d172c619c44931b34b01d34b1dd09379ba26a5b4
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
1 /*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
7 *
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
12 * A note on terminology:
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
15 *
16 * Some macro usage:
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
20 */
21 #include <linux/linkage.h>
22 #include <asm/segment.h>
23 #include <asm/cache.h>
24 #include <asm/errno.h>
25 #include "calling.h"
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <linux/err.h>
39
40 /* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41 #include <linux/elf-em.h>
42 #define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43 #define __AUDIT_ARCH_64BIT 0x80000000
44 #define __AUDIT_ARCH_LE 0x40000000
45
46 .code64
47 .section .entry.text, "ax"
48
49 #ifdef CONFIG_PARAVIRT
50 ENTRY(native_usergs_sysret64)
51 swapgs
52 sysretq
53 ENDPROC(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_IRETQ
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 /*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78 .macro TRACE_IRQS_OFF_DEBUG
79 call debug_stack_set_zero
80 TRACE_IRQS_OFF
81 call debug_stack_reset
82 .endm
83
84 .macro TRACE_IRQS_ON_DEBUG
85 call debug_stack_set_zero
86 TRACE_IRQS_ON
87 call debug_stack_reset
88 .endm
89
90 .macro TRACE_IRQS_IRETQ_DEBUG
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
93 TRACE_IRQS_ON_DEBUG
94 1:
95 .endm
96
97 #else
98 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
101 #endif
102
103 /*
104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
105 *
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
123 * rax system call number
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
126 * rdi arg0
127 * rsi arg1
128 * rdx arg2
129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
130 * r8 arg4
131 * r9 arg5
132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
133 *
134 * Only called from user space.
135 *
136 * When user can change pt_regs->foo always force IRET. That is because
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
139 */
140
141 ENTRY(entry_SYSCALL_64)
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
153 GLOBAL(entry_SYSCALL_64_after_swapgs)
154
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
157
158 TRACE_IRQS_OFF
159
160 /* Construct struct pt_regs on stack */
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
185 entry_SYSCALL_64_fastpath:
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
193 #if __SYSCALL_MASK == ~0
194 cmpq $__NR_syscall_max, %rax
195 #else
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
198 #endif
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
206 */
207 call *sys_call_table(, %rax, 8)
208 .Lentry_SYSCALL_64_after_fastpath_call:
209
210 movq %rax, RAX(%rsp)
211 1:
212
213 /*
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
217 */
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
221 jnz 1f
222
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
228 movq RSP(%rsp), %rsp
229 USERGS_SYSRET64
230
231 1:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
239 SAVE_EXTRA_REGS
240 movq %rsp, %rdi
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
243
244 entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
246 SAVE_EXTRA_REGS
247 movq %rsp, %rdi
248 call do_syscall_64 /* returns with IRQs disabled */
249
250 return_from_SYSCALL_64:
251 RESTORE_EXTRA_REGS
252 TRACE_IRQS_IRETQ /* we're about to change IF */
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
266 * the kernel, since userspace controls RSP.
267 *
268 * If width of "canonical tail" ever becomes variable, this will need
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
274
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
278
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
282
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
285
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
289
290 /*
291 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
292 * restore RF properly. If the slowpath sets it for whatever reason, we
293 * need to restore it correctly.
294 *
295 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
296 * trap from userspace immediately after SYSRET. This would cause an
297 * infinite loop whenever #DB happens with register state that satisfies
298 * the opportunistic SYSRET conditions. For example, single-stepping
299 * this user code:
300 *
301 * movq $stuck_here, %rcx
302 * pushfq
303 * popq %r11
304 * stuck_here:
305 *
306 * would never get past 'stuck_here'.
307 */
308 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
309 jnz opportunistic_sysret_failed
310
311 /* nothing to check for RSP */
312
313 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
314 jne opportunistic_sysret_failed
315
316 /*
317 * We win! This label is here just for ease of understanding
318 * perf profiles. Nothing jumps here.
319 */
320 syscall_return_via_sysret:
321 /* rcx and r11 are already restored (see code above) */
322 RESTORE_C_REGS_EXCEPT_RCX_R11
323 movq RSP(%rsp), %rsp
324 USERGS_SYSRET64
325
326 opportunistic_sysret_failed:
327 SWAPGS
328 jmp restore_c_regs_and_iret
329 END(entry_SYSCALL_64)
330
331 ENTRY(stub_ptregs_64)
332 /*
333 * Syscalls marked as needing ptregs land here.
334 * If we are on the fast path, we need to save the extra regs,
335 * which we achieve by trying again on the slow path. If we are on
336 * the slow path, the extra regs are already saved.
337 *
338 * RAX stores a pointer to the C function implementing the syscall.
339 * IRQs are on.
340 */
341 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
342 jne 1f
343
344 /*
345 * Called from fast path -- disable IRQs again, pop return address
346 * and jump to slow path
347 */
348 DISABLE_INTERRUPTS(CLBR_NONE)
349 TRACE_IRQS_OFF
350 popq %rax
351 jmp entry_SYSCALL64_slow_path
352
353 1:
354 /* Called from C */
355 jmp *%rax /* called from C */
356 END(stub_ptregs_64)
357
358 .macro ptregs_stub func
359 ENTRY(ptregs_\func)
360 leaq \func(%rip), %rax
361 jmp stub_ptregs_64
362 END(ptregs_\func)
363 .endm
364
365 /* Instantiate ptregs_stub for each ptregs-using syscall */
366 #define __SYSCALL_64_QUAL_(sym)
367 #define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
368 #define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
369 #include <asm/syscalls_64.h>
370
371 /*
372 * A newly forked process directly context switches into this address.
