x86: Fix step size adjustment during initial memory mapping
[deliverable/linux.git] / arch / x86 / mm / init.c
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7
8 #include <asm/cacheflush.h>
9 #include <asm/e820.h>
10 #include <asm/init.h>
11 #include <asm/page.h>
12 #include <asm/page_types.h>
13 #include <asm/sections.h>
14 #include <asm/setup.h>
15 #include <asm/tlbflush.h>
16 #include <asm/tlb.h>
17 #include <asm/proto.h>
18 #include <asm/dma.h> /* for MAX_DMA_PFN */
19 #include <asm/microcode.h>
20
21 /*
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
24 */
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/tlb.h>
27
28 #include "mm_internal.h"
29
30 /*
31 * Tables translating between page_cache_type_t and pte encoding.
32 * Minimal supported modes are defined statically, modified if more supported
33 * cache modes are available.
34 * Index into __cachemode2pte_tbl is the cachemode.
35 * Index into __pte2cachemode_tbl are the caching attribute bits of the pte
36 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
37 */
38 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
39 [_PAGE_CACHE_MODE_WB] = 0,
40 [_PAGE_CACHE_MODE_WC] = _PAGE_PWT,
41 [_PAGE_CACHE_MODE_UC_MINUS] = _PAGE_PCD,
42 [_PAGE_CACHE_MODE_UC] = _PAGE_PCD | _PAGE_PWT,
43 [_PAGE_CACHE_MODE_WT] = _PAGE_PCD,
44 [_PAGE_CACHE_MODE_WP] = _PAGE_PCD,
45 };
46 EXPORT_SYMBOL_GPL(__cachemode2pte_tbl);
47 uint8_t __pte2cachemode_tbl[8] = {
48 [__pte2cm_idx(0)] = _PAGE_CACHE_MODE_WB,
49 [__pte2cm_idx(_PAGE_PWT)] = _PAGE_CACHE_MODE_WC,
50 [__pte2cm_idx(_PAGE_PCD)] = _PAGE_CACHE_MODE_UC_MINUS,
51 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD)] = _PAGE_CACHE_MODE_UC,
52 [__pte2cm_idx(_PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
53 [__pte2cm_idx(_PAGE_PWT | _PAGE_PAT)] = _PAGE_CACHE_MODE_WC,
54 [__pte2cm_idx(_PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
55 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
56 };
57 EXPORT_SYMBOL_GPL(__pte2cachemode_tbl);
58
59 static unsigned long __initdata pgt_buf_start;
60 static unsigned long __initdata pgt_buf_end;
61 static unsigned long __initdata pgt_buf_top;
62
63 static unsigned long min_pfn_mapped;
64
65 static bool __initdata can_use_brk_pgt = true;
66
67 /*
68 * Pages returned are already directly mapped.
69 *
70 * Changing that is likely to break Xen, see commit:
71 *
72 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
73 *
74 * for detailed information.
