 PARAVIRT_ADJUST_EXCEPTION_FRAME
712
713 .ifeq \has_error_code
714 pushq $-1 /* ORIG_RAX: no syscall to restart */
715 .endif
716
717 ALLOC_PT_GPREGS_ON_STACK
718
719 .if \paranoid
720 .if \paranoid == 1
721 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
722 jnz 1f
723 .endif
724 call paranoid_entry
725 .else
726 call error_entry
727 .endif
728 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
729
730 .if \paranoid
731 .if \shift_ist != -1
732 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
733 .else
734 TRACE_IRQS_OFF
735 .endif
736 .endif
737
738 movq %rsp, %rdi /* pt_regs pointer */
739
740 .if \has_error_code
741 movq ORIG_RAX(%rsp), %rsi /* get error code */
742 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
743 .else
744 xorl %esi, %esi /* no error code */
745 .endif
746
747 .if \shift_ist != -1
748 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
749 .endif
750
751 call \do_sym
752
753 .if \shift_ist != -1
754 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
755 .endif
756
757 /* these procedures expect "no swapgs" flag in ebx */
758 .if \paranoid
759 jmp paranoid_exit
760 .else
761 jmp error_exit
762 .endif
763
764 .if \paranoid == 1
765 /*
766 * Paranoid entry from userspace. Switch stacks and treat it
767 * as a normal entry. This means that paranoid handlers
768 * run in real process context if user_mode(regs).
769 */
770 1:
771 call error_entry
772
773
774 movq %rsp, %rdi /* pt_regs pointer */
775 call sync_regs
776 movq %rax, %rsp /* switch stack */
777
778 movq %rsp, %rdi /* pt_regs pointer */
779
780 .if \has_error_code
781 movq ORIG_RAX(%rsp), %rsi /* get error code */
782 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
783 .else
784 xorl %esi, %esi /* no error code */
785 .endif
786
787 call \do_sym
788
789 jmp error_exit /* %ebx: no swapgs flag */
790 .endif
791 END(\sym)
792 .endm
793
794 #ifdef CONFIG_TRACING
795 .macro trace_idtentry sym do_sym has_error_code:req
796 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
797 idtentry \sym \do_sym has_error_code=\has_error_code
798 .endm
799 #else
800 .macro trace_idtentry sym do_sym has_error_code:req
801 idtentry \sym \do_sym has_error_code=\has_error_code
802 .endm
803 #endif
804
805 idtentry divide_error do_divide_error has_error_code=0
806 idtentry overflow do_overflow has_error_code=0
807 idtentry bounds do_bounds has_error_code=0
808 idtentry invalid_op do_invalid_op has_error_code=0
809 idtentry device_not_available do_device_not_available has_error_code=0
810 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
811 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
812 idtentry invalid_TSS do_invalid_TSS has_error_code=1
813 idtentry segment_not_present do_segment_not_present has_error_code=1
814 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
815 idtentry coprocessor_error do_coprocessor_error has_error_code=0
816 idtentry alignment_check do_alignment_check has_error_code=1
817 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
818
819
820 /*
821 * Reload gs selector with exception handling
822 * edi: new selector
823 */
824 ENTRY(native_load_gs_index)
825 pushfq
826 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
827 SWAPGS
828 .Lgs_change:
829 movl %edi, %gs
830 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
831 SWAPGS
832 popfq
833 ret
834 END(native_load_gs_index)
835 EXPORT_SYMBOL(native_load_gs_index)
836
837 _ASM_EXTABLE(.Lgs_change, bad_gs)
838 .section .fixup, "ax"
839 /* running with kernelgs */
840 bad_gs:
841 SWAPGS /* switch back to user gs */
842 .macro ZAP_GS
843 /* This can't be a string because the preprocessor needs to see it. */
844 movl $__USER_DS, %eax
845 movl %eax, %gs
846 .endm
847 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
848 xorl %eax, %eax
849 movl %eax, %gs
850 jmp 2b
851 .previous
852
853 /* Call softirq on interrupt stack. Interrupts are off. */
854 ENTRY(do_softirq_own_stack)
855 pushq %rbp
856 mov %rsp, %rbp
857 incl PER_CPU_VAR(irq_count)
858 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
859 push %rbp /* frame pointer backlink */
860 call __do_softirq
861 leaveq
862 decl PER_CPU_VAR(irq_count)
863 ret
864 END(do_softirq_own_stack)
865
866 #ifdef CONFIG_XEN
867 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
868
869 /*
870 * A note on the "critical region" in our callback handler.
