fc3389fc47a2f3dfacc7bff0665f1d6c4b75a245
[deliverable/linux.git] / arch / x86 / kernel / machine_kexec_64.c
1 /*
2 * handle transition of Linux booting another kernel
3 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) "kexec: " fmt
10
11 #include <linux/mm.h>
12 #include <linux/kexec.h>
13 #include <linux/string.h>
14 #include <linux/gfp.h>
15 #include <linux/reboot.h>
16 #include <linux/numa.h>
17 #include <linux/ftrace.h>
18 #include <linux/io.h>
19 #include <linux/suspend.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/init.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 #include <asm/io_apic.h>
27 #include <asm/debugreg.h>
28 #include <asm/kexec-bzimage64.h>
29 #include <asm/setup.h>
30
31 #ifdef CONFIG_KEXEC_FILE
32 static struct kexec_file_ops *kexec_file_loaders[] = {
33 &kexec_bzImage64_ops,
34 };
35 #endif
36
37 static void free_transition_pgtable(struct kimage *image)
38 {
39 free_page((unsigned long)image->arch.pud);
40 free_page((unsigned long)image->arch.pmd);
41 free_page((unsigned long)image->arch.pte);
42 }
43
44 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
45 {
46 pud_t *pud;
47 pmd_t *pmd;
48 pte_t *pte;
49 unsigned long vaddr, paddr;
50 int result = -ENOMEM;
51
52 vaddr = (unsigned long)relocate_kernel;
53 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
54 pgd += pgd_index(vaddr);
55 if (!pgd_present(*pgd)) {
56 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
57 if (!pud)
58 goto err;
59 image->arch.pud = pud;
60 set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
61 }
62 pud = pud_offset(pgd, vaddr);
63 if (!pud_present(*pud)) {
64 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
65 if (!pmd)
66 goto err;
67 image->arch.pmd = pmd;
68 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
69 }
70 pmd = pmd_offset(pud, vaddr);
71 if (!pmd_present(*pmd)) {
72 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
73 if (!pte)
74 goto err;
75 image->arch.pte = pte;
76 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
77 }
78 pte = pte_offset_kernel(pmd, vaddr);
79 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
80 return 0;
81 err:
82 free_transition_pgtable(image);
83 return result;
84 }
85
86 static void *alloc_pgt_page(void *data)
87 {
88 struct kimage *image = (struct kimage *)data;
89 struct page *page;
90 void *p = NULL;
91
92 page = kimage_alloc_control_pages(image, 0);
93 if (page) {
94 p = page_address(page);
95 clear_page(p);
96 }
97
98 return p;
99 }
100
101 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
102 {
103 struct x86_mapping_info info = {
104 .alloc_pgt_page = alloc_pgt_page,
105 .context = image,
106 .pmd_flag = __PAGE_KERNEL_LARGE_EXEC,
107 };
108 unsigned long mstart, mend;
109 pgd_t *level4p;
110 int result;
111 int i;
112
113 level4p = (pgd_t *)__va(start_pgtable);
114 clear_page(level4p);
115 for (i = 0; i < nr_pfn_mapped; i++) {
116 mstart = pfn_mapped[i].start << PAGE_SHIFT;
117 mend = pfn_mapped[i].end << PAGE_SHIFT;
118
119 result = kernel_ident_mapping_init(&info,
120 level4p, mstart, mend);
121 if (result)
122 return result;
123 }
124
125 /*
126 * segments's mem ranges could be outside 0 ~ max_pfn,
127 * for example when jump back to original kernel from kexeced kernel.
128 * or first kernel is booted with user mem map, and second kernel
129 * could be loaded out of that range.
