Merge remote-tracking branches 'spi/fix/omap2' and 'spi/fix/rockchip' into spi-linus
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
52 */
53 bool tdp_enabled = false;
54
55 enum {
56 AUDIT_PRE_PAGE_FAULT,
57 AUDIT_POST_PAGE_FAULT,
58 AUDIT_PRE_PTE_WRITE,
59 AUDIT_POST_PTE_WRITE,
60 AUDIT_PRE_SYNC,
61 AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM 8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK 1
127 #define ACC_WRITE_MASK PT_WRITABLE_MASK
128 #define ACC_USER_MASK PT_USER_MASK
129 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145 u64 *sptes[PTE_LIST_EXT];
146 struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150 u64 addr;
151 hpa_t shadow_addr;
152 u64 *sptep;
153 int level;
154 unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184 shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
193 *
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
196 */
197 #define MMIO_SPTE_GEN_LOW_SHIFT 2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
199
200 #define MMIO_GEN_SHIFT 20
201 #define MMIO_GEN_LOW_SHIFT 10
202 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207 u64 mask;
208
209 WARN_ON(gen & ~MMIO_GEN_MASK);
210
211 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213 return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218 unsigned int gen;
219
220 spte &= ~shadow_mmio_mask;
221
222 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224 return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233 unsigned access)
234 {
235 unsigned int gen = kvm_current_mmio_generation(vcpu);
236 u64 mask = generation_mmio_spte_mask(gen);
237
238 access &= ACC_WRITE_MASK | ACC_USER_MASK;
239 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241 trace_mark_mmio_spte(sptep, gfn, access, gen);
242 mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253 return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259 return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263 kvm_pfn_t pfn, unsigned access)
264 {
265 if (unlikely(is_noslot_pfn(pfn))) {
266 mark_mmio_spte(vcpu, sptep, gfn, access);
267 return true;
268 }
269
270 return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275 unsigned int kvm_gen, spte_gen;
276
277 kvm_gen = kvm_current_mmio_generation(vcpu);
278 spte_gen = get_mmio_spte_generation(spte);
279
280 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281 return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287 shadow_user_mask = user_mask;
288 shadow_accessed_mask = accessed_mask;
289 shadow_dirty_mask = dirty_mask;
290 shadow_nx_mask = nx_mask;
291 shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297 return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302 return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312 return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317 if (level == PT_PAGE_TABLE_LEVEL)
318 return 1;
319 if (is_large_pte(pte))
320 return 1;
321 return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333 return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339 *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344 *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349 return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354 return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367 struct kvm_mmu_page *sp = page_header(__pa(sptep));
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379 union split_spte *ssptep, sspte;
380
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 ssptep->spte_low = sspte.spte_low;
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
412 count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
426 count_spte_clear(sptep, spte);
427
428 return orig.spte;
429 }
430
431 /*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
448 */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451 struct kvm_mmu_page *sp = page_header(__pa(sptep));
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455 retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481 /*
482 * Always atomically update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
486 */
487 if (spte_is_locklessly_modifiable(spte))
488 return true;
489
490 if (!shadow_accessed_mask)
491 return false;
492
493 if (!is_shadow_present_pte(spte))
494 return false;
495
496 if ((spte & shadow_accessed_mask) &&
497 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498 return false;
499
500 return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505 return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510 return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
517 * the spte.
518 */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521 WARN_ON(is_shadow_present_pte(*sptep));
522 __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
527 *
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
532 * case.
533 */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536 u64 old_spte = *sptep;
537 bool ret = false;
538
539 WARN_ON(!is_shadow_present_pte(new_spte));
540
541 if (!is_shadow_present_pte(old_spte)) {
542 mmu_spte_set(sptep, new_spte);
543 return ret;
544 }
545
546 if (!spte_has_volatile_bits(old_spte))
547 __update_clear_spte_fast(sptep, new_spte);
548 else
549 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551 /*
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomically update it, see the comments in
554 * spte_has_volatile_bits().
555 */
556 if (spte_is_locklessly_modifiable(old_spte) &&
557 !is_writable_pte(new_spte))
558 ret = true;
559
560 if (!shadow_accessed_mask)
561 return ret;
562
563 /*
564 * Flush TLB when accessed/dirty bits are changed in the page tables,
565 * to guarantee consistency between TLB and page tables.
566 */
567 if (spte_is_bit_changed(old_spte, new_spte,
568 shadow_accessed_mask | shadow_dirty_mask))
569 ret = true;
570
571 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576 return ret;
577 }
578
579 /*
580 * Rules for using mmu_spte_clear_track_bits:
581 * It sets the sptep from present to nonpresent, and track the
582 * state bits, it is used to clear the last level sptep.
583 */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586 kvm_pfn_t pfn;
587 u64 old_spte = *sptep;
588
589 if (!spte_has_volatile_bits(old_spte))
590 __update_clear_spte_fast(sptep, 0ull);
591 else
592 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594 if (!is_shadow_present_pte(old_spte))
595 return 0;
596
597 pfn = spte_to_pfn(old_spte);
598
599 /*
600 * KVM does not hold the refcount of the page used by
601 * kvm mmu, before reclaiming the page, we should
602 * unmap it from mmu first.
603 */
604 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607 kvm_set_pfn_accessed(pfn);
608 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609 kvm_set_pfn_dirty(pfn);
610 return 1;
611 }
612
613 /*
614 * Rules for using mmu_spte_clear_no_track:
615 * Directly clear spte without caring the state bits of sptep,
616 * it is used to set the upper level spte.
617 */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620 __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625 return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630 /*
631 * Prevent page table teardown by making any free-er wait during
632 * kvm_flush_remote_tlbs() IPI to all active vcpus.
633 */
634 local_irq_disable();
635
636 /*
637 * Make sure a following spte read is not reordered ahead of the write
638 * to vcpu->mode.
639 */
640 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645 /*
646 * Make sure the write to vcpu->mode is not reordered in front of
647 * reads to sptes. If it does, kvm_commit_zap_page() can see us
648 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649 */
650 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
651 local_irq_enable();
652 }
653
654 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
655 struct kmem_cache *base_cache, int min)
656 {
657 void *obj;
658
659 if (cache->nobjs >= min)
660 return 0;
661 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
662 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
663 if (!obj)
664 return -ENOMEM;
665 cache->objects[cache->nobjs++] = obj;
666 }
667 return 0;
668 }
669
670 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
671 {
672 return cache->nobjs;
673 }
674
675 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
676 struct kmem_cache *cache)
677 {
678 while (mc->nobjs)
679 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
680 }
681
682 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
683 int min)
684 {
685 void *page;
686
687 if (cache->nobjs >= min)
688 return 0;
689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690 page = (void *)__get_free_page(GFP_KERNEL);
691 if (!page)
692 return -ENOMEM;
693 cache->objects[cache->nobjs++] = page;
694 }
695 return 0;
696 }
697
698 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
699 {
700 while (mc->nobjs)
701 free_page((unsigned long)mc->objects[--mc->nobjs]);
702 }
703
704 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
705 {
706 int r;
707
708 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
709 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
710 if (r)
711 goto out;
712 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
713 if (r)
714 goto out;
715 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
716 mmu_page_header_cache, 4);
717 out:
718 return r;
719 }
720
721 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
722 {
723 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
724 pte_list_desc_cache);
725 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
726 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
727 mmu_page_header_cache);
728 }
729
730 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
731 {
732 void *p;
733
734 BUG_ON(!mc->nobjs);
735 p = mc->objects[--mc->nobjs];
736 return p;
737 }
738
739 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
740 {
741 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
742 }
743
744 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
745 {
746 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
747 }
748
749 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
750 {
751 if (!sp->role.direct)
752 return sp->gfns[index];
753
754 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
755 }
756
757 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
758 {
759 if (sp->role.direct)
760 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
761 else
762 sp->gfns[index] = gfn;
763 }
764
765 /*
766 * Return the pointer to the large page information for a given gfn,
767 * handling slots that are not large page aligned.
768 */
769 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
770 struct kvm_memory_slot *slot,
771 int level)
772 {
773 unsigned long idx;
774
775 idx = gfn_to_index(gfn, slot->base_gfn, level);
776 return &slot->arch.lpage_info[level - 2][idx];
777 }
778
779 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
780 gfn_t gfn, int count)
781 {
782 struct kvm_lpage_info *linfo;
783 int i;
784
785 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
786 linfo = lpage_info_slot(gfn, slot, i);
787 linfo->disallow_lpage += count;
788 WARN_ON(linfo->disallow_lpage < 0);
789 }
790 }
791
792 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
793 {
794 update_gfn_disallow_lpage_count(slot, gfn, 1);
795 }
796
797 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
798 {
799 update_gfn_disallow_lpage_count(slot, gfn, -1);
800 }
801
802 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803 {
804 struct kvm_memslots *slots;
805 struct kvm_memory_slot *slot;
806 gfn_t gfn;
807
808 kvm->arch.indirect_shadow_pages++;
809 gfn = sp->gfn;
810 slots = kvm_memslots_for_spte_role(kvm, sp->role);
811 slot = __gfn_to_memslot(slots, gfn);
812
813 /* the non-leaf shadow pages are keeping readonly. */
814 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
815 return kvm_slot_page_track_add_page(kvm, slot, gfn,
816 KVM_PAGE_TRACK_WRITE);
817
818 kvm_mmu_gfn_disallow_lpage(slot, gfn);
819 }
820
821 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
822 {
823 struct kvm_memslots *slots;
824 struct kvm_memory_slot *slot;
825 gfn_t gfn;
826
827 kvm->arch.indirect_shadow_pages--;
828 gfn = sp->gfn;
829 slots = kvm_memslots_for_spte_role(kvm, sp->role);
830 slot = __gfn_to_memslot(slots, gfn);
831 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
832 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
833 KVM_PAGE_TRACK_WRITE);
834
835 kvm_mmu_gfn_allow_lpage(slot, gfn);
836 }
837
838 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
839 struct kvm_memory_slot *slot)
840 {
841 struct kvm_lpage_info *linfo;
842
843 if (slot) {
844 linfo = lpage_info_slot(gfn, slot, level);
845 return !!linfo->disallow_lpage;
846 }
847
848 return true;
849 }
850
851 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
852 int level)
853 {
854 struct kvm_memory_slot *slot;
855
856 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
857 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
858 }
859
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
861 {
862 unsigned long page_size;
863 int i, ret = 0;
864
865 page_size = kvm_host_page_size(kvm, gfn);
866
867 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
868 if (page_size >= KVM_HPAGE_SIZE(i))
869 ret = i;
870 else
871 break;
872 }
873
874 return ret;
875 }
876
877 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
878 bool no_dirty_log)
879 {
880 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
881 return false;
882 if (no_dirty_log && slot->dirty_bitmap)
883 return false;
884
885 return true;
886 }
887
888 static struct kvm_memory_slot *
889 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
890 bool no_dirty_log)
891 {
892 struct kvm_memory_slot *slot;
893
894 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
895 if (!memslot_valid_for_gpte(slot, no_dirty_log))
896 slot = NULL;
897
898 return slot;
899 }
900
901 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
902 bool *force_pt_level)
903 {
904 int host_level, level, max_level;
905 struct kvm_memory_slot *slot;
906
907 if (unlikely(*force_pt_level))
908 return PT_PAGE_TABLE_LEVEL;
909
910 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
911 *force_pt_level = !memslot_valid_for_gpte(slot, true);
912 if (unlikely(*force_pt_level))
913 return PT_PAGE_TABLE_LEVEL;
914
915 host_level = host_mapping_level(vcpu->kvm, large_gfn);
916
917 if (host_level == PT_PAGE_TABLE_LEVEL)
918 return host_level;
919
920 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
921
922 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
923 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
924 break;
925
926 return level - 1;
927 }
928
929 /*
930 * About rmap_head encoding:
931 *
932 * If the bit zero of rmap_head->val is clear, then it points to the only spte
933 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
934 * pte_list_desc containing more mappings.
935 */
936
937 /*
938 * Returns the number of pointers in the rmap chain, not counting the new one.
939 */
940 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
941 struct kvm_rmap_head *rmap_head)
942 {
943 struct pte_list_desc *desc;
944 int i, count = 0;
945
946 if (!rmap_head->val) {
947 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
948 rmap_head->val = (unsigned long)spte;
949 } else if (!(rmap_head->val & 1)) {
950 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
951 desc = mmu_alloc_pte_list_desc(vcpu);
952 desc->sptes[0] = (u64 *)rmap_head->val;
953 desc->sptes[1] = spte;
954 rmap_head->val = (unsigned long)desc | 1;
955 ++count;
956 } else {
957 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
958 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
959 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
960 desc = desc->more;
961 count += PTE_LIST_EXT;
962 }
963 if (desc->sptes[PTE_LIST_EXT-1]) {
964 desc->more = mmu_alloc_pte_list_desc(vcpu);
965 desc = desc->more;
966 }
967 for (i = 0; desc->sptes[i]; ++i)
968 ++count;
969 desc->sptes[i] = spte;
970 }
971 return count;
972 }
973
974 static void
975 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
976 struct pte_list_desc *desc, int i,
977 struct pte_list_desc *prev_desc)
978 {
979 int j;
980
981 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
982 ;
983 desc->sptes[i] = desc->sptes[j];
984 desc->sptes[j] = NULL;
985 if (j != 0)
986 return;
987 if (!prev_desc && !desc->more)
988 rmap_head->val = (unsigned long)desc->sptes[0];
989 else
990 if (prev_desc)
991 prev_desc->more = desc->more;
992 else
993 rmap_head->val = (unsigned long)desc->more | 1;
994 mmu_free_pte_list_desc(desc);
995 }
996
997 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
998 {
999 struct pte_list_desc *desc;
1000 struct pte_list_desc *prev_desc;
1001 int i;
1002
1003 if (!rmap_head->val) {
1004 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1005 BUG();
1006 } else if (!(rmap_head->val & 1)) {
1007 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1008 if ((u64 *)rmap_head->val != spte) {
1009 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1010 BUG();
1011 }
1012 rmap_head->val = 0;
1013 } else {
1014 rmap_printk("pte_list_remove: %p many->many\n", spte);
1015 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1016 prev_desc = NULL;
1017 while (desc) {
1018 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1019 if (desc->sptes[i] == spte) {
1020 pte_list_desc_remove_entry(rmap_head,
1021 desc, i, prev_desc);
1022 return;
1023 }
1024 }
1025 prev_desc = desc;
1026 desc = desc->more;
1027 }
1028 pr_err("pte_list_remove: %p many->many\n", spte);
1029 BUG();
1030 }
1031 }
1032
1033 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1034 struct kvm_memory_slot *slot)
1035 {
1036 unsigned long idx;
1037
1038 idx = gfn_to_index(gfn, slot->base_gfn, level);
1039 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 }
1041
1042 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1043 struct kvm_mmu_page *sp)
1044 {
1045 struct kvm_memslots *slots;
1046 struct kvm_memory_slot *slot;
1047
1048 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1049 slot = __gfn_to_memslot(slots, gfn);
1050 return __gfn_to_rmap(gfn, sp->role.level, slot);
1051 }
1052
1053 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1054 {
1055 struct kvm_mmu_memory_cache *cache;
1056
1057 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1058 return mmu_memory_cache_free_objects(cache);
1059 }
1060
1061 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1062 {
1063 struct kvm_mmu_page *sp;
1064 struct kvm_rmap_head *rmap_head;
1065
1066 sp = page_header(__pa(spte));
1067 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1068 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1069 return pte_list_add(vcpu, spte, rmap_head);
1070 }
1071
1072 static void rmap_remove(struct kvm *kvm, u64 *spte)
1073 {
1074 struct kvm_mmu_page *sp;
1075 gfn_t gfn;
1076 struct kvm_rmap_head *rmap_head;
1077
1078 sp = page_header(__pa(spte));
1079 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1080 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1081 pte_list_remove(spte, rmap_head);
1082 }
1083
1084 /*
1085 * Used by the following functions to iterate through the sptes linked by a
1086 * rmap. All fields are private and not assumed to be used outside.
