809eda03c527f29779fe94b0ab4922a8a34798bb
[deliverable/linux.git] / arch / x86 / kernel / cpu / common.c
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/bugs.h>
41 #include <asm/cpu.h>
42 #include <asm/mce.h>
43 #include <asm/msr.h>
44 #include <asm/pat.h>
45 #include <asm/microcode.h>
46 #include <asm/microcode_intel.h>
47
48 #ifdef CONFIG_X86_LOCAL_APIC
49 #include <asm/uv/uv.h>
50 #endif
51
52 #include "cpu.h"
53
54 /* all of these masks are initialized in setup_cpu_local_masks() */
55 cpumask_var_t cpu_initialized_mask;
56 cpumask_var_t cpu_callout_mask;
57 cpumask_var_t cpu_callin_mask;
58
59 /* representing cpus for which sibling maps can be computed */
60 cpumask_var_t cpu_sibling_setup_mask;
61
62 /* correctly size the local cpu masks */
63 void __init setup_cpu_local_masks(void)
64 {
65 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
66 alloc_bootmem_cpumask_var(&cpu_callin_mask);
67 alloc_bootmem_cpumask_var(&cpu_callout_mask);
68 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
69 }
70
71 static void default_init(struct cpuinfo_x86 *c)
72 {
73 #ifdef CONFIG_X86_64
74 cpu_detect_cache_sizes(c);
75 #else
76 /* Not much we can do here... */
77 /* Check if at least it has cpuid */
78 if (c->cpuid_level == -1) {
79 /* No cpuid. It must be an ancient CPU */
80 if (c->x86 == 4)
81 strcpy(c->x86_model_id, "486");
82 else if (c->x86 == 3)
83 strcpy(c->x86_model_id, "386");
84 }
85 #endif
86 }
87
88 static const struct cpu_dev default_cpu = {
89 .c_init = default_init,
90 .c_vendor = "Unknown",
91 .c_x86_vendor = X86_VENDOR_UNKNOWN,
92 };
93
94 static const struct cpu_dev *this_cpu = &default_cpu;
95
96 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
97 #ifdef CONFIG_X86_64
98 /*
99 * We need valid kernel segments for data and code in long mode too
100 * IRET will check the segment types kkeil 2000/10/28
101 * Also sysret mandates a special GDT layout
102 *
103 * TLS descriptors are currently at a different place compared to i386.
104 * Hopefully nobody expects them at a fixed place (Wine?)
105 */
106 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
107 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
108 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
109 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
110 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
111 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
112 #else
113 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
114 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
115 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
116 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
117 /*
118 * Segments used for calling PnP BIOS have byte granularity.
119 * They code segments and data segments have fixed 64k limits,
120 * the transfer segment sizes are set at run time.
121 */
122 /* 32-bit code */
123 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
124 /* 16-bit code */
125 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
126 /* 16-bit data */
127 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
128 /* 16-bit data */
129 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
130 /* 16-bit data */
131 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
132 /*
133 * The APM segments have byte granularity and their bases
134 * are set at run time. All have 64k limits.
135 */
136 /* 32-bit code */
137 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 /* 16-bit code */
139 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 /* data */
141 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
142
143 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
145 GDT_STACK_CANARY_INIT
146 #endif
147 } };
148 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
149
150 static int __init x86_mpx_setup(char *s)
151 {
152 /* require an exact match without trailing characters */
153 if (strlen(s))
154 return 0;
155
156 /* do not emit a message if the feature is not present */
157 if (!boot_cpu_has(X86_FEATURE_MPX))
158 return 1;
159
160 setup_clear_cpu_cap(X86_FEATURE_MPX);
161 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
162 return 1;
163 }
164 __setup("nompx", x86_mpx_setup);
165
166 static int __init x86_noinvpcid_setup(char *s)
167 {
168 /* noinvpcid doesn't accept parameters */
169 if (s)
170 return -EINVAL;
171
172 /* do not emit a message if the feature is not present */
173 if (!boot_cpu_has(X86_FEATURE_INVPCID))
174 return 0;
175
176 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
177 pr_info("noinvpcid: INVPCID feature disabled\n");
178 return 0;
179 }
180 early_param("noinvpcid", x86_noinvpcid_setup);
181
182 #ifdef CONFIG_X86_32
183 static int cachesize_override = -1;
184 static int disable_x86_serial_nr = 1;
185
186 static int __init cachesize_setup(char *str)
187 {
188 get_option(&str, &cachesize_override);
189 return 1;
190 }
191 __setup("cachesize=", cachesize_setup);
192
193 static int __init x86_sep_setup(char *s)
194 {
195 setup_clear_cpu_cap(X86_FEATURE_SEP);
196 return 1;
197 }
198 __setup("nosep", x86_sep_setup);
199
200 /* Standard macro to see if a specific flag is changeable */
201 static inline int flag_is_changeable_p(u32 flag)
202 {
203 u32 f1, f2;
204
205 /*
206 * Cyrix and IDT cpus allow disabling of CPUID
207 * so the code below may return different results
208 * when it is executed before and after enabling
209 * the CPUID. Add "volatile" to not allow gcc to
210 * optimize the subsequent calls to this function.
