Merge branch 'akpm-current/current'
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/init.h>
11 #include <linux/export.h>
12 #include <linux/pm.h>
13 #include <linux/tick.h>
14 #include <linux/random.h>
15 #include <linux/user-return-notifier.h>
16 #include <linux/dmi.h>
17 #include <linux/utsname.h>
18 #include <linux/stackprotector.h>
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <trace/events/power.h>
22 #include <linux/hw_breakpoint.h>
23 #include <asm/cpu.h>
24 #include <asm/apic.h>
25 #include <asm/syscalls.h>
26 #include <asm/idle.h>
27 #include <asm/uaccess.h>
28 #include <asm/mwait.h>
29 #include <asm/fpu/internal.h>
30 #include <asm/debugreg.h>
31 #include <asm/nmi.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mce.h>
34 #include <asm/vm86.h>
35 #include <asm/switch_to.h>
36
37 /*
38 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
39 * no more per-task TSS's. The TSS size is kept cacheline-aligned
40 * so they are allowed to end up in the .data..cacheline_aligned
41 * section. Since TSS's are completely CPU-local, we want them
42 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
43 */
44 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
45 .x86_tss = {
46 .sp0 = TOP_OF_INIT_STACK,
47 #ifdef CONFIG_X86_32
48 .ss0 = __KERNEL_DS,
49 .ss1 = __KERNEL_CS,
50 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
51 #endif
52 },
53 #ifdef CONFIG_X86_32
54 /*
55 * Note that the .io_bitmap member must be extra-big. This is because
56 * the CPU will access an additional byte beyond the end of the IO
57 * permission bitmap. The extra byte must be all 1 bits, and must
58 * be within the limit.
59 */
60 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
61 #endif
62 #ifdef CONFIG_X86_32
63 .SYSENTER_stack_canary = STACK_END_MAGIC,
64 #endif
65 };
66 EXPORT_PER_CPU_SYMBOL(cpu_tss);
67
68 #ifdef CONFIG_X86_64
69 static DEFINE_PER_CPU(unsigned char, is_idle);
70 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
71
72 void idle_notifier_register(struct notifier_block *n)
73 {
74 atomic_notifier_chain_register(&idle_notifier, n);
75 }
76 EXPORT_SYMBOL_GPL(idle_notifier_register);
77
78 void idle_notifier_unregister(struct notifier_block *n)
79 {
80 atomic_notifier_chain_unregister(&idle_notifier, n);
81 }
82 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
83 #endif
84
85 /*
86 * this gets called so that we can store lazy state into memory and copy the
87 * current task into the new thread.
88 */
89 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
90 {
91 memcpy(dst, src, arch_task_struct_size);
92 #ifdef CONFIG_VM86
93 dst->thread.vm86 = NULL;
94 #endif
95
96 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
97 }
98
99 /*
100 * Free current thread data structures etc..
101 */
102 void exit_thread(struct task_struct *tsk)
103 {
104 struct thread_struct *t = &tsk->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
106 struct fpu *fpu = &t->fpu;
107
108 if (bp) {
109 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
110
111 t->io_bitmap_ptr = NULL;
112 clear_thread_flag(TIF_IO_BITMAP);
113 /*
114 * Careful, clear this in the TSS too:
115 */
116 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
117 t->io_bitmap_max = 0;
118 put_cpu();
119 kfree(bp);
120 }
121
122 free_vm86(t);
123
124 fpu__drop(fpu);
125 }
126
127 void flush_thread(void)
128 {
129 struct task_struct *tsk = current;
130
131 flush_ptrace_hw_breakpoint(tsk);
132 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
133
134 fpu__clear(&tsk->thread.fpu);
135 }
136
137 static void hard_disable_TSC(void)
138 {
139 cr4_set_bits(X86_CR4_TSD);
140 }
141
142 void disable_TSC(void)
143 {
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 hard_disable_TSC();
151 preempt_enable();
152 }
153
154 static void hard_enable_TSC(void)
155 {
156 cr4_clear_bits(X86_CR4_TSD);
157 }
158
159 static void enable_TSC(void)
160 {
161 preempt_disable();
162 if (test_and_clear_thread_flag(TIF_NOTSC))
163 /*
164 * Must flip the CPU state synchronously with
165 * TIF_NOTSC in the current running context.
166 */
167 hard_enable_TSC();
168 preempt_enable();
169 }
170
171 int get_tsc_mode(unsigned long adr)
172 {
173 unsigned int val;
174
175 if (test_thread_flag(TIF_NOTSC))
176 val = PR_TSC_SIGSEGV;
177 else
178 val = PR_TSC_ENABLE;
179
180 return put_user(val, (unsigned int __user *)adr);
181 }
182
183 int set_tsc_mode(unsigned int val)
184 {
185 if (val == PR_TSC_SIGSEGV)
186 disable_TSC();
187 else if (val == PR_TSC_ENABLE)
188 enable_TSC();
189 else
190 return -EINVAL;
191
192 return 0;
193 }
194
195 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
196 struct tss_struct *tss)
197 {
198 struct thread_struct *prev, *next;
199
200 prev = &prev_p->thread;
201 next = &next_p->thread;
202
203 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
204 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
205 unsigned long debugctl = get_debugctlmsr();
206
207 debugctl &= ~DEBUGCTLMSR_BTF;
208 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
209 debugctl |= DEBUGCTLMSR_BTF;
210
211 update_debugctlmsr(debugctl);
212 }
213
214 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
215 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
216 /* prev and next are different */
217 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
218 hard_disable_TSC();
219 else
220 hard_enable_TSC();
221 }
222
223 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
224 /*
225 * Copy the relevant range of the IO bitmap.