871 * We want to avoid stacking callback handlers due to events occurring
872 * during handling of the last event. To do this, we keep events disabled
873 * until we've done all processing. HOWEVER, we must enable events before
874 * popping the stack frame (can't be done atomically) and so it would still
875 * be possible to get enough handler activations to overflow the stack.
876 * Although unlikely, bugs of that kind are hard to track down, so we'd
877 * like to avoid the possibility.
878 * So, on entry to the handler we detect whether we interrupted an
879 * existing activation in its critical region -- if so, we pop the current
880 * activation and restart the handler using the previous one.
881 */
882 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
883
884 /*
885 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
886 * see the correct pointer to the pt_regs
887 */
888 movq %rdi, %rsp /* we don't return, adjust the stack frame */
889 11: incl PER_CPU_VAR(irq_count)
890 movq %rsp, %rbp
891 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
892 pushq %rbp /* frame pointer backlink */
893 call xen_evtchn_do_upcall
894 popq %rsp
895 decl PER_CPU_VAR(irq_count)
896 #ifndef CONFIG_PREEMPT
897 call xen_maybe_preempt_hcall
898 #endif
899 jmp error_exit
900 END(xen_do_hypervisor_callback)
901
902 /*
903 * Hypervisor uses this for application faults while it executes.
904 * We get here for two reasons:
905 * 1. Fault while reloading DS, ES, FS or GS
906 * 2. Fault while executing IRET
907 * Category 1 we do not need to fix up as Xen has already reloaded all segment
908 * registers that could be reloaded and zeroed the others.
909 * Category 2 we fix up by killing the current process. We cannot use the
910 * normal Linux return path in this case because if we use the IRET hypercall
911 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
912 * We distinguish between categories by comparing each saved segment register
913 * with its current contents: any discrepancy means we in category 1.
914 */
915 ENTRY(xen_failsafe_callback)
916 movl %ds, %ecx
917 cmpw %cx, 0x10(%rsp)
918 jne 1f
919 movl %es, %ecx
920 cmpw %cx, 0x18(%rsp)
921 jne 1f
922 movl %fs, %ecx
923 cmpw %cx, 0x20(%rsp)
924 jne 1f
925 movl %gs, %ecx
926 cmpw %cx, 0x28(%rsp)
927 jne 1f
928 /* All segments match their saved values => Category 2 (Bad IRET). */
929 movq (%rsp), %rcx
930 movq 8(%rsp), %r11
931 addq $0x30, %rsp
932 pushq $0 /* RIP */
933 pushq %r11
934 pushq %rcx
935 jmp general_protection
936 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
937 movq (%rsp), %rcx
938 movq 8(%rsp), %r11
939 addq $0x30, %rsp
940 pushq $-1 /* orig_ax = -1 => not a system call */
941 ALLOC_PT_GPREGS_ON_STACK
942 SAVE_C_REGS
943 SAVE_EXTRA_REGS
944 jmp error_exit
945 END(xen_failsafe_callback)
946
947 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
948 xen_hvm_callback_vector xen_evtchn_do_upcall
949
950 #endif /* CONFIG_XEN */
951
952 #if IS_ENABLED(CONFIG_HYPERV)
953 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
954 hyperv_callback_vector hyperv_vector_handler
955 #endif /* CONFIG_HYPERV */
956
957 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
958 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
959 idtentry stack_segment do_stack_segment has_error_code=1
960
961 #ifdef CONFIG_XEN
962 idtentry xen_debug do_debug has_error_code=0
963 idtentry xen_int3 do_int3 has_error_code=0
964 idtentry xen_stack_segment do_stack_segment has_error_code=1
965 #endif
966
967 idtentry general_protection do_general_protection has_error_code=1
968 trace_idtentry page_fault do_page_fault has_error_code=1
969
970 #ifdef CONFIG_KVM_GUEST
971 idtentry async_page_fault do_async_page_fault has_error_code=1
972 #endif
973
974 #ifdef CONFIG_X86_MCE
975 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
976 #endif
977
978 /*
979 * Save all registers in pt_regs, and switch gs if needed.