130 */
131 for (i = 0; i < image->nr_segments; i++) {
132 mstart = image->segment[i].mem;
133 mend = mstart + image->segment[i].memsz;
134
135 result = kernel_ident_mapping_init(&info,
136 level4p, mstart, mend);
137
138 if (result)
139 return result;
140 }
141
142 return init_transition_pgtable(image, level4p);
143 }
144
145 static void set_idt(void *newidt, u16 limit)
146 {
147 struct desc_ptr curidt;
148
149 /* x86-64 supports unaliged loads & stores */
150 curidt.size = limit;
151 curidt.address = (unsigned long)newidt;
152
153 __asm__ __volatile__ (
154 "lidtq %0\n"
155 : : "m" (curidt)
156 );
157 };
158
159
160 static void set_gdt(void *newgdt, u16 limit)
161 {
162 struct desc_ptr curgdt;
163
164 /* x86-64 supports unaligned loads & stores */
165 curgdt.size = limit;
166 curgdt.address = (unsigned long)newgdt;
167
168 __asm__ __volatile__ (
169 "lgdtq %0\n"
170 : : "m" (curgdt)
171 );
172 };
173
174 static void load_segments(void)
175 {
176 __asm__ __volatile__ (
177 "\tmovl %0,%%ds\n"
178 "\tmovl %0,%%es\n"
179 "\tmovl %0,%%ss\n"
180 "\tmovl %0,%%fs\n"
181 "\tmovl %0,%%gs\n"
182 : : "a" (__KERNEL_DS) : "memory"
183 );
184 }
185
186 #ifdef CONFIG_KEXEC_FILE
187 /* Update purgatory as needed after various image segments have been prepared */
188 static int arch_update_purgatory(struct kimage *image)
189 {
190 int ret = 0;
191
192 if (!image->file_mode)
193 return 0;
194
195 /* Setup copying of backup region */
196 if (image->type == KEXEC_TYPE_CRASH) {
197 ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
198 &image->arch.backup_load_addr,
199 sizeof(image->arch.backup_load_addr), 0);
200 if (ret)
201 return ret;
202
203 ret = kexec_purgatory_get_set_symbol(image, "backup_src",
204 &image->arch.backup_src_start,
205 sizeof(image->arch.backup_src_start), 0);
206 if (ret)
207 return ret;
208
209 ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
210 &image->arch.backup_src_sz,
211 sizeof(image->arch.backup_src_sz), 0);
212 if (ret)
213 return ret;
214 }
215
216 return ret;
217 }
218 #else /* !CONFIG_KEXEC_FILE */
219 static inline int arch_update_purgatory(struct kimage *image)
220 {
221 return 0;
222 }
223 #endif /* CONFIG_KEXEC_FILE */
224
225 int machine_kexec_prepare(struct kimage *image)
226 {
227 unsigned long start_pgtable;
228 int result;
229
230 /* Calculate the offsets */
231 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
232
233 /* Setup the identity mapped 64bit page table */
234 result = init_pgtable(image, start_pgtable);
235 if (result)
236 return result;
237
238 /* update purgatory as needed */
239 result = arch_update_purgatory(image);
240 if (result)
241 return result;
242
243 return 0;
244 }
245
246 void machine_kexec_cleanup(struct kimage *image)
247 {
248 free_transition_pgtable(image);
249 }
250
251 /*
252 * Do not allocate memory (or fail in any way) in machine_kexec().
253 * We are past the point of no return, committed to rebooting now.
254 */
255 void machine_kexec(struct kimage *image)
256 {
257 unsigned long page_list[PAGES_NR];
258 void *control_page;
259 int save_ftrace_enabled;
260
261 #ifdef CONFIG_KEXEC_JUMP
262 if (image->preserve_context)
263 save_processor_state();
264 #endif
265
266 save_ftrace_enabled = __ftrace_enabled_save();
267
268 /* Interrupts aren't acceptable while we reboot */
269 local_irq_disable();
270 hw_breakpoint_disable();
271
272 if (image->preserve_context) {
273 #ifdef CONFIG_X86_IO_APIC
274 /*
275 * We need to put APICs in legacy mode so that we can
276 * get timer interrupts in second kernel. kexec/kdump
277 * paths already have calls to disable_IO_APIC() in
278 * one form or other. kexec jump path also need
279 * one.
280 */
281 disable_IO_APIC();
282 #endif
283 }
284
285 control_page = page_address(image->control_code_page) + PAGE_SIZE;
286 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
287
288 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
289 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
290 page_list[PA_TABLE_PAGE] =
291 (unsigned long)__pa(page_address(image->control_code_page));
292
293 if (image->type == KEXEC_TYPE_DEFAULT)
294 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
295 << PAGE_SHIFT);
296
297 /*
298 * The segment registers are funny things, they have both a
299 * visible and an invisible part. Whenever the visible part is
300 * set to a specific selector, the invisible part is loaded
301 * with from a table in memory. At no other time is the
302 * descriptor table in memory accessed.