373 *
374 * rdi: prev task we switched from
375 */
376 ENTRY(ret_from_fork)
377 LOCK ; btr $TIF_FORK, TI_flags(%r8)
378
379 call schedule_tail /* rdi: 'prev' task parameter */
380
381 testb $3, CS(%rsp) /* from kernel_thread? */
382 jnz 1f
383
384 /*
385 * We came from kernel_thread. This code path is quite twisted, and
386 * someone should clean it up.
387 *
388 * copy_thread_tls stashes the function pointer in RBX and the
389 * parameter to be passed in RBP. The called function is permitted
390 * to call do_execve and thereby jump to user mode.
391 */
392 movq RBP(%rsp), %rdi
393 call *RBX(%rsp)
394 movl $0, RAX(%rsp)
395
396 /*
397 * Fall through as though we're exiting a syscall. This makes a
398 * twisted sort of sense if we just called do_execve.
399 */
400
401 1:
402 movq %rsp, %rdi
403 call syscall_return_slowpath /* returns with IRQs disabled */
404 TRACE_IRQS_ON /* user mode is traced as IRQS on */
405 SWAPGS
406 jmp restore_regs_and_iret
407 END(ret_from_fork)
408
409 /*
410 * Build the entry stubs with some assembler magic.
411 * We pack 1 stub into every 8-byte block.
412 */
413 .align 8
414 ENTRY(irq_entries_start)
415 vector=FIRST_EXTERNAL_VECTOR
416 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
417 pushq $(~vector+0x80) /* Note: always in signed byte range */
418 vector=vector+1
419 jmp common_interrupt
420 .align 8
421 .endr
422 END(irq_entries_start)
423
424 /*
425 * Interrupt entry/exit.
426 *
427 * Interrupt entry points save only callee clobbered registers in fast path.
428 *
429 * Entry runs with interrupts off.
430 */
431
432 /* 0(%rsp): ~(interrupt number) */
433 .macro interrupt func
434 cld
435 ALLOC_PT_GPREGS_ON_STACK
436 SAVE_C_REGS
437 SAVE_EXTRA_REGS
438
439 testb $3, CS(%rsp)
440 jz 1f
441
442 /*
443 * IRQ from user mode. Switch to kernel gsbase and inform context
444 * tracking that we're in kernel mode.
445 */
446 SWAPGS
447
448 /*
449 * We need to tell lockdep that IRQs are off. We can't do this until
450 * we fix gsbase, and we should do it before enter_from_user_mode
451 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
452 * the simplest way to handle it is to just call it twice if
453 * we enter from user mode. There's no reason to optimize this since
454 * TRACE_IRQS_OFF is a no-op if lockdep is off.
455 */
456 TRACE_IRQS_OFF
457
458 CALL_enter_from_user_mode
459
460 1:
461 /*
462 * Save previous stack pointer, optionally switch to interrupt stack.
463 * irq_count is used to check if a CPU is already on an interrupt stack
464 * or not. While this is essentially redundant with preempt_count it is
465 * a little cheaper to use a separate counter in the PDA (short of
466 * moving irq_enter into assembly, which would be too much work)
467 */
468 movq %rsp, %rdi
469 incl PER_CPU_VAR(irq_count)
470 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
471 pushq %rdi
472 /* We entered an interrupt context - irqs are off: */
473 TRACE_IRQS_OFF
474
475 call \func /* rdi points to pt_regs */
476 .endm
477
478 /*
479 * The interrupt stubs push (~vector+0x80) onto the stack and
480 * then jump to common_interrupt.
481 */
482 .p2align CONFIG_X86_L1_CACHE_SHIFT
483 common_interrupt:
484 ASM_CLAC
485 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
486 interrupt do_IRQ
487 /* 0(%rsp): old RSP */
488 ret_from_intr:
489 DISABLE_INTERRUPTS(CLBR_NONE)
490 TRACE_IRQS_OFF
491 decl PER_CPU_VAR(irq_count)
492
493 /* Restore saved previous stack */
494 popq %rsp
495
496 testb $3, CS(%rsp)
497 jz retint_kernel
498
499 /* Interrupt came from user space */
500 GLOBAL(retint_user)
501 mov %rsp,%rdi
502 call prepare_exit_to_usermode
503 TRACE_IRQS_IRETQ
504 SWAPGS
505 jmp restore_regs_and_iret
506
507 /* Returning to kernel space */
508 retint_kernel:
509 #ifdef CONFIG_PREEMPT
510 /* Interrupts are off */
511 /* Check if we need preemption */
512 bt $9, EFLAGS(%rsp) /* were interrupts off? */
513 jnc 1f
514 0: cmpl $0, PER_CPU_VAR(__preempt_count)
515 jnz 1f
516 call preempt_schedule_irq
517 jmp 0b
518 1:
519 #endif
520 /*
521 * The iretq could re-enable interrupts:
522 */
523 TRACE_IRQS_IRETQ
524
525 /*
526 * At this label, code paths which return to kernel and to user,
527 * which come from interrupts/exception and from syscalls, merge.
