Merge tag 'arc-4.6-rc7-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[deliverable/linux.git] / arch / x86 / kernel / apic / vector.c
1 /*
2 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 * Moved from arch/x86/kernel/apic/io_apic.c.
6 * Jiang Liu <jiang.liu@linux.intel.com>
7 * Enable support of hierarchical irqdomains
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/interrupt.h>
14 #include <linux/init.h>
15 #include <linux/compiler.h>
16 #include <linux/slab.h>
17 #include <asm/irqdomain.h>
18 #include <asm/hw_irq.h>
19 #include <asm/apic.h>
20 #include <asm/i8259.h>
21 #include <asm/desc.h>
22 #include <asm/irq_remapping.h>
23
24 struct apic_chip_data {
25 struct irq_cfg cfg;
26 cpumask_var_t domain;
27 cpumask_var_t old_domain;
28 u8 move_in_progress : 1;
29 };
30
31 struct irq_domain *x86_vector_domain;
32 EXPORT_SYMBOL_GPL(x86_vector_domain);
33 static DEFINE_RAW_SPINLOCK(vector_lock);
34 static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
35 static struct irq_chip lapic_controller;
36 #ifdef CONFIG_X86_IO_APIC
37 static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
38 #endif
39
40 void lock_vector_lock(void)
41 {
42 /* Used to the online set of cpus does not change
43 * during assign_irq_vector.
44 */
45 raw_spin_lock(&vector_lock);
46 }
47
48 void unlock_vector_lock(void)
49 {
50 raw_spin_unlock(&vector_lock);
51 }
52
53 static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data)
54 {
55 if (!irq_data)
56 return NULL;
57
58 while (irq_data->parent_data)
59 irq_data = irq_data->parent_data;
60
61 return irq_data->chip_data;
62 }
63
64 struct irq_cfg *irqd_cfg(struct irq_data *irq_data)
65 {
66 struct apic_chip_data *data = apic_chip_data(irq_data);
67
68 return data ? &data->cfg : NULL;
69 }
70 EXPORT_SYMBOL_GPL(irqd_cfg);
71
72 struct irq_cfg *irq_cfg(unsigned int irq)
73 {
74 return irqd_cfg(irq_get_irq_data(irq));
75 }
76
77 static struct apic_chip_data *alloc_apic_chip_data(int node)
78 {
79 struct apic_chip_data *data;
80
81 data = kzalloc_node(sizeof(*data), GFP_KERNEL, node);
82 if (!data)
83 return NULL;
84 if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node))
85 goto out_data;
86 if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node))
87 goto out_domain;
88 return data;
89 out_domain:
90 free_cpumask_var(data->domain);
91 out_data:
92 kfree(data);
93 return NULL;
94 }
95
96 static void free_apic_chip_data(struct apic_chip_data *data)
97 {
98 if (data) {
99 free_cpumask_var(data->domain);
100 free_cpumask_var(data->old_domain);
101 kfree(data);
102 }
103 }
104
105 static int __assign_irq_vector(int irq, struct apic_chip_data *d,
106 const struct cpumask *mask)
107 {
108 /*
109 * NOTE! The local APIC isn't very good at handling
110 * multiple interrupts at the same interrupt level.
111 * As the interrupt level is determined by taking the
112 * vector number and shifting that right by 4, we
113 * want to spread these out a bit so that they don't
114 * all fall in the same interrupt level.
115 *
116 * Also, we've got to be careful not to trash gate
117 * 0x80, because int 0x80 is hm, kind of importantish. ;)
118 */
119 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
120 static int current_offset = VECTOR_OFFSET_START % 16;
121 int cpu, vector;
122
123 /*
124 * If there is still a move in progress or the previous move has not
125 * been cleaned up completely, tell the caller to come back later.
126 */
127 if (d->move_in_progress ||
128 cpumask_intersects(d->old_domain, cpu_online_mask))
129 return -EBUSY;
130
131 /* Only try and allocate irqs on cpus that are present */
132 cpumask_clear(d->old_domain);
133 cpumask_clear(searched_cpumask);
134 cpu = cpumask_first_and(mask, cpu_online_mask);
135 while (cpu < nr_cpu_ids) {
136 int new_cpu, offset;
137
138 /* Get the possible target cpus for @mask/@cpu from the apic */
139 apic->vector_allocation_domain(cpu, vector_cpumask, mask);
140
141 /*
142 * Clear the offline cpus from @vector_cpumask for searching
143 * and verify whether the result overlaps with @mask. If true,
144 * then the call to apic->cpu_mask_to_apicid_and() will
145 * succeed as well. If not, no point in trying to find a
146 * vector in this mask.