1087 */
1088 struct rmap_iterator {
1089 /* private fields */
1090 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1091 int pos; /* index of the sptep */
1092 };
1093
1094 /*
1095 * Iteration must be started by this function. This should also be used after
1096 * removing/dropping sptes from the rmap link because in such cases the
1097 * information in the itererator may not be valid.
1098 *
1099 * Returns sptep if found, NULL otherwise.
1100 */
1101 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1102 struct rmap_iterator *iter)
1103 {
1104 u64 *sptep;
1105
1106 if (!rmap_head->val)
1107 return NULL;
1108
1109 if (!(rmap_head->val & 1)) {
1110 iter->desc = NULL;
1111 sptep = (u64 *)rmap_head->val;
1112 goto out;
1113 }
1114
1115 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1116 iter->pos = 0;
1117 sptep = iter->desc->sptes[iter->pos];
1118 out:
1119 BUG_ON(!is_shadow_present_pte(*sptep));
1120 return sptep;
1121 }
1122
1123 /*
1124 * Must be used with a valid iterator: e.g. after rmap_get_first().
1125 *
1126 * Returns sptep if found, NULL otherwise.
1127 */
1128 static u64 *rmap_get_next(struct rmap_iterator *iter)
1129 {
1130 u64 *sptep;
1131
1132 if (iter->desc) {
1133 if (iter->pos < PTE_LIST_EXT - 1) {
1134 ++iter->pos;
1135 sptep = iter->desc->sptes[iter->pos];
1136 if (sptep)
1137 goto out;
1138 }
1139
1140 iter->desc = iter->desc->more;
1141
1142 if (iter->desc) {
1143 iter->pos = 0;
1144 /* desc->sptes[0] cannot be NULL */
1145 sptep = iter->desc->sptes[iter->pos];
1146 goto out;
1147 }
1148 }
1149
1150 return NULL;
1151 out:
1152 BUG_ON(!is_shadow_present_pte(*sptep));
1153 return sptep;
1154 }
1155
1156 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1157 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1158 _spte_; _spte_ = rmap_get_next(_iter_))
1159
1160 static void drop_spte(struct kvm *kvm, u64 *sptep)
1161 {
1162 if (mmu_spte_clear_track_bits(sptep))
1163 rmap_remove(kvm, sptep);
1164 }
1165
1166
1167 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1168 {
1169 if (is_large_pte(*sptep)) {
1170 WARN_ON(page_header(__pa(sptep))->role.level ==
1171 PT_PAGE_TABLE_LEVEL);
1172 drop_spte(kvm, sptep);
1173 --kvm->stat.lpages;
1174 return true;
1175 }
1176
1177 return false;
1178 }
1179
1180 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1181 {
1182 if (__drop_large_spte(vcpu->kvm, sptep))
1183 kvm_flush_remote_tlbs(vcpu->kvm);
1184 }
1185
1186 /*
1187 * Write-protect on the specified @sptep, @pt_protect indicates whether
1188 * spte write-protection is caused by protecting shadow page table.
1189 *
1190 * Note: write protection is difference between dirty logging and spte
1191 * protection:
1192 * - for dirty logging, the spte can be set to writable at anytime if
1193 * its dirty bitmap is properly set.
1194 * - for spte protection, the spte can be writable only after unsync-ing
1195 * shadow page.
1196 *
1197 * Return true if tlb need be flushed.
1198 */
1199 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1200 {
1201 u64 spte = *sptep;
1202
1203 if (!is_writable_pte(spte) &&
1204 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1205 return false;
1206
1207 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1208
1209 if (pt_protect)
1210 spte &= ~SPTE_MMU_WRITEABLE;
1211 spte = spte & ~PT_WRITABLE_MASK;
1212
1213 return mmu_spte_update(sptep, spte);
1214 }
1215
1216 static bool __rmap_write_protect(struct kvm *kvm,
1217 struct kvm_rmap_head *rmap_head,
1218 bool pt_protect)
1219 {
1220 u64 *sptep;
1221 struct rmap_iterator iter;
1222 bool flush = false;
1223
1224 for_each_rmap_spte(rmap_head, &iter, sptep)
1225 flush |= spte_write_protect(kvm, sptep, pt_protect);
1226
1227 return flush;
1228 }
1229
1230 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1231 {
1232 u64 spte = *sptep;
1233
1234 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1235
1236 spte &= ~shadow_dirty_mask;
1237
1238 return mmu_spte_update(sptep, spte);
1239 }
1240
1241 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1242 {
1243 u64 *sptep;
1244 struct rmap_iterator iter;
1245 bool flush = false;
1246
1247 for_each_rmap_spte(rmap_head, &iter, sptep)
1248 flush |= spte_clear_dirty(kvm, sptep);
1249
1250 return flush;
1251 }
1252
1253 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1254 {
1255 u64 spte = *sptep;
1256
1257 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1258
1259 spte |= shadow_dirty_mask;
1260
1261 return mmu_spte_update(sptep, spte);
1262 }
1263
1264 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1265 {
1266 u64 *sptep;
1267 struct rmap_iterator iter;
1268 bool flush = false;
1269
1270 for_each_rmap_spte(rmap_head, &iter, sptep)
1271 flush |= spte_set_dirty(kvm, sptep);
1272
1273 return flush;
1274 }
1275
1276 /**
1277 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1278 * @kvm: kvm instance
1279 * @slot: slot to protect
1280 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1281 * @mask: indicates which pages we should protect
1282 *
1283 * Used when we do not need to care about huge page mappings: e.g. during dirty
1284 * logging we do not have any such mappings.
1285 */
1286 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1287 struct kvm_memory_slot *slot,
1288 gfn_t gfn_offset, unsigned long mask)
1289 {
1290 struct kvm_rmap_head *rmap_head;
1291
1292 while (mask) {
1293 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1294 PT_PAGE_TABLE_LEVEL, slot);
1295 __rmap_write_protect(kvm, rmap_head, false);
1296
1297 /* clear the first set bit */
1298 mask &= mask - 1;
1299 }
1300 }
1301
1302 /**
1303 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1304 * @kvm: kvm instance
1305 * @slot: slot to clear D-bit
1306 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1307 * @mask: indicates which pages we should clear D-bit
1308 *
1309 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1310 */
1311 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1312 struct kvm_memory_slot *slot,
1313 gfn_t gfn_offset, unsigned long mask)
1314 {
1315 struct kvm_rmap_head *rmap_head;
1316
1317 while (mask) {
1318 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1319 PT_PAGE_TABLE_LEVEL, slot);
1320 __rmap_clear_dirty(kvm, rmap_head);
1321
1322 /* clear the first set bit */
1323 mask &= mask - 1;
1324 }
1325 }
1326 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1327
1328 /**
1329 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1330 * PT level pages.
1331 *
1332 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1333 * enable dirty logging for them.
1334 *
1335 * Used when we do not need to care about huge page mappings: e.g. during dirty
1336 * logging we do not have any such mappings.
1337 */
1338 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1339 struct kvm_memory_slot *slot,
1340 gfn_t gfn_offset, unsigned long mask)
1341 {
1342 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1343 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1344 mask);
1345 else
1346 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1347 }
1348
1349 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1350 struct kvm_memory_slot *slot, u64 gfn)
1351 {
1352 struct kvm_rmap_head *rmap_head;
1353 int i;
1354 bool write_protected = false;
1355
1356 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1357 rmap_head = __gfn_to_rmap(gfn, i, slot);
1358 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1359 }
1360
1361 return write_protected;
1362 }
1363
1364 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1365 {
1366 struct kvm_memory_slot *slot;
1367
1368 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1369 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1370 }
1371
1372 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1373 {
1374 u64 *sptep;
1375 struct rmap_iterator iter;
1376 bool flush = false;
1377
1378 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1379 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1380
1381 drop_spte(kvm, sptep);
1382 flush = true;
1383 }
1384
1385 return flush;
1386 }
1387
1388 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1389 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1390 unsigned long data)
1391 {
1392 return kvm_zap_rmapp(kvm, rmap_head);
1393 }
1394
1395 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1396 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1397 unsigned long data)
1398 {
1399 u64 *sptep;
1400 struct rmap_iterator iter;
1401 int need_flush = 0;
1402 u64 new_spte;
1403 pte_t *ptep = (pte_t *)data;
1404 kvm_pfn_t new_pfn;
1405
1406 WARN_ON(pte_huge(*ptep));
1407 new_pfn = pte_pfn(*ptep);
1408
1409 restart:
1410 for_each_rmap_spte(rmap_head, &iter, sptep) {
1411 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1412 sptep, *sptep, gfn, level);
1413
1414 need_flush = 1;
1415
1416 if (pte_write(*ptep)) {
1417 drop_spte(kvm, sptep);
1418 goto restart;
1419 } else {
1420 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1421 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1422
1423 new_spte &= ~PT_WRITABLE_MASK;
1424 new_spte &= ~SPTE_HOST_WRITEABLE;
1425 new_spte &= ~shadow_accessed_mask;
1426
1427 mmu_spte_clear_track_bits(sptep);
1428 mmu_spte_set(sptep, new_spte);
1429 }
1430 }
1431
1432 if (need_flush)
1433 kvm_flush_remote_tlbs(kvm);
1434
1435 return 0;
1436 }
1437
1438 struct slot_rmap_walk_iterator {
1439 /* input fields. */
1440 struct kvm_memory_slot *slot;
1441 gfn_t start_gfn;
1442 gfn_t end_gfn;
1443 int start_level;
1444 int end_level;
1445
1446 /* output fields. */
1447 gfn_t gfn;
1448 struct kvm_rmap_head *rmap;
1449 int level;
1450
1451 /* private field. */
1452 struct kvm_rmap_head *end_rmap;
1453 };
1454
1455 static void
1456 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1457 {
1458 iterator->level = level;
1459 iterator->gfn = iterator->start_gfn;
1460 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1461 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1462 iterator->slot);
1463 }
1464
1465 static void
1466 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1467 struct kvm_memory_slot *slot, int start_level,
1468 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1469 {
1470 iterator->slot = slot;
1471 iterator->start_level = start_level;
1472 iterator->end_level = end_level;
1473 iterator->start_gfn = start_gfn;
1474 iterator->end_gfn = end_gfn;
1475
1476 rmap_walk_init_level(iterator, iterator->start_level);
1477 }
1478
1479 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1480 {
1481 return !!iterator->rmap;
1482 }
1483
1484 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1485 {
1486 if (++iterator->rmap <= iterator->end_rmap) {
1487 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1488 return;
1489 }
1490
1491 if (++iterator->level > iterator->end_level) {
1492 iterator->rmap = NULL;
1493 return;
1494 }
1495
1496 rmap_walk_init_level(iterator, iterator->level);
1497 }
1498
1499 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1500 _start_gfn, _end_gfn, _iter_) \
1501 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1502 _end_level_, _start_gfn, _end_gfn); \
1503 slot_rmap_walk_okay(_iter_); \
1504 slot_rmap_walk_next(_iter_))
1505
1506 static int kvm_handle_hva_range(struct kvm *kvm,
1507 unsigned long start,
1508 unsigned long end,
1509 unsigned long data,
1510 int (*handler)(struct kvm *kvm,
1511 struct kvm_rmap_head *rmap_head,
1512 struct kvm_memory_slot *slot,
1513 gfn_t gfn,
1514 int level,
1515 unsigned long data))
1516 {
1517 struct kvm_memslots *slots;
1518 struct kvm_memory_slot *memslot;
1519 struct slot_rmap_walk_iterator iterator;
1520 int ret = 0;
1521 int i;
1522
1523 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1524 slots = __kvm_memslots(kvm, i);
1525 kvm_for_each_memslot(memslot, slots) {
1526 unsigned long hva_start, hva_end;
1527 gfn_t gfn_start, gfn_end;
1528
1529 hva_start = max(start, memslot->userspace_addr);
1530 hva_end = min(end, memslot->userspace_addr +
1531 (memslot->npages << PAGE_SHIFT));
1532 if (hva_start >= hva_end)
1533 continue;
1534 /*
1535 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1536 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1537 */
1538 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1539 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1540
1541 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1542 PT_MAX_HUGEPAGE_LEVEL,
1543 gfn_start, gfn_end - 1,
1544 &iterator)
1545 ret |= handler(kvm, iterator.rmap, memslot,
1546 iterator.gfn, iterator.level, data);
1547 }
1548 }
1549
1550 return ret;
1551 }
1552
1553 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1554 unsigned long data,
1555 int (*handler)(struct kvm *kvm,
1556 struct kvm_rmap_head *rmap_head,
1557 struct kvm_memory_slot *slot,
1558 gfn_t gfn, int level,
1559 unsigned long data))
1560 {
1561 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1562 }
1563
1564 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1565 {
1566 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1567 }
1568
1569 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1570 {
1571 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1572 }
1573
1574 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1575 {
1576 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1577 }
1578
1579 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1580 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1581 unsigned long data)
1582 {
1583 u64 *sptep;
1584 struct rmap_iterator uninitialized_var(iter);
1585 int young = 0;
1586
1587 BUG_ON(!shadow_accessed_mask);
1588
1589 for_each_rmap_spte(rmap_head, &iter, sptep) {
1590 if (*sptep & shadow_accessed_mask) {
1591 young = 1;
1592 clear_bit((ffs(shadow_accessed_mask) - 1),
1593 (unsigned long *)sptep);
1594 }
1595 }
1596
1597 trace_kvm_age_page(gfn, level, slot, young);
1598 return young;
1599 }
1600
1601 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1602 struct kvm_memory_slot *slot, gfn_t gfn,
1603 int level, unsigned long data)
1604 {
1605 u64 *sptep;
1606 struct rmap_iterator iter;
1607 int young = 0;
1608
1609 /*
1610 * If there's no access bit in the secondary pte set by the
1611 * hardware it's up to gup-fast/gup to set the access bit in
1612 * the primary pte or in the page structure.
1613 */
1614 if (!shadow_accessed_mask)
1615 goto out;
1616
1617 for_each_rmap_spte(rmap_head, &iter, sptep) {
1618 if (*sptep & shadow_accessed_mask) {
1619 young = 1;
1620 break;
1621 }
1622 }
1623 out:
1624 return young;
1625 }
1626
1627 #define RMAP_RECYCLE_THRESHOLD 1000
1628
1629 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1630 {
1631 struct kvm_rmap_head *rmap_head;
1632 struct kvm_mmu_page *sp;
1633
1634 sp = page_header(__pa(spte));
1635
1636 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1637
1638 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1639 kvm_flush_remote_tlbs(vcpu->kvm);
1640 }
1641
1642 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1643 {
1644 /*
1645 * In case of absence of EPT Access and Dirty Bits supports,
1646 * emulate the accessed bit for EPT, by checking if this page has
1647 * an EPT mapping, and clearing it if it does. On the next access,
1648 * a new EPT mapping will be established.
1649 * This has some overhead, but not as much as the cost of swapping
1650 * out actively used pages or breaking up actively used hugepages.
1651 */
1652 if (!shadow_accessed_mask) {
1653 /*
1654 * We are holding the kvm->mmu_lock, and we are blowing up
1655 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1656 * This is correct as long as we don't decouple the mmu_lock
1657 * protected regions (like invalidate_range_start|end does).