528 */
529 GLOBAL(restore_regs_and_iret)
530 RESTORE_EXTRA_REGS
531 restore_c_regs_and_iret:
532 RESTORE_C_REGS
533 REMOVE_PT_GPREGS_FROM_STACK 8
534 INTERRUPT_RETURN
535
536 ENTRY(native_iret)
537 /*
538 * Are we returning to a stack segment from the LDT? Note: in
539 * 64-bit mode SS:RSP on the exception stack is always valid.
540 */
541 #ifdef CONFIG_X86_ESPFIX64
542 testb $4, (SS-RIP)(%rsp)
543 jnz native_irq_return_ldt
544 #endif
545
546 .global native_irq_return_iret
547 native_irq_return_iret:
548 /*
549 * This may fault. Non-paranoid faults on return to userspace are
550 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
551 * Double-faults due to espfix64 are handled in do_double_fault.
552 * Other faults here are fatal.
553 */
554 iretq
555
556 #ifdef CONFIG_X86_ESPFIX64
557 native_irq_return_ldt:
558 pushq %rax
559 pushq %rdi
560 SWAPGS
561 movq PER_CPU_VAR(espfix_waddr), %rdi
562 movq %rax, (0*8)(%rdi) /* RAX */
563 movq (2*8)(%rsp), %rax /* RIP */
564 movq %rax, (1*8)(%rdi)
565 movq (3*8)(%rsp), %rax /* CS */
566 movq %rax, (2*8)(%rdi)
567 movq (4*8)(%rsp), %rax /* RFLAGS */
568 movq %rax, (3*8)(%rdi)
569 movq (6*8)(%rsp), %rax /* SS */
570 movq %rax, (5*8)(%rdi)
571 movq (5*8)(%rsp), %rax /* RSP */
572 movq %rax, (4*8)(%rdi)
573 andl $0xffff0000, %eax
574 popq %rdi
575 orq PER_CPU_VAR(espfix_stack), %rax
576 SWAPGS
577 movq %rax, %rsp
578 popq %rax
579 jmp native_irq_return_iret
580 #endif
581 END(common_interrupt)
582
583 /*
584 * APIC interrupts.
585 */
586 .macro apicinterrupt3 num sym do_sym
587 ENTRY(\sym)
588 ASM_CLAC
589 pushq $~(\num)
590 .Lcommon_\sym:
591 interrupt \do_sym
592 jmp ret_from_intr
593 END(\sym)
594 .endm
595
596 #ifdef CONFIG_TRACING
597 #define trace(sym) trace_##sym
598 #define smp_trace(sym) smp_trace_##sym
599
600 .macro trace_apicinterrupt num sym
601 apicinterrupt3 \num trace(\sym) smp_trace(\sym)
602 .endm
603 #else
604 .macro trace_apicinterrupt num sym do_sym
605 .endm
606 #endif
607
608 /* Make sure APIC interrupt handlers end up in the irqentry section: */
609 #if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
610 # define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
611 # define POP_SECTION_IRQENTRY .popsection
612 #else
613 # define PUSH_SECTION_IRQENTRY
614 # define POP_SECTION_IRQENTRY
615 #endif
616
617 .macro apicinterrupt num sym do_sym
618 PUSH_SECTION_IRQENTRY
619 apicinterrupt3 \num \sym \do_sym
620 trace_apicinterrupt \num \sym
621 POP_SECTION_IRQENTRY
622 .endm
623
624 #ifdef CONFIG_SMP
625 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
626 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
627 #endif
628
629 #ifdef CONFIG_X86_UV
630 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
631 #endif
632
633 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
634 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
635
636 #ifdef CONFIG_HAVE_KVM
637 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
638 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
639 #endif
640
641 #ifdef CONFIG_X86_MCE_THRESHOLD
642 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
643 #endif
644
645 #ifdef CONFIG_X86_MCE_AMD
646 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
647 #endif
648
649 #ifdef CONFIG_X86_THERMAL_VECTOR
650 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
651 #endif
652
653 #ifdef CONFIG_SMP
654 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
655 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
656 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
657 #endif
658
659 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
660 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
661
662 #ifdef CONFIG_IRQ_WORK
663 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
664 #endif
665
666 /*
667 * Exception entry points.
668 */
669 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
670
671 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
672 ENTRY(\sym)
673 /* Sanity check */
674 .if \shift_ist != -1 && \paranoid == 0
675 .error "using shift_ist requires paranoid=1"
676 .endif
677
678 ASM_CLAC
679 PARAVIRT_ADJUST_EXCEPTION_FRAME
680
681 .ifeq \has_error_code
682 pushq $-1 /* ORIG_RAX: no syscall to restart */
683 .endif
684
685 ALLOC_PT_GPREGS_ON_STACK
686
687 .if \paranoid
688 .if \paranoid == 1
689 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
690 jnz 1f
691 .endif
692 call paranoid_entry
693 .else
694 call error_entry
695 .endif
696 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
697
698 .if \paranoid
699 .if \shift_ist != -1
700 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
701 .else
702 TRACE_IRQS_OFF
703 .endif
704 .endif
705
706 movq %rsp, %rdi /* pt_regs pointer */
707
708 .if \has_error_code
709 movq ORIG_RAX(%rsp), %rsi /* get error code */
710 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
711 .else
712 xorl %esi, %esi /* no error code */
713 .endif
714
715 .if \shift_ist != -1
716 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
717 .endif
718
719 call \do_sym
720
721 .if \shift_ist != -1
722 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
723 .endif
724
725 /* these procedures expect "no swapgs" flag in ebx */
726 .if \paranoid
727 jmp paranoid_exit
728 .else
729 jmp error_exit
730 .endif
731
732 .if \paranoid == 1
733 /*
734 * Paranoid entry from userspace. Switch stacks and treat it
735 * as a normal entry. This means that paranoid handlers
736 * run in real process context if user_mode(regs).