211 */
212 asm volatile ("pushfl \n\t"
213 "pushfl \n\t"
214 "popl %0 \n\t"
215 "movl %0, %1 \n\t"
216 "xorl %2, %0 \n\t"
217 "pushl %0 \n\t"
218 "popfl \n\t"
219 "pushfl \n\t"
220 "popl %0 \n\t"
221 "popfl \n\t"
222
223 : "=&r" (f1), "=&r" (f2)
224 : "ir" (flag));
225
226 return ((f1^f2) & flag) != 0;
227 }
228
229 /* Probe for the CPUID instruction */
230 int have_cpuid_p(void)
231 {
232 return flag_is_changeable_p(X86_EFLAGS_ID);
233 }
234
235 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
236 {
237 unsigned long lo, hi;
238
239 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
240 return;
241
242 /* Disable processor serial number: */
243
244 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
245 lo |= 0x200000;
246 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
247
248 pr_notice("CPU serial number disabled.\n");
249 clear_cpu_cap(c, X86_FEATURE_PN);
250
251 /* Disabling the serial number may affect the cpuid level */
252 c->cpuid_level = cpuid_eax(0);
253 }
254
255 static int __init x86_serial_nr_setup(char *s)
256 {
257 disable_x86_serial_nr = 0;
258 return 1;
259 }
260 __setup("serialnumber", x86_serial_nr_setup);
261 #else
262 static inline int flag_is_changeable_p(u32 flag)
263 {
264 return 1;
265 }
266 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
267 {
268 }
269 #endif
270
271 static __init int setup_disable_smep(char *arg)
272 {
273 setup_clear_cpu_cap(X86_FEATURE_SMEP);
274 /* Check for things that depend on SMEP being enabled: */
275 check_mpx_erratum(&boot_cpu_data);
276 return 1;
277 }
278 __setup("nosmep", setup_disable_smep);
279
280 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
281 {
282 if (cpu_has(c, X86_FEATURE_SMEP))
283 cr4_set_bits(X86_CR4_SMEP);
284 }
285
286 static __init int setup_disable_smap(char *arg)
287 {
288 setup_clear_cpu_cap(X86_FEATURE_SMAP);
289 return 1;
290 }
291 __setup("nosmap", setup_disable_smap);
292
293 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
294 {
295 unsigned long eflags = native_save_fl();
296
297 /* This should have been cleared long ago */
298 BUG_ON(eflags & X86_EFLAGS_AC);
299
300 if (cpu_has(c, X86_FEATURE_SMAP)) {
301 #ifdef CONFIG_X86_SMAP
302 cr4_set_bits(X86_CR4_SMAP);
303 #else
304 cr4_clear_bits(X86_CR4_SMAP);
305 #endif
306 }
307 }
308
309 /*
310 * Protection Keys are not available in 32-bit mode.
311 */
312 static bool pku_disabled;
313
314 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
315 {
316 /* check the boot processor, plus compile options for PKU: */
317 if (!cpu_feature_enabled(X86_FEATURE_PKU))
318 return;
319 /* checks the actual processor's cpuid bits: */
320 if (!cpu_has(c, X86_FEATURE_PKU))
321 return;
322 if (pku_disabled)
323 return;
324
325 cr4_set_bits(X86_CR4_PKE);
326 /*
327 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
328 * cpuid bit to be set. We need to ensure that we
329 * update that bit in this CPU's "cpu_info".
330 */
331 get_cpu_cap(c);
332 }
333
334 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
335 static __init int setup_disable_pku(char *arg)
336 {
337 /*
338 * Do not clear the X86_FEATURE_PKU bit. All of the
339 * runtime checks are against OSPKE so clearing the
340 * bit does nothing.
341 *
342 * This way, we will see "pku" in cpuinfo, but not
343 * "ospke", which is exactly what we want. It shows
344 * that the CPU has PKU, but the OS has not enabled it.
345 * This happens to be exactly how a system would look
346 * if we disabled the config option.
347 */
348 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
349 pku_disabled = true;
350 return 1;
351 }
352 __setup("nopku", setup_disable_pku);
353 #endif /* CONFIG_X86_64 */
354
355 /*
356 * Some CPU features depend on higher CPUID levels, which may not always
357 * be available due to CPUID level capping or broken virtualization
358 * software. Add those features to this table to auto-disable them.
359 */
360 struct cpuid_dependent_feature {
361 u32 feature;
362 u32 level;
363 };
364
365 static const struct cpuid_dependent_feature
366 cpuid_dependent_features[] = {
367 { X86_FEATURE_MWAIT, 0x00000005 },
368 { X86_FEATURE_DCA, 0x00000009 },
369 { X86_FEATURE_XSAVE, 0x0000000d },
370 { 0, 0 }
371 };
372
373 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
374 {
375 const struct cpuid_dependent_feature *df;
376
377 for (df = cpuid_dependent_features; df->feature; df++) {
378
379 if (!cpu_has(c, df->feature))
380 continue;
381 /*
382 * Note: cpuid_level is set to -1 if unavailable, but
383 * extended_extended_level is set to 0 if unavailable
384 * and the legitimate extended levels are all negative
385 * when signed; hence the weird messing around with
386 * signs here...
387 */
388 if (!((s32)df->level < 0 ?
389 (u32)df->level > (u32)c->extended_cpuid_level :
390 (s32)df->level > (s32)c->cpuid_level))
391 continue;
392
393 clear_cpu_cap(c, df->feature);
394 if (!warn)
395 continue;
396
397 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
398 x86_cap_flag(df->feature), df->level);
399 }
400 }
401
402 /*
403 * Naming convention should be: <Name> [(<Codename>)]
404 * This table only is used unless init_<vendor>() below doesn't set it;
405 * in particular, if CPUID levels 0x80000002..4 are supported, this
406 * isn't used
407 */
408
409 /* Look up CPU names by table lookup. */
410 static const char *table_lookup_model(struct cpuinfo_x86 *c)
411 {
412 #ifdef CONFIG_X86_32
413 const struct legacy_cpu_model_info *info;
414
415 if (c->x86_model >= 16)
416 return NULL; /* Range check */
417
418 if (!this_cpu)
419 return NULL;
420
421 info = this_cpu->legacy_models;
422
423 while (info->family) {
424 if (info->family == c->x86)
425 return info->model_names[c->x86_model];
426 info++;
427 }
428 #endif
429 return NULL; /* Not found */
430 }
431
432 __u32 cpu_caps_cleared[NCAPINTS];
433 __u32 cpu_caps_set[NCAPINTS];
434
435 void load_percpu_segment(int cpu)
436 {
437 #ifdef CONFIG_X86_32
438 loadsegment(fs, __KERNEL_PERCPU);
439 #else
440 __loadsegment_simple(gs, 0);
441 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
442 #endif
443 load_stack_canary_segment();
444 }
445
446 /*
447 * Current gdt points %fs at the "master" per-cpu area: after this,
448 * it's on the real one.