147 */
148 cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
149 if (!cpumask_intersects(vector_searchmask, mask))
150 goto next_cpu;
151
152 if (cpumask_subset(vector_cpumask, d->domain)) {
153 if (cpumask_equal(vector_cpumask, d->domain))
154 goto success;
155 /*
156 * Mark the cpus which are not longer in the mask for
157 * cleanup.
158 */
159 cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
160 vector = d->cfg.vector;
161 goto update;
162 }
163
164 vector = current_vector;
165 offset = current_offset;
166 next:
167 vector += 16;
168 if (vector >= first_system_vector) {
169 offset = (offset + 1) % 16;
170 vector = FIRST_EXTERNAL_VECTOR + offset;
171 }
172
173 /* If the search wrapped around, try the next cpu */
174 if (unlikely(current_vector == vector))
175 goto next_cpu;
176
177 if (test_bit(vector, used_vectors))
178 goto next;
179
180 for_each_cpu(new_cpu, vector_searchmask) {
181 if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
182 goto next;
183 }
184 /* Found one! */
185 current_vector = vector;
186 current_offset = offset;
187 /* Schedule the old vector for cleanup on all cpus */
188 if (d->cfg.vector)
189 cpumask_copy(d->old_domain, d->domain);
190 for_each_cpu(new_cpu, vector_searchmask)
191 per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
192 goto update;
193
194 next_cpu:
195 /*
196 * We exclude the current @vector_cpumask from the requested
197 * @mask and try again with the next online cpu in the
198 * result. We cannot modify @mask, so we use @vector_cpumask
199 * as a temporary buffer here as it will be reassigned when
200 * calling apic->vector_allocation_domain() above.
201 */
202 cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
203 cpumask_andnot(vector_cpumask, mask, searched_cpumask);
204 cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
205 continue;
206 }
207 return -ENOSPC;
208
209 update:
210 /*
211 * Exclude offline cpus from the cleanup mask and set the
212 * move_in_progress flag when the result is not empty.
213 */
214 cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
215 d->move_in_progress = !cpumask_empty(d->old_domain);
216 d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0;
217 d->cfg.vector = vector;
218 cpumask_copy(d->domain, vector_cpumask);
219 success:
220 /*
221 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
222 * as we already established, that mask & d->domain & cpu_online_mask
223 * is not empty.
224 */
225 BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain,
226 &d->cfg.dest_apicid));
227 return 0;
228 }
229
230 static int assign_irq_vector(int irq, struct apic_chip_data *data,
231 const struct cpumask *mask)
232 {
233 int err;
234 unsigned long flags;
235
236 raw_spin_lock_irqsave(&vector_lock, flags);
237 err = __assign_irq_vector(irq, data, mask);
238 raw_spin_unlock_irqrestore(&vector_lock, flags);
239 return err;
240 }
241
242 static int assign_irq_vector_policy(int irq, int node,
243 struct apic_chip_data *data,
244 struct irq_alloc_info *info)
245 {
246 if (info && info->mask)
247 return assign_irq_vector(irq, data, info->mask);
248 if (node != NUMA_NO_NODE &&
249 assign_irq_vector(irq, data, cpumask_of_node(node)) == 0)
250 return 0;
251 return assign_irq_vector(irq, data, apic->target_cpus());
252 }
253
254 static void clear_irq_vector(int irq, struct apic_chip_data *data)
255 {
256 struct irq_desc *desc;
257 int cpu, vector;
258
259 if (!data->cfg.vector)
260 return;
261
262 vector = data->cfg.vector;
263 for_each_cpu_and(cpu, data->domain, cpu_online_mask)
264 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
265
266 data->cfg.vector = 0;
267 cpumask_clear(data->domain);
268
269 /*
270 * If move is in progress or the old_domain mask is not empty,
271 * i.e. the cleanup IPI has not been processed yet, we need to remove
272 * the old references to desc from all cpus vector tables.