75 */
76 __ref void *alloc_low_pages(unsigned int num)
77 {
78 unsigned long pfn;
79 int i;
80
81 if (after_bootmem) {
82 unsigned int order;
83
84 order = get_order((unsigned long)num << PAGE_SHIFT);
85 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
86 __GFP_ZERO, order);
87 }
88
89 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
90 unsigned long ret;
91 if (min_pfn_mapped >= max_pfn_mapped)
92 panic("alloc_low_pages: ran out of memory");
93 ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
94 max_pfn_mapped << PAGE_SHIFT,
95 PAGE_SIZE * num , PAGE_SIZE);
96 if (!ret)
97 panic("alloc_low_pages: can not alloc memory");
98 memblock_reserve(ret, PAGE_SIZE * num);
99 pfn = ret >> PAGE_SHIFT;
100 } else {
101 pfn = pgt_buf_end;
102 pgt_buf_end += num;
103 printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
104 pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
105 }
106
107 for (i = 0; i < num; i++) {
108 void *adr;
109
110 adr = __va((pfn + i) << PAGE_SHIFT);
111 clear_page(adr);
112 }
113
114 return __va(pfn << PAGE_SHIFT);
115 }
116
117 /* need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS */
118 #define INIT_PGT_BUF_SIZE (6 * PAGE_SIZE)
119 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
120 void __init early_alloc_pgt_buf(void)
121 {
122 unsigned long tables = INIT_PGT_BUF_SIZE;
123 phys_addr_t base;
124
125 base = __pa(extend_brk(tables, PAGE_SIZE));
126
127 pgt_buf_start = base >> PAGE_SHIFT;
128 pgt_buf_end = pgt_buf_start;
129 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
130 }
131
132 int after_bootmem;
133
134 int direct_gbpages
135 #ifdef CONFIG_DIRECT_GBPAGES
136 = 1
137 #endif
138 ;
139
140 static void __init init_gbpages(void)
141 {
142 #ifdef CONFIG_X86_64
143 if (direct_gbpages && cpu_has_gbpages)
144 printk(KERN_INFO "Using GB pages for direct mapping\n");
145 else
146 direct_gbpages = 0;
147 #endif
148 }
149
150 struct map_range {
151 unsigned long start;
152 unsigned long end;
153 unsigned page_size_mask;
154 };
155
156 static int page_size_mask;
157
158 static void __init probe_page_size_mask(void)
159 {
160 init_gbpages();
161
162 #if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
163 /*
164 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
165 * This will simplify cpa(), which otherwise needs to support splitting
166 * large pages into small in interrupt context, etc.
167 */
168 if (direct_gbpages)
169 page_size_mask |= 1 << PG_LEVEL_1G;
170 if (cpu_has_pse)
171 page_size_mask |= 1 << PG_LEVEL_2M;
172 #endif
173
174 /* Enable PSE if available */
175 if (cpu_has_pse)
176 set_in_cr4(X86_CR4_PSE);
177
178 /* Enable PGE if available */
179 if (cpu_has_pge) {
180 set_in_cr4(X86_CR4_PGE);
181 __supported_pte_mask |= _PAGE_GLOBAL;
182 }
183 }
184
185 #ifdef CONFIG_X86_32
186 #define NR_RANGE_MR 3
187 #else /* CONFIG_X86_64 */
188 #define NR_RANGE_MR 5
189 #endif
190
191 static int __meminit save_mr(struct map_range *mr, int nr_range,
192 unsigned long start_pfn, unsigned long end_pfn,
193 unsigned long page_size_mask)
194 {
195 if (start_pfn < end_pfn) {
196 if (nr_range >= NR_RANGE_MR)
197 panic("run out of range for init_memory_mapping\n");
198 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
199 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
200 mr[nr_range].page_size_mask = page_size_mask;
201 nr_range++;
202 }
203
204 return nr_range;
205 }
206
207 /*
208 * adjust the page_size_mask for small range to go with
209 * big page size instead small one if nearby are ram too.
210 */
211 static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
212 int nr_range)
213 {
214 int i;
215
216 for (i = 0; i < nr_range; i++) {
217 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
218 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
219 unsigned long start = round_down(mr[i].start, PMD_SIZE);
220 unsigned long end = round_up(mr[i].end, PMD_SIZE);
221
222 #ifdef CONFIG_X86_32
223 if ((end >> PAGE_SHIFT) > max_low_pfn)
224 continue;
225 #endif
226
227 if (memblock_is_region_memory(start, end - start))
228 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
229 }
230 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
231 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
232 unsigned long start = round_down(mr[i].start, PUD_SIZE);
233 unsigned long end = round_up(mr[i].end, PUD_SIZE);
234
235 if (memblock_is_region_memory(start, end - start))
236 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
237 }
238 }
239 }
240
241 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
242 unsigned long start,
243 unsigned long end)
244 {
245 unsigned long start_pfn, end_pfn, limit_pfn;
246 unsigned long pfn;
247 int i;
248
249 limit_pfn = PFN_DOWN(end);
250
251 /* head if not big page alignment ? */
252 pfn = start_pfn = PFN_DOWN(start);
253 #ifdef CONFIG_X86_32
254 /*
255 * Don't use a large page for the first 2/4MB of memory
256 * because there are often fixed size MTRRs in there
257 * and overlapping MTRRs into large pages can cause
258 * slowdowns.