226 * Normally this is 128 bytes or less:
227 */
228 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
229 max(prev->io_bitmap_max, next->io_bitmap_max));
230 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
231 /*
232 * Clear any possible leftover bits:
233 */
234 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
235 }
236 propagate_user_return_notify(prev_p, next_p);
237 }
238
239 /*
240 * Idle related variables and functions
241 */
242 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
243 EXPORT_SYMBOL(boot_option_idle_override);
244
245 static void (*x86_idle)(void);
246
247 #ifndef CONFIG_SMP
248 static inline void play_dead(void)
249 {
250 BUG();
251 }
252 #endif
253
254 #ifdef CONFIG_X86_64
255 void enter_idle(void)
256 {
257 this_cpu_write(is_idle, 1);
258 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
259 }
260
261 static void __exit_idle(void)
262 {
263 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
264 return;
265 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
266 }
267
268 /* Called from interrupts to signify idle end */
269 void exit_idle(void)
270 {
271 /* idle loop has pid 0 */
272 if (current->pid)
273 return;
274 __exit_idle();
275 }
276 #endif
277
278 void arch_cpu_idle_enter(void)
279 {
280 local_touch_nmi();
281 enter_idle();
282 }
283
284 void arch_cpu_idle_exit(void)
285 {
286 __exit_idle();
287 }
288
289 void arch_cpu_idle_dead(void)
290 {
291 play_dead();
292 }
293
294 /*
295 * Called from the generic idle code.
296 */
297 void arch_cpu_idle(void)
298 {
299 x86_idle();
300 }
301
302 /*
303 * We use this if we don't have any better idle routine..
304 */
305 void __cpuidle default_idle(void)
306 {
307 trace_cpu_idle_rcuidle(1, smp_processor_id());
308 safe_halt();
309 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
310 }
311 #ifdef CONFIG_APM_MODULE
312 EXPORT_SYMBOL(default_idle);
313 #endif
314
315 #ifdef CONFIG_XEN
316 bool xen_set_default_idle(void)
317 {
318 bool ret = !!x86_idle;
319
320 x86_idle = default_idle;
321
322 return ret;
323 }
324 #endif
325 void stop_this_cpu(void *dummy)
326 {
327 local_irq_disable();
328 /*
329 * Remove this CPU:
330 */
331 set_cpu_online(smp_processor_id(), false);
332 disable_local_APIC();
333 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
334
335 for (;;)
336 halt();
337 }
338
339 bool amd_e400_c1e_detected;
340 EXPORT_SYMBOL(amd_e400_c1e_detected);
341
342 static cpumask_var_t amd_e400_c1e_mask;
343
344 void amd_e400_remove_cpu(int cpu)
345 {
346 if (amd_e400_c1e_mask != NULL)
347 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
348 }
349
350 /*
351 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
352 * pending message MSR. If we detect C1E, then we handle it the same
353 * way as C3 power states (local apic timer and TSC stop)
354 */
355 static void amd_e400_idle(void)
356 {
357 if (!amd_e400_c1e_detected) {
358 u32 lo, hi;
359
360 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
361
362 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
363 amd_e400_c1e_detected = true;
364 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
365 mark_tsc_unstable("TSC halt in AMD C1E");
366 pr_info("System has AMD C1E enabled\n");
367 }
368 }
369
370 if (amd_e400_c1e_detected) {
371 int cpu = smp_processor_id();
372
373 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
374 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
375 /* Force broadcast so ACPI can not interfere. */
376 tick_broadcast_force();
377 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
378 }
379 tick_broadcast_enter();
380
381 default_idle();
382
383 /*
384 * The switch back from broadcast mode needs to be
385 * called with interrupts disabled.
386 */
387 local_irq_disable();
388 tick_broadcast_exit();
389 local_irq_enable();
390 } else
391 default_idle();
392 }
393
394 /*
395 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
396 * We can't rely on cpuidle installing MWAIT, because it will not load
397 * on systems that support only C1 -- so the boot default must be MWAIT.
398 *
399 * Some AMD machines are the opposite, they depend on using HALT.
400 *
401 * So for default C1, which is used during boot until cpuidle loads,
402 * use MWAIT-C1 on Intel HW that has it, else use HALT.