273 */
274 if (!data->move_in_progress && cpumask_empty(data->old_domain))
275 return;
276
277 desc = irq_to_desc(irq);
278 for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) {
279 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
280 vector++) {
281 if (per_cpu(vector_irq, cpu)[vector] != desc)
282 continue;
283 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
284 break;
285 }
286 }
287 data->move_in_progress = 0;
288 }
289
290 void init_irq_alloc_info(struct irq_alloc_info *info,
291 const struct cpumask *mask)
292 {
293 memset(info, 0, sizeof(*info));
294 info->mask = mask;
295 }
296
297 void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
298 {
299 if (src)
300 *dst = *src;
301 else
302 memset(dst, 0, sizeof(*dst));
303 }
304
305 static void x86_vector_free_irqs(struct irq_domain *domain,
306 unsigned int virq, unsigned int nr_irqs)
307 {
308 struct apic_chip_data *apic_data;
309 struct irq_data *irq_data;
310 unsigned long flags;
311 int i;
312
313 for (i = 0; i < nr_irqs; i++) {
314 irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i);
315 if (irq_data && irq_data->chip_data) {
316 raw_spin_lock_irqsave(&vector_lock, flags);
317 clear_irq_vector(virq + i, irq_data->chip_data);
318 apic_data = irq_data->chip_data;
319 irq_domain_reset_irq_data(irq_data);
320 raw_spin_unlock_irqrestore(&vector_lock, flags);
321 free_apic_chip_data(apic_data);
322 #ifdef CONFIG_X86_IO_APIC
323 if (virq + i < nr_legacy_irqs())
324 legacy_irq_data[virq + i] = NULL;
325 #endif
326 }
327 }
328 }
329
330 static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
331 unsigned int nr_irqs, void *arg)
332 {
333 struct irq_alloc_info *info = arg;
334 struct apic_chip_data *data;
335 struct irq_data *irq_data;
336 int i, err, node;
337
338 if (disable_apic)
339 return -ENXIO;
340
341 /* Currently vector allocator can't guarantee contiguous allocations */
342 if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
343 return -ENOSYS;
344
345 for (i = 0; i < nr_irqs; i++) {
346 irq_data = irq_domain_get_irq_data(domain, virq + i);
347 BUG_ON(!irq_data);
348 node = irq_data_get_node(irq_data);
349 #ifdef CONFIG_X86_IO_APIC
350 if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
351 data = legacy_irq_data[virq + i];
352 else
353 #endif
354 data = alloc_apic_chip_data(node);
355 if (!data) {
356 err = -ENOMEM;
357 goto error;
358 }
359
360 irq_data->chip = &lapic_controller;
361 irq_data->chip_data = data;
362 irq_data->hwirq = virq + i;
363 err = assign_irq_vector_policy(virq + i, node, data, info);
364 if (err)
365 goto error;
366 }
367
368 return 0;
369
370 error:
371 x86_vector_free_irqs(domain, virq, i + 1);
372 return err;
373 }
374
375 static const struct irq_domain_ops x86_vector_domain_ops = {
376 .alloc = x86_vector_alloc_irqs,
377 .free = x86_vector_free_irqs,
378 };
379
380 int __init arch_probe_nr_irqs(void)
381 {
382 int nr;
383
384 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
385 nr_irqs = NR_VECTORS * nr_cpu_ids;
386
387 nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
388 #if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
389 /*
390 * for MSI and HT dyn irq
391 */
392 if (gsi_top <= NR_IRQS_LEGACY)
393 nr += 8 * nr_cpu_ids;
394 else
395 nr += gsi_top * 16;
396 #endif
397 if (nr < nr_irqs)
398 nr_irqs = nr;
399
400 /*
401 * We don't know if PIC is present at this point so we need to do
402 * probe() to get the right number of legacy IRQs.
403 */
404 return legacy_pic->probe();
405 }
406
407 #ifdef CONFIG_X86_IO_APIC
408 static void init_legacy_irqs(void)
409 {
410 int i, node = cpu_to_node(0);
411 struct apic_chip_data *data;
412
413 /*
414 * For legacy IRQ's, start with assigning irq0 to irq15 to
415 * ISA_IRQ_VECTOR(i) for all cpu's.