449 */
450 void switch_to_new_gdt(int cpu)
451 {
452 struct desc_ptr gdt_descr;
453
454 gdt_descr.address = (long)get_cpu_gdt_table(cpu);
455 gdt_descr.size = GDT_SIZE - 1;
456 load_gdt(&gdt_descr);
457 /* Reload the per-cpu base */
458
459 load_percpu_segment(cpu);
460 }
461
462 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
463
464 static void get_model_name(struct cpuinfo_x86 *c)
465 {
466 unsigned int *v;
467 char *p, *q, *s;
468
469 if (c->extended_cpuid_level < 0x80000004)
470 return;
471
472 v = (unsigned int *)c->x86_model_id;
473 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
474 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
475 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
476 c->x86_model_id[48] = 0;
477
478 /* Trim whitespace */
479 p = q = s = &c->x86_model_id[0];
480
481 while (*p == ' ')
482 p++;
483
484 while (*p) {
485 /* Note the last non-whitespace index */
486 if (!isspace(*p))
487 s = q;
488
489 *q++ = *p++;
490 }
491
492 *(s + 1) = '\0';
493 }
494
495 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
496 {
497 unsigned int n, dummy, ebx, ecx, edx, l2size;
498
499 n = c->extended_cpuid_level;
500
501 if (n >= 0x80000005) {
502 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
503 c->x86_cache_size = (ecx>>24) + (edx>>24);
504 #ifdef CONFIG_X86_64
505 /* On K8 L1 TLB is inclusive, so don't count it */
506 c->x86_tlbsize = 0;
507 #endif
508 }
509
510 if (n < 0x80000006) /* Some chips just has a large L1. */
511 return;
512
513 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
514 l2size = ecx >> 16;
515
516 #ifdef CONFIG_X86_64
517 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
518 #else
519 /* do processor-specific cache resizing */
520 if (this_cpu->legacy_cache_size)
521 l2size = this_cpu->legacy_cache_size(c, l2size);
522
523 /* Allow user to override all this if necessary. */
524 if (cachesize_override != -1)
525 l2size = cachesize_override;
526
527 if (l2size == 0)
528 return; /* Again, no L2 cache is possible */
529 #endif
530
531 c->x86_cache_size = l2size;
532 }
533
534 u16 __read_mostly tlb_lli_4k[NR_INFO];
535 u16 __read_mostly tlb_lli_2m[NR_INFO];
536 u16 __read_mostly tlb_lli_4m[NR_INFO];
537 u16 __read_mostly tlb_lld_4k[NR_INFO];
538 u16 __read_mostly tlb_lld_2m[NR_INFO];
539 u16 __read_mostly tlb_lld_4m[NR_INFO];
540 u16 __read_mostly tlb_lld_1g[NR_INFO];
541
542 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
543 {
544 if (this_cpu->c_detect_tlb)
545 this_cpu->c_detect_tlb(c);
546
547 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
548 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
549 tlb_lli_4m[ENTRIES]);
550
551 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
552 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
553 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
554 }
555
556 void detect_ht(struct cpuinfo_x86 *c)
557 {
558 #ifdef CONFIG_SMP
559 u32 eax, ebx, ecx, edx;
560 int index_msb, core_bits;
561 static bool printed;
562
563 if (!cpu_has(c, X86_FEATURE_HT))
564 return;
565
566 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
567 goto out;
568
569 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
570 return;
571
572 cpuid(1, &eax, &ebx, &ecx, &edx);
573
574 smp_num_siblings = (ebx & 0xff0000) >> 16;
575
576 if (smp_num_siblings == 1) {
577 pr_info_once("CPU0: Hyper-Threading is disabled\n");
578 goto out;
579 }
580
581 if (smp_num_siblings <= 1)
582 goto out;
583
584 index_msb = get_count_order(smp_num_siblings);
585 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
586
587 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
588
589 index_msb = get_count_order(smp_num_siblings);
590
591 core_bits = get_count_order(c->x86_max_cores);
592
593 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
594 ((1 << core_bits) - 1);
595
596 out:
597 if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
598 pr_info("CPU: Physical Processor ID: %d\n",
599 c->phys_proc_id);
600 pr_info("CPU: Processor Core ID: %d\n",
601 c->cpu_core_id);
602 printed = 1;
603 }
604 #endif
605 }
606
607 static void get_cpu_vendor(struct cpuinfo_x86 *c)
608 {
609 char *v = c->x86_vendor_id;
610 int i;
611
612 for (i = 0; i < X86_VENDOR_NUM; i++) {
613 if (!cpu_devs[i])
614 break;
615
616 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
617 (cpu_devs[i]->c_ident[1] &&
618 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
619
620 this_cpu = cpu_devs[i];
621 c->x86_vendor = this_cpu->c_x86_vendor;
622 return;
623 }
624 }
625
626 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
627 "CPU: Your system may be unstable.\n", v);
628
629 c->x86_vendor = X86_VENDOR_UNKNOWN;
630 this_cpu = &default_cpu;
631 }
632
633 void cpu_detect(struct cpuinfo_x86 *c)
634 {
635 /* Get vendor name */
636 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
637 (unsigned int *)&c->x86_vendor_id[0],
638 (unsigned int *)&c->x86_vendor_id[8],
639 (unsigned int *)&c->x86_vendor_id[4]);
640
641 c->x86 = 4;
642 /* Intel-defined flags: level 0x00000001 */
643 if (c->cpuid_level >= 0x00000001) {
644 u32 junk, tfms, cap0, misc;
645
646 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
647 c->x86 = x86_family(tfms);
648 c->x86_model = x86_model(tfms);
649 c->x86_mask = x86_stepping(tfms);
650
651 if (cap0 & (1<<19)) {
652 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
653 c->x86_cache_alignment = c->x86_clflush_size;
654 }
655 }
656 }
657
658 void get_cpu_cap(struct cpuinfo_x86 *c)
659 {
660 u32 eax, ebx, ecx, edx;
661
662 /* Intel-defined flags: level 0x00000001 */
663 if (c->cpuid_level >= 0x00000001) {