403 */
404 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
405 {
406 if (c->x86_vendor != X86_VENDOR_INTEL)
407 return 0;
408
409 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
410 return 0;
411
412 return 1;
413 }
414
415 /*
416 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
417 * with interrupts enabled and no flags, which is backwards compatible with the
418 * original MWAIT implementation.
419 */
420 static __cpuidle void mwait_idle(void)
421 {
422 if (!current_set_polling_and_test()) {
423 trace_cpu_idle_rcuidle(1, smp_processor_id());
424 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
425 mb(); /* quirk */
426 clflush((void *)&current_thread_info()->flags);
427 mb(); /* quirk */
428 }
429
430 __monitor((void *)&current_thread_info()->flags, 0, 0);
431 if (!need_resched())
432 __sti_mwait(0, 0);
433 else
434 local_irq_enable();
435 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
436 } else {
437 local_irq_enable();
438 }
439 __current_clr_polling();
440 }
441
442 void select_idle_routine(const struct cpuinfo_x86 *c)
443 {
444 #ifdef CONFIG_SMP
445 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
446 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
447 #endif
448 if (x86_idle || boot_option_idle_override == IDLE_POLL)
449 return;
450
451 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
452 /* E400: APIC timer interrupt does not wake up CPU from C1e */
453 pr_info("using AMD E400 aware idle routine\n");
454 x86_idle = amd_e400_idle;
455 } else if (prefer_mwait_c1_over_halt(c)) {
456 pr_info("using mwait in idle threads\n");
457 x86_idle = mwait_idle;
458 } else
459 x86_idle = default_idle;
460 }
461
462 void __init init_amd_e400_c1e_mask(void)
463 {
464 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
465 if (x86_idle == amd_e400_idle)
466 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
467 }
468
469 static int __init idle_setup(char *str)
470 {
471 if (!str)
472 return -EINVAL;
473
474 if (!strcmp(str, "poll")) {
475 pr_info("using polling idle threads\n");
476 boot_option_idle_override = IDLE_POLL;
477 cpu_idle_poll_ctrl(true);
478 } else if (!strcmp(str, "halt")) {
479 /*
480 * When the boot option of idle=halt is added, halt is
481 * forced to be used for CPU idle. In such case CPU C2/C3
482 * won't be used again.
483 * To continue to load the CPU idle driver, don't touch
484 * the boot_option_idle_override.
485 */
486 x86_idle = default_idle;
487 boot_option_idle_override = IDLE_HALT;
488 } else if (!strcmp(str, "nomwait")) {
489 /*
490 * If the boot option of "idle=nomwait" is added,
491 * it means that mwait will be disabled for CPU C2/C3
492 * states. In such case it won't touch the variable
493 * of boot_option_idle_override.
494 */
495 boot_option_idle_override = IDLE_NOMWAIT;
496 } else
497 return -1;
498
499 return 0;
500 }
501 early_param("idle", idle_setup);
502
503 unsigned long arch_align_stack(unsigned long sp)
504 {
505 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
506 sp -= get_random_int() % 8192;
507 return sp & ~0xf;
508 }
509
510 unsigned long arch_randomize_brk(struct mm_struct *mm)
511 {
512 return randomize_page(mm->brk, 0x02000000);
513 }
514
515 /*
516 * Return saved PC of a blocked thread.
517 * What is this good for? it will be always the scheduler or ret_from_fork.
518 */
519 unsigned long thread_saved_pc(struct task_struct *tsk)
520 {
521 struct inactive_task_frame *frame =
522 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
523 return READ_ONCE_NOCHECK(frame->ret_addr);
524 }
525
526 /*
527 * Called from fs/proc with a reference on @p to find the function
528 * which called into schedule(). This needs to be done carefully
529 * because the task might wake up and we might look at a stack
530 * changing under us.
531 */
532 unsigned long get_wchan(struct task_struct *p)
533 {
534 unsigned long start, bottom, top, sp, fp, ip;
535 int count = 0;
536
537 if (!p || p == current || p->state == TASK_RUNNING)
538 return 0;
539
540 start = (unsigned long)task_stack_page(p);
541 if (!start)
542 return 0;
543
544 /*
545 * Layout of the stack page:
546 *
547 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
548 * PADDING
549 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
550 * stack
551 * ----------- bottom = start + sizeof(thread_info)
552 * thread_info
553 * ----------- start
554 *
555 * The tasks stack pointer points at the location where the
556 * framepointer is stored. The data on the stack is:
557 * ... IP FP ... IP FP
558 *
559 * We need to read FP and IP, so we need to adjust the upper
560 * bound by another unsigned long.
561 */
562 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
563 top -= 2 * sizeof(unsigned long);
564 bottom = start + sizeof(struct thread_info);
565
566 sp = READ_ONCE(p->thread.sp);
567 if (sp < bottom || sp > top)
568 return 0;
569
570 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
571 do {
572 if (fp < bottom || fp > top)
573 return 0;
574 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
575 if (!in_sched_functions(ip))
576 return ip;
577 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
578 } while (count++ < 16 && p->state != TASK_RUNNING);
579 return 0;
580 }
This page took 0.047032 seconds and 5 git commands to generate.