737 */
738 1:
739 call error_entry
740
741
742 movq %rsp, %rdi /* pt_regs pointer */
743 call sync_regs
744 movq %rax, %rsp /* switch stack */
745
746 movq %rsp, %rdi /* pt_regs pointer */
747
748 .if \has_error_code
749 movq ORIG_RAX(%rsp), %rsi /* get error code */
750 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
751 .else
752 xorl %esi, %esi /* no error code */
753 .endif
754
755 call \do_sym
756
757 jmp error_exit /* %ebx: no swapgs flag */
758 .endif
759 END(\sym)
760 .endm
761
762 #ifdef CONFIG_TRACING
763 .macro trace_idtentry sym do_sym has_error_code:req
764 idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
765 idtentry \sym \do_sym has_error_code=\has_error_code
766 .endm
767 #else
768 .macro trace_idtentry sym do_sym has_error_code:req
769 idtentry \sym \do_sym has_error_code=\has_error_code
770 .endm
771 #endif
772
773 idtentry divide_error do_divide_error has_error_code=0
774 idtentry overflow do_overflow has_error_code=0
775 idtentry bounds do_bounds has_error_code=0
776 idtentry invalid_op do_invalid_op has_error_code=0
777 idtentry device_not_available do_device_not_available has_error_code=0
778 idtentry double_fault do_double_fault has_error_code=1 paranoid=2
779 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
780 idtentry invalid_TSS do_invalid_TSS has_error_code=1
781 idtentry segment_not_present do_segment_not_present has_error_code=1
782 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
783 idtentry coprocessor_error do_coprocessor_error has_error_code=0
784 idtentry alignment_check do_alignment_check has_error_code=1
785 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
786
787
788 /*
789 * Reload gs selector with exception handling
790 * edi: new selector
791 */
792 ENTRY(native_load_gs_index)
793 pushfq
794 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
795 SWAPGS
796 .Lgs_change:
797 movl %edi, %gs
798 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
799 SWAPGS
800 popfq
801 ret
802 END(native_load_gs_index)
803
804 _ASM_EXTABLE(.Lgs_change, bad_gs)
805 .section .fixup, "ax"
806 /* running with kernelgs */
807 bad_gs:
808 SWAPGS /* switch back to user gs */
809 .macro ZAP_GS
810 /* This can't be a string because the preprocessor needs to see it. */
811 movl $__USER_DS, %eax
812 movl %eax, %gs
813 .endm
814 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
815 xorl %eax, %eax
816 movl %eax, %gs
817 jmp 2b
818 .previous
819
820 /* Call softirq on interrupt stack. Interrupts are off. */
821 ENTRY(do_softirq_own_stack)
822 pushq %rbp
823 mov %rsp, %rbp
824 incl PER_CPU_VAR(irq_count)
825 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
826 push %rbp /* frame pointer backlink */
827 call __do_softirq
828 leaveq
829 decl PER_CPU_VAR(irq_count)
830 ret
831 END(do_softirq_own_stack)
832
833 #ifdef CONFIG_XEN
834 idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
835
836 /*
837 * A note on the "critical region" in our callback handler.
838 * We want to avoid stacking callback handlers due to events occurring
839 * during handling of the last event. To do this, we keep events disabled
840 * until we've done all processing. HOWEVER, we must enable events before
841 * popping the stack frame (can't be done atomically) and so it would still
842 * be possible to get enough handler activations to overflow the stack.
843 * Although unlikely, bugs of that kind are hard to track down, so we'd
844 * like to avoid the possibility.
845 * So, on entry to the handler we detect whether we interrupted an
846 * existing activation in its critical region -- if so, we pop the current
847 * activation and restart the handler using the previous one.
848 */
849 ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
850
851 /*
852 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
853 * see the correct pointer to the pt_regs
854 */
855 movq %rdi, %rsp /* we don't return, adjust the stack frame */
856 11: incl PER_CPU_VAR(irq_count)
857 movq %rsp, %rbp
858 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
859 pushq %rbp /* frame pointer backlink */
860 call xen_evtchn_do_upcall
861 popq %rsp
862 decl PER_CPU_VAR(irq_count)
863 #ifndef CONFIG_PREEMPT
864 call xen_maybe_preempt_hcall
865 #endif
866 jmp error_exit
867 END(xen_do_hypervisor_callback)
868
869 /*
870 * Hypervisor uses this for application faults while it executes.
871 * We get here for two reasons:
872 * 1. Fault while reloading DS, ES, FS or GS
873 * 2. Fault while executing IRET
874 * Category 1 we do not need to fix up as Xen has already reloaded all segment
875 * registers that could be reloaded and zeroed the others.