1658 */
1659 kvm->mmu_notifier_seq++;
1660 return kvm_handle_hva_range(kvm, start, end, 0,
1661 kvm_unmap_rmapp);
1662 }
1663
1664 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1665 }
1666
1667 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1668 {
1669 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1670 }
1671
1672 #ifdef MMU_DEBUG
1673 static int is_empty_shadow_page(u64 *spt)
1674 {
1675 u64 *pos;
1676 u64 *end;
1677
1678 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1679 if (is_shadow_present_pte(*pos)) {
1680 printk(KERN_ERR "%s: %p %llx\n", __func__,
1681 pos, *pos);
1682 return 0;
1683 }
1684 return 1;
1685 }
1686 #endif
1687
1688 /*
1689 * This value is the sum of all of the kvm instances's
1690 * kvm->arch.n_used_mmu_pages values. We need a global,
1691 * aggregate version in order to make the slab shrinker
1692 * faster
1693 */
1694 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1695 {
1696 kvm->arch.n_used_mmu_pages += nr;
1697 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1698 }
1699
1700 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1701 {
1702 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1703 hlist_del(&sp->hash_link);
1704 list_del(&sp->link);
1705 free_page((unsigned long)sp->spt);
1706 if (!sp->role.direct)
1707 free_page((unsigned long)sp->gfns);
1708 kmem_cache_free(mmu_page_header_cache, sp);
1709 }
1710
1711 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1712 {
1713 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1714 }
1715
1716 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1717 struct kvm_mmu_page *sp, u64 *parent_pte)
1718 {
1719 if (!parent_pte)
1720 return;
1721
1722 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1723 }
1724
1725 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1726 u64 *parent_pte)
1727 {
1728 pte_list_remove(parent_pte, &sp->parent_ptes);
1729 }
1730
1731 static void drop_parent_pte(struct kvm_mmu_page *sp,
1732 u64 *parent_pte)
1733 {
1734 mmu_page_remove_parent_pte(sp, parent_pte);
1735 mmu_spte_clear_no_track(parent_pte);
1736 }
1737
1738 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1739 {
1740 struct kvm_mmu_page *sp;
1741
1742 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1743 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1744 if (!direct)
1745 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1746 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1747
1748 /*
1749 * The active_mmu_pages list is the FIFO list, do not move the
1750 * page until it is zapped. kvm_zap_obsolete_pages depends on
1751 * this feature. See the comments in kvm_zap_obsolete_pages().
1752 */
1753 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1754 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1755 return sp;
1756 }
1757
1758 static void mark_unsync(u64 *spte);
1759 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1760 {
1761 u64 *sptep;
1762 struct rmap_iterator iter;
1763
1764 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1765 mark_unsync(sptep);
1766 }
1767 }
1768
1769 static void mark_unsync(u64 *spte)
1770 {
1771 struct kvm_mmu_page *sp;
1772 unsigned int index;
1773
1774 sp = page_header(__pa(spte));
1775 index = spte - sp->spt;
1776 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1777 return;
1778 if (sp->unsync_children++)
1779 return;
1780 kvm_mmu_mark_parents_unsync(sp);
1781 }
1782
1783 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1784 struct kvm_mmu_page *sp)
1785 {
1786 return 0;
1787 }
1788
1789 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1790 {
1791 }
1792
1793 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1794 struct kvm_mmu_page *sp, u64 *spte,
1795 const void *pte)
1796 {
1797 WARN_ON(1);
1798 }
1799
1800 #define KVM_PAGE_ARRAY_NR 16
1801
1802 struct kvm_mmu_pages {
1803 struct mmu_page_and_offset {
1804 struct kvm_mmu_page *sp;
1805 unsigned int idx;
1806 } page[KVM_PAGE_ARRAY_NR];
1807 unsigned int nr;
1808 };
1809
1810 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1811 int idx)
1812 {
1813 int i;
1814
1815 if (sp->unsync)
1816 for (i=0; i < pvec->nr; i++)
1817 if (pvec->page[i].sp == sp)
1818 return 0;
1819
1820 pvec->page[pvec->nr].sp = sp;
1821 pvec->page[pvec->nr].idx = idx;
1822 pvec->nr++;
1823 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1824 }
1825
1826 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1827 {
1828 --sp->unsync_children;
1829 WARN_ON((int)sp->unsync_children < 0);
1830 __clear_bit(idx, sp->unsync_child_bitmap);
1831 }
1832
1833 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1834 struct kvm_mmu_pages *pvec)
1835 {
1836 int i, ret, nr_unsync_leaf = 0;
1837
1838 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1839 struct kvm_mmu_page *child;
1840 u64 ent = sp->spt[i];
1841
1842 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1843 clear_unsync_child_bit(sp, i);
1844 continue;
1845 }
1846
1847 child = page_header(ent & PT64_BASE_ADDR_MASK);
1848
1849 if (child->unsync_children) {
1850 if (mmu_pages_add(pvec, child, i))
1851 return -ENOSPC;
1852
1853 ret = __mmu_unsync_walk(child, pvec);
1854 if (!ret) {
1855 clear_unsync_child_bit(sp, i);
1856 continue;
1857 } else if (ret > 0) {
1858 nr_unsync_leaf += ret;
1859 } else
1860 return ret;
1861 } else if (child->unsync) {
1862 nr_unsync_leaf++;
1863 if (mmu_pages_add(pvec, child, i))
1864 return -ENOSPC;
1865 } else
1866 clear_unsync_child_bit(sp, i);
1867 }
1868
1869 return nr_unsync_leaf;
1870 }
1871
1872 #define INVALID_INDEX (-1)
1873
1874 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1875 struct kvm_mmu_pages *pvec)
1876 {
1877 pvec->nr = 0;
1878 if (!sp->unsync_children)
1879 return 0;
1880
1881 mmu_pages_add(pvec, sp, INVALID_INDEX);
1882 return __mmu_unsync_walk(sp, pvec);
1883 }
1884
1885 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1886 {
1887 WARN_ON(!sp->unsync);
1888 trace_kvm_mmu_sync_page(sp);
1889 sp->unsync = 0;
1890 --kvm->stat.mmu_unsync;
1891 }
1892
1893 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1894 struct list_head *invalid_list);
1895 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1896 struct list_head *invalid_list);
1897
1898 /*
1899 * NOTE: we should pay more attention on the zapped-obsolete page
1900 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1901 * since it has been deleted from active_mmu_pages but still can be found
1902 * at hast list.
1903 *
1904 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1905 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1906 * all the obsolete pages.
1907 */
1908 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1909 hlist_for_each_entry(_sp, \
1910 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1911 if ((_sp)->gfn != (_gfn)) {} else
1912
1913 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1914 for_each_gfn_sp(_kvm, _sp, _gfn) \
1915 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1916
1917 /* @sp->gfn should be write-protected at the call site */
1918 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1919 struct list_head *invalid_list)
1920 {
1921 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1922 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1923 return false;
1924 }
1925
1926 if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1927 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1928 return false;
1929 }
1930
1931 return true;
1932 }
1933
1934 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1935 struct list_head *invalid_list,
1936 bool remote_flush, bool local_flush)
1937 {
1938 if (!list_empty(invalid_list)) {
1939 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1940 return;
1941 }
1942
1943 if (remote_flush)
1944 kvm_flush_remote_tlbs(vcpu->kvm);
1945 else if (local_flush)
1946 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1947 }
1948
1949 #ifdef CONFIG_KVM_MMU_AUDIT
1950 #include "mmu_audit.c"
1951 #else
1952 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1953 static void mmu_audit_disable(void) { }
1954 #endif
1955
1956 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1957 struct list_head *invalid_list)
1958 {
1959 kvm_unlink_unsync_page(vcpu->kvm, sp);
1960 return __kvm_sync_page(vcpu, sp, invalid_list);
1961 }
1962
1963 /* @gfn should be write-protected at the call site */
1964 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1965 struct list_head *invalid_list)
1966 {
1967 struct kvm_mmu_page *s;
1968 bool ret = false;
1969
1970 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1971 if (!s->unsync)
1972 continue;
1973
1974 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1975 ret |= kvm_sync_page(vcpu, s, invalid_list);
1976 }
1977
1978 return ret;
1979 }
1980
1981 struct mmu_page_path {
1982 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1983 unsigned int idx[PT64_ROOT_LEVEL];
1984 };
1985
1986 #define for_each_sp(pvec, sp, parents, i) \
1987 for (i = mmu_pages_first(&pvec, &parents); \
1988 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1989 i = mmu_pages_next(&pvec, &parents, i))
1990
1991 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1992 struct mmu_page_path *parents,
1993 int i)
1994 {
1995 int n;
1996
1997 for (n = i+1; n < pvec->nr; n++) {
1998 struct kvm_mmu_page *sp = pvec->page[n].sp;
1999 unsigned idx = pvec->page[n].idx;
2000 int level = sp->role.level;
2001
2002 parents->idx[level-1] = idx;
2003 if (level == PT_PAGE_TABLE_LEVEL)
2004 break;
2005
2006 parents->parent[level-2] = sp;
2007 }
2008
2009 return n;
2010 }
2011
2012 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2013 struct mmu_page_path *parents)
2014 {
2015 struct kvm_mmu_page *sp;
2016 int level;
2017
2018 if (pvec->nr == 0)
2019 return 0;
2020
2021 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2022
2023 sp = pvec->page[0].sp;
2024 level = sp->role.level;
2025 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2026
2027 parents->parent[level-2] = sp;
2028
2029 /* Also set up a sentinel. Further entries in pvec are all
2030 * children of sp, so this element is never overwritten.
2031 */
2032 parents->parent[level-1] = NULL;
2033 return mmu_pages_next(pvec, parents, 0);
2034 }
2035
2036 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2037 {
2038 struct kvm_mmu_page *sp;
2039 unsigned int level = 0;
2040
2041 do {
2042 unsigned int idx = parents->idx[level];
2043 sp = parents->parent[level];
2044 if (!sp)
2045 return;
2046
2047 WARN_ON(idx == INVALID_INDEX);
2048 clear_unsync_child_bit(sp, idx);
2049 level++;
2050 } while (!sp->unsync_children);
2051 }
2052
2053 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2054 struct kvm_mmu_page *parent)
2055 {
2056 int i;
2057 struct kvm_mmu_page *sp;
2058 struct mmu_page_path parents;
2059 struct kvm_mmu_pages pages;
2060 LIST_HEAD(invalid_list);
2061 bool flush = false;
2062
2063 while (mmu_unsync_walk(parent, &pages)) {
2064 bool protected = false;
2065
2066 for_each_sp(pages, sp, parents, i)
2067 protected |= rmap_write_protect(vcpu, sp->gfn);
2068
2069 if (protected) {
2070 kvm_flush_remote_tlbs(vcpu->kvm);
2071 flush = false;
2072 }
2073
2074 for_each_sp(pages, sp, parents, i) {
2075 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2076 mmu_pages_clear_parents(&parents);
2077 }
2078 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2079 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2080 cond_resched_lock(&vcpu->kvm->mmu_lock);
2081 flush = false;
2082 }
2083 }
2084
2085 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2086 }
2087
2088 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2089 {
2090 atomic_set(&sp->write_flooding_count, 0);
2091 }
2092
2093 static void clear_sp_write_flooding_count(u64 *spte)
2094 {
2095 struct kvm_mmu_page *sp = page_header(__pa(spte));
2096
2097 __clear_sp_write_flooding_count(sp);
2098 }
2099
2100 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2101 {
2102 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2103 }
2104
2105 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2106 gfn_t gfn,
2107 gva_t gaddr,
2108 unsigned level,
2109 int direct,
2110 unsigned access)
2111 {
2112 union kvm_mmu_page_role role;
2113 unsigned quadrant;
2114 struct kvm_mmu_page *sp;
2115 bool need_sync = false;
2116 bool flush = false;
2117 LIST_HEAD(invalid_list);
2118
2119 role = vcpu->arch.mmu.base_role;
2120 role.level = level;
2121 role.direct = direct;
2122 if (role.direct)
2123 role.cr4_pae = 0;
2124 role.access = access;
2125 if (!vcpu->arch.mmu.direct_map
2126 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2127 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2128 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2129 role.quadrant = quadrant;
2130 }
2131 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2132 if (is_obsolete_sp(vcpu->kvm, sp))
2133 continue;
2134
2135 if (!need_sync && sp->unsync)
2136 need_sync = true;
2137
2138 if (sp->role.word != role.word)
2139 continue;
2140
2141 if (sp->unsync) {
2142 /* The page is good, but __kvm_sync_page might still end
2143 * up zapping it. If so, break in order to rebuild it.
2144 */
2145 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2146 break;
2147
2148 WARN_ON(!list_empty(&invalid_list));
2149 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2150 }
2151
2152 if (sp->unsync_children)
2153 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2154
2155 __clear_sp_write_flooding_count(sp);
2156 trace_kvm_mmu_get_page(sp, false);
2157 return sp;
2158 }
2159
2160 ++vcpu->kvm->stat.mmu_cache_miss;
2161
2162 sp = kvm_mmu_alloc_page(vcpu, direct);
2163
2164 sp->gfn = gfn;
2165 sp->role = role;
2166 hlist_add_head(&sp->hash_link,
2167 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2168 if (!direct) {
2169 /*
2170 * we should do write protection before syncing pages
2171 * otherwise the content of the synced shadow page may
2172 * be inconsistent with guest page table.
2173 */
2174 account_shadowed(vcpu->kvm, sp);
2175 if (level == PT_PAGE_TABLE_LEVEL &&
2176 rmap_write_protect(vcpu, gfn))
2177 kvm_flush_remote_tlbs(vcpu->kvm);
2178
2179 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2180 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2181 }
2182 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2183 clear_page(sp->spt);
2184 trace_kvm_mmu_get_page(sp, true);
2185
2186 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2187 return sp;
2188 }
2189
2190 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2191 struct kvm_vcpu *vcpu, u64 addr)
2192 {
2193 iterator->addr = addr;
2194 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2195 iterator->level = vcpu->arch.mmu.shadow_root_level;
2196
2197 if (iterator->level == PT64_ROOT_LEVEL &&
2198 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2199 !vcpu->arch.mmu.direct_map)
2200 --iterator->level;
2201
2202 if (iterator->level == PT32E_ROOT_LEVEL) {
2203 iterator->shadow_addr
2204 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2205 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2206 --iterator->level;
2207 if (!iterator->shadow_addr)
2208 iterator->level = 0;
2209 }
2210 }
2211
2212 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2213 {
2214 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2215 return false;
2216
2217 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2218 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2219 return true;
2220 }
2221
2222 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2223 u64 spte)
2224 {
2225 if (is_last_spte(spte, iterator->level)) {
2226 iterator->level = 0;
2227 return;
2228 }
2229
2230 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2231 --iterator->level;
2232 }
2233
2234 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2235 {
2236 return __shadow_walk_next(iterator, *iterator->sptep);
2237 }
2238
2239 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2240 struct kvm_mmu_page *sp)
2241 {
2242 u64 spte;
2243
2244 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2245 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2246
2247 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2248 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2249
2250 mmu_spte_set(sptep, spte);
2251
2252 mmu_page_add_parent_pte(vcpu, sp, sptep);
2253
2254 if (sp->unsync_children || sp->unsync)
2255 mark_unsync(sptep);
2256 }
2257
2258 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2259 unsigned direct_access)
2260 {
2261 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2262 struct kvm_mmu_page *child;
2263
2264 /*
2265 * For the direct sp, if the guest pte's dirty bit
2266 * changed form clean to dirty, it will corrupt the
2267 * sp's access: allow writable in the read-only sp,
2268 * so we should update the spte at this point to get
2269 * a new sp with the correct access.