980 * Use slow, but surefire "are we in kernel?" check.
981 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
982 */
983 ENTRY(paranoid_entry)
984 cld
985 SAVE_C_REGS 8
986 SAVE_EXTRA_REGS 8
987 movl $1, %ebx
988 movl $MSR_GS_BASE, %ecx
989 rdmsr
990 testl %edx, %edx
991 js 1f /* negative -> in kernel */
992 SWAPGS
993 xorl %ebx, %ebx
994 1: ret
995 END(paranoid_entry)
996
997 /*
998 * "Paranoid" exit path from exception stack. This is invoked
999 * only on return from non-NMI IST interrupts that came
1000 * from kernel space.
1001 *
1002 * We may be returning to very strange contexts (e.g. very early
1003 * in syscall entry), so checking for preemption here would
1004 * be complicated. Fortunately, we there's no good reason
1005 * to try to handle preemption here.
1006 *
1007 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1008 */
1009 ENTRY(paranoid_exit)
1010 DISABLE_INTERRUPTS(CLBR_NONE)
1011 TRACE_IRQS_OFF_DEBUG
1012 testl %ebx, %ebx /* swapgs needed? */
1013 jnz paranoid_exit_no_swapgs
1014 TRACE_IRQS_IRETQ
1015 SWAPGS_UNSAFE_STACK
1016 jmp paranoid_exit_restore
1017 paranoid_exit_no_swapgs:
1018 TRACE_IRQS_IRETQ_DEBUG
1019 paranoid_exit_restore:
1020 RESTORE_EXTRA_REGS
1021 RESTORE_C_REGS
1022 REMOVE_PT_GPREGS_FROM_STACK 8
1023 INTERRUPT_RETURN
1024 END(paranoid_exit)
1025
1026 /*
1027 * Save all registers in pt_regs, and switch gs if needed.
1028 * Return: EBX=0: came from user mode; EBX=1: otherwise
1029 */
1030 ENTRY(error_entry)
1031 cld
1032 SAVE_C_REGS 8
1033 SAVE_EXTRA_REGS 8
1034 xorl %ebx, %ebx
1035 testb $3, CS+8(%rsp)
1036 jz .Lerror_kernelspace
1037
1038 .Lerror_entry_from_usermode_swapgs:
1039 /*
1040 * We entered from user mode or we're pretending to have entered
1041 * from user mode due to an IRET fault.
1042 */
1043 SWAPGS
1044
1045 .Lerror_entry_from_usermode_after_swapgs:
1046 /*
1047 * We need to tell lockdep that IRQs are off. We can't do this until
1048 * we fix gsbase, and we should do it before enter_from_user_mode
1049 * (which can take locks).
1050 */
1051 TRACE_IRQS_OFF
1052 CALL_enter_from_user_mode
1053 ret
1054
1055 .Lerror_entry_done:
1056 TRACE_IRQS_OFF
1057 ret
1058
1059 /*
1060 * There are two places in the kernel that can potentially fault with
1061 * usergs. Handle them here. B stepping K8s sometimes report a
1062 * truncated RIP for IRET exceptions returning to compat mode. Check
1063 * for these here too.