664 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
665
666 c->x86_capability[CPUID_1_ECX] = ecx;
667 c->x86_capability[CPUID_1_EDX] = edx;
668 }
669
670 /* Additional Intel-defined flags: level 0x00000007 */
671 if (c->cpuid_level >= 0x00000007) {
672 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
673
674 c->x86_capability[CPUID_7_0_EBX] = ebx;
675
676 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
677 c->x86_capability[CPUID_7_ECX] = ecx;
678 }
679
680 /* Extended state features: level 0x0000000d */
681 if (c->cpuid_level >= 0x0000000d) {
682 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
683
684 c->x86_capability[CPUID_D_1_EAX] = eax;
685 }
686
687 /* Additional Intel-defined flags: level 0x0000000F */
688 if (c->cpuid_level >= 0x0000000F) {
689
690 /* QoS sub-leaf, EAX=0Fh, ECX=0 */
691 cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
692 c->x86_capability[CPUID_F_0_EDX] = edx;
693
694 if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
695 /* will be overridden if occupancy monitoring exists */
696 c->x86_cache_max_rmid = ebx;
697
698 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
699 cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
700 c->x86_capability[CPUID_F_1_EDX] = edx;
701
702 if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
703 ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
704 (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
705 c->x86_cache_max_rmid = ecx;
706 c->x86_cache_occ_scale = ebx;
707 }
708 } else {
709 c->x86_cache_max_rmid = -1;
710 c->x86_cache_occ_scale = -1;
711 }
712 }
713
714 /* AMD-defined flags: level 0x80000001 */
715 eax = cpuid_eax(0x80000000);
716 c->extended_cpuid_level = eax;
717
718 if ((eax & 0xffff0000) == 0x80000000) {
719 if (eax >= 0x80000001) {
720 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
721
722 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
723 c->x86_capability[CPUID_8000_0001_EDX] = edx;
724 }
725 }
726
727 if (c->extended_cpuid_level >= 0x80000007) {
728 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
729
730 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
731 c->x86_power = edx;
732 }
733
734 if (c->extended_cpuid_level >= 0x80000008) {
735 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
736
737 c->x86_virt_bits = (eax >> 8) & 0xff;
738 c->x86_phys_bits = eax & 0xff;
739 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
740 }
741 #ifdef CONFIG_X86_32
742 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
743 c->x86_phys_bits = 36;
744 #endif
745
746 if (c->extended_cpuid_level >= 0x8000000a)
747 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
748
749 init_scattered_cpuid_features(c);
750 }
751
752 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
753 {
754 #ifdef CONFIG_X86_32
755 int i;
756
757 /*
758 * First of all, decide if this is a 486 or higher
759 * It's a 486 if we can modify the AC flag
760 */
761 if (flag_is_changeable_p(X86_EFLAGS_AC))
762 c->x86 = 4;
763 else
764 c->x86 = 3;
765
766 for (i = 0; i < X86_VENDOR_NUM; i++)
767 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
768 c->x86_vendor_id[0] = 0;
769 cpu_devs[i]->c_identify(c);
770 if (c->x86_vendor_id[0]) {
771 get_cpu_vendor(c);
772 break;
773 }
774 }
775 #endif
776 }
777
778 /*
779 * Do minimum CPU detection early.
780 * Fields really needed: vendor, cpuid_level, family, model, mask,
781 * cache alignment.
782 * The others are not touched to avoid unwanted side effects.
783 *
784 * WARNING: this function is only called on the BP. Don't add code here
785 * that is supposed to run on all CPUs.
786 */
787 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
788 {
789 #ifdef CONFIG_X86_64
790 c->x86_clflush_size = 64;
791 c->x86_phys_bits = 36;
792 c->x86_virt_bits = 48;
793 #else
794 c->x86_clflush_size = 32;
795 c->x86_phys_bits = 32;
796 c->x86_virt_bits = 32;
797 #endif
798 c->x86_cache_alignment = c->x86_clflush_size;
799
800 memset(&c->x86_capability, 0, sizeof c->x86_capability);
801 c->extended_cpuid_level = 0;
802
803 if (!have_cpuid_p())
804 identify_cpu_without_cpuid(c);
805
806 /* cyrix could have cpuid enabled via c_identify()*/
807 if (!have_cpuid_p())
808 return;
809
810 cpu_detect(c);
811 get_cpu_vendor(c);
812 get_cpu_cap(c);
813
814 if (this_cpu->c_early_init)
815 this_cpu->c_early_init(c);
816
817 c->cpu_index = 0;
818 filter_cpuid_features(c, false);
819
820 if (this_cpu->c_bsp_init)
821 this_cpu->c_bsp_init(c);
822
823 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
824 fpu__init_system(c);
825 }
826
827 void __init early_cpu_init(void)
828 {
829 const struct cpu_dev *const *cdev;
830 int count = 0;
831
832 #ifdef CONFIG_PROCESSOR_SELECT
833 pr_info("KERNEL supported cpus:\n");
834 #endif
835
836 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
837 const struct cpu_dev *cpudev = *cdev;
838
839 if (count >= X86_VENDOR_NUM)
840 break;
841 cpu_devs[count] = cpudev;
842 count++;
843
844 #ifdef CONFIG_PROCESSOR_SELECT
845 {
846 unsigned int j;
847
848 for (j = 0; j < 2; j++) {
849 if (!cpudev->c_ident[j])
850 continue;
851 pr_info(" %s %s\n", cpudev->c_vendor,
852 cpudev->c_ident[j]);
853 }
854 }
855 #endif
856 }
857 early_identify_cpu(&boot_cpu_data);
858 }
859
860 /*
861 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
862 * unfortunately, that's not true in practice because of early VIA
863 * chips and (more importantly) broken virtualizers that are not easy
864 * to detect. In the latter case it doesn't even *fail* reliably, so
865 * probing for it doesn't even work. Disable it completely on 32-bit
866 * unless we can find a reliable way to detect all the broken cases.