416 */
417 for (i = 0; i < nr_legacy_irqs(); i++) {
418 data = legacy_irq_data[i] = alloc_apic_chip_data(node);
419 BUG_ON(!data);
420
421 data->cfg.vector = ISA_IRQ_VECTOR(i);
422 cpumask_setall(data->domain);
423 irq_set_chip_data(i, data);
424 }
425 }
426 #else
427 static void init_legacy_irqs(void) { }
428 #endif
429
430 int __init arch_early_irq_init(void)
431 {
432 init_legacy_irqs();
433
434 x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops,
435 NULL);
436 BUG_ON(x86_vector_domain == NULL);
437 irq_set_default_host(x86_vector_domain);
438
439 arch_init_msi_domain(x86_vector_domain);
440 arch_init_htirq_domain(x86_vector_domain);
441
442 BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
443 BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
444 BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
445
446 return arch_early_ioapic_init();
447 }
448
449 /* Initialize vector_irq on a new cpu */
450 static void __setup_vector_irq(int cpu)
451 {
452 struct apic_chip_data *data;
453 struct irq_desc *desc;
454 int irq, vector;
455
456 /* Mark the inuse vectors */
457 for_each_irq_desc(irq, desc) {
458 struct irq_data *idata = irq_desc_get_irq_data(desc);
459
460 data = apic_chip_data(idata);
461 if (!data || !cpumask_test_cpu(cpu, data->domain))
462 continue;
463 vector = data->cfg.vector;
464 per_cpu(vector_irq, cpu)[vector] = desc;
465 }
466 /* Mark the free vectors */
467 for (vector = 0; vector < NR_VECTORS; ++vector) {
468 desc = per_cpu(vector_irq, cpu)[vector];
469 if (IS_ERR_OR_NULL(desc))
470 continue;
471
472 data = apic_chip_data(irq_desc_get_irq_data(desc));
473 if (!cpumask_test_cpu(cpu, data->domain))
474 per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
475 }
476 }
477
478 /*
479 * Setup the vector to irq mappings. Must be called with vector_lock held.
480 */
481 void setup_vector_irq(int cpu)
482 {
483 int irq;
484
485 lockdep_assert_held(&vector_lock);
486 /*
487 * On most of the platforms, legacy PIC delivers the interrupts on the
488 * boot cpu. But there are certain platforms where PIC interrupts are
489 * delivered to multiple cpu's. If the legacy IRQ is handled by the
490 * legacy PIC, for the new cpu that is coming online, setup the static
491 * legacy vector to irq mapping:
492 */
493 for (irq = 0; irq < nr_legacy_irqs(); irq++)
494 per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq);
495
496 __setup_vector_irq(cpu);
497 }
498
499 static int apic_retrigger_irq(struct irq_data *irq_data)
500 {
501 struct apic_chip_data *data = apic_chip_data(irq_data);
502 unsigned long flags;
503 int cpu;
504
505 raw_spin_lock_irqsave(&vector_lock, flags);
506 cpu = cpumask_first_and(data->domain, cpu_online_mask);
507 apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector);
508 raw_spin_unlock_irqrestore(&vector_lock, flags);
509
510 return 1;
511 }
512
513 void apic_ack_edge(struct irq_data *data)
514 {
515 irq_complete_move(irqd_cfg(data));
516 irq_move_irq(data);
517 ack_APIC_irq();
518 }
519
520 static int apic_set_affinity(struct irq_data *irq_data,
521 const struct cpumask *dest, bool force)
522 {
523 struct apic_chip_data *data = irq_data->chip_data;
524 int err, irq = irq_data->irq;
525
526 if (!config_enabled(CONFIG_SMP))
527 return -EPERM;
528
529 if (!cpumask_intersects(dest, cpu_online_mask))
530 return -EINVAL;
531
532 err = assign_irq_vector(irq, data, dest);
533 return err ? err : IRQ_SET_MASK_OK;
534 }
535
536 static struct irq_chip lapic_controller = {
537 .irq_ack = apic_ack_edge,
538 .irq_set_affinity = apic_set_affinity,
539 .irq_retrigger = apic_retrigger_irq,
540 };
541
542 #ifdef CONFIG_SMP
543 static void __send_cleanup_vector(struct apic_chip_data *data)
544 {
545 raw_spin_lock(&vector_lock);
546 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
547 data->move_in_progress = 0;
548 if (!cpumask_empty(data->old_domain))
549 apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
550 raw_spin_unlock(&vector_lock);
551 }
552
553 void send_cleanup_vector(struct irq_cfg *cfg)
554 {
555 struct apic_chip_data *data;
556
557 data = container_of(cfg, struct apic_chip_data, cfg);
558 if (data->move_in_progress)
559 __send_cleanup_vector(data);
560 }
561
562 asmlinkage __visible void smp_irq_move_cleanup_interrupt(void)
563 {
564 unsigned vector, me;
565
566 entering_ack_irq();
567
568 /* Prevent vectors vanishing under us */
569 raw_spin_lock(&vector_lock);
570
571 me = smp_processor_id();
572 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
573 struct apic_chip_data *data;
574 struct irq_desc *desc;
575 unsigned int irr;
576
577 retry:
578 desc = __this_cpu_read(vector_irq[vector]);
579 if (IS_ERR_OR_NULL(desc))
580 continue;
581
582 if (!raw_spin_trylock(&desc->lock)) {
583 raw_spin_unlock(&vector_lock);
584 cpu_relax();
585 raw_spin_lock(&vector_lock);
586 goto retry;
587 }
588
589 data = apic_chip_data(irq_desc_get_irq_data(desc));
590 if (!data)
591 goto unlock;
592
593 /*
594 * Nothing to cleanup if irq migration is in progress
595 * or this cpu is not set in the cleanup mask.