259 */
260 if (pfn == 0)
261 end_pfn = PFN_DOWN(PMD_SIZE);
262 else
263 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
264 #else /* CONFIG_X86_64 */
265 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
266 #endif
267 if (end_pfn > limit_pfn)
268 end_pfn = limit_pfn;
269 if (start_pfn < end_pfn) {
270 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
271 pfn = end_pfn;
272 }
273
274 /* big page (2M) range */
275 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
276 #ifdef CONFIG_X86_32
277 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
278 #else /* CONFIG_X86_64 */
279 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
280 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
281 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
282 #endif
283
284 if (start_pfn < end_pfn) {
285 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
286 page_size_mask & (1<<PG_LEVEL_2M));
287 pfn = end_pfn;
288 }
289
290 #ifdef CONFIG_X86_64
291 /* big page (1G) range */
292 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
293 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
294 if (start_pfn < end_pfn) {
295 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
296 page_size_mask &
297 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
298 pfn = end_pfn;
299 }
300
301 /* tail is not big page (1G) alignment */
302 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
303 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
304 if (start_pfn < end_pfn) {
305 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
306 page_size_mask & (1<<PG_LEVEL_2M));
307 pfn = end_pfn;
308 }
309 #endif
310
311 /* tail is not big page (2M) alignment */
312 start_pfn = pfn;
313 end_pfn = limit_pfn;
314 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
315
316 if (!after_bootmem)
317 adjust_range_page_size_mask(mr, nr_range);
318
319 /* try to merge same page size and continuous */
320 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
321 unsigned long old_start;
322 if (mr[i].end != mr[i+1].start ||
323 mr[i].page_size_mask != mr[i+1].page_size_mask)
324 continue;
325 /* move it */
326 old_start = mr[i].start;
327 memmove(&mr[i], &mr[i+1],
328 (nr_range - 1 - i) * sizeof(struct map_range));
329 mr[i--].start = old_start;
330 nr_range--;
331 }
332
333 for (i = 0; i < nr_range; i++)
334 printk(KERN_DEBUG " [mem %#010lx-%#010lx] page %s\n",
335 mr[i].start, mr[i].end - 1,
336 (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
337 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
338
339 return nr_range;
340 }
341
342 struct range pfn_mapped[E820_X_MAX];
343 int nr_pfn_mapped;
344
345 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
346 {
347 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
348 nr_pfn_mapped, start_pfn, end_pfn);
349 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
350
351 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
352
353 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
354 max_low_pfn_mapped = max(max_low_pfn_mapped,
355 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
356 }
357
358 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
359 {
360 int i;
361
362 for (i = 0; i < nr_pfn_mapped; i++)
363 if ((start_pfn >= pfn_mapped[i].start) &&
364 (end_pfn <= pfn_mapped[i].end))
365 return true;
366
367 return false;
368 }
369
370 /*
371 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
372 * This runs before bootmem is initialized and gets pages directly from
373 * the physical memory. To access them they are temporarily mapped.
374 */
375 unsigned long __init_refok init_memory_mapping(unsigned long start,
376 unsigned long end)
377 {
378 struct map_range mr[NR_RANGE_MR];
379 unsigned long ret = 0;
380 int nr_range, i;
381
382 pr_info("init_memory_mapping: [mem %#010lx-%#010lx]\n",
383 start, end - 1);
384
385 memset(mr, 0, sizeof(mr));
386 nr_range = split_mem_range(mr, 0, start, end);
387
388 for (i = 0; i < nr_range; i++)
389 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
390 mr[i].page_size_mask);
391
392 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
393
394 return ret >> PAGE_SHIFT;
395 }
396
397 /*
398 * We need to iterate through the E820 memory map and create direct mappings
399 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
400 * create direct mappings for all pfns from [0 to max_low_pfn) and
401 * [4GB to max_pfn) because of possible memory holes in high addresses
402 * that cannot be marked as UC by fixed/variable range MTRRs.