1064 */
1065 .Lerror_kernelspace:
1066 incl %ebx
1067 leaq native_irq_return_iret(%rip), %rcx
1068 cmpq %rcx, RIP+8(%rsp)
1069 je .Lerror_bad_iret
1070 movl %ecx, %eax /* zero extend */
1071 cmpq %rax, RIP+8(%rsp)
1072 je .Lbstep_iret
1073 cmpq $.Lgs_change, RIP+8(%rsp)
1074 jne .Lerror_entry_done
1075
1076 /*
1077 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1078 * gsbase and proceed. We'll fix up the exception and land in
1079 * .Lgs_change's error handler with kernel gsbase.
1080 */
1081 jmp .Lerror_entry_from_usermode_swapgs
1082
1083 .Lbstep_iret:
1084 /* Fix truncated RIP */
1085 movq %rcx, RIP+8(%rsp)
1086 /* fall through */
1087
1088 .Lerror_bad_iret:
1089 /*
1090 * We came from an IRET to user mode, so we have user gsbase.
1091 * Switch to kernel gsbase:
1092 */
1093 SWAPGS
1094
1095 /*
1096 * Pretend that the exception came from user mode: set up pt_regs
1097 * as if we faulted immediately after IRET and clear EBX so that
1098 * error_exit knows that we will be returning to user mode.
1099 */
1100 mov %rsp, %rdi
1101 call fixup_bad_iret
1102 mov %rax, %rsp
1103 decl %ebx
1104 jmp .Lerror_entry_from_usermode_after_swapgs
1105 END(error_entry)
1106
1107
1108 /*
1109 * On entry, EBS is a "return to kernel mode" flag:
1110 * 1: already in kernel mode, don't need SWAPGS
1111 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1112 */
1113 ENTRY(error_exit)
1114 movl %ebx, %eax
1115 DISABLE_INTERRUPTS(CLBR_NONE)
1116 TRACE_IRQS_OFF
1117 testl %eax, %eax
1118 jnz retint_kernel
1119 jmp retint_user
1120 END(error_exit)
1121
1122 /* Runs on exception stack */
1123 ENTRY(nmi)
1124 /*
1125 * Fix up the exception frame if we're on Xen.
1126 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1127 * one value to the stack on native, so it may clobber the rdx
1128 * scratch slot, but it won't clobber any of the important
1129 * slots past it.
1130 *
1131 * Xen is a different story, because the Xen frame itself overlaps
1132 * the "NMI executing" variable.
1133 */
1134 PARAVIRT_ADJUST_EXCEPTION_FRAME
1135
1136 /*
1137 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1138 * the iretq it performs will take us out of NMI context.
1139 * This means that we can have nested NMIs where the next
1140 * NMI is using the top of the stack of the previous NMI. We
1141 * can't let it execute because the nested NMI will corrupt the
1142 * stack of the previous NMI. NMI handlers are not re-entrant
1143 * anyway.
1144 *
1145 * To handle this case we do the following:
1146 * Check the a special location on the stack that contains
1147 * a variable that is set when NMIs are executing.
1148 * The interrupted task's stack is also checked to see if it
1149 * is an NMI stack.
1150 * If the variable is not set and the stack is not the NMI
1151 * stack then:
1152 * o Set the special variable on the stack
1153 * o Copy the interrupt frame into an "outermost" location on the
1154 * stack
1155 * o Copy the interrupt frame into an "iret" location on the stack
1156 * o Continue processing the NMI
1157 * If the variable is set or the previous stack is the NMI stack:
1158 * o Modify the "iret" location to jump to the repeat_nmi
1159 * o return back to the first NMI
1160 *
1161 * Now on exit of the first NMI, we first clear the stack variable
1162 * The NMI stack will tell any nested NMIs at that point that it is
1163 * nested. Then we pop the stack normally with iret, and if there was
1164 * a nested NMI that updated the copy interrupt stack frame, a
1165 * jump will be made to the repeat_nmi code that will handle the second
1166 * NMI.