596 */
597 if (data->move_in_progress ||
598 !cpumask_test_cpu(me, data->old_domain))
599 goto unlock;
600
601 /*
602 * We have two cases to handle here:
603 * 1) vector is unchanged but the target mask got reduced
604 * 2) vector and the target mask has changed
605 *
606 * #1 is obvious, but in #2 we have two vectors with the same
607 * irq descriptor: the old and the new vector. So we need to
608 * make sure that we only cleanup the old vector. The new
609 * vector has the current @vector number in the config and
610 * this cpu is part of the target mask. We better leave that
611 * one alone.
612 */
613 if (vector == data->cfg.vector &&
614 cpumask_test_cpu(me, data->domain))
615 goto unlock;
616
617 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
618 /*
619 * Check if the vector that needs to be cleanedup is
620 * registered at the cpu's IRR. If so, then this is not
621 * the best time to clean it up. Lets clean it up in the
622 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
623 * to myself.
624 */
625 if (irr & (1 << (vector % 32))) {
626 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
627 goto unlock;
628 }
629 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
630 cpumask_clear_cpu(me, data->old_domain);
631 unlock:
632 raw_spin_unlock(&desc->lock);
633 }
634
635 raw_spin_unlock(&vector_lock);
636
637 exiting_irq();
638 }
639
640 static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
641 {
642 unsigned me;
643 struct apic_chip_data *data;
644
645 data = container_of(cfg, struct apic_chip_data, cfg);
646 if (likely(!data->move_in_progress))
647 return;
648
649 me = smp_processor_id();
650 if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain))
651 __send_cleanup_vector(data);
652 }
653
654 void irq_complete_move(struct irq_cfg *cfg)
655 {
656 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
657 }
658
659 /*
660 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
661 */
662 void irq_force_complete_move(struct irq_desc *desc)
663 {
664 struct irq_data *irqdata = irq_desc_get_irq_data(desc);
665 struct apic_chip_data *data = apic_chip_data(irqdata);
666 struct irq_cfg *cfg = data ? &data->cfg : NULL;
667 unsigned int cpu;
668
669 if (!cfg)
670 return;
671
672 /*
673 * This is tricky. If the cleanup of @data->old_domain has not been
674 * done yet, then the following setaffinity call will fail with
675 * -EBUSY. This can leave the interrupt in a stale state.
676 *
677 * All CPUs are stuck in stop machine with interrupts disabled so
678 * calling __irq_complete_move() would be completely pointless.
679 */
680 raw_spin_lock(&vector_lock);
681 /*
682 * Clean out all offline cpus (including the outgoing one) from the
683 * old_domain mask.
684 */
685 cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
686
687 /*
688 * If move_in_progress is cleared and the old_domain mask is empty,
689 * then there is nothing to cleanup. fixup_irqs() will take care of
690 * the stale vectors on the outgoing cpu.
691 */
692 if (!data->move_in_progress && cpumask_empty(data->old_domain)) {
693 raw_spin_unlock(&vector_lock);
694 return;
695 }
696
697 /*
698 * 1) The interrupt is in move_in_progress state. That means that we
699 * have not seen an interrupt since the io_apic was reprogrammed to
700 * the new vector.
701 *
702 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
703 * have not been processed yet.