303 *
304 * I take advantage of this here by force loading the
305 * segments, before I zap the gdt with an invalid value.
306 */
307 load_segments();
308 /*
309 * The gdt & idt are now invalid.
310 * If you want to load them you must set up your own idt & gdt.
311 */
312 set_gdt(phys_to_virt(0), 0);
313 set_idt(phys_to_virt(0), 0);
314
315 /* now call it */
316 image->start = relocate_kernel((unsigned long)image->head,
317 (unsigned long)page_list,
318 image->start,
319 image->preserve_context);
320
321 #ifdef CONFIG_KEXEC_JUMP
322 if (image->preserve_context)
323 restore_processor_state();
324 #endif
325
326 __ftrace_enabled_restore(save_ftrace_enabled);
327 }
328
329 void arch_crash_save_vmcoreinfo(void)
330 {
331 VMCOREINFO_SYMBOL(phys_base);
332 VMCOREINFO_SYMBOL(init_level4_pgt);
333
334 #ifdef CONFIG_NUMA
335 VMCOREINFO_SYMBOL(node_data);
336 VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
337 #endif
338 vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
339 kaslr_offset());
340 VMCOREINFO_PHYS_BASE(phys_base);
341 }
342
343 /* arch-dependent functionality related to kexec file-based syscall */
344
345 #ifdef CONFIG_KEXEC_FILE
346 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
347 unsigned long buf_len)
348 {
349 int i, ret = -ENOEXEC;
350 struct kexec_file_ops *fops;
351
352 for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
353 fops = kexec_file_loaders[i];
354 if (!fops || !fops->probe)
355 continue;
356
357 ret = fops->probe(buf, buf_len);
358 if (!ret) {
359 image->fops = fops;
360 return ret;
361 }
362 }
363
364 return ret;
365 }
366
367 void *arch_kexec_kernel_image_load(struct kimage *image)
368 {
369 vfree(image->arch.elf_headers);
370 image->arch.elf_headers = NULL;
371
372 if (!image->fops || !image->fops->load)
373 return ERR_PTR(-ENOEXEC);
374
375 return image->fops->load(image, image->kernel_buf,
376 image->kernel_buf_len, image->initrd_buf,
377 image->initrd_buf_len, image->cmdline_buf,
378 image->cmdline_buf_len);
379 }
380
381 int arch_kimage_file_post_load_cleanup(struct kimage *image)
382 {
383 if (!image->fops || !image->fops->cleanup)
384 return 0;
385
386 return image->fops->cleanup(image->image_loader_data);
387 }
388
389 #ifdef CONFIG_KEXEC_VERIFY_SIG
390 int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
391 unsigned long kernel_len)
392 {
393 if (!image->fops || !image->fops->verify_sig) {
394 pr_debug("kernel loader does not support signature verification.");
395 return -EKEYREJECTED;
396 }
397
398 return image->fops->verify_sig(kernel, kernel_len);
399 }
400 #endif
401
402 /*
403 * Apply purgatory relocations.
404 *
405 * ehdr: Pointer to elf headers
406 * sechdrs: Pointer to section headers.
407 * relsec: section index of SHT_RELA section.
408 *
409 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
410 */
411 int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
412 Elf64_Shdr *sechdrs, unsigned int relsec)
413 {
414 unsigned int i;
415 Elf64_Rela *rel;
416 Elf64_Sym *sym;
417 void *location;
418 Elf64_Shdr *section, *symtabsec;
419 unsigned long address, sec_base, value;
420 const char *strtab, *name, *shstrtab;
421
422 /*
423 * ->sh_offset has been modified to keep the pointer to section
424 * contents in memory
425 */
426 rel = (void *)sechdrs[relsec].sh_offset;
427
428 /* Section to which relocations apply */
429 section = &sechdrs[sechdrs[relsec].sh_info];
430
431 pr_debug("Applying relocate section %u to %u\n", relsec,
432 sechdrs[relsec].sh_info);
433
434 /* Associated symbol table */
435 symtabsec = &sechdrs[sechdrs[relsec].sh_link];
436
437 /* String table */
438 if (symtabsec->sh_link >= ehdr->e_shnum) {
439 /* Invalid strtab section number */
440 pr_err("Invalid string table section index %d\n",
441 symtabsec->sh_link);
442 return -ENOEXEC;
443 }
444
445 strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
446
447 /* section header string table */
448 shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
449
450 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
451
452 /*
453 * rel[i].r_offset contains byte offset from beginning
454 * of section to the storage unit affected.