2270 */
2271 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2272 if (child->role.access == direct_access)
2273 return;
2274
2275 drop_parent_pte(child, sptep);
2276 kvm_flush_remote_tlbs(vcpu->kvm);
2277 }
2278 }
2279
2280 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2281 u64 *spte)
2282 {
2283 u64 pte;
2284 struct kvm_mmu_page *child;
2285
2286 pte = *spte;
2287 if (is_shadow_present_pte(pte)) {
2288 if (is_last_spte(pte, sp->role.level)) {
2289 drop_spte(kvm, spte);
2290 if (is_large_pte(pte))
2291 --kvm->stat.lpages;
2292 } else {
2293 child = page_header(pte & PT64_BASE_ADDR_MASK);
2294 drop_parent_pte(child, spte);
2295 }
2296 return true;
2297 }
2298
2299 if (is_mmio_spte(pte))
2300 mmu_spte_clear_no_track(spte);
2301
2302 return false;
2303 }
2304
2305 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2306 struct kvm_mmu_page *sp)
2307 {
2308 unsigned i;
2309
2310 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2311 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2312 }
2313
2314 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2315 {
2316 u64 *sptep;
2317 struct rmap_iterator iter;
2318
2319 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2320 drop_parent_pte(sp, sptep);
2321 }
2322
2323 static int mmu_zap_unsync_children(struct kvm *kvm,
2324 struct kvm_mmu_page *parent,
2325 struct list_head *invalid_list)
2326 {
2327 int i, zapped = 0;
2328 struct mmu_page_path parents;
2329 struct kvm_mmu_pages pages;
2330
2331 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2332 return 0;
2333
2334 while (mmu_unsync_walk(parent, &pages)) {
2335 struct kvm_mmu_page *sp;
2336
2337 for_each_sp(pages, sp, parents, i) {
2338 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2339 mmu_pages_clear_parents(&parents);
2340 zapped++;
2341 }
2342 }
2343
2344 return zapped;
2345 }
2346
2347 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2348 struct list_head *invalid_list)
2349 {
2350 int ret;
2351
2352 trace_kvm_mmu_prepare_zap_page(sp);
2353 ++kvm->stat.mmu_shadow_zapped;
2354 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2355 kvm_mmu_page_unlink_children(kvm, sp);
2356 kvm_mmu_unlink_parents(kvm, sp);
2357
2358 if (!sp->role.invalid && !sp->role.direct)
2359 unaccount_shadowed(kvm, sp);
2360
2361 if (sp->unsync)
2362 kvm_unlink_unsync_page(kvm, sp);
2363 if (!sp->root_count) {
2364 /* Count self */
2365 ret++;
2366 list_move(&sp->link, invalid_list);
2367 kvm_mod_used_mmu_pages(kvm, -1);
2368 } else {
2369 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2370
2371 /*
2372 * The obsolete pages can not be used on any vcpus.
2373 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2374 */
2375 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2376 kvm_reload_remote_mmus(kvm);
2377 }
2378
2379 sp->role.invalid = 1;
2380 return ret;
2381 }
2382
2383 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2384 struct list_head *invalid_list)
2385 {
2386 struct kvm_mmu_page *sp, *nsp;
2387
2388 if (list_empty(invalid_list))
2389 return;
2390
2391 /*
2392 * We need to make sure everyone sees our modifications to
2393 * the page tables and see changes to vcpu->mode here. The barrier
2394 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2395 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2396 *
2397 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2398 * guest mode and/or lockless shadow page table walks.
2399 */
2400 kvm_flush_remote_tlbs(kvm);
2401
2402 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2403 WARN_ON(!sp->role.invalid || sp->root_count);
2404 kvm_mmu_free_page(sp);
2405 }
2406 }
2407
2408 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2409 struct list_head *invalid_list)
2410 {
2411 struct kvm_mmu_page *sp;
2412
2413 if (list_empty(&kvm->arch.active_mmu_pages))
2414 return false;
2415
2416 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2417 struct kvm_mmu_page, link);
2418 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2419
2420 return true;
2421 }
2422
2423 /*
2424 * Changing the number of mmu pages allocated to the vm
2425 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2426 */
2427 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2428 {
2429 LIST_HEAD(invalid_list);
2430
2431 spin_lock(&kvm->mmu_lock);
2432
2433 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2434 /* Need to free some mmu pages to achieve the goal. */
2435 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2436 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2437 break;
2438
2439 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2440 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2441 }
2442
2443 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2444
2445 spin_unlock(&kvm->mmu_lock);
2446 }
2447
2448 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2449 {
2450 struct kvm_mmu_page *sp;
2451 LIST_HEAD(invalid_list);
2452 int r;
2453
2454 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2455 r = 0;
2456 spin_lock(&kvm->mmu_lock);
2457 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2458 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2459 sp->role.word);
2460 r = 1;
2461 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2462 }
2463 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2464 spin_unlock(&kvm->mmu_lock);
2465
2466 return r;
2467 }
2468 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2469
2470 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2471 {
2472 trace_kvm_mmu_unsync_page(sp);
2473 ++vcpu->kvm->stat.mmu_unsync;
2474 sp->unsync = 1;
2475
2476 kvm_mmu_mark_parents_unsync(sp);
2477 }
2478
2479 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2480 bool can_unsync)
2481 {
2482 struct kvm_mmu_page *sp;
2483
2484 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2485 return true;
2486
2487 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2488 if (!can_unsync)
2489 return true;
2490
2491 if (sp->unsync)
2492 continue;
2493
2494 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2495 kvm_unsync_page(vcpu, sp);
2496 }
2497
2498 return false;
2499 }
2500
2501 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2502 {
2503 if (pfn_valid(pfn))
2504 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2505
2506 return true;
2507 }
2508
2509 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2510 unsigned pte_access, int level,
2511 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2512 bool can_unsync, bool host_writable)
2513 {
2514 u64 spte;
2515 int ret = 0;
2516
2517 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2518 return 0;
2519
2520 spte = PT_PRESENT_MASK;
2521 if (!speculative)
2522 spte |= shadow_accessed_mask;
2523
2524 if (pte_access & ACC_EXEC_MASK)
2525 spte |= shadow_x_mask;
2526 else
2527 spte |= shadow_nx_mask;
2528
2529 if (pte_access & ACC_USER_MASK)
2530 spte |= shadow_user_mask;
2531
2532 if (level > PT_PAGE_TABLE_LEVEL)
2533 spte |= PT_PAGE_SIZE_MASK;
2534 if (tdp_enabled)
2535 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2536 kvm_is_mmio_pfn(pfn));
2537
2538 if (host_writable)
2539 spte |= SPTE_HOST_WRITEABLE;
2540 else
2541 pte_access &= ~ACC_WRITE_MASK;
2542
2543 spte |= (u64)pfn << PAGE_SHIFT;
2544
2545 if (pte_access & ACC_WRITE_MASK) {
2546
2547 /*
2548 * Other vcpu creates new sp in the window between
2549 * mapping_level() and acquiring mmu-lock. We can
2550 * allow guest to retry the access, the mapping can
2551 * be fixed if guest refault.
2552 */
2553 if (level > PT_PAGE_TABLE_LEVEL &&
2554 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2555 goto done;
2556
2557 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2558
2559 /*
2560 * Optimization: for pte sync, if spte was writable the hash
2561 * lookup is unnecessary (and expensive). Write protection
2562 * is responsibility of mmu_get_page / kvm_sync_page.
2563 * Same reasoning can be applied to dirty page accounting.
2564 */
2565 if (!can_unsync && is_writable_pte(*sptep))
2566 goto set_pte;
2567
2568 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2569 pgprintk("%s: found shadow page for %llx, marking ro\n",
2570 __func__, gfn);
2571 ret = 1;
2572 pte_access &= ~ACC_WRITE_MASK;
2573 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2574 }
2575 }
2576
2577 if (pte_access & ACC_WRITE_MASK) {
2578 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2579 spte |= shadow_dirty_mask;
2580 }
2581
2582 set_pte:
2583 if (mmu_spte_update(sptep, spte))
2584 kvm_flush_remote_tlbs(vcpu->kvm);
2585 done:
2586 return ret;
2587 }
2588
2589 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2590 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2591 bool speculative, bool host_writable)
2592 {
2593 int was_rmapped = 0;
2594 int rmap_count;
2595 bool emulate = false;
2596
2597 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2598 *sptep, write_fault, gfn);
2599
2600 if (is_shadow_present_pte(*sptep)) {
2601 /*
2602 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2603 * the parent of the now unreachable PTE.
2604 */
2605 if (level > PT_PAGE_TABLE_LEVEL &&
2606 !is_large_pte(*sptep)) {
2607 struct kvm_mmu_page *child;
2608 u64 pte = *sptep;
2609
2610 child = page_header(pte & PT64_BASE_ADDR_MASK);
2611 drop_parent_pte(child, sptep);
2612 kvm_flush_remote_tlbs(vcpu->kvm);
2613 } else if (pfn != spte_to_pfn(*sptep)) {
2614 pgprintk("hfn old %llx new %llx\n",
2615 spte_to_pfn(*sptep), pfn);
2616 drop_spte(vcpu->kvm, sptep);
2617 kvm_flush_remote_tlbs(vcpu->kvm);
2618 } else
2619 was_rmapped = 1;
2620 }
2621
2622 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2623 true, host_writable)) {
2624 if (write_fault)
2625 emulate = true;
2626 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2627 }
2628
2629 if (unlikely(is_mmio_spte(*sptep)))
2630 emulate = true;
2631
2632 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2633 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2634 is_large_pte(*sptep)? "2MB" : "4kB",
2635 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2636 *sptep, sptep);
2637 if (!was_rmapped && is_large_pte(*sptep))
2638 ++vcpu->kvm->stat.lpages;
2639
2640 if (is_shadow_present_pte(*sptep)) {
2641 if (!was_rmapped) {
2642 rmap_count = rmap_add(vcpu, sptep, gfn);
2643 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2644 rmap_recycle(vcpu, sptep, gfn);
2645 }
2646 }
2647
2648 kvm_release_pfn_clean(pfn);
2649
2650 return emulate;
2651 }
2652
2653 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2654 bool no_dirty_log)
2655 {
2656 struct kvm_memory_slot *slot;
2657
2658 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2659 if (!slot)
2660 return KVM_PFN_ERR_FAULT;
2661
2662 return gfn_to_pfn_memslot_atomic(slot, gfn);
2663 }
2664
2665 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2666 struct kvm_mmu_page *sp,
2667 u64 *start, u64 *end)
2668 {
2669 struct page *pages[PTE_PREFETCH_NUM];
2670 struct kvm_memory_slot *slot;
2671 unsigned access = sp->role.access;
2672 int i, ret;
2673 gfn_t gfn;
2674
2675 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2676 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2677 if (!slot)
2678 return -1;
2679
2680 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2681 if (ret <= 0)
2682 return -1;
2683
2684 for (i = 0; i < ret; i++, gfn++, start++)
2685 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2686 page_to_pfn(pages[i]), true, true);
2687
2688 return 0;
2689 }
2690
2691 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2692 struct kvm_mmu_page *sp, u64 *sptep)
2693 {
2694 u64 *spte, *start = NULL;
2695 int i;
2696
2697 WARN_ON(!sp->role.direct);
2698
2699 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2700 spte = sp->spt + i;
2701
2702 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2703 if (is_shadow_present_pte(*spte) || spte == sptep) {
2704 if (!start)
2705 continue;
2706 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2707 break;
2708 start = NULL;
2709 } else if (!start)
2710 start = spte;
2711 }
2712 }
2713
2714 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2715 {
2716 struct kvm_mmu_page *sp;
2717
2718 /*
2719 * Since it's no accessed bit on EPT, it's no way to
2720 * distinguish between actually accessed translations
2721 * and prefetched, so disable pte prefetch if EPT is
2722 * enabled.
2723 */
2724 if (!shadow_accessed_mask)
2725 return;
2726
2727 sp = page_header(__pa(sptep));
2728 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2729 return;
2730
2731 __direct_pte_prefetch(vcpu, sp, sptep);
2732 }
2733
2734 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2735 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2736 {
2737 struct kvm_shadow_walk_iterator iterator;
2738 struct kvm_mmu_page *sp;
2739 int emulate = 0;
2740 gfn_t pseudo_gfn;
2741
2742 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2743 return 0;
2744
2745 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2746 if (iterator.level == level) {
2747 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2748 write, level, gfn, pfn, prefault,
2749 map_writable);
2750 direct_pte_prefetch(vcpu, iterator.sptep);
2751 ++vcpu->stat.pf_fixed;
2752 break;
2753 }
2754
2755 drop_large_spte(vcpu, iterator.sptep);
2756 if (!is_shadow_present_pte(*iterator.sptep)) {
2757 u64 base_addr = iterator.addr;
2758
2759 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2760 pseudo_gfn = base_addr >> PAGE_SHIFT;
2761 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2762 iterator.level - 1, 1, ACC_ALL);
2763
2764 link_shadow_page(vcpu, iterator.sptep, sp);
2765 }
2766 }
2767 return emulate;
2768 }
2769
2770 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2771 {
2772 siginfo_t info;
2773
2774 info.si_signo = SIGBUS;
2775 info.si_errno = 0;
2776 info.si_code = BUS_MCEERR_AR;
2777 info.si_addr = (void __user *)address;
2778 info.si_addr_lsb = PAGE_SHIFT;
2779
2780 send_sig_info(SIGBUS, &info, tsk);
2781 }
2782
2783 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2784 {
2785 /*
2786 * Do not cache the mmio info caused by writing the readonly gfn
2787 * into the spte otherwise read access on readonly gfn also can
2788 * caused mmio page fault and treat it as mmio access.
2789 * Return 1 to tell kvm to emulate it.
2790 */
2791 if (pfn == KVM_PFN_ERR_RO_FAULT)
2792 return 1;
2793
2794 if (pfn == KVM_PFN_ERR_HWPOISON) {
2795 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2796 return 0;
2797 }
2798
2799 return -EFAULT;
2800 }
2801
2802 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2803 gfn_t *gfnp, kvm_pfn_t *pfnp,
2804 int *levelp)
2805 {
2806 kvm_pfn_t pfn = *pfnp;
2807 gfn_t gfn = *gfnp;
2808 int level = *levelp;
2809
2810 /*
2811 * Check if it's a transparent hugepage. If this would be an
2812 * hugetlbfs page, level wouldn't be set to
2813 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2814 * here.
2815 */
2816 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2817 level == PT_PAGE_TABLE_LEVEL &&
2818 PageTransCompound(pfn_to_page(pfn)) &&
2819 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2820 unsigned long mask;
2821 /*
2822 * mmu_notifier_retry was successful and we hold the
2823 * mmu_lock here, so the pmd can't become splitting
2824 * from under us, and in turn
2825 * __split_huge_page_refcount() can't run from under
2826 * us and we can safely transfer the refcount from
2827 * PG_tail to PG_head as we switch the pfn to tail to
2828 * head.
2829 */
2830 *levelp = level = PT_DIRECTORY_LEVEL;
2831 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2832 VM_BUG_ON((gfn & mask) != (pfn & mask));
2833 if (pfn & mask) {
2834 gfn &= ~mask;
2835 *gfnp = gfn;
2836 kvm_release_pfn_clean(pfn);
2837 pfn &= ~mask;
2838 kvm_get_pfn(pfn);
2839 *pfnp = pfn;
2840 }
2841 }
2842 }
2843
2844 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2845 kvm_pfn_t pfn, unsigned access, int *ret_val)
2846 {
2847 /* The pfn is invalid, report the error! */
2848 if (unlikely(is_error_pfn(pfn))) {
2849 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2850 return true;
2851 }
2852
2853 if (unlikely(is_noslot_pfn(pfn)))
2854 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2855
2856 return false;
2857 }
2858
2859 static bool page_fault_can_be_fast(u32 error_code)
2860 {
2861 /*
2862 * Do not fix the mmio spte with invalid generation number which
2863 * need to be updated by slow page fault path.