876 * Category 2 we fix up by killing the current process. We cannot use the
877 * normal Linux return path in this case because if we use the IRET hypercall
878 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
879 * We distinguish between categories by comparing each saved segment register
880 * with its current contents: any discrepancy means we in category 1.
881 */
882 ENTRY(xen_failsafe_callback)
883 movl %ds, %ecx
884 cmpw %cx, 0x10(%rsp)
885 jne 1f
886 movl %es, %ecx
887 cmpw %cx, 0x18(%rsp)
888 jne 1f
889 movl %fs, %ecx
890 cmpw %cx, 0x20(%rsp)
891 jne 1f
892 movl %gs, %ecx
893 cmpw %cx, 0x28(%rsp)
894 jne 1f
895 /* All segments match their saved values => Category 2 (Bad IRET). */
896 movq (%rsp), %rcx
897 movq 8(%rsp), %r11
898 addq $0x30, %rsp
899 pushq $0 /* RIP */
900 pushq %r11
901 pushq %rcx
902 jmp general_protection
903 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
904 movq (%rsp), %rcx
905 movq 8(%rsp), %r11
906 addq $0x30, %rsp
907 pushq $-1 /* orig_ax = -1 => not a system call */
908 ALLOC_PT_GPREGS_ON_STACK
909 SAVE_C_REGS
910 SAVE_EXTRA_REGS
911 jmp error_exit
912 END(xen_failsafe_callback)
913
914 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
915 xen_hvm_callback_vector xen_evtchn_do_upcall
916
917 #endif /* CONFIG_XEN */
918
919 #if IS_ENABLED(CONFIG_HYPERV)
920 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
921 hyperv_callback_vector hyperv_vector_handler
922 #endif /* CONFIG_HYPERV */
923
924 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
925 idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
926 idtentry stack_segment do_stack_segment has_error_code=1
927
928 #ifdef CONFIG_XEN
929 idtentry xen_debug do_debug has_error_code=0
930 idtentry xen_int3 do_int3 has_error_code=0
931 idtentry xen_stack_segment do_stack_segment has_error_code=1
932 #endif
933
934 idtentry general_protection do_general_protection has_error_code=1
935 trace_idtentry page_fault do_page_fault has_error_code=1
936
937 #ifdef CONFIG_KVM_GUEST
938 idtentry async_page_fault do_async_page_fault has_error_code=1
939 #endif
940
941 #ifdef CONFIG_X86_MCE
942 idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
943 #endif
944
945 /*
946 * Save all registers in pt_regs, and switch gs if needed.
947 * Use slow, but surefire "are we in kernel?" check.
948 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
949 */
950 ENTRY(paranoid_entry)
951 cld
952 SAVE_C_REGS 8
953 SAVE_EXTRA_REGS 8
954 movl $1, %ebx
955 movl $MSR_GS_BASE, %ecx
956 rdmsr
957 testl %edx, %edx
958 js 1f /* negative -> in kernel */
959 SWAPGS
960 xorl %ebx, %ebx
961 1: ret
962 END(paranoid_entry)
963
964 /*
965 * "Paranoid" exit path from exception stack. This is invoked
966 * only on return from non-NMI IST interrupts that came
967 * from kernel space.
968 *
969 * We may be returning to very strange contexts (e.g. very early
970 * in syscall entry), so checking for preemption here would
971 * be complicated. Fortunately, we there's no good reason
972 * to try to handle preemption here.
973 *
974 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
975 */
976 ENTRY(paranoid_exit)
977 DISABLE_INTERRUPTS(CLBR_NONE)
978 TRACE_IRQS_OFF_DEBUG
979 testl %ebx, %ebx /* swapgs needed? */
980 jnz paranoid_exit_no_swapgs
981 TRACE_IRQS_IRETQ
982 SWAPGS_UNSAFE_STACK
983 jmp paranoid_exit_restore
984 paranoid_exit_no_swapgs:
985 TRACE_IRQS_IRETQ_DEBUG
986 paranoid_exit_restore:
987 RESTORE_EXTRA_REGS
988 RESTORE_C_REGS
989 REMOVE_PT_GPREGS_FROM_STACK 8
990 INTERRUPT_RETURN
991 END(paranoid_exit)
992
993 /*
994 * Save all registers in pt_regs, and switch gs if needed.
995 * Return: EBX=0: came from user mode; EBX=1: otherwise
996 */
997 ENTRY(error_entry)
998 cld
999 SAVE_C_REGS 8
1000 SAVE_EXTRA_REGS 8
1001 xorl %ebx, %ebx
1002 testb $3, CS+8(%rsp)
1003 jz .Lerror_kernelspace
1004
1005 .Lerror_entry_from_usermode_swapgs:
1006 /*
1007 * We entered from user mode or we're pretending to have entered
1008 * from user mode due to an IRET fault.
1009 */
1010 SWAPGS
1011
1012 .Lerror_entry_from_usermode_after_swapgs:
1013 /*
1014 * We need to tell lockdep that IRQs are off. We can't do this until
1015 * we fix gsbase, and we should do it before enter_from_user_mode
1016 * (which can take locks).
1017 */
1018 TRACE_IRQS_OFF
1019 CALL_enter_from_user_mode
1020 ret
1021
1022 .Lerror_entry_done:
1023 TRACE_IRQS_OFF
1024 ret
1025
1026 /*
1027 * There are two places in the kernel that can potentially fault with
1028 * usergs. Handle them here. B stepping K8s sometimes report a
1029 * truncated RIP for IRET exceptions returning to compat mode. Check
1030 * for these here too.