1167 *
1168 * However, espfix prevents us from directly returning to userspace
1169 * with a single IRET instruction. Similarly, IRET to user mode
1170 * can fault. We therefore handle NMIs from user space like
1171 * other IST entries.
1172 */
1173
1174 /* Use %rdx as our temp variable throughout */
1175 pushq %rdx
1176
1177 testb $3, CS-RIP+8(%rsp)
1178 jz .Lnmi_from_kernel
1179
1180 /*
1181 * NMI from user mode. We need to run on the thread stack, but we
1182 * can't go through the normal entry paths: NMIs are masked, and
1183 * we don't want to enable interrupts, because then we'll end
1184 * up in an awkward situation in which IRQs are on but NMIs
1185 * are off.
1186 *
1187 * We also must not push anything to the stack before switching
1188 * stacks lest we corrupt the "NMI executing" variable.
1189 */
1190
1191 SWAPGS_UNSAFE_STACK
1192 cld
1193 movq %rsp, %rdx
1194 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1195 pushq 5*8(%rdx) /* pt_regs->ss */
1196 pushq 4*8(%rdx) /* pt_regs->rsp */
1197 pushq 3*8(%rdx) /* pt_regs->flags */
1198 pushq 2*8(%rdx) /* pt_regs->cs */
1199 pushq 1*8(%rdx) /* pt_regs->rip */
1200 pushq $-1 /* pt_regs->orig_ax */
1201 pushq %rdi /* pt_regs->di */
1202 pushq %rsi /* pt_regs->si */
1203 pushq (%rdx) /* pt_regs->dx */
1204 pushq %rcx /* pt_regs->cx */
1205 pushq %rax /* pt_regs->ax */
1206 pushq %r8 /* pt_regs->r8 */
1207 pushq %r9 /* pt_regs->r9 */
1208 pushq %r10 /* pt_regs->r10 */
1209 pushq %r11 /* pt_regs->r11 */
1210 pushq %rbx /* pt_regs->rbx */
1211 pushq %rbp /* pt_regs->rbp */
1212 pushq %r12 /* pt_regs->r12 */
1213 pushq %r13 /* pt_regs->r13 */
1214 pushq %r14 /* pt_regs->r14 */
1215 pushq %r15 /* pt_regs->r15 */
1216
1217 /*
1218 * At this point we no longer need to worry about stack damage
1219 * due to nesting -- we're on the normal thread stack and we're
1220 * done with the NMI stack.
1221 */
1222
1223 movq %rsp, %rdi
1224 movq $-1, %rsi
1225 call do_nmi
1226
1227 /*
1228 * Return back to user mode. We must *not* do the normal exit
1229 * work, because we don't want to enable interrupts. Fortunately,
1230 * do_nmi doesn't modify pt_regs.
1231 */
1232 SWAPGS
1233 jmp restore_c_regs_and_iret
1234
1235 .Lnmi_from_kernel:
1236 /*
1237 * Here's what our stack frame will look like:
1238 * +---------------------------------------------------------+
1239 * | original SS |
1240 * | original Return RSP |
1241 * | original RFLAGS |
1242 * | original CS |
1243 * | original RIP |
1244 * +---------------------------------------------------------+
1245 * | temp storage for rdx |
1246 * +---------------------------------------------------------+
1247 * | "NMI executing" variable |
1248 * +---------------------------------------------------------+
1249 * | iret SS } Copied from "outermost" frame |
1250 * | iret Return RSP } on each loop iteration; overwritten |
1251 * | iret RFLAGS } by a nested NMI to force another |
1252 * | iret CS } iteration if needed. |
1253 * | iret RIP } |
1254 * +---------------------------------------------------------+
1255 * | outermost SS } initialized in first_nmi; |
1256 * | outermost Return RSP } will not be changed before |
1257 * | outermost RFLAGS } NMI processing is done. |
1258 * | outermost CS } Copied to "iret" frame on each |
1259 * | outermost RIP } iteration. |
1260 * +---------------------------------------------------------+
1261 * | pt_regs |
1262 * +---------------------------------------------------------+
1263 *
1264 * The "original" frame is used by hardware. Before re-enabling
1265 * NMIs, we need to be done with it, and we need to leave enough
1266 * space for the asm code here.