2864 */
2865 if (unlikely(error_code & PFERR_RSVD_MASK))
2866 return false;
2867
2868 /*
2869 * #PF can be fast only if the shadow page table is present and it
2870 * is caused by write-protect, that means we just need change the
2871 * W bit of the spte which can be done out of mmu-lock.
2872 */
2873 if (!(error_code & PFERR_PRESENT_MASK) ||
2874 !(error_code & PFERR_WRITE_MASK))
2875 return false;
2876
2877 return true;
2878 }
2879
2880 static bool
2881 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2882 u64 *sptep, u64 spte)
2883 {
2884 gfn_t gfn;
2885
2886 WARN_ON(!sp->role.direct);
2887
2888 /*
2889 * The gfn of direct spte is stable since it is calculated
2890 * by sp->gfn.
2891 */
2892 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2893
2894 /*
2895 * Theoretically we could also set dirty bit (and flush TLB) here in
2896 * order to eliminate unnecessary PML logging. See comments in
2897 * set_spte. But fast_page_fault is very unlikely to happen with PML
2898 * enabled, so we do not do this. This might result in the same GPA
2899 * to be logged in PML buffer again when the write really happens, and
2900 * eventually to be called by mark_page_dirty twice. But it's also no
2901 * harm. This also avoids the TLB flush needed after setting dirty bit
2902 * so non-PML cases won't be impacted.
2903 *
2904 * Compare with set_spte where instead shadow_dirty_mask is set.
2905 */
2906 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2907 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2908
2909 return true;
2910 }
2911
2912 /*
2913 * Return value:
2914 * - true: let the vcpu to access on the same address again.
2915 * - false: let the real page fault path to fix it.
2916 */
2917 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2918 u32 error_code)
2919 {
2920 struct kvm_shadow_walk_iterator iterator;
2921 struct kvm_mmu_page *sp;
2922 bool ret = false;
2923 u64 spte = 0ull;
2924
2925 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2926 return false;
2927
2928 if (!page_fault_can_be_fast(error_code))
2929 return false;
2930
2931 walk_shadow_page_lockless_begin(vcpu);
2932 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2933 if (!is_shadow_present_pte(spte) || iterator.level < level)
2934 break;
2935
2936 /*
2937 * If the mapping has been changed, let the vcpu fault on the
2938 * same address again.
2939 */
2940 if (!is_shadow_present_pte(spte)) {
2941 ret = true;
2942 goto exit;
2943 }
2944
2945 sp = page_header(__pa(iterator.sptep));
2946 if (!is_last_spte(spte, sp->role.level))
2947 goto exit;
2948
2949 /*
2950 * Check if it is a spurious fault caused by TLB lazily flushed.
2951 *
2952 * Need not check the access of upper level table entries since
2953 * they are always ACC_ALL.
2954 */
2955 if (is_writable_pte(spte)) {
2956 ret = true;
2957 goto exit;
2958 }
2959
2960 /*
2961 * Currently, to simplify the code, only the spte write-protected
2962 * by dirty-log can be fast fixed.
2963 */
2964 if (!spte_is_locklessly_modifiable(spte))
2965 goto exit;
2966
2967 /*
2968 * Do not fix write-permission on the large spte since we only dirty
2969 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2970 * that means other pages are missed if its slot is dirty-logged.
2971 *
2972 * Instead, we let the slow page fault path create a normal spte to
2973 * fix the access.
2974 *
2975 * See the comments in kvm_arch_commit_memory_region().
2976 */
2977 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2978 goto exit;
2979
2980 /*
2981 * Currently, fast page fault only works for direct mapping since
2982 * the gfn is not stable for indirect shadow page.
2983 * See Documentation/virtual/kvm/locking.txt to get more detail.
2984 */
2985 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2986 exit:
2987 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2988 spte, ret);
2989 walk_shadow_page_lockless_end(vcpu);
2990
2991 return ret;
2992 }
2993
2994 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2995 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2996 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2997
2998 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2999 gfn_t gfn, bool prefault)
3000 {
3001 int r;
3002 int level;
3003 bool force_pt_level = false;
3004 kvm_pfn_t pfn;
3005 unsigned long mmu_seq;
3006 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3007
3008 level = mapping_level(vcpu, gfn, &force_pt_level);
3009 if (likely(!force_pt_level)) {
3010 /*
3011 * This path builds a PAE pagetable - so we can map
3012 * 2mb pages at maximum. Therefore check if the level
3013 * is larger than that.
3014 */
3015 if (level > PT_DIRECTORY_LEVEL)
3016 level = PT_DIRECTORY_LEVEL;
3017
3018 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3019 }
3020
3021 if (fast_page_fault(vcpu, v, level, error_code))
3022 return 0;
3023
3024 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3025 smp_rmb();
3026
3027 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3028 return 0;
3029
3030 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3031 return r;
3032
3033 spin_lock(&vcpu->kvm->mmu_lock);
3034 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3035 goto out_unlock;
3036 make_mmu_pages_available(vcpu);
3037 if (likely(!force_pt_level))
3038 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3039 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3040 spin_unlock(&vcpu->kvm->mmu_lock);
3041
3042 return r;
3043
3044 out_unlock:
3045 spin_unlock(&vcpu->kvm->mmu_lock);
3046 kvm_release_pfn_clean(pfn);
3047 return 0;
3048 }
3049
3050
3051 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3052 {
3053 int i;
3054 struct kvm_mmu_page *sp;
3055 LIST_HEAD(invalid_list);
3056
3057 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3058 return;
3059
3060 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3061 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3062 vcpu->arch.mmu.direct_map)) {
3063 hpa_t root = vcpu->arch.mmu.root_hpa;
3064
3065 spin_lock(&vcpu->kvm->mmu_lock);
3066 sp = page_header(root);
3067 --sp->root_count;
3068 if (!sp->root_count && sp->role.invalid) {
3069 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3070 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3071 }
3072 spin_unlock(&vcpu->kvm->mmu_lock);
3073 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3074 return;
3075 }
3076
3077 spin_lock(&vcpu->kvm->mmu_lock);
3078 for (i = 0; i < 4; ++i) {
3079 hpa_t root = vcpu->arch.mmu.pae_root[i];
3080
3081 if (root) {
3082 root &= PT64_BASE_ADDR_MASK;
3083 sp = page_header(root);
3084 --sp->root_count;
3085 if (!sp->root_count && sp->role.invalid)
3086 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3087 &invalid_list);
3088 }
3089 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3090 }
3091 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3092 spin_unlock(&vcpu->kvm->mmu_lock);
3093 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3094 }
3095
3096 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3097 {
3098 int ret = 0;
3099
3100 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3101 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3102 ret = 1;
3103 }
3104
3105 return ret;
3106 }
3107
3108 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3109 {
3110 struct kvm_mmu_page *sp;
3111 unsigned i;
3112
3113 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3114 spin_lock(&vcpu->kvm->mmu_lock);
3115 make_mmu_pages_available(vcpu);
3116 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3117 ++sp->root_count;
3118 spin_unlock(&vcpu->kvm->mmu_lock);
3119 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3120 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3121 for (i = 0; i < 4; ++i) {
3122 hpa_t root = vcpu->arch.mmu.pae_root[i];
3123
3124 MMU_WARN_ON(VALID_PAGE(root));
3125 spin_lock(&vcpu->kvm->mmu_lock);
3126 make_mmu_pages_available(vcpu);
3127 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3128 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3129 root = __pa(sp->spt);
3130 ++sp->root_count;
3131 spin_unlock(&vcpu->kvm->mmu_lock);
3132 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3133 }
3134 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3135 } else
3136 BUG();
3137
3138 return 0;
3139 }
3140
3141 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3142 {
3143 struct kvm_mmu_page *sp;
3144 u64 pdptr, pm_mask;
3145 gfn_t root_gfn;
3146 int i;
3147
3148 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3149
3150 if (mmu_check_root(vcpu, root_gfn))
3151 return 1;
3152
3153 /*
3154 * Do we shadow a long mode page table? If so we need to
3155 * write-protect the guests page table root.
3156 */
3157 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3158 hpa_t root = vcpu->arch.mmu.root_hpa;
3159
3160 MMU_WARN_ON(VALID_PAGE(root));
3161
3162 spin_lock(&vcpu->kvm->mmu_lock);
3163 make_mmu_pages_available(vcpu);
3164 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3165 0, ACC_ALL);
3166 root = __pa(sp->spt);
3167 ++sp->root_count;
3168 spin_unlock(&vcpu->kvm->mmu_lock);
3169 vcpu->arch.mmu.root_hpa = root;
3170 return 0;
3171 }
3172
3173 /*
3174 * We shadow a 32 bit page table. This may be a legacy 2-level
3175 * or a PAE 3-level page table. In either case we need to be aware that
3176 * the shadow page table may be a PAE or a long mode page table.
3177 */
3178 pm_mask = PT_PRESENT_MASK;
3179 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3180 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3181
3182 for (i = 0; i < 4; ++i) {
3183 hpa_t root = vcpu->arch.mmu.pae_root[i];
3184
3185 MMU_WARN_ON(VALID_PAGE(root));
3186 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3187 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3188 if (!is_present_gpte(pdptr)) {
3189 vcpu->arch.mmu.pae_root[i] = 0;
3190 continue;
3191 }
3192 root_gfn = pdptr >> PAGE_SHIFT;
3193 if (mmu_check_root(vcpu, root_gfn))
3194 return 1;
3195 }
3196 spin_lock(&vcpu->kvm->mmu_lock);
3197 make_mmu_pages_available(vcpu);
3198 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3199 0, ACC_ALL);
3200 root = __pa(sp->spt);
3201 ++sp->root_count;
3202 spin_unlock(&vcpu->kvm->mmu_lock);
3203
3204 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3205 }
3206 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3207
3208 /*
3209 * If we shadow a 32 bit page table with a long mode page
3210 * table we enter this path.
3211 */
3212 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3213 if (vcpu->arch.mmu.lm_root == NULL) {
3214 /*
3215 * The additional page necessary for this is only
3216 * allocated on demand.
3217 */
3218
3219 u64 *lm_root;
3220
3221 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3222 if (lm_root == NULL)
3223 return 1;
3224
3225 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3226
3227 vcpu->arch.mmu.lm_root = lm_root;
3228 }
3229
3230 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3231 }
3232
3233 return 0;
3234 }
3235
3236 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3237 {
3238 if (vcpu->arch.mmu.direct_map)
3239 return mmu_alloc_direct_roots(vcpu);
3240 else
3241 return mmu_alloc_shadow_roots(vcpu);
3242 }
3243
3244 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3245 {
3246 int i;
3247 struct kvm_mmu_page *sp;
3248
3249 if (vcpu->arch.mmu.direct_map)
3250 return;
3251
3252 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3253 return;
3254
3255 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3256 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3257 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3258 hpa_t root = vcpu->arch.mmu.root_hpa;
3259 sp = page_header(root);
3260 mmu_sync_children(vcpu, sp);
3261 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262 return;
3263 }
3264 for (i = 0; i < 4; ++i) {
3265 hpa_t root = vcpu->arch.mmu.pae_root[i];
3266
3267 if (root && VALID_PAGE(root)) {
3268 root &= PT64_BASE_ADDR_MASK;
3269 sp = page_header(root);
3270 mmu_sync_children(vcpu, sp);
3271 }
3272 }
3273 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3274 }
3275
3276 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3277 {
3278 spin_lock(&vcpu->kvm->mmu_lock);
3279 mmu_sync_roots(vcpu);
3280 spin_unlock(&vcpu->kvm->mmu_lock);
3281 }
3282 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3283
3284 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3285 u32 access, struct x86_exception *exception)
3286 {
3287 if (exception)
3288 exception->error_code = 0;
3289 return vaddr;
3290 }
3291
3292 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3293 u32 access,
3294 struct x86_exception *exception)
3295 {
3296 if (exception)
3297 exception->error_code = 0;
3298 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3299 }
3300
3301 static bool
3302 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3303 {
3304 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3305
3306 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3307 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3308 }
3309
3310 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3311 {
3312 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3313 }
3314
3315 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3316 {
3317 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3318 }
3319
3320 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3321 {
3322 if (direct)
3323 return vcpu_match_mmio_gpa(vcpu, addr);
3324
3325 return vcpu_match_mmio_gva(vcpu, addr);
3326 }
3327
3328 /* return true if reserved bit is detected on spte. */
3329 static bool
3330 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3331 {
3332 struct kvm_shadow_walk_iterator iterator;
3333 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3334 int root, leaf;
3335 bool reserved = false;
3336
3337 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3338 goto exit;
3339
3340 walk_shadow_page_lockless_begin(vcpu);
3341
3342 for (shadow_walk_init(&iterator, vcpu, addr),
3343 leaf = root = iterator.level;
3344 shadow_walk_okay(&iterator);
3345 __shadow_walk_next(&iterator, spte)) {
3346 spte = mmu_spte_get_lockless(iterator.sptep);
3347
3348 sptes[leaf - 1] = spte;
3349 leaf--;
3350
3351 if (!is_shadow_present_pte(spte))
3352 break;
3353
3354 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3355 iterator.level);
3356 }
3357
3358 walk_shadow_page_lockless_end(vcpu);
3359
3360 if (reserved) {
3361 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3362 __func__, addr);
3363 while (root > leaf) {
3364 pr_err("------ spte 0x%llx level %d.\n",
3365 sptes[root - 1], root);
3366 root--;
3367 }
3368 }
3369 exit:
3370 *sptep = spte;
3371 return reserved;
3372 }
3373
3374 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3375 {
3376 u64 spte;
3377 bool reserved;
3378
3379 if (mmio_info_in_cache(vcpu, addr, direct))
3380 return RET_MMIO_PF_EMULATE;
3381
3382 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3383 if (WARN_ON(reserved))
3384 return RET_MMIO_PF_BUG;
3385
3386 if (is_mmio_spte(spte)) {
3387 gfn_t gfn = get_mmio_spte_gfn(spte);
3388 unsigned access = get_mmio_spte_access(spte);
3389
3390 if (!check_mmio_spte(vcpu, spte))
3391 return RET_MMIO_PF_INVALID;
3392
3393 if (direct)
3394 addr = 0;
3395
3396 trace_handle_mmio_page_fault(addr, gfn, access);
3397 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3398 return RET_MMIO_PF_EMULATE;
3399 }
3400
3401 /*
3402 * If the page table is zapped by other cpus, let CPU fault again on
3403 * the address.
3404 */
3405 return RET_MMIO_PF_RETRY;
3406 }
3407 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3408
3409 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3410 u32 error_code, gfn_t gfn)
3411 {
3412 if (unlikely(error_code & PFERR_RSVD_MASK))
3413 return false;
3414
3415 if (!(error_code & PFERR_PRESENT_MASK) ||
3416 !(error_code & PFERR_WRITE_MASK))
3417 return false;
3418
3419 /*
3420 * guest is writing the page which is write tracked which can
3421 * not be fixed by page fault handler.