1031 */
1032 .Lerror_kernelspace:
1033 incl %ebx
1034 leaq native_irq_return_iret(%rip), %rcx
1035 cmpq %rcx, RIP+8(%rsp)
1036 je .Lerror_bad_iret
1037 movl %ecx, %eax /* zero extend */
1038 cmpq %rax, RIP+8(%rsp)
1039 je .Lbstep_iret
1040 cmpq $.Lgs_change, RIP+8(%rsp)
1041 jne .Lerror_entry_done
1042
1043 /*
1044 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1045 * gsbase and proceed. We'll fix up the exception and land in
1046 * .Lgs_change's error handler with kernel gsbase.
1047 */
1048 jmp .Lerror_entry_from_usermode_swapgs
1049
1050 .Lbstep_iret:
1051 /* Fix truncated RIP */
1052 movq %rcx, RIP+8(%rsp)
1053 /* fall through */
1054
1055 .Lerror_bad_iret:
1056 /*
1057 * We came from an IRET to user mode, so we have user gsbase.
1058 * Switch to kernel gsbase:
1059 */
1060 SWAPGS
1061
1062 /*
1063 * Pretend that the exception came from user mode: set up pt_regs
1064 * as if we faulted immediately after IRET and clear EBX so that
1065 * error_exit knows that we will be returning to user mode.
1066 */
1067 mov %rsp, %rdi
1068 call fixup_bad_iret
1069 mov %rax, %rsp
1070 decl %ebx
1071 jmp .Lerror_entry_from_usermode_after_swapgs
1072 END(error_entry)
1073
1074
1075 /*
1076 * On entry, EBS is a "return to kernel mode" flag:
1077 * 1: already in kernel mode, don't need SWAPGS
1078 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1079 */
1080 ENTRY(error_exit)
1081 movl %ebx, %eax
1082 DISABLE_INTERRUPTS(CLBR_NONE)
1083 TRACE_IRQS_OFF
1084 testl %eax, %eax
1085 jnz retint_kernel
1086 jmp retint_user
1087 END(error_exit)
1088
1089 /* Runs on exception stack */
1090 ENTRY(nmi)
1091 /*
1092 * Fix up the exception frame if we're on Xen.
1093 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1094 * one value to the stack on native, so it may clobber the rdx
1095 * scratch slot, but it won't clobber any of the important
1096 * slots past it.
1097 *
1098 * Xen is a different story, because the Xen frame itself overlaps
1099 * the "NMI executing" variable.
1100 */
1101 PARAVIRT_ADJUST_EXCEPTION_FRAME
1102
1103 /*
1104 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1105 * the iretq it performs will take us out of NMI context.
1106 * This means that we can have nested NMIs where the next
1107 * NMI is using the top of the stack of the previous NMI. We
1108 * can't let it execute because the nested NMI will corrupt the
1109 * stack of the previous NMI. NMI handlers are not re-entrant
1110 * anyway.
1111 *
1112 * To handle this case we do the following:
1113 * Check the a special location on the stack that contains
1114 * a variable that is set when NMIs are executing.
1115 * The interrupted task's stack is also checked to see if it
1116 * is an NMI stack.
1117 * If the variable is not set and the stack is not the NMI
1118 * stack then:
1119 * o Set the special variable on the stack
1120 * o Copy the interrupt frame into an "outermost" location on the
1121 * stack
1122 * o Copy the interrupt frame into an "iret" location on the stack
1123 * o Continue processing the NMI
1124 * If the variable is set or the previous stack is the NMI stack:
1125 * o Modify the "iret" location to jump to the repeat_nmi
1126 * o return back to the first NMI
1127 *
1128 * Now on exit of the first NMI, we first clear the stack variable
1129 * The NMI stack will tell any nested NMIs at that point that it is
1130 * nested. Then we pop the stack normally with iret, and if there was
1131 * a nested NMI that updated the copy interrupt stack frame, a
1132 * jump will be made to the repeat_nmi code that will handle the second
1133 * NMI.
1134 *
1135 * However, espfix prevents us from directly returning to userspace
1136 * with a single IRET instruction. Similarly, IRET to user mode
1137 * can fault. We therefore handle NMIs from user space like
1138 * other IST entries.
1139 */
1140
1141 /* Use %rdx as our temp variable throughout */
1142 pushq %rdx
1143
1144 testb $3, CS-RIP+8(%rsp)
1145 jz .Lnmi_from_kernel
1146
1147 /*
1148 * NMI from user mode. We need to run on the thread stack, but we
1149 * can't go through the normal entry paths: NMIs are masked, and
1150 * we don't want to enable interrupts, because then we'll end
1151 * up in an awkward situation in which IRQs are on but NMIs
1152 * are off.
1153 *
1154 * We also must not push anything to the stack before switching
1155 * stacks lest we corrupt the "NMI executing" variable.