867 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
868 */
869 static void detect_nopl(struct cpuinfo_x86 *c)
870 {
871 #ifdef CONFIG_X86_32
872 clear_cpu_cap(c, X86_FEATURE_NOPL);
873 #else
874 set_cpu_cap(c, X86_FEATURE_NOPL);
875 #endif
876 }
877
878 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
879 {
880 #ifdef CONFIG_X86_64
881 /*
882 * Empirically, writing zero to a segment selector on AMD does
883 * not clear the base, whereas writing zero to a segment
884 * selector on Intel does clear the base. Intel's behavior
885 * allows slightly faster context switches in the common case
886 * where GS is unused by the prev and next threads.
887 *
888 * Since neither vendor documents this anywhere that I can see,
889 * detect it directly instead of hardcoding the choice by
890 * vendor.
891 *
892 * I've designated AMD's behavior as the "bug" because it's
893 * counterintuitive and less friendly.
894 */
895
896 unsigned long old_base, tmp;
897 rdmsrl(MSR_FS_BASE, old_base);
898 wrmsrl(MSR_FS_BASE, 1);
899 loadsegment(fs, 0);
900 rdmsrl(MSR_FS_BASE, tmp);
901 if (tmp != 0)
902 set_cpu_bug(c, X86_BUG_NULL_SEG);
903 wrmsrl(MSR_FS_BASE, old_base);
904 #endif
905 }
906
907 static void generic_identify(struct cpuinfo_x86 *c)
908 {
909 c->extended_cpuid_level = 0;
910
911 if (!have_cpuid_p())
912 identify_cpu_without_cpuid(c);
913
914 /* cyrix could have cpuid enabled via c_identify()*/
915 if (!have_cpuid_p())
916 return;
917
918 cpu_detect(c);
919
920 get_cpu_vendor(c);
921
922 get_cpu_cap(c);
923
924 if (c->cpuid_level >= 0x00000001) {
925 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
926 #ifdef CONFIG_X86_32
927 # ifdef CONFIG_SMP
928 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
929 # else
930 c->apicid = c->initial_apicid;
931 # endif
932 #endif
933 c->phys_proc_id = c->initial_apicid;
934 }
935
936 get_model_name(c); /* Default name */
937
938 detect_nopl(c);
939
940 detect_null_seg_behavior(c);
941
942 /*
943 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
944 * systems that run Linux at CPL > 0 may or may not have the
945 * issue, but, even if they have the issue, there's absolutely
946 * nothing we can do about it because we can't use the real IRET
947 * instruction.
948 *
949 * NB: For the time being, only 32-bit kernels support
950 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
951 * whether to apply espfix using paravirt hooks. If any
952 * non-paravirt system ever shows up that does *not* have the
953 * ESPFIX issue, we can change this.
954 */
955 #ifdef CONFIG_X86_32
956 # ifdef CONFIG_PARAVIRT
957 do {
958 extern void native_iret(void);
959 if (pv_cpu_ops.iret == native_iret)
960 set_cpu_bug(c, X86_BUG_ESPFIX);
961 } while (0);
962 # else
963 set_cpu_bug(c, X86_BUG_ESPFIX);
964 # endif
965 #endif
966 }
967
968 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
969 {
970 /*
971 * The heavy lifting of max_rmid and cache_occ_scale are handled
972 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
973 * in case CQM bits really aren't there in this CPU.
974 */
975 if (c != &boot_cpu_data) {
976 boot_cpu_data.x86_cache_max_rmid =
977 min(boot_cpu_data.x86_cache_max_rmid,
978 c->x86_cache_max_rmid);
979 }
980 }
981
982 /*
983 * This does the hard work of actually picking apart the CPU stuff...
984 */
985 static void identify_cpu(struct cpuinfo_x86 *c)
986 {
987 int i;
988
989 c->loops_per_jiffy = loops_per_jiffy;
990 c->x86_cache_size = -1;
991 c->x86_vendor = X86_VENDOR_UNKNOWN;
992 c->x86_model = c->x86_mask = 0; /* So far unknown... */
993 c->x86_vendor_id[0] = '\0'; /* Unset */
994 c->x86_model_id[0] = '\0'; /* Unset */
995 c->x86_max_cores = 1;
996 c->x86_coreid_bits = 0;
997 #ifdef CONFIG_X86_64
998 c->x86_clflush_size = 64;
999 c->x86_phys_bits = 36;
1000 c->x86_virt_bits = 48;
1001 #else
1002 c->cpuid_level = -1; /* CPUID not detected */
1003 c->x86_clflush_size = 32;
1004 c->x86_phys_bits = 32;
1005 c->x86_virt_bits = 32;
1006 #endif
1007 c->x86_cache_alignment = c->x86_clflush_size;
1008 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1009
1010 generic_identify(c);
1011
1012 if (this_cpu->c_identify)
1013 this_cpu->c_identify(c);
1014
1015 /* Clear/Set all flags overridden by options, after probe */
1016 for (i = 0; i < NCAPINTS; i++) {
1017 c->x86_capability[i] &= ~cpu_caps_cleared[i];
1018 c->x86_capability[i] |= cpu_caps_set[i];
1019 }
1020
1021 #ifdef CONFIG_X86_64
1022 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1023 #endif
1024
1025 /*
1026 * Vendor-specific initialization. In this section we
1027 * canonicalize the feature flags, meaning if there are
1028 * features a certain CPU supports which CPUID doesn't
1029 * tell us, CPUID claiming incorrect flags, or other bugs,
1030 * we handle them here.