3422 */
3423 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3424 return true;
3425
3426 return false;
3427 }
3428
3429 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3430 {
3431 struct kvm_shadow_walk_iterator iterator;
3432 u64 spte;
3433
3434 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3435 return;
3436
3437 walk_shadow_page_lockless_begin(vcpu);
3438 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3439 clear_sp_write_flooding_count(iterator.sptep);
3440 if (!is_shadow_present_pte(spte))
3441 break;
3442 }
3443 walk_shadow_page_lockless_end(vcpu);
3444 }
3445
3446 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3447 u32 error_code, bool prefault)
3448 {
3449 gfn_t gfn = gva >> PAGE_SHIFT;
3450 int r;
3451
3452 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3453
3454 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3455 return 1;
3456
3457 r = mmu_topup_memory_caches(vcpu);
3458 if (r)
3459 return r;
3460
3461 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3462
3463
3464 return nonpaging_map(vcpu, gva & PAGE_MASK,
3465 error_code, gfn, prefault);
3466 }
3467
3468 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3469 {
3470 struct kvm_arch_async_pf arch;
3471
3472 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3473 arch.gfn = gfn;
3474 arch.direct_map = vcpu->arch.mmu.direct_map;
3475 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3476
3477 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3478 }
3479
3480 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3481 {
3482 if (unlikely(!lapic_in_kernel(vcpu) ||
3483 kvm_event_needs_reinjection(vcpu)))
3484 return false;
3485
3486 return kvm_x86_ops->interrupt_allowed(vcpu);
3487 }
3488
3489 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3490 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3491 {
3492 struct kvm_memory_slot *slot;
3493 bool async;
3494
3495 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3496 async = false;
3497 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3498 if (!async)
3499 return false; /* *pfn has correct page already */
3500
3501 if (!prefault && can_do_async_pf(vcpu)) {
3502 trace_kvm_try_async_get_page(gva, gfn);
3503 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3504 trace_kvm_async_pf_doublefault(gva, gfn);
3505 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3506 return true;
3507 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3508 return true;
3509 }
3510
3511 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3512 return false;
3513 }
3514
3515 static bool
3516 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3517 {
3518 int page_num = KVM_PAGES_PER_HPAGE(level);
3519
3520 gfn &= ~(page_num - 1);
3521
3522 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3523 }
3524
3525 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3526 bool prefault)
3527 {
3528 kvm_pfn_t pfn;
3529 int r;
3530 int level;
3531 bool force_pt_level;
3532 gfn_t gfn = gpa >> PAGE_SHIFT;
3533 unsigned long mmu_seq;
3534 int write = error_code & PFERR_WRITE_MASK;
3535 bool map_writable;
3536
3537 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3538
3539 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3540 return 1;
3541
3542 r = mmu_topup_memory_caches(vcpu);
3543 if (r)
3544 return r;
3545
3546 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3547 PT_DIRECTORY_LEVEL);
3548 level = mapping_level(vcpu, gfn, &force_pt_level);
3549 if (likely(!force_pt_level)) {
3550 if (level > PT_DIRECTORY_LEVEL &&
3551 !check_hugepage_cache_consistency(vcpu, gfn, level))
3552 level = PT_DIRECTORY_LEVEL;
3553 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3554 }
3555
3556 if (fast_page_fault(vcpu, gpa, level, error_code))
3557 return 0;
3558
3559 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3560 smp_rmb();
3561
3562 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3563 return 0;
3564
3565 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3566 return r;
3567
3568 spin_lock(&vcpu->kvm->mmu_lock);
3569 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3570 goto out_unlock;
3571 make_mmu_pages_available(vcpu);
3572 if (likely(!force_pt_level))
3573 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3574 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3575 spin_unlock(&vcpu->kvm->mmu_lock);
3576
3577 return r;
3578
3579 out_unlock:
3580 spin_unlock(&vcpu->kvm->mmu_lock);
3581 kvm_release_pfn_clean(pfn);
3582 return 0;
3583 }
3584
3585 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3586 struct kvm_mmu *context)
3587 {
3588 context->page_fault = nonpaging_page_fault;
3589 context->gva_to_gpa = nonpaging_gva_to_gpa;
3590 context->sync_page = nonpaging_sync_page;
3591 context->invlpg = nonpaging_invlpg;
3592 context->update_pte = nonpaging_update_pte;
3593 context->root_level = 0;
3594 context->shadow_root_level = PT32E_ROOT_LEVEL;
3595 context->root_hpa = INVALID_PAGE;
3596 context->direct_map = true;
3597 context->nx = false;
3598 }
3599
3600 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3601 {
3602 mmu_free_roots(vcpu);
3603 }
3604
3605 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3606 {
3607 return kvm_read_cr3(vcpu);
3608 }
3609
3610 static void inject_page_fault(struct kvm_vcpu *vcpu,
3611 struct x86_exception *fault)
3612 {
3613 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3614 }
3615
3616 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3617 unsigned access, int *nr_present)
3618 {
3619 if (unlikely(is_mmio_spte(*sptep))) {
3620 if (gfn != get_mmio_spte_gfn(*sptep)) {
3621 mmu_spte_clear_no_track(sptep);
3622 return true;
3623 }
3624
3625 (*nr_present)++;
3626 mark_mmio_spte(vcpu, sptep, gfn, access);
3627 return true;
3628 }
3629
3630 return false;
3631 }
3632
3633 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3634 unsigned level, unsigned gpte)
3635 {
3636 /*
3637 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3638 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3639 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3640 */
3641 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3642
3643 /*
3644 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3645 * If it is clear, there are no large pages at this level, so clear
3646 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3647 */
3648 gpte &= level - mmu->last_nonleaf_level;
3649
3650 return gpte & PT_PAGE_SIZE_MASK;
3651 }
3652
3653 #define PTTYPE_EPT 18 /* arbitrary */
3654 #define PTTYPE PTTYPE_EPT
3655 #include "paging_tmpl.h"
3656 #undef PTTYPE
3657
3658 #define PTTYPE 64
3659 #include "paging_tmpl.h"
3660 #undef PTTYPE
3661
3662 #define PTTYPE 32
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 static void
3667 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3668 struct rsvd_bits_validate *rsvd_check,
3669 int maxphyaddr, int level, bool nx, bool gbpages,
3670 bool pse, bool amd)
3671 {
3672 u64 exb_bit_rsvd = 0;
3673 u64 gbpages_bit_rsvd = 0;
3674 u64 nonleaf_bit8_rsvd = 0;
3675
3676 rsvd_check->bad_mt_xwr = 0;
3677
3678 if (!nx)
3679 exb_bit_rsvd = rsvd_bits(63, 63);
3680 if (!gbpages)
3681 gbpages_bit_rsvd = rsvd_bits(7, 7);
3682
3683 /*
3684 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3685 * leaf entries) on AMD CPUs only.
3686 */
3687 if (amd)
3688 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3689
3690 switch (level) {
3691 case PT32_ROOT_LEVEL:
3692 /* no rsvd bits for 2 level 4K page table entries */
3693 rsvd_check->rsvd_bits_mask[0][1] = 0;
3694 rsvd_check->rsvd_bits_mask[0][0] = 0;
3695 rsvd_check->rsvd_bits_mask[1][0] =
3696 rsvd_check->rsvd_bits_mask[0][0];
3697
3698 if (!pse) {
3699 rsvd_check->rsvd_bits_mask[1][1] = 0;
3700 break;
3701 }
3702
3703 if (is_cpuid_PSE36())
3704 /* 36bits PSE 4MB page */
3705 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3706 else
3707 /* 32 bits PSE 4MB page */
3708 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3709 break;
3710 case PT32E_ROOT_LEVEL:
3711 rsvd_check->rsvd_bits_mask[0][2] =
3712 rsvd_bits(maxphyaddr, 63) |
3713 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3714 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3715 rsvd_bits(maxphyaddr, 62); /* PDE */
3716 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3717 rsvd_bits(maxphyaddr, 62); /* PTE */
3718 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3719 rsvd_bits(maxphyaddr, 62) |
3720 rsvd_bits(13, 20); /* large page */
3721 rsvd_check->rsvd_bits_mask[1][0] =
3722 rsvd_check->rsvd_bits_mask[0][0];
3723 break;
3724 case PT64_ROOT_LEVEL:
3725 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3726 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3727 rsvd_bits(maxphyaddr, 51);
3728 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3729 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3730 rsvd_bits(maxphyaddr, 51);
3731 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3732 rsvd_bits(maxphyaddr, 51);
3733 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3734 rsvd_bits(maxphyaddr, 51);
3735 rsvd_check->rsvd_bits_mask[1][3] =
3736 rsvd_check->rsvd_bits_mask[0][3];
3737 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3738 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3739 rsvd_bits(13, 29);
3740 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3741 rsvd_bits(maxphyaddr, 51) |
3742 rsvd_bits(13, 20); /* large page */
3743 rsvd_check->rsvd_bits_mask[1][0] =
3744 rsvd_check->rsvd_bits_mask[0][0];
3745 break;
3746 }
3747 }
3748
3749 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3750 struct kvm_mmu *context)
3751 {
3752 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3753 cpuid_maxphyaddr(vcpu), context->root_level,
3754 context->nx, guest_cpuid_has_gbpages(vcpu),
3755 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3756 }
3757
3758 static void
3759 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3760 int maxphyaddr, bool execonly)
3761 {
3762 u64 bad_mt_xwr;
3763
3764 rsvd_check->rsvd_bits_mask[0][3] =
3765 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3766 rsvd_check->rsvd_bits_mask[0][2] =
3767 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3768 rsvd_check->rsvd_bits_mask[0][1] =
3769 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3770 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3771
3772 /* large page */
3773 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3774 rsvd_check->rsvd_bits_mask[1][2] =
3775 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3776 rsvd_check->rsvd_bits_mask[1][1] =
3777 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3778 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3779
3780 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
3781 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
3782 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
3783 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3784 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3785 if (!execonly) {
3786 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3787 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3788 }
3789 rsvd_check->bad_mt_xwr = bad_mt_xwr;
3790 }
3791
3792 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3793 struct kvm_mmu *context, bool execonly)
3794 {
3795 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3796 cpuid_maxphyaddr(vcpu), execonly);
3797 }
3798
3799 /*
3800 * the page table on host is the shadow page table for the page
3801 * table in guest or amd nested guest, its mmu features completely
3802 * follow the features in guest.
3803 */
3804 void
3805 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3806 {
3807 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3808
3809 /*
3810 * Passing "true" to the last argument is okay; it adds a check
3811 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3812 */
3813 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3814 boot_cpu_data.x86_phys_bits,
3815 context->shadow_root_level, uses_nx,
3816 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3817 true);
3818 }
3819 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3820
3821 static inline bool boot_cpu_is_amd(void)
3822 {
3823 WARN_ON_ONCE(!tdp_enabled);
3824 return shadow_x_mask == 0;
3825 }
3826
3827 /*
3828 * the direct page table on host, use as much mmu features as
3829 * possible, however, kvm currently does not do execution-protection.
3830 */
3831 static void
3832 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3833 struct kvm_mmu *context)
3834 {
3835 if (boot_cpu_is_amd())
3836 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3837 boot_cpu_data.x86_phys_bits,
3838 context->shadow_root_level, false,
3839 cpu_has_gbpages, true, true);
3840 else
3841 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3842 boot_cpu_data.x86_phys_bits,
3843 false);
3844
3845 }
3846
3847 /*
3848 * as the comments in reset_shadow_zero_bits_mask() except it
3849 * is the shadow page table for intel nested guest.
3850 */
3851 static void
3852 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3853 struct kvm_mmu *context, bool execonly)
3854 {
3855 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3856 boot_cpu_data.x86_phys_bits, execonly);
3857 }
3858
3859 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3860 struct kvm_mmu *mmu, bool ept)
3861 {
3862 unsigned bit, byte, pfec;
3863 u8 map;
3864 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3865
3866 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3867 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3868 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3869 pfec = byte << 1;
3870 map = 0;
3871 wf = pfec & PFERR_WRITE_MASK;
3872 uf = pfec & PFERR_USER_MASK;
3873 ff = pfec & PFERR_FETCH_MASK;
3874 /*
3875 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3876 * subject to SMAP restrictions, and cleared otherwise. The
3877 * bit is only meaningful if the SMAP bit is set in CR4.
3878 */
3879 smapf = !(pfec & PFERR_RSVD_MASK);
3880 for (bit = 0; bit < 8; ++bit) {
3881 x = bit & ACC_EXEC_MASK;
3882 w = bit & ACC_WRITE_MASK;
3883 u = bit & ACC_USER_MASK;
3884
3885 if (!ept) {
3886 /* Not really needed: !nx will cause pte.nx to fault */
3887 x |= !mmu->nx;
3888 /* Allow supervisor writes if !cr0.wp */
3889 w |= !is_write_protection(vcpu) && !uf;
3890 /* Disallow supervisor fetches of user code if cr4.smep */
3891 x &= !(cr4_smep && u && !uf);
3892
3893 /*
3894 * SMAP:kernel-mode data accesses from user-mode
3895 * mappings should fault. A fault is considered
3896 * as a SMAP violation if all of the following
3897 * conditions are ture:
3898 * - X86_CR4_SMAP is set in CR4
3899 * - An user page is accessed
3900 * - Page fault in kernel mode
3901 * - if CPL = 3 or X86_EFLAGS_AC is clear
3902 *
3903 * Here, we cover the first three conditions.
3904 * The fourth is computed dynamically in
3905 * permission_fault() and is in smapf.
3906 *
3907 * Also, SMAP does not affect instruction
3908 * fetches, add the !ff check here to make it
3909 * clearer.
3910 */
3911 smap = cr4_smap && u && !uf && !ff;
3912 } else
3913 /* Not really needed: no U/S accesses on ept */
3914 u = 1;
3915
3916 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3917 (smapf && smap);
3918 map |= fault << bit;
3919 }
3920 mmu->permissions[byte] = map;
3921 }
3922 }
3923
3924 /*
3925 * PKU is an additional mechanism by which the paging controls access to
3926 * user-mode addresses based on the value in the PKRU register. Protection
3927 * key violations are reported through a bit in the page fault error code.
3928 * Unlike other bits of the error code, the PK bit is not known at the
3929 * call site of e.g. gva_to_gpa; it must be computed directly in
3930 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3931 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3932 *
3933 * In particular the following conditions come from the error code, the
3934 * page tables and the machine state:
3935 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3936 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3937 * - PK is always zero if U=0 in the page tables
3938 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3939 *
3940 * The PKRU bitmask caches the result of these four conditions. The error
3941 * code (minus the P bit) and the page table's U bit form an index into the
3942 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3943 * with the two bits of the PKRU register corresponding to the protection key.
3944 * For the first three conditions above the bits will be 00, thus masking
3945 * away both AD and WD. For all reads or if the last condition holds, WD
3946 * only will be masked away.
3947 */
3948 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3949 bool ept)
3950 {
3951 unsigned bit;
3952 bool wp;
3953
3954 if (ept) {
3955 mmu->pkru_mask = 0;
3956 return;
3957 }
3958
3959 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3960 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3961 mmu->pkru_mask = 0;
3962 return;
3963 }
3964
3965 wp = is_write_protection(vcpu);
3966
3967 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3968 unsigned pfec, pkey_bits;
3969 bool check_pkey, check_write, ff, uf, wf, pte_user;
3970
3971 pfec = bit << 1;
3972 ff = pfec & PFERR_FETCH_MASK;
3973 uf = pfec & PFERR_USER_MASK;
3974 wf = pfec & PFERR_WRITE_MASK;
3975
3976 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3977 pte_user = pfec & PFERR_RSVD_MASK;
3978
3979 /*
3980 * Only need to check the access which is not an
3981 * instruction fetch and is to a user page.
3982 */
3983 check_pkey = (!ff && pte_user);
3984 /*
3985 * write access is controlled by PKRU if it is a
3986 * user access or CR0.WP = 1.