1267 *
1268 * We return by executing IRET while RSP points to the "iret" frame.
1269 * That will either return for real or it will loop back into NMI
1270 * processing.
1271 *
1272 * The "outermost" frame is copied to the "iret" frame on each
1273 * iteration of the loop, so each iteration starts with the "iret"
1274 * frame pointing to the final return target.
1275 */
1276
1277 /*
1278 * Determine whether we're a nested NMI.
1279 *
1280 * If we interrupted kernel code between repeat_nmi and
1281 * end_repeat_nmi, then we are a nested NMI. We must not
1282 * modify the "iret" frame because it's being written by
1283 * the outer NMI. That's okay; the outer NMI handler is
1284 * about to about to call do_nmi anyway, so we can just
1285 * resume the outer NMI.
1286 */
1287
1288 movq $repeat_nmi, %rdx
1289 cmpq 8(%rsp), %rdx
1290 ja 1f
1291 movq $end_repeat_nmi, %rdx
1292 cmpq 8(%rsp), %rdx
1293 ja nested_nmi_out
1294 1:
1295
1296 /*
1297 * Now check "NMI executing". If it's set, then we're nested.
1298 * This will not detect if we interrupted an outer NMI just
1299 * before IRET.
1300 */
1301 cmpl $1, -8(%rsp)
1302 je nested_nmi
1303
1304 /*
1305 * Now test if the previous stack was an NMI stack. This covers
1306 * the case where we interrupt an outer NMI after it clears
1307 * "NMI executing" but before IRET. We need to be careful, though:
1308 * there is one case in which RSP could point to the NMI stack
1309 * despite there being no NMI active: naughty userspace controls
1310 * RSP at the very beginning of the SYSCALL targets. We can
1311 * pull a fast one on naughty userspace, though: we program
1312 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1313 * if it controls the kernel's RSP. We set DF before we clear
1314 * "NMI executing".
1315 */
1316 lea 6*8(%rsp), %rdx
1317 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1318 cmpq %rdx, 4*8(%rsp)
1319 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1320 ja first_nmi
1321
1322 subq $EXCEPTION_STKSZ, %rdx
1323 cmpq %rdx, 4*8(%rsp)
1324 /* If it is below the NMI stack, it is a normal NMI */
1325 jb first_nmi
1326
1327 /* Ah, it is within the NMI stack. */
1328
1329 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1330 jz first_nmi /* RSP was user controlled. */
1331
1332 /* This is a nested NMI. */
1333
1334 nested_nmi:
1335 /*
1336 * Modify the "iret" frame to point to repeat_nmi, forcing another
1337 * iteration of NMI handling.
1338 */
1339 subq $8, %rsp
1340 leaq -10*8(%rsp), %rdx
1341 pushq $__KERNEL_DS
1342 pushq %rdx
1343 pushfq
1344 pushq $__KERNEL_CS
1345 pushq $repeat_nmi
1346
1347 /* Put stack back */
1348 addq $(6*8), %rsp
1349
1350 nested_nmi_out:
1351 popq %rdx
1352
1353 /* We are returning to kernel mode, so this cannot result in a fault. */
1354 INTERRUPT_RETURN
1355
1356 first_nmi:
1357 /* Restore rdx. */
1358 movq (%rsp), %rdx
1359
1360 /* Make room for "NMI executing". */
1361 pushq $0
1362
1363 /* Leave room for the "iret" frame */
1364 subq $(5*8), %rsp
1365
1366 /* Copy the "original" frame to the "outermost" frame */
1367 .rept 5
1368 pushq 11*8(%rsp)
1369 .endr
1370
1371 /* Everything up to here is safe from nested NMIs */
1372
1373 #ifdef CONFIG_DEBUG_ENTRY
1374 /*
1375 * For ease of testing, unmask NMIs right away. Disabled by
1376 * default because IRET is very expensive.