1031 *
1032 * At the end of this section, c->x86_capability better
1033 * indicate the features this CPU genuinely supports!
1034 */
1035 if (this_cpu->c_init)
1036 this_cpu->c_init(c);
1037
1038 /* Disable the PN if appropriate */
1039 squash_the_stupid_serial_number(c);
1040
1041 /* Set up SMEP/SMAP */
1042 setup_smep(c);
1043 setup_smap(c);
1044
1045 /*
1046 * The vendor-specific functions might have changed features.
1047 * Now we do "generic changes."
1048 */
1049
1050 /* Filter out anything that depends on CPUID levels we don't have */
1051 filter_cpuid_features(c, true);
1052
1053 /* If the model name is still unset, do table lookup. */
1054 if (!c->x86_model_id[0]) {
1055 const char *p;
1056 p = table_lookup_model(c);
1057 if (p)
1058 strcpy(c->x86_model_id, p);
1059 else
1060 /* Last resort... */
1061 sprintf(c->x86_model_id, "%02x/%02x",
1062 c->x86, c->x86_model);
1063 }
1064
1065 #ifdef CONFIG_X86_64
1066 detect_ht(c);
1067 #endif
1068
1069 init_hypervisor(c);
1070 x86_init_rdrand(c);
1071 x86_init_cache_qos(c);
1072 setup_pku(c);
1073
1074 /*
1075 * Clear/Set all flags overridden by options, need do it
1076 * before following smp all cpus cap AND.
1077 */
1078 for (i = 0; i < NCAPINTS; i++) {
1079 c->x86_capability[i] &= ~cpu_caps_cleared[i];
1080 c->x86_capability[i] |= cpu_caps_set[i];
1081 }
1082
1083 /*
1084 * On SMP, boot_cpu_data holds the common feature set between
1085 * all CPUs; so make sure that we indicate which features are
1086 * common between the CPUs. The first time this routine gets
1087 * executed, c == &boot_cpu_data.
1088 */
1089 if (c != &boot_cpu_data) {
1090 /* AND the already accumulated flags with these */
1091 for (i = 0; i < NCAPINTS; i++)
1092 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1093
1094 /* OR, i.e. replicate the bug flags */
1095 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1096 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1097 }
1098
1099 /* Init Machine Check Exception if available. */
1100 mcheck_cpu_init(c);
1101
1102 select_idle_routine(c);
1103
1104 #ifdef CONFIG_NUMA
1105 numa_add_cpu(smp_processor_id());
1106 #endif
1107 /* The boot/hotplug time assigment got cleared, restore it */
1108 c->logical_proc_id = topology_phys_to_logical_pkg(c->phys_proc_id);
1109 }
1110
1111 /*
1112 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1113 * on 32-bit kernels:
1114 */
1115 #ifdef CONFIG_X86_32
1116 void enable_sep_cpu(void)
1117 {
1118 struct tss_struct *tss;
1119 int cpu;
1120
1121 if (!boot_cpu_has(X86_FEATURE_SEP))
1122 return;
1123
1124 cpu = get_cpu();
1125 tss = &per_cpu(cpu_tss, cpu);
1126
1127 /*
1128 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1129 * see the big comment in struct x86_hw_tss's definition.
1130 */
1131
1132 tss->x86_tss.ss1 = __KERNEL_CS;
1133 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1134
1135 wrmsr(MSR_IA32_SYSENTER_ESP,
1136 (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1137 0);
1138
1139 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1140
1141 put_cpu();
1142 }
1143 #endif
1144
1145 void __init identify_boot_cpu(void)
1146 {
1147 identify_cpu(&boot_cpu_data);
1148 init_amd_e400_c1e_mask();
1149 #ifdef CONFIG_X86_32
1150 sysenter_setup();
1151 enable_sep_cpu();
1152 #endif
1153 cpu_detect_tlb(&boot_cpu_data);
1154 }
1155
1156 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1157 {
1158 BUG_ON(c == &boot_cpu_data);
1159 identify_cpu(c);
1160 #ifdef CONFIG_X86_32
1161 enable_sep_cpu();
1162 #endif
1163 mtrr_ap_init();
1164 }
1165
1166 struct msr_range {
1167 unsigned min;
1168 unsigned max;
1169 };
1170
1171 static const struct msr_range msr_range_array[] = {
1172 { 0x00000000, 0x00000418},
1173 { 0xc0000000, 0xc000040b},
1174 { 0xc0010000, 0xc0010142},
1175 { 0xc0011000, 0xc001103b},
1176 };
1177
1178 static void __print_cpu_msr(void)
1179 {
1180 unsigned index_min, index_max;
1181 unsigned index;
1182 u64 val;
1183 int i;
1184
1185 for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1186 index_min = msr_range_array[i].min;
1187 index_max = msr_range_array[i].max;
1188
1189 for (index = index_min; index < index_max; index++) {
1190 if (rdmsrl_safe(index, &val))
1191 continue;
1192 pr_info(" MSR%08x: %016llx\n", index, val);
1193 }
1194 }
1195 }
1196
1197 static int show_msr;
1198
1199 static __init int setup_show_msr(char *arg)
1200 {
1201 int num;
1202
1203 get_option(&arg, &num);
1204
1205 if (num > 0)
1206 show_msr = num;
1207 return 1;
1208 }
1209 __setup("show_msr=", setup_show_msr);
1210
1211 static __init int setup_noclflush(char *arg)
1212 {
1213 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1214 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1215 return 1;
1216 }
1217 __setup("noclflush", setup_noclflush);
1218
1219 void print_cpu_info(struct cpuinfo_x86 *c)
1220 {
1221 const char *vendor = NULL;
1222
1223 if (c->x86_vendor < X86_VENDOR_NUM) {
1224 vendor = this_cpu->c_vendor;
1225 } else {
1226 if (c->cpuid_level >= 0)
1227 vendor = c->x86_vendor_id;
1228 }
1229
1230 if (vendor && !strstr(c->x86_model_id, vendor))
1231 pr_cont("%s ", vendor);
1232
1233 if (c->x86_model_id[0])
1234 pr_cont("%s", c->x86_model_id);
1235 else
1236 pr_cont("%d86", c->x86);
1237
1238 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1239
1240 if (c->x86_mask || c->cpuid_level >= 0)
1241 pr_cont(", stepping: 0x%x)\n", c->x86_mask);
1242 else
1243 pr_cont(")\n");
1244