403 * Depending on the alignment of E820 ranges, this may possibly result
404 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
405 *
406 * init_mem_mapping() calls init_range_memory_mapping() with big range.
407 * That range would have hole in the middle or ends, and only ram parts
408 * will be mapped in init_range_memory_mapping().
409 */
410 static unsigned long __init init_range_memory_mapping(
411 unsigned long r_start,
412 unsigned long r_end)
413 {
414 unsigned long start_pfn, end_pfn;
415 unsigned long mapped_ram_size = 0;
416 int i;
417
418 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
419 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
420 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
421 if (start >= end)
422 continue;
423
424 /*
425 * if it is overlapping with brk pgt, we need to
426 * alloc pgt buf from memblock instead.
427 */
428 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
429 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
430 init_memory_mapping(start, end);
431 mapped_ram_size += end - start;
432 can_use_brk_pgt = true;
433 }
434
435 return mapped_ram_size;
436 }
437
438 static unsigned long __init get_new_step_size(unsigned long step_size)
439 {
440 /*
441 * Initial mapped size is PMD_SIZE (2M).
442 * We can not set step_size to be PUD_SIZE (1G) yet.
443 * In worse case, when we cross the 1G boundary, and
444 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
445 * to map 1G range with PTE. Hence we use one less than the
446 * difference of page table level shifts.
447 *
448 * Don't need to worry about overflow in the top-down case, on 32bit,
449 * when step_size is 0, round_down() returns 0 for start, and that
450 * turns it into 0x100000000ULL.
451 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
452 * needs to be taken into consideration by the code below.
453 */
454 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
455 }
456
457 /**
458 * memory_map_top_down - Map [map_start, map_end) top down
459 * @map_start: start address of the target memory range
460 * @map_end: end address of the target memory range
461 *
462 * This function will setup direct mapping for memory range
463 * [map_start, map_end) in top-down. That said, the page tables
464 * will be allocated at the end of the memory, and we map the
465 * memory in top-down.
466 */
467 static void __init memory_map_top_down(unsigned long map_start,
468 unsigned long map_end)
469 {
470 unsigned long real_end, start, last_start;
471 unsigned long step_size;
472 unsigned long addr;
473 unsigned long mapped_ram_size = 0;
474
475 /* xen has big range in reserved near end of ram, skip it at first.*/
476 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
477 real_end = addr + PMD_SIZE;
478
479 /* step_size need to be small so pgt_buf from BRK could cover it */
480 step_size = PMD_SIZE;
481 max_pfn_mapped = 0; /* will get exact value next */
482 min_pfn_mapped = real_end >> PAGE_SHIFT;
483 last_start = start = real_end;
484
485 /*
486 * We start from the top (end of memory) and go to the bottom.
487 * The memblock_find_in_range() gets us a block of RAM from the
488 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
489 * for page table.
490 */
491 while (last_start > map_start) {
492 if (last_start > step_size) {
493 start = round_down(last_start - 1, step_size);
494 if (start < map_start)
495 start = map_start;
496 } else
497 start = map_start;
498 mapped_ram_size += init_range_memory_mapping(start,
499 last_start);
500 last_start = start;
501 min_pfn_mapped = last_start >> PAGE_SHIFT;
502 if (mapped_ram_size >= step_size)
503 step_size = get_new_step_size(step_size);
504 }
505
506 if (real_end < map_end)
507 init_range_memory_mapping(real_end, map_end);
508 }
509
510 /**
511 * memory_map_bottom_up - Map [map_start, map_end) bottom up
512 * @map_start: start address of the target memory range
513 * @map_end: end address of the target memory range
514 *
515 * This function will setup direct mapping for memory range
516 * [map_start, map_end) in bottom-up. Since we have limited the
517 * bottom-up allocation above the kernel, the page tables will
518 * be allocated just above the kernel and we map the memory
519 * in [map_start, map_end) in bottom-up.