3987 */
3988 check_write = check_pkey && wf && (uf || wp);
3989
3990 /* PKRU.AD stops both read and write access. */
3991 pkey_bits = !!check_pkey;
3992 /* PKRU.WD stops write access. */
3993 pkey_bits |= (!!check_write) << 1;
3994
3995 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
3996 }
3997 }
3998
3999 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4000 {
4001 unsigned root_level = mmu->root_level;
4002
4003 mmu->last_nonleaf_level = root_level;
4004 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4005 mmu->last_nonleaf_level++;
4006 }
4007
4008 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4009 struct kvm_mmu *context,
4010 int level)
4011 {
4012 context->nx = is_nx(vcpu);
4013 context->root_level = level;
4014
4015 reset_rsvds_bits_mask(vcpu, context);
4016 update_permission_bitmask(vcpu, context, false);
4017 update_pkru_bitmask(vcpu, context, false);
4018 update_last_nonleaf_level(vcpu, context);
4019
4020 MMU_WARN_ON(!is_pae(vcpu));
4021 context->page_fault = paging64_page_fault;
4022 context->gva_to_gpa = paging64_gva_to_gpa;
4023 context->sync_page = paging64_sync_page;
4024 context->invlpg = paging64_invlpg;
4025 context->update_pte = paging64_update_pte;
4026 context->shadow_root_level = level;
4027 context->root_hpa = INVALID_PAGE;
4028 context->direct_map = false;
4029 }
4030
4031 static void paging64_init_context(struct kvm_vcpu *vcpu,
4032 struct kvm_mmu *context)
4033 {
4034 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4035 }
4036
4037 static void paging32_init_context(struct kvm_vcpu *vcpu,
4038 struct kvm_mmu *context)
4039 {
4040 context->nx = false;
4041 context->root_level = PT32_ROOT_LEVEL;
4042
4043 reset_rsvds_bits_mask(vcpu, context);
4044 update_permission_bitmask(vcpu, context, false);
4045 update_pkru_bitmask(vcpu, context, false);
4046 update_last_nonleaf_level(vcpu, context);
4047
4048 context->page_fault = paging32_page_fault;
4049 context->gva_to_gpa = paging32_gva_to_gpa;
4050 context->sync_page = paging32_sync_page;
4051 context->invlpg = paging32_invlpg;
4052 context->update_pte = paging32_update_pte;
4053 context->shadow_root_level = PT32E_ROOT_LEVEL;
4054 context->root_hpa = INVALID_PAGE;
4055 context->direct_map = false;
4056 }
4057
4058 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4059 struct kvm_mmu *context)
4060 {
4061 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4062 }
4063
4064 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4065 {
4066 struct kvm_mmu *context = &vcpu->arch.mmu;
4067
4068 context->base_role.word = 0;
4069 context->base_role.smm = is_smm(vcpu);
4070 context->page_fault = tdp_page_fault;
4071 context->sync_page = nonpaging_sync_page;
4072 context->invlpg = nonpaging_invlpg;
4073 context->update_pte = nonpaging_update_pte;
4074 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4075 context->root_hpa = INVALID_PAGE;
4076 context->direct_map = true;
4077 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4078 context->get_cr3 = get_cr3;
4079 context->get_pdptr = kvm_pdptr_read;
4080 context->inject_page_fault = kvm_inject_page_fault;
4081
4082 if (!is_paging(vcpu)) {
4083 context->nx = false;
4084 context->gva_to_gpa = nonpaging_gva_to_gpa;
4085 context->root_level = 0;
4086 } else if (is_long_mode(vcpu)) {
4087 context->nx = is_nx(vcpu);
4088 context->root_level = PT64_ROOT_LEVEL;
4089 reset_rsvds_bits_mask(vcpu, context);
4090 context->gva_to_gpa = paging64_gva_to_gpa;
4091 } else if (is_pae(vcpu)) {
4092 context->nx = is_nx(vcpu);
4093 context->root_level = PT32E_ROOT_LEVEL;
4094 reset_rsvds_bits_mask(vcpu, context);
4095 context->gva_to_gpa = paging64_gva_to_gpa;
4096 } else {
4097 context->nx = false;
4098 context->root_level = PT32_ROOT_LEVEL;
4099 reset_rsvds_bits_mask(vcpu, context);
4100 context->gva_to_gpa = paging32_gva_to_gpa;
4101 }
4102
4103 update_permission_bitmask(vcpu, context, false);
4104 update_pkru_bitmask(vcpu, context, false);
4105 update_last_nonleaf_level(vcpu, context);
4106 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4107 }
4108
4109 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4110 {
4111 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4112 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4113 struct kvm_mmu *context = &vcpu->arch.mmu;
4114
4115 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4116
4117 if (!is_paging(vcpu))
4118 nonpaging_init_context(vcpu, context);
4119 else if (is_long_mode(vcpu))
4120 paging64_init_context(vcpu, context);
4121 else if (is_pae(vcpu))
4122 paging32E_init_context(vcpu, context);
4123 else
4124 paging32_init_context(vcpu, context);
4125
4126 context->base_role.nxe = is_nx(vcpu);
4127 context->base_role.cr4_pae = !!is_pae(vcpu);
4128 context->base_role.cr0_wp = is_write_protection(vcpu);
4129 context->base_role.smep_andnot_wp
4130 = smep && !is_write_protection(vcpu);
4131 context->base_role.smap_andnot_wp
4132 = smap && !is_write_protection(vcpu);
4133 context->base_role.smm = is_smm(vcpu);
4134 reset_shadow_zero_bits_mask(vcpu, context);
4135 }
4136 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4137
4138 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4139 {
4140 struct kvm_mmu *context = &vcpu->arch.mmu;
4141
4142 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4143
4144 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4145
4146 context->nx = true;
4147 context->page_fault = ept_page_fault;
4148 context->gva_to_gpa = ept_gva_to_gpa;
4149 context->sync_page = ept_sync_page;
4150 context->invlpg = ept_invlpg;
4151 context->update_pte = ept_update_pte;
4152 context->root_level = context->shadow_root_level;
4153 context->root_hpa = INVALID_PAGE;
4154 context->direct_map = false;
4155
4156 update_permission_bitmask(vcpu, context, true);
4157 update_pkru_bitmask(vcpu, context, true);
4158 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4159 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4160 }
4161 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4162
4163 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4164 {
4165 struct kvm_mmu *context = &vcpu->arch.mmu;
4166
4167 kvm_init_shadow_mmu(vcpu);
4168 context->set_cr3 = kvm_x86_ops->set_cr3;
4169 context->get_cr3 = get_cr3;
4170 context->get_pdptr = kvm_pdptr_read;
4171 context->inject_page_fault = kvm_inject_page_fault;
4172 }
4173
4174 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4175 {
4176 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4177
4178 g_context->get_cr3 = get_cr3;
4179 g_context->get_pdptr = kvm_pdptr_read;
4180 g_context->inject_page_fault = kvm_inject_page_fault;
4181
4182 /*
4183 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4184 * L1's nested page tables (e.g. EPT12). The nested translation
4185 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4186 * L2's page tables as the first level of translation and L1's
4187 * nested page tables as the second level of translation. Basically
4188 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4189 */
4190 if (!is_paging(vcpu)) {
4191 g_context->nx = false;
4192 g_context->root_level = 0;
4193 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4194 } else if (is_long_mode(vcpu)) {
4195 g_context->nx = is_nx(vcpu);
4196 g_context->root_level = PT64_ROOT_LEVEL;
4197 reset_rsvds_bits_mask(vcpu, g_context);
4198 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4199 } else if (is_pae(vcpu)) {
4200 g_context->nx = is_nx(vcpu);
4201 g_context->root_level = PT32E_ROOT_LEVEL;
4202 reset_rsvds_bits_mask(vcpu, g_context);
4203 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4204 } else {
4205 g_context->nx = false;
4206 g_context->root_level = PT32_ROOT_LEVEL;
4207 reset_rsvds_bits_mask(vcpu, g_context);
4208 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4209 }
4210
4211 update_permission_bitmask(vcpu, g_context, false);
4212 update_pkru_bitmask(vcpu, g_context, false);
4213 update_last_nonleaf_level(vcpu, g_context);
4214 }
4215
4216 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4217 {
4218 if (mmu_is_nested(vcpu))
4219 init_kvm_nested_mmu(vcpu);
4220 else if (tdp_enabled)
4221 init_kvm_tdp_mmu(vcpu);
4222 else
4223 init_kvm_softmmu(vcpu);
4224 }
4225
4226 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4227 {
4228 kvm_mmu_unload(vcpu);
4229 init_kvm_mmu(vcpu);
4230 }
4231 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4232
4233 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4234 {
4235 int r;
4236
4237 r = mmu_topup_memory_caches(vcpu);
4238 if (r)
4239 goto out;
4240 r = mmu_alloc_roots(vcpu);
4241 kvm_mmu_sync_roots(vcpu);
4242 if (r)
4243 goto out;
4244 /* set_cr3() should ensure TLB has been flushed */
4245 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4246 out:
4247 return r;
4248 }
4249 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4250
4251 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4252 {
4253 mmu_free_roots(vcpu);
4254 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4255 }
4256 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4257
4258 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4259 struct kvm_mmu_page *sp, u64 *spte,
4260 const void *new)
4261 {
4262 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4263 ++vcpu->kvm->stat.mmu_pde_zapped;
4264 return;
4265 }
4266
4267 ++vcpu->kvm->stat.mmu_pte_updated;
4268 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4269 }
4270
4271 static bool need_remote_flush(u64 old, u64 new)
4272 {
4273 if (!is_shadow_present_pte(old))
4274 return false;
4275 if (!is_shadow_present_pte(new))
4276 return true;
4277 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4278 return true;
4279 old ^= shadow_nx_mask;
4280 new ^= shadow_nx_mask;
4281 return (old & ~new & PT64_PERM_MASK) != 0;
4282 }
4283
4284 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4285 const u8 *new, int *bytes)
4286 {
4287 u64 gentry;
4288 int r;
4289
4290 /*
4291 * Assume that the pte write on a page table of the same type
4292 * as the current vcpu paging mode since we update the sptes only
4293 * when they have the same mode.
4294 */
4295 if (is_pae(vcpu) && *bytes == 4) {
4296 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4297 *gpa &= ~(gpa_t)7;
4298 *bytes = 8;
4299 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4300 if (r)
4301 gentry = 0;
4302 new = (const u8 *)&gentry;
4303 }
4304
4305 switch (*bytes) {
4306 case 4:
4307 gentry = *(const u32 *)new;
4308 break;
4309 case 8:
4310 gentry = *(const u64 *)new;
4311 break;
4312 default:
4313 gentry = 0;
4314 break;
4315 }
4316
4317 return gentry;
4318 }
4319
4320 /*
4321 * If we're seeing too many writes to a page, it may no longer be a page table,
4322 * or we may be forking, in which case it is better to unmap the page.
4323 */
4324 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4325 {
4326 /*
4327 * Skip write-flooding detected for the sp whose level is 1, because
4328 * it can become unsync, then the guest page is not write-protected.
4329 */
4330 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4331 return false;
4332
4333 atomic_inc(&sp->write_flooding_count);
4334 return atomic_read(&sp->write_flooding_count) >= 3;
4335 }
4336
4337 /*
4338 * Misaligned accesses are too much trouble to fix up; also, they usually
4339 * indicate a page is not used as a page table.
4340 */
4341 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4342 int bytes)
4343 {
4344 unsigned offset, pte_size, misaligned;
4345
4346 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4347 gpa, bytes, sp->role.word);
4348
4349 offset = offset_in_page(gpa);
4350 pte_size = sp->role.cr4_pae ? 8 : 4;
4351
4352 /*
4353 * Sometimes, the OS only writes the last one bytes to update status
4354 * bits, for example, in linux, andb instruction is used in clear_bit().
4355 */
4356 if (!(offset & (pte_size - 1)) && bytes == 1)
4357 return false;
4358
4359 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4360 misaligned |= bytes < 4;
4361
4362 return misaligned;
4363 }
4364
4365 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4366 {
4367 unsigned page_offset, quadrant;
4368 u64 *spte;
4369 int level;
4370
4371 page_offset = offset_in_page(gpa);
4372 level = sp->role.level;
4373 *nspte = 1;
4374 if (!sp->role.cr4_pae) {
4375 page_offset <<= 1; /* 32->64 */
4376 /*
4377 * A 32-bit pde maps 4MB while the shadow pdes map
4378 * only 2MB. So we need to double the offset again
4379 * and zap two pdes instead of one.
4380 */
4381 if (level == PT32_ROOT_LEVEL) {
4382 page_offset &= ~7; /* kill rounding error */
4383 page_offset <<= 1;
4384 *nspte = 2;
4385 }
4386 quadrant = page_offset >> PAGE_SHIFT;
4387 page_offset &= ~PAGE_MASK;
4388 if (quadrant != sp->role.quadrant)
4389 return NULL;
4390 }
4391
4392 spte = &sp->spt[page_offset / sizeof(*spte)];
4393 return spte;
4394 }
4395
4396 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4397 const u8 *new, int bytes)
4398 {
4399 gfn_t gfn = gpa >> PAGE_SHIFT;
4400 struct kvm_mmu_page *sp;
4401 LIST_HEAD(invalid_list);
4402 u64 entry, gentry, *spte;
4403 int npte;
4404 bool remote_flush, local_flush;
4405 union kvm_mmu_page_role mask = { };
4406
4407 mask.cr0_wp = 1;
4408 mask.cr4_pae = 1;
4409 mask.nxe = 1;
4410 mask.smep_andnot_wp = 1;
4411 mask.smap_andnot_wp = 1;
4412 mask.smm = 1;
4413
4414 /*
4415 * If we don't have indirect shadow pages, it means no page is
4416 * write-protected, so we can exit simply.
4417 */
4418 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4419 return;
4420
4421 remote_flush = local_flush = false;
4422
4423 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4424
4425 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4426
4427 /*
4428 * No need to care whether allocation memory is successful
4429 * or not since pte prefetch is skiped if it does not have
4430 * enough objects in the cache.
4431 */
4432 mmu_topup_memory_caches(vcpu);
4433
4434 spin_lock(&vcpu->kvm->mmu_lock);
4435 ++vcpu->kvm->stat.mmu_pte_write;
4436 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4437
4438 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4439 if (detect_write_misaligned(sp, gpa, bytes) ||
4440 detect_write_flooding(sp)) {
4441 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4442 ++vcpu->kvm->stat.mmu_flooded;
4443 continue;
4444 }
4445
4446 spte = get_written_sptes(sp, gpa, &npte);
4447 if (!spte)
4448 continue;
4449
4450 local_flush = true;
4451 while (npte--) {
4452 entry = *spte;
4453 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4454 if (gentry &&
4455 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4456 & mask.word) && rmap_can_add(vcpu))
4457 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4458 if (need_remote_flush(entry, *spte))
4459 remote_flush = true;
4460 ++spte;
4461 }
4462 }
4463 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4464 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4465 spin_unlock(&vcpu->kvm->mmu_lock);
4466 }
4467
4468 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4469 {
4470 gpa_t gpa;
4471 int r;
4472
4473 if (vcpu->arch.mmu.direct_map)
4474 return 0;
4475
4476 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4477
4478 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4479
4480 return r;
4481 }
4482 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4483
4484 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4485 {
4486 LIST_HEAD(invalid_list);
4487
4488 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4489 return;
4490
4491 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4492 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4493 break;
4494
4495 ++vcpu->kvm->stat.mmu_recycled;
4496 }
4497 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4498 }
4499
4500 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4501 void *insn, int insn_len)
4502 {
4503 int r, emulation_type = EMULTYPE_RETRY;
4504 enum emulation_result er;
4505 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4506
4507 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4508 r = handle_mmio_page_fault(vcpu, cr2, direct);
4509 if (r == RET_MMIO_PF_EMULATE) {
4510 emulation_type = 0;
4511 goto emulate;
4512 }
4513 if (r == RET_MMIO_PF_RETRY)
4514 return 1;
4515 if (r < 0)
4516 return r;
4517 }
4518
4519 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4520 if (r < 0)
4521 return r;
4522 if (!r)
4523 return 1;
4524
4525 if (mmio_info_in_cache(vcpu, cr2, direct))
4526 emulation_type = 0;
4527 emulate:
4528 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4529
4530 switch (er) {
4531 case EMULATE_DONE:
4532 return 1;
4533 case EMULATE_USER_EXIT:
4534 ++vcpu->stat.mmio_exits;
4535 /* fall through */
4536 case EMULATE_FAIL:
4537 return 0;
4538 default:
4539 BUG();
4540 }
4541 }
4542 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4543
4544 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4545 {
4546 vcpu->arch.mmu.invlpg(vcpu, gva);
4547 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4548 ++vcpu->stat.invlpg;
4549 }
4550 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4551
4552 void kvm_enable_tdp(void)
4553 {
4554 tdp_enabled = true;
4555 }
4556 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4557
4558 void kvm_disable_tdp(void)
4559 {
4560 tdp_enabled = false;
4561 }
4562 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4563
4564 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4565 {
4566 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4567 if (vcpu->arch.mmu.lm_root != NULL)
4568 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4569 }
4570
4571 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4572 {
4573 struct page *page;
4574 int i;
4575
4576 /*
4577 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4578 * Therefore we need to allocate shadow page tables in the first
4579 * 4GB of memory, which happens to fit the DMA32 zone.