1245 print_cpu_msr(c);
1246 }
1247
1248 void print_cpu_msr(struct cpuinfo_x86 *c)
1249 {
1250 if (c->cpu_index < show_msr)
1251 __print_cpu_msr();
1252 }
1253
1254 static __init int setup_disablecpuid(char *arg)
1255 {
1256 int bit;
1257
1258 if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1259 setup_clear_cpu_cap(bit);
1260 else
1261 return 0;
1262
1263 return 1;
1264 }
1265 __setup("clearcpuid=", setup_disablecpuid);
1266
1267 #ifdef CONFIG_X86_64
1268 struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1269 struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1270 (unsigned long) debug_idt_table };
1271
1272 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1273 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1274
1275 /*
1276 * The following percpu variables are hot. Align current_task to
1277 * cacheline size such that they fall in the same cacheline.
1278 */
1279 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1280 &init_task;
1281 EXPORT_PER_CPU_SYMBOL(current_task);
1282
1283 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1284 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1285
1286 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1287
1288 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1289 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1290
1291 /*
1292 * Special IST stacks which the CPU switches to when it calls
1293 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1294 * limit), all of them are 4K, except the debug stack which
1295 * is 8K.
1296 */
1297 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1298 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
1299 [DEBUG_STACK - 1] = DEBUG_STKSZ
1300 };
1301
1302 static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1303 [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1304
1305 /* May not be marked __init: used by software suspend */
1306 void syscall_init(void)
1307 {
1308 /*
1309 * LSTAR and STAR live in a bit strange symbiosis.
1310 * They both write to the same internal register. STAR allows to
1311 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1312 */
1313 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1314 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1315
1316 #ifdef CONFIG_IA32_EMULATION
1317 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1318 /*
1319 * This only works on Intel CPUs.
1320 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1321 * This does not cause SYSENTER to jump to the wrong location, because
1322 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1323 */
1324 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1325 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1326 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1327 #else
1328 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1329 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1330 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1331 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1332 #endif
1333
1334 /* Flags to clear on syscall */
1335 wrmsrl(MSR_SYSCALL_MASK,
1336 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1337 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1338 }
1339
1340 /*
1341 * Copies of the original ist values from the tss are only accessed during
1342 * debugging, no special alignment required.
1343 */
1344 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1345
1346 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1347 DEFINE_PER_CPU(int, debug_stack_usage);
1348
1349 int is_debug_stack(unsigned long addr)
1350 {
1351 return __this_cpu_read(debug_stack_usage) ||
1352 (addr <= __this_cpu_read(debug_stack_addr) &&
1353 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1354 }
1355 NOKPROBE_SYMBOL(is_debug_stack);
1356
1357 DEFINE_PER_CPU(u32, debug_idt_ctr);
1358
1359 void debug_stack_set_zero(void)
1360 {
1361 this_cpu_inc(debug_idt_ctr);
1362 load_current_idt();
1363 }
1364 NOKPROBE_SYMBOL(debug_stack_set_zero);
1365
1366 void debug_stack_reset(void)
1367 {
1368 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1369 return;
1370 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1371 load_current_idt();
1372 }
1373 NOKPROBE_SYMBOL(debug_stack_reset);
1374
1375 #else /* CONFIG_X86_64 */
1376
1377 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1378 EXPORT_PER_CPU_SYMBOL(current_task);
1379 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1380 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1381
1382 /*
1383 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1384 * the top of the kernel stack. Use an extra percpu variable to track the
1385 * top of the kernel stack directly.
1386 */
1387 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1388 (unsigned long)&init_thread_union + THREAD_SIZE;
1389 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1390
1391 #ifdef CONFIG_CC_STACKPROTECTOR
1392 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1393 #endif
1394
1395 #endif /* CONFIG_X86_64 */
1396
1397 /*
1398 * Clear all 6 debug registers:
1399 */
1400 static void clear_all_debug_regs(void)
1401 {
1402 int i;
1403
1404 for (i = 0; i < 8; i++) {
1405 /* Ignore db4, db5 */
1406 if ((i == 4) || (i == 5))
1407 continue;
1408
1409 set_debugreg(0, i);
1410 }
1411 }
1412
1413 #ifdef CONFIG_KGDB
1414 /*
1415 * Restore debug regs if using kgdbwait and you have a kernel debugger
1416 * connection established.