704 */
705 if (data->move_in_progress) {
706 /*
707 * In theory there is a race:
708 *
709 * set_ioapic(new_vector) <-- Interrupt is raised before update
710 * is effective, i.e. it's raised on
711 * the old vector.
712 *
713 * So if the target cpu cannot handle that interrupt before
714 * the old vector is cleaned up, we get a spurious interrupt
715 * and in the worst case the ioapic irq line becomes stale.
716 *
717 * But in case of cpu hotplug this should be a non issue
718 * because if the affinity update happens right before all
719 * cpus rendevouz in stop machine, there is no way that the
720 * interrupt can be blocked on the target cpu because all cpus
721 * loops first with interrupts enabled in stop machine, so the
722 * old vector is not yet cleaned up when the interrupt fires.
723 *
724 * So the only way to run into this issue is if the delivery
725 * of the interrupt on the apic/system bus would be delayed
726 * beyond the point where the target cpu disables interrupts
727 * in stop machine. I doubt that it can happen, but at least
728 * there is a theroretical chance. Virtualization might be
729 * able to expose this, but AFAICT the IOAPIC emulation is not
730 * as stupid as the real hardware.
731 *
732 * Anyway, there is nothing we can do about that at this point
733 * w/o refactoring the whole fixup_irq() business completely.
734 * We print at least the irq number and the old vector number,
735 * so we have the necessary information when a problem in that
736 * area arises.
737 */
738 pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
739 irqdata->irq, cfg->old_vector);
740 }
741 /*
742 * If old_domain is not empty, then other cpus still have the irq
743 * descriptor set in their vector array. Clean it up.
744 */
745 for_each_cpu(cpu, data->old_domain)
746 per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED;
747
748 /* Cleanup the left overs of the (half finished) move */
749 cpumask_clear(data->old_domain);
750 data->move_in_progress = 0;
751 raw_spin_unlock(&vector_lock);
752 }
753 #endif
754
755 static void __init print_APIC_field(int base)
756 {
757 int i;
758
759 printk(KERN_DEBUG);
760
761 for (i = 0; i < 8; i++)
762 pr_cont("%08x", apic_read(base + i*0x10));
763
764 pr_cont("\n");
765 }
766
767 static void __init print_local_APIC(void *dummy)
768 {
769 unsigned int i, v, ver, maxlvt;
770 u64 icr;
771
772 pr_debug("printing local APIC contents on CPU#%d/%d:\n",
773 smp_processor_id(), hard_smp_processor_id());
774 v = apic_read(APIC_ID);
775 pr_info("... APIC ID: %08x (%01x)\n", v, read_apic_id());
776 v = apic_read(APIC_LVR);
777 pr_info("... APIC VERSION: %08x\n", v);
778 ver = GET_APIC_VERSION(v);
779 maxlvt = lapic_get_maxlvt();
780
781 v = apic_read(APIC_TASKPRI);
782 pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
783
784 /* !82489DX */
785 if (APIC_INTEGRATED(ver)) {
786 if (!APIC_XAPIC(ver)) {
787 v = apic_read(APIC_ARBPRI);
788 pr_debug("... APIC ARBPRI: %08x (%02x)\n",
789 v, v & APIC_ARBPRI_MASK);
790 }
791 v = apic_read(APIC_PROCPRI);
792 pr_debug("... APIC PROCPRI: %08x\n", v);
793 }
794
795 /*
796 * Remote read supported only in the 82489DX and local APIC for
797 * Pentium processors.