455 *
456 * This is location to update (->sh_offset). This is temporary
457 * buffer where section is currently loaded. This will finally
458 * be loaded to a different address later, pointed to by
459 * ->sh_addr. kexec takes care of moving it
460 * (kexec_load_segment()).
461 */
462 location = (void *)(section->sh_offset + rel[i].r_offset);
463
464 /* Final address of the location */
465 address = section->sh_addr + rel[i].r_offset;
466
467 /*
468 * rel[i].r_info contains information about symbol table index
469 * w.r.t which relocation must be made and type of relocation
470 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
471 * these respectively.
472 */
473 sym = (Elf64_Sym *)symtabsec->sh_offset +
474 ELF64_R_SYM(rel[i].r_info);
475
476 if (sym->st_name)
477 name = strtab + sym->st_name;
478 else
479 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
480
481 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
482 name, sym->st_info, sym->st_shndx, sym->st_value,
483 sym->st_size);
484
485 if (sym->st_shndx == SHN_UNDEF) {
486 pr_err("Undefined symbol: %s\n", name);
487 return -ENOEXEC;
488 }
489
490 if (sym->st_shndx == SHN_COMMON) {
491 pr_err("symbol '%s' in common section\n", name);
492 return -ENOEXEC;
493 }
494
495 if (sym->st_shndx == SHN_ABS)
496 sec_base = 0;
497 else if (sym->st_shndx >= ehdr->e_shnum) {
498 pr_err("Invalid section %d for symbol %s\n",
499 sym->st_shndx, name);
500 return -ENOEXEC;
501 } else
502 sec_base = sechdrs[sym->st_shndx].sh_addr;
503
504 value = sym->st_value;
505 value += sec_base;
506 value += rel[i].r_addend;
507
508 switch (ELF64_R_TYPE(rel[i].r_info)) {
509 case R_X86_64_NONE:
510 break;
511 case R_X86_64_64:
512 *(u64 *)location = value;
513 break;
514 case R_X86_64_32:
515 *(u32 *)location = value;
516 if (value != *(u32 *)location)
517 goto overflow;
518 break;
519 case R_X86_64_32S:
520 *(s32 *)location = value;
521 if ((s64)value != *(s32 *)location)
522 goto overflow;
523 break;
524 case R_X86_64_PC32:
525 value -= (u64)address;
526 *(u32 *)location = value;
527 break;
528 default:
529 pr_err("Unknown rela relocation: %llu\n",
530 ELF64_R_TYPE(rel[i].r_info));
531 return -ENOEXEC;
532 }
533 }
534 return 0;
535
536 overflow:
537 pr_err("Overflow in relocation type %d value 0x%lx\n",
538 (int)ELF64_R_TYPE(rel[i].r_info), value);
539 return -ENOEXEC;
540 }
541 #endif /* CONFIG_KEXEC_FILE */
542
543 static int
544 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
545 {
546 struct page *page;
547 unsigned int nr_pages;
548
549 /*
550 * For physical range: [start, end]. We must skip the unassigned
551 * crashk resource with zero-valued "end" member.
552 */
553 if (!end || start > end)
554 return 0;
555
556 page = pfn_to_page(start >> PAGE_SHIFT);
557 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
558 if (protect)
559 return set_pages_ro(page, nr_pages);
560 else
561 return set_pages_rw(page, nr_pages);
562 }
563
564 static void kexec_mark_crashkres(bool protect)
565 {
566 unsigned long control;
567
568 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
569
570 /* Don't touch the control code page used in crash_kexec().*/
571 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
572 /* Control code page is located in the 2nd page. */
573 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
574 control += KEXEC_CONTROL_PAGE_SIZE;
575 kexec_mark_range(control, crashk_res.end, protect);
576 }
577
578 void arch_kexec_protect_crashkres(void)
579 {
580 kexec_mark_crashkres(true);
581 }
582
583 void arch_kexec_unprotect_crashkres(void)
584 {
585 kexec_mark_crashkres(false);
586 }
This page took 0.046486 seconds and 4 git commands to generate.