1417 */
1418 static void dbg_restore_debug_regs(void)
1419 {
1420 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1421 arch_kgdb_ops.correct_hw_break();
1422 }
1423 #else /* ! CONFIG_KGDB */
1424 #define dbg_restore_debug_regs()
1425 #endif /* ! CONFIG_KGDB */
1426
1427 static void wait_for_master_cpu(int cpu)
1428 {
1429 #ifdef CONFIG_SMP
1430 /*
1431 * wait for ACK from master CPU before continuing
1432 * with AP initialization
1433 */
1434 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1435 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1436 cpu_relax();
1437 #endif
1438 }
1439
1440 /*
1441 * cpu_init() initializes state that is per-CPU. Some data is already
1442 * initialized (naturally) in the bootstrap process, such as the GDT
1443 * and IDT. We reload them nevertheless, this function acts as a
1444 * 'CPU state barrier', nothing should get across.
1445 * A lot of state is already set up in PDA init for 64 bit
1446 */
1447 #ifdef CONFIG_X86_64
1448
1449 void cpu_init(void)
1450 {
1451 struct orig_ist *oist;
1452 struct task_struct *me;
1453 struct tss_struct *t;
1454 unsigned long v;
1455 int cpu = raw_smp_processor_id();
1456 int i;
1457
1458 wait_for_master_cpu(cpu);
1459
1460 /*
1461 * Initialize the CR4 shadow before doing anything that could
1462 * try to read it.
1463 */
1464 cr4_init_shadow();
1465
1466 /*
1467 * Load microcode on this cpu if a valid microcode is available.
1468 * This is early microcode loading procedure.
1469 */
1470 load_ucode_ap();
1471
1472 t = &per_cpu(cpu_tss, cpu);
1473 oist = &per_cpu(orig_ist, cpu);
1474
1475 #ifdef CONFIG_NUMA
1476 if (this_cpu_read(numa_node) == 0 &&
1477 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1478 set_numa_node(early_cpu_to_node(cpu));
1479 #endif
1480
1481 me = current;
1482
1483 pr_debug("Initializing CPU#%d\n", cpu);
1484
1485 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1486
1487 /*
1488 * Initialize the per-CPU GDT with the boot GDT,
1489 * and set up the GDT descriptor:
1490 */
1491
1492 switch_to_new_gdt(cpu);
1493 loadsegment(fs, 0);
1494
1495 load_current_idt();
1496
1497 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1498 syscall_init();
1499
1500 wrmsrl(MSR_FS_BASE, 0);
1501 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1502 barrier();
1503
1504 x86_configure_nx();
1505 x2apic_setup();
1506
1507 /*
1508 * set up and load the per-CPU TSS
1509 */
1510 if (!oist->ist[0]) {
1511 char *estacks = per_cpu(exception_stacks, cpu);
1512
1513 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1514 estacks += exception_stack_sizes[v];
1515 oist->ist[v] = t->x86_tss.ist[v] =
1516 (unsigned long)estacks;
1517 if (v == DEBUG_STACK-1)
1518 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1519 }
1520 }
1521
1522 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1523
1524 /*
1525 * <= is required because the CPU will access up to
1526 * 8 bits beyond the end of the IO permission bitmap.
1527 */
1528 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1529 t->io_bitmap[i] = ~0UL;
1530
1531 atomic_inc(&init_mm.mm_count);
1532 me->active_mm = &init_mm;
1533 BUG_ON(me->mm);
1534 enter_lazy_tlb(&init_mm, me);
1535
1536 load_sp0(t, &current->thread);
1537 set_tss_desc(cpu, t);
1538 load_TR_desc();
1539 load_mm_ldt(&init_mm);
1540
1541 clear_all_debug_regs();
1542 dbg_restore_debug_regs();
1543
1544 fpu__init_cpu();
1545
1546 if (is_uv_system())
1547 uv_cpu_init();
1548 }
1549
1550 #else
1551
1552 void cpu_init(void)
1553 {
1554 int cpu = smp_processor_id();
1555 struct task_struct *curr = current;
1556 struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1557 struct thread_struct *thread = &curr->thread;
1558
1559 wait_for_master_cpu(cpu);
1560
1561 /*
1562 * Initialize the CR4 shadow before doing anything that could
1563 * try to read it.
1564 */
1565 cr4_init_shadow();
1566
1567 show_ucode_info_early();
1568
1569 pr_info("Initializing CPU#%d\n", cpu);
1570
1571 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1572 boot_cpu_has(X86_FEATURE_TSC) ||
1573 boot_cpu_has(X86_FEATURE_DE))
1574 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1575
1576 load_current_idt();
1577 switch_to_new_gdt(cpu);
1578
1579 /*
1580 * Set up and load the per-CPU TSS and LDT
1581 */
1582 atomic_inc(&init_mm.mm_count);
1583 curr->active_mm = &init_mm;
1584 BUG_ON(curr->mm);
1585 enter_lazy_tlb(&init_mm, curr);
1586
1587 load_sp0(t, thread);
1588 set_tss_desc(cpu, t);
1589 load_TR_desc();
1590 load_mm_ldt(&init_mm);
1591
1592 t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1593
1594 #ifdef CONFIG_DOUBLEFAULT
1595 /* Set up doublefault TSS pointer in the GDT */
1596 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1597 #endif
1598
1599 clear_all_debug_regs();
1600 dbg_restore_debug_regs();
1601
1602 fpu__init_cpu();
1603 }
1604 #endif
1605
1606 static void bsp_resume(void)
1607 {
1608 if (this_cpu->c_bsp_resume)
1609 this_cpu->c_bsp_resume(&boot_cpu_data);
1610 }
1611
1612 static struct syscore_ops cpu_syscore_ops = {
1613 .resume = bsp_resume,
1614 };
1615
1616 static int __init init_cpu_syscore(void)
1617 {
1618 register_syscore_ops(&cpu_syscore_ops);
1619 return 0;
1620 }
1621 core_initcall(init_cpu_syscore);
This page took 0.063229 seconds and 4 git commands to generate.