798 */
799 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
800 v = apic_read(APIC_RRR);
801 pr_debug("... APIC RRR: %08x\n", v);
802 }
803
804 v = apic_read(APIC_LDR);
805 pr_debug("... APIC LDR: %08x\n", v);
806 if (!x2apic_enabled()) {
807 v = apic_read(APIC_DFR);
808 pr_debug("... APIC DFR: %08x\n", v);
809 }
810 v = apic_read(APIC_SPIV);
811 pr_debug("... APIC SPIV: %08x\n", v);
812
813 pr_debug("... APIC ISR field:\n");
814 print_APIC_field(APIC_ISR);
815 pr_debug("... APIC TMR field:\n");
816 print_APIC_field(APIC_TMR);
817 pr_debug("... APIC IRR field:\n");
818 print_APIC_field(APIC_IRR);
819
820 /* !82489DX */
821 if (APIC_INTEGRATED(ver)) {
822 /* Due to the Pentium erratum 3AP. */
823 if (maxlvt > 3)
824 apic_write(APIC_ESR, 0);
825
826 v = apic_read(APIC_ESR);
827 pr_debug("... APIC ESR: %08x\n", v);
828 }
829
830 icr = apic_icr_read();
831 pr_debug("... APIC ICR: %08x\n", (u32)icr);
832 pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
833
834 v = apic_read(APIC_LVTT);
835 pr_debug("... APIC LVTT: %08x\n", v);
836
837 if (maxlvt > 3) {
838 /* PC is LVT#4. */
839 v = apic_read(APIC_LVTPC);
840 pr_debug("... APIC LVTPC: %08x\n", v);
841 }
842 v = apic_read(APIC_LVT0);
843 pr_debug("... APIC LVT0: %08x\n", v);
844 v = apic_read(APIC_LVT1);
845 pr_debug("... APIC LVT1: %08x\n", v);
846
847 if (maxlvt > 2) {
848 /* ERR is LVT#3. */
849 v = apic_read(APIC_LVTERR);
850 pr_debug("... APIC LVTERR: %08x\n", v);
851 }
852
853 v = apic_read(APIC_TMICT);
854 pr_debug("... APIC TMICT: %08x\n", v);
855 v = apic_read(APIC_TMCCT);
856 pr_debug("... APIC TMCCT: %08x\n", v);
857 v = apic_read(APIC_TDCR);
858 pr_debug("... APIC TDCR: %08x\n", v);
859
860 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
861 v = apic_read(APIC_EFEAT);
862 maxlvt = (v >> 16) & 0xff;
863 pr_debug("... APIC EFEAT: %08x\n", v);
864 v = apic_read(APIC_ECTRL);
865 pr_debug("... APIC ECTRL: %08x\n", v);
866 for (i = 0; i < maxlvt; i++) {
867 v = apic_read(APIC_EILVTn(i));
868 pr_debug("... APIC EILVT%d: %08x\n", i, v);
869 }
870 }
871 pr_cont("\n");
872 }
873
874 static void __init print_local_APICs(int maxcpu)
875 {
876 int cpu;
877
878 if (!maxcpu)
879 return;
880
881 preempt_disable();
882 for_each_online_cpu(cpu) {
883 if (cpu >= maxcpu)
884 break;
885 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
886 }
887 preempt_enable();
888 }
889
890 static void __init print_PIC(void)
891 {
892 unsigned int v;
893 unsigned long flags;
894
895 if (!nr_legacy_irqs())
896 return;
897
898 pr_debug("\nprinting PIC contents\n");
899
900 raw_spin_lock_irqsave(&i8259A_lock, flags);
901
902 v = inb(0xa1) << 8 | inb(0x21);
903 pr_debug("... PIC IMR: %04x\n", v);
904
905 v = inb(0xa0) << 8 | inb(0x20);
906 pr_debug("... PIC IRR: %04x\n", v);
907
908 outb(0x0b, 0xa0);
909 outb(0x0b, 0x20);
910 v = inb(0xa0) << 8 | inb(0x20);
911 outb(0x0a, 0xa0);
912 outb(0x0a, 0x20);
913
914 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
915
916 pr_debug("... PIC ISR: %04x\n", v);
917
918 v = inb(0x4d1) << 8 | inb(0x4d0);
919 pr_debug("... PIC ELCR: %04x\n", v);
920 }
921
922 static int show_lapic __initdata = 1;
923 static __init int setup_show_lapic(char *arg)
924 {
925 int num = -1;
926
927 if (strcmp(arg, "all") == 0) {
928 show_lapic = CONFIG_NR_CPUS;
929 } else {
930 get_option(&arg, &num);
931 if (num >= 0)
932 show_lapic = num;
933 }
934
935 return 1;
936 }
937 __setup("show_lapic=", setup_show_lapic);
938
939 static int __init print_ICs(void)
940 {
941 if (apic_verbosity == APIC_QUIET)
942 return 0;
943
944 print_PIC();
945
946 /* don't print out if apic is not there */
947 if (!cpu_has_apic && !apic_from_smp_config())
948 return 0;
949
950 print_local_APICs(show_lapic);
951 print_IO_APICs();
952
953 return 0;
954 }
955
956 late_initcall(print_ICs);
This page took 0.050612 seconds and 5 git commands to generate.