1156 */
1157
1158 SWAPGS_UNSAFE_STACK
1159 cld
1160 movq %rsp, %rdx
1161 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1162 pushq 5*8(%rdx) /* pt_regs->ss */
1163 pushq 4*8(%rdx) /* pt_regs->rsp */
1164 pushq 3*8(%rdx) /* pt_regs->flags */
1165 pushq 2*8(%rdx) /* pt_regs->cs */
1166 pushq 1*8(%rdx) /* pt_regs->rip */
1167 pushq $-1 /* pt_regs->orig_ax */
1168 pushq %rdi /* pt_regs->di */
1169 pushq %rsi /* pt_regs->si */
1170 pushq (%rdx) /* pt_regs->dx */
1171 pushq %rcx /* pt_regs->cx */
1172 pushq %rax /* pt_regs->ax */
1173 pushq %r8 /* pt_regs->r8 */
1174 pushq %r9 /* pt_regs->r9 */
1175 pushq %r10 /* pt_regs->r10 */
1176 pushq %r11 /* pt_regs->r11 */
1177 pushq %rbx /* pt_regs->rbx */
1178 pushq %rbp /* pt_regs->rbp */
1179 pushq %r12 /* pt_regs->r12 */
1180 pushq %r13 /* pt_regs->r13 */
1181 pushq %r14 /* pt_regs->r14 */
1182 pushq %r15 /* pt_regs->r15 */
1183
1184 /*
1185 * At this point we no longer need to worry about stack damage
1186 * due to nesting -- we're on the normal thread stack and we're
1187 * done with the NMI stack.
1188 */
1189
1190 movq %rsp, %rdi
1191 movq $-1, %rsi
1192 call do_nmi
1193
1194 /*
1195 * Return back to user mode. We must *not* do the normal exit
1196 * work, because we don't want to enable interrupts. Fortunately,
1197 * do_nmi doesn't modify pt_regs.
1198 */
1199 SWAPGS
1200 jmp restore_c_regs_and_iret
1201
1202 .Lnmi_from_kernel:
1203 /*
1204 * Here's what our stack frame will look like:
1205 * +---------------------------------------------------------+
1206 * | original SS |
1207 * | original Return RSP |
1208 * | original RFLAGS |
1209 * | original CS |
1210 * | original RIP |
1211 * +---------------------------------------------------------+
1212 * | temp storage for rdx |
1213 * +---------------------------------------------------------+
1214 * | "NMI executing" variable |
1215 * +---------------------------------------------------------+
1216 * | iret SS } Copied from "outermost" frame |
1217 * | iret Return RSP } on each loop iteration; overwritten |
1218 * | iret RFLAGS } by a nested NMI to force another |
1219 * | iret CS } iteration if needed. |
1220 * | iret RIP } |
1221 * +---------------------------------------------------------+
1222 * | outermost SS } initialized in first_nmi; |
1223 * | outermost Return RSP } will not be changed before |
1224 * | outermost RFLAGS } NMI processing is done. |
1225 * | outermost CS } Copied to "iret" frame on each |
1226 * | outermost RIP } iteration. |
1227 * +---------------------------------------------------------+
1228 * | pt_regs |
1229 * +---------------------------------------------------------+
1230 *
1231 * The "original" frame is used by hardware. Before re-enabling
1232 * NMIs, we need to be done with it, and we need to leave enough
1233 * space for the asm code here.
1234 *
1235 * We return by executing IRET while RSP points to the "iret" frame.
1236 * That will either return for real or it will loop back into NMI
1237 * processing.
1238 *
1239 * The "outermost" frame is copied to the "iret" frame on each
1240 * iteration of the loop, so each iteration starts with the "iret"
1241 * frame pointing to the final return target.
1242 */
1243
1244 /*
1245 * Determine whether we're a nested NMI.
1246 *
1247 * If we interrupted kernel code between repeat_nmi and
1248 * end_repeat_nmi, then we are a nested NMI. We must not
1249 * modify the "iret" frame because it's being written by
1250 * the outer NMI. That's okay; the outer NMI handler is
1251 * about to about to call do_nmi anyway, so we can just
1252 * resume the outer NMI.
1253 */
1254
1255 movq $repeat_nmi, %rdx
1256 cmpq 8(%rsp), %rdx
1257 ja 1f
1258 movq $end_repeat_nmi, %rdx
1259 cmpq 8(%rsp), %rdx
1260 ja nested_nmi_out
1261 1:
1262
1263 /*
1264 * Now check "NMI executing". If it's set, then we're nested.
1265 * This will not detect if we interrupted an outer NMI just
1266 * before IRET.
1267 */
1268 cmpl $1, -8(%rsp)
1269 je nested_nmi
1270
1271 /*
1272 * Now test if the previous stack was an NMI stack. This covers
1273 * the case where we interrupt an outer NMI after it clears
1274 * "NMI executing" but before IRET. We need to be careful, though:
1275 * there is one case in which RSP could point to the NMI stack
1276 * despite there being no NMI active: naughty userspace controls
1277 * RSP at the very beginning of the SYSCALL targets. We can
1278 * pull a fast one on naughty userspace, though: we program
1279 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1280 * if it controls the kernel's RSP. We set DF before we clear
1281 * "NMI executing".
1282 */
1283 lea 6*8(%rsp), %rdx
1284 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1285 cmpq %rdx, 4*8(%rsp)
1286 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1287 ja first_nmi
1288
1289 subq $EXCEPTION_STKSZ, %rdx
1290 cmpq %rdx, 4*8(%rsp)
1291 /* If it is below the NMI stack, it is a normal NMI */
1292 jb first_nmi
1293
1294 /* Ah, it is within the NMI stack. */
1295
1296 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1297 jz first_nmi /* RSP was user controlled. */
1298
1299 /* This is a nested NMI. */
1300
1301 nested_nmi:
1302 /*
1303 * Modify the "iret" frame to point to repeat_nmi, forcing another
1304 * iteration of NMI handling.