1377 */
1378 pushq $0 /* SS */
1379 pushq %rsp /* RSP (minus 8 because of the previous push) */
1380 addq $8, (%rsp) /* Fix up RSP */
1381 pushfq /* RFLAGS */
1382 pushq $__KERNEL_CS /* CS */
1383 pushq $1f /* RIP */
1384 INTERRUPT_RETURN /* continues at repeat_nmi below */
1385 1:
1386 #endif
1387
1388 repeat_nmi:
1389 /*
1390 * If there was a nested NMI, the first NMI's iret will return
1391 * here. But NMIs are still enabled and we can take another
1392 * nested NMI. The nested NMI checks the interrupted RIP to see
1393 * if it is between repeat_nmi and end_repeat_nmi, and if so
1394 * it will just return, as we are about to repeat an NMI anyway.
1395 * This makes it safe to copy to the stack frame that a nested
1396 * NMI will update.
1397 *
1398 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1399 * we're repeating an NMI, gsbase has the same value that it had on
1400 * the first iteration. paranoid_entry will load the kernel
1401 * gsbase if needed before we call do_nmi. "NMI executing"
1402 * is zero.
1403 */
1404 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1405
1406 /*
1407 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1408 * here must not modify the "iret" frame while we're writing to
1409 * it or it will end up containing garbage.
1410 */
1411 addq $(10*8), %rsp
1412 .rept 5
1413 pushq -6*8(%rsp)
1414 .endr
1415 subq $(5*8), %rsp
1416 end_repeat_nmi:
1417
1418 /*
1419 * Everything below this point can be preempted by a nested NMI.
1420 * If this happens, then the inner NMI will change the "iret"
1421 * frame to point back to repeat_nmi.
1422 */
1423 pushq $-1 /* ORIG_RAX: no syscall to restart */
1424 ALLOC_PT_GPREGS_ON_STACK
1425
1426 /*
1427 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1428 * as we should not be calling schedule in NMI context.
1429 * Even with normal interrupts enabled. An NMI should not be
1430 * setting NEED_RESCHED or anything that normal interrupts and
1431 * exceptions might do.
1432 */
1433 call paranoid_entry
1434
1435 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1436 movq %rsp, %rdi
1437 movq $-1, %rsi
1438 call do_nmi
1439
1440 testl %ebx, %ebx /* swapgs needed? */
1441 jnz nmi_restore
1442 nmi_swapgs:
1443 SWAPGS_UNSAFE_STACK
1444 nmi_restore:
1445 RESTORE_EXTRA_REGS
1446 RESTORE_C_REGS
1447
1448 /* Point RSP at the "iret" frame. */
1449 REMOVE_PT_GPREGS_FROM_STACK 6*8
1450
1451 /*
1452 * Clear "NMI executing". Set DF first so that we can easily
1453 * distinguish the remaining code between here and IRET from
1454 * the SYSCALL entry and exit paths. On a native kernel, we
1455 * could just inspect RIP, but, on paravirt kernels,
1456 * INTERRUPT_RETURN can translate into a jump into a
1457 * hypercall page.
1458 */
1459 std
1460 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1461
1462 /*
1463 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1464 * stack in a single instruction. We are returning to kernel
1465 * mode, so this cannot result in a fault.
1466 */
1467 INTERRUPT_RETURN
1468 END(nmi)
1469
1470 ENTRY(ignore_sysret)
1471 mov $-ENOSYS, %eax
1472 sysret
1473 END(ignore_sysret)
1474
1475 ENTRY(rewind_stack_do_exit)
1476 /* Prevent any naive code from trying to unwind to our caller. */
1477 xorl %ebp, %ebp
1478
1479 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1480 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1481
1482 call do_exit
1483 1: jmp 1b
1484 END(rewind_stack_do_exit)
This page took 0.076527 seconds and 5 git commands to generate.