4580 */
4581 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4582 if (!page)
4583 return -ENOMEM;
4584
4585 vcpu->arch.mmu.pae_root = page_address(page);
4586 for (i = 0; i < 4; ++i)
4587 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4588
4589 return 0;
4590 }
4591
4592 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4593 {
4594 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4595 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4596 vcpu->arch.mmu.translate_gpa = translate_gpa;
4597 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4598
4599 return alloc_mmu_pages(vcpu);
4600 }
4601
4602 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4603 {
4604 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4605
4606 init_kvm_mmu(vcpu);
4607 }
4608
4609 void kvm_mmu_init_vm(struct kvm *kvm)
4610 {
4611 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4612
4613 node->track_write = kvm_mmu_pte_write;
4614 kvm_page_track_register_notifier(kvm, node);
4615 }
4616
4617 void kvm_mmu_uninit_vm(struct kvm *kvm)
4618 {
4619 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4620
4621 kvm_page_track_unregister_notifier(kvm, node);
4622 }
4623
4624 /* The return value indicates if tlb flush on all vcpus is needed. */
4625 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4626
4627 /* The caller should hold mmu-lock before calling this function. */
4628 static bool
4629 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4630 slot_level_handler fn, int start_level, int end_level,
4631 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4632 {
4633 struct slot_rmap_walk_iterator iterator;
4634 bool flush = false;
4635
4636 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4637 end_gfn, &iterator) {
4638 if (iterator.rmap)
4639 flush |= fn(kvm, iterator.rmap);
4640
4641 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4642 if (flush && lock_flush_tlb) {
4643 kvm_flush_remote_tlbs(kvm);
4644 flush = false;
4645 }
4646 cond_resched_lock(&kvm->mmu_lock);
4647 }
4648 }
4649
4650 if (flush && lock_flush_tlb) {
4651 kvm_flush_remote_tlbs(kvm);
4652 flush = false;
4653 }
4654
4655 return flush;
4656 }
4657
4658 static bool
4659 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4660 slot_level_handler fn, int start_level, int end_level,
4661 bool lock_flush_tlb)
4662 {
4663 return slot_handle_level_range(kvm, memslot, fn, start_level,
4664 end_level, memslot->base_gfn,
4665 memslot->base_gfn + memslot->npages - 1,
4666 lock_flush_tlb);
4667 }
4668
4669 static bool
4670 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4671 slot_level_handler fn, bool lock_flush_tlb)
4672 {
4673 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4674 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4675 }
4676
4677 static bool
4678 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4679 slot_level_handler fn, bool lock_flush_tlb)
4680 {
4681 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4682 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4683 }
4684
4685 static bool
4686 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4687 slot_level_handler fn, bool lock_flush_tlb)
4688 {
4689 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4690 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4691 }
4692
4693 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4694 {
4695 struct kvm_memslots *slots;
4696 struct kvm_memory_slot *memslot;
4697 int i;
4698
4699 spin_lock(&kvm->mmu_lock);
4700 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4701 slots = __kvm_memslots(kvm, i);
4702 kvm_for_each_memslot(memslot, slots) {
4703 gfn_t start, end;
4704
4705 start = max(gfn_start, memslot->base_gfn);
4706 end = min(gfn_end, memslot->base_gfn + memslot->npages);
4707 if (start >= end)
4708 continue;
4709
4710 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4711 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4712 start, end - 1, true);
4713 }
4714 }
4715
4716 spin_unlock(&kvm->mmu_lock);
4717 }
4718
4719 static bool slot_rmap_write_protect(struct kvm *kvm,
4720 struct kvm_rmap_head *rmap_head)
4721 {
4722 return __rmap_write_protect(kvm, rmap_head, false);
4723 }
4724
4725 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4726 struct kvm_memory_slot *memslot)
4727 {
4728 bool flush;
4729
4730 spin_lock(&kvm->mmu_lock);
4731 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4732 false);
4733 spin_unlock(&kvm->mmu_lock);
4734
4735 /*
4736 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4737 * which do tlb flush out of mmu-lock should be serialized by
4738 * kvm->slots_lock otherwise tlb flush would be missed.
4739 */
4740 lockdep_assert_held(&kvm->slots_lock);
4741
4742 /*
4743 * We can flush all the TLBs out of the mmu lock without TLB
4744 * corruption since we just change the spte from writable to
4745 * readonly so that we only need to care the case of changing
4746 * spte from present to present (changing the spte from present
4747 * to nonpresent will flush all the TLBs immediately), in other
4748 * words, the only case we care is mmu_spte_update() where we
4749 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4750 * instead of PT_WRITABLE_MASK, that means it does not depend
4751 * on PT_WRITABLE_MASK anymore.
4752 */
4753 if (flush)
4754 kvm_flush_remote_tlbs(kvm);
4755 }
4756
4757 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4758 struct kvm_rmap_head *rmap_head)
4759 {
4760 u64 *sptep;
4761 struct rmap_iterator iter;
4762 int need_tlb_flush = 0;
4763 kvm_pfn_t pfn;
4764 struct kvm_mmu_page *sp;
4765
4766 restart:
4767 for_each_rmap_spte(rmap_head, &iter, sptep) {
4768 sp = page_header(__pa(sptep));
4769 pfn = spte_to_pfn(*sptep);
4770
4771 /*
4772 * We cannot do huge page mapping for indirect shadow pages,
4773 * which are found on the last rmap (level = 1) when not using
4774 * tdp; such shadow pages are synced with the page table in
4775 * the guest, and the guest page table is using 4K page size
4776 * mapping if the indirect sp has level = 1.
4777 */
4778 if (sp->role.direct &&
4779 !kvm_is_reserved_pfn(pfn) &&
4780 PageTransCompound(pfn_to_page(pfn))) {
4781 drop_spte(kvm, sptep);
4782 need_tlb_flush = 1;
4783 goto restart;
4784 }
4785 }
4786
4787 return need_tlb_flush;
4788 }
4789
4790 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4791 const struct kvm_memory_slot *memslot)
4792 {
4793 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4794 spin_lock(&kvm->mmu_lock);
4795 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4796 kvm_mmu_zap_collapsible_spte, true);
4797 spin_unlock(&kvm->mmu_lock);
4798 }
4799
4800 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4801 struct kvm_memory_slot *memslot)
4802 {
4803 bool flush;
4804
4805 spin_lock(&kvm->mmu_lock);
4806 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4807 spin_unlock(&kvm->mmu_lock);
4808
4809 lockdep_assert_held(&kvm->slots_lock);
4810
4811 /*
4812 * It's also safe to flush TLBs out of mmu lock here as currently this
4813 * function is only used for dirty logging, in which case flushing TLB
4814 * out of mmu lock also guarantees no dirty pages will be lost in
4815 * dirty_bitmap.
4816 */
4817 if (flush)
4818 kvm_flush_remote_tlbs(kvm);
4819 }
4820 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4821
4822 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4823 struct kvm_memory_slot *memslot)
4824 {
4825 bool flush;
4826
4827 spin_lock(&kvm->mmu_lock);
4828 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4829 false);
4830 spin_unlock(&kvm->mmu_lock);
4831
4832 /* see kvm_mmu_slot_remove_write_access */
4833 lockdep_assert_held(&kvm->slots_lock);
4834
4835 if (flush)
4836 kvm_flush_remote_tlbs(kvm);
4837 }
4838 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4839
4840 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4841 struct kvm_memory_slot *memslot)
4842 {
4843 bool flush;
4844
4845 spin_lock(&kvm->mmu_lock);
4846 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4847 spin_unlock(&kvm->mmu_lock);
4848
4849 lockdep_assert_held(&kvm->slots_lock);
4850
4851 /* see kvm_mmu_slot_leaf_clear_dirty */
4852 if (flush)
4853 kvm_flush_remote_tlbs(kvm);
4854 }
4855 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4856
4857 #define BATCH_ZAP_PAGES 10
4858 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4859 {
4860 struct kvm_mmu_page *sp, *node;
4861 int batch = 0;
4862
4863 restart:
4864 list_for_each_entry_safe_reverse(sp, node,
4865 &kvm->arch.active_mmu_pages, link) {
4866 int ret;
4867
4868 /*
4869 * No obsolete page exists before new created page since
4870 * active_mmu_pages is the FIFO list.
4871 */
4872 if (!is_obsolete_sp(kvm, sp))
4873 break;
4874
4875 /*
4876 * Since we are reversely walking the list and the invalid
4877 * list will be moved to the head, skip the invalid page
4878 * can help us to avoid the infinity list walking.
4879 */
4880 if (sp->role.invalid)
4881 continue;
4882
4883 /*
4884 * Need not flush tlb since we only zap the sp with invalid
4885 * generation number.
4886 */
4887 if (batch >= BATCH_ZAP_PAGES &&
4888 cond_resched_lock(&kvm->mmu_lock)) {
4889 batch = 0;
4890 goto restart;
4891 }
4892
4893 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4894 &kvm->arch.zapped_obsolete_pages);
4895 batch += ret;
4896
4897 if (ret)
4898 goto restart;
4899 }
4900
4901 /*
4902 * Should flush tlb before free page tables since lockless-walking
4903 * may use the pages.
4904 */
4905 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4906 }
4907
4908 /*
4909 * Fast invalidate all shadow pages and use lock-break technique
4910 * to zap obsolete pages.
4911 *
4912 * It's required when memslot is being deleted or VM is being
4913 * destroyed, in these cases, we should ensure that KVM MMU does
4914 * not use any resource of the being-deleted slot or all slots
4915 * after calling the function.
4916 */
4917 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4918 {
4919 spin_lock(&kvm->mmu_lock);
4920 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4921 kvm->arch.mmu_valid_gen++;
4922
4923 /*
4924 * Notify all vcpus to reload its shadow page table
4925 * and flush TLB. Then all vcpus will switch to new
4926 * shadow page table with the new mmu_valid_gen.
4927 *
4928 * Note: we should do this under the protection of
4929 * mmu-lock, otherwise, vcpu would purge shadow page
4930 * but miss tlb flush.
4931 */
4932 kvm_reload_remote_mmus(kvm);
4933
4934 kvm_zap_obsolete_pages(kvm);
4935 spin_unlock(&kvm->mmu_lock);
4936 }
4937
4938 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4939 {
4940 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4941 }
4942
4943 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4944 {
4945 /*
4946 * The very rare case: if the generation-number is round,
4947 * zap all shadow pages.
4948 */
4949 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4950 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4951 kvm_mmu_invalidate_zap_all_pages(kvm);
4952 }
4953 }
4954
4955 static unsigned long
4956 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4957 {
4958 struct kvm *kvm;
4959 int nr_to_scan = sc->nr_to_scan;
4960 unsigned long freed = 0;
4961
4962 spin_lock(&kvm_lock);
4963
4964 list_for_each_entry(kvm, &vm_list, vm_list) {
4965 int idx;
4966 LIST_HEAD(invalid_list);
4967
4968 /*
4969 * Never scan more than sc->nr_to_scan VM instances.
4970 * Will not hit this condition practically since we do not try
4971 * to shrink more than one VM and it is very unlikely to see
4972 * !n_used_mmu_pages so many times.
4973 */
4974 if (!nr_to_scan--)
4975 break;
4976 /*
4977 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4978 * here. We may skip a VM instance errorneosly, but we do not
4979 * want to shrink a VM that only started to populate its MMU
4980 * anyway.
4981 */
4982 if (!kvm->arch.n_used_mmu_pages &&
4983 !kvm_has_zapped_obsolete_pages(kvm))
4984 continue;
4985
4986 idx = srcu_read_lock(&kvm->srcu);
4987 spin_lock(&kvm->mmu_lock);
4988
4989 if (kvm_has_zapped_obsolete_pages(kvm)) {
4990 kvm_mmu_commit_zap_page(kvm,
4991 &kvm->arch.zapped_obsolete_pages);
4992 goto unlock;
4993 }
4994
4995 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4996 freed++;
4997 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4998
4999 unlock:
5000 spin_unlock(&kvm->mmu_lock);
5001 srcu_read_unlock(&kvm->srcu, idx);
5002
5003 /*
5004 * unfair on small ones
5005 * per-vm shrinkers cry out
5006 * sadness comes quickly
5007 */
5008 list_move_tail(&kvm->vm_list, &vm_list);
5009 break;
5010 }
5011
5012 spin_unlock(&kvm_lock);
5013 return freed;
5014 }
5015
5016 static unsigned long
5017 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5018 {
5019 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5020 }
5021
5022 static struct shrinker mmu_shrinker = {
5023 .count_objects = mmu_shrink_count,
5024 .scan_objects = mmu_shrink_scan,
5025 .seeks = DEFAULT_SEEKS * 10,
5026 };
5027
5028 static void mmu_destroy_caches(void)
5029 {
5030 if (pte_list_desc_cache)
5031 kmem_cache_destroy(pte_list_desc_cache);
5032 if (mmu_page_header_cache)
5033 kmem_cache_destroy(mmu_page_header_cache);
5034 }
5035
5036 int kvm_mmu_module_init(void)
5037 {
5038 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5039 sizeof(struct pte_list_desc),
5040 0, 0, NULL);
5041 if (!pte_list_desc_cache)
5042 goto nomem;
5043
5044 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5045 sizeof(struct kvm_mmu_page),
5046 0, 0, NULL);
5047 if (!mmu_page_header_cache)
5048 goto nomem;
5049
5050 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5051 goto nomem;
5052
5053 register_shrinker(&mmu_shrinker);
5054
5055 return 0;
5056
5057 nomem:
5058 mmu_destroy_caches();
5059 return -ENOMEM;
5060 }
5061
5062 /*
5063 * Caculate mmu pages needed for kvm.
5064 */
5065 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5066 {
5067 unsigned int nr_mmu_pages;
5068 unsigned int nr_pages = 0;
5069 struct kvm_memslots *slots;
5070 struct kvm_memory_slot *memslot;
5071 int i;
5072
5073 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5074 slots = __kvm_memslots(kvm, i);
5075
5076 kvm_for_each_memslot(memslot, slots)
5077 nr_pages += memslot->npages;
5078 }
5079
5080 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5081 nr_mmu_pages = max(nr_mmu_pages,
5082 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5083
5084 return nr_mmu_pages;
5085 }
5086
5087 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5088 {
5089 kvm_mmu_unload(vcpu);
5090 free_mmu_pages(vcpu);
5091 mmu_free_memory_caches(vcpu);
5092 }
5093
5094 void kvm_mmu_module_exit(void)
5095 {
5096 mmu_destroy_caches();
5097 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5098 unregister_shrinker(&mmu_shrinker);
5099 mmu_audit_disable();
5100 }
This page took 0.125584 seconds and 6 git commands to generate.