1305 */
1306 subq $8, %rsp
1307 leaq -10*8(%rsp), %rdx
1308 pushq $__KERNEL_DS
1309 pushq %rdx
1310 pushfq
1311 pushq $__KERNEL_CS
1312 pushq $repeat_nmi
1313
1314 /* Put stack back */
1315 addq $(6*8), %rsp
1316
1317 nested_nmi_out:
1318 popq %rdx
1319
1320 /* We are returning to kernel mode, so this cannot result in a fault. */
1321 INTERRUPT_RETURN
1322
1323 first_nmi:
1324 /* Restore rdx. */
1325 movq (%rsp), %rdx
1326
1327 /* Make room for "NMI executing". */
1328 pushq $0
1329
1330 /* Leave room for the "iret" frame */
1331 subq $(5*8), %rsp
1332
1333 /* Copy the "original" frame to the "outermost" frame */
1334 .rept 5
1335 pushq 11*8(%rsp)
1336 .endr
1337
1338 /* Everything up to here is safe from nested NMIs */
1339
1340 #ifdef CONFIG_DEBUG_ENTRY
1341 /*
1342 * For ease of testing, unmask NMIs right away. Disabled by
1343 * default because IRET is very expensive.
1344 */
1345 pushq $0 /* SS */
1346 pushq %rsp /* RSP (minus 8 because of the previous push) */
1347 addq $8, (%rsp) /* Fix up RSP */
1348 pushfq /* RFLAGS */
1349 pushq $__KERNEL_CS /* CS */
1350 pushq $1f /* RIP */
1351 INTERRUPT_RETURN /* continues at repeat_nmi below */
1352 1:
1353 #endif
1354
1355 repeat_nmi:
1356 /*
1357 * If there was a nested NMI, the first NMI's iret will return
1358 * here. But NMIs are still enabled and we can take another
1359 * nested NMI. The nested NMI checks the interrupted RIP to see
1360 * if it is between repeat_nmi and end_repeat_nmi, and if so
1361 * it will just return, as we are about to repeat an NMI anyway.
1362 * This makes it safe to copy to the stack frame that a nested
1363 * NMI will update.
1364 *
1365 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1366 * we're repeating an NMI, gsbase has the same value that it had on
1367 * the first iteration. paranoid_entry will load the kernel
1368 * gsbase if needed before we call do_nmi. "NMI executing"
1369 * is zero.
1370 */
1371 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1372
1373 /*
1374 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1375 * here must not modify the "iret" frame while we're writing to
1376 * it or it will end up containing garbage.
1377 */
1378 addq $(10*8), %rsp
1379 .rept 5
1380 pushq -6*8(%rsp)
1381 .endr
1382 subq $(5*8), %rsp
1383 end_repeat_nmi:
1384
1385 /*
1386 * Everything below this point can be preempted by a nested NMI.
1387 * If this happens, then the inner NMI will change the "iret"
1388 * frame to point back to repeat_nmi.
1389 */
1390 pushq $-1 /* ORIG_RAX: no syscall to restart */
1391 ALLOC_PT_GPREGS_ON_STACK
1392
1393 /*
1394 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1395 * as we should not be calling schedule in NMI context.
1396 * Even with normal interrupts enabled. An NMI should not be
1397 * setting NEED_RESCHED or anything that normal interrupts and
1398 * exceptions might do.
1399 */
1400 call paranoid_entry
1401
1402 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1403 movq %rsp, %rdi
1404 movq $-1, %rsi
1405 call do_nmi
1406
1407 testl %ebx, %ebx /* swapgs needed? */
1408 jnz nmi_restore
1409 nmi_swapgs:
1410 SWAPGS_UNSAFE_STACK
1411 nmi_restore:
1412 RESTORE_EXTRA_REGS
1413 RESTORE_C_REGS
1414
1415 /* Point RSP at the "iret" frame. */
1416 REMOVE_PT_GPREGS_FROM_STACK 6*8
1417
1418 /*
1419 * Clear "NMI executing". Set DF first so that we can easily
1420 * distinguish the remaining code between here and IRET from
1421 * the SYSCALL entry and exit paths. On a native kernel, we
1422 * could just inspect RIP, but, on paravirt kernels,
1423 * INTERRUPT_RETURN can translate into a jump into a
1424 * hypercall page.
1425 */
1426 std
1427 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1428
1429 /*
1430 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1431 * stack in a single instruction. We are returning to kernel
1432 * mode, so this cannot result in a fault.
1433 */
1434 INTERRUPT_RETURN
1435 END(nmi)
1436
1437 ENTRY(ignore_sysret)
1438 mov $-ENOSYS, %eax
1439 sysret
1440 END(ignore_sysret)
1441
1442 ENTRY(rewind_stack_do_exit)
1443 /* Prevent any naive code from trying to unwind to our caller. */
1444 xorl %ebp, %ebp
1445
1446 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1447 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1448
1449 call do_exit
1450 1: jmp 1b
1451 END(rewind_stack_do_exit)
This page took 0.059525 seconds and 4 git commands to generate.