520 */
521 static void __init memory_map_bottom_up(unsigned long map_start,
522 unsigned long map_end)
523 {
524 unsigned long next, start;
525 unsigned long mapped_ram_size = 0;
526 /* step_size need to be small so pgt_buf from BRK could cover it */
527 unsigned long step_size = PMD_SIZE;
528
529 start = map_start;
530 min_pfn_mapped = start >> PAGE_SHIFT;
531
532 /*
533 * We start from the bottom (@map_start) and go to the top (@map_end).
534 * The memblock_find_in_range() gets us a block of RAM from the
535 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
536 * for page table.
537 */
538 while (start < map_end) {
539 if (step_size && map_end - start > step_size) {
540 next = round_up(start + 1, step_size);
541 if (next > map_end)
542 next = map_end;
543 } else {
544 next = map_end;
545 }
546
547 mapped_ram_size += init_range_memory_mapping(start, next);
548 start = next;
549
550 if (mapped_ram_size >= step_size)
551 step_size = get_new_step_size(step_size);
552 }
553 }
554
555 void __init init_mem_mapping(void)
556 {
557 unsigned long end;
558
559 probe_page_size_mask();
560
561 #ifdef CONFIG_X86_64
562 end = max_pfn << PAGE_SHIFT;
563 #else
564 end = max_low_pfn << PAGE_SHIFT;
565 #endif
566
567 /* the ISA range is always mapped regardless of memory holes */
568 init_memory_mapping(0, ISA_END_ADDRESS);
569
570 /*
571 * If the allocation is in bottom-up direction, we setup direct mapping
572 * in bottom-up, otherwise we setup direct mapping in top-down.
573 */
574 if (memblock_bottom_up()) {
575 unsigned long kernel_end = __pa_symbol(_end);
576
577 /*
578 * we need two separate calls here. This is because we want to
579 * allocate page tables above the kernel. So we first map
580 * [kernel_end, end) to make memory above the kernel be mapped
581 * as soon as possible. And then use page tables allocated above
582 * the kernel to map [ISA_END_ADDRESS, kernel_end).
583 */
584 memory_map_bottom_up(kernel_end, end);
585 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
586 } else {
587 memory_map_top_down(ISA_END_ADDRESS, end);
588 }
589
590 #ifdef CONFIG_X86_64
591 if (max_pfn > max_low_pfn) {
592 /* can we preseve max_low_pfn ?*/
593 max_low_pfn = max_pfn;
594 }
595 #else
596 early_ioremap_page_table_range_init();
597 #endif
598
599 load_cr3(swapper_pg_dir);
600 __flush_tlb_all();
601
602 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
603 }
604
605 /*
606 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
607 * is valid. The argument is a physical page number.
608 *
609 *
610 * On x86, access has to be given to the first megabyte of ram because that area
611 * contains bios code and data regions used by X and dosemu and similar apps.
612 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
613 * mmio resources as well as potential bios/acpi data regions.
614 */
615 int devmem_is_allowed(unsigned long pagenr)
616 {
617 if (pagenr < 256)
618 return 1;
619 if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
620 return 0;
621 if (!page_is_ram(pagenr))
622 return 1;
623 return 0;
624 }
625
626 void free_init_pages(char *what, unsigned long begin, unsigned long end)
627 {
628 unsigned long begin_aligned, end_aligned;
629
630 /* Make sure boundaries are page aligned */
631 begin_aligned = PAGE_ALIGN(begin);
632 end_aligned = end & PAGE_MASK;
633
634 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
635 begin = begin_aligned;
636 end = end_aligned;
637 }
638
639 if (begin >= end)
640 return;
641
642 /*
643 * If debugging page accesses then do not free this memory but
644 * mark them not present - any buggy init-section access will
645 * create a kernel page fault:
646 */
647 #ifdef CONFIG_DEBUG_PAGEALLOC
648 printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
649 begin, end - 1);
650 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
651 #else
652 /*
653 * We just marked the kernel text read only above, now that
654 * we are going to free part of that, we need to make that
655 * writeable and non-executable first.
656 */
657 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
658 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
659
660 free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
661 #endif
662 }
663
664 void free_initmem(void)
665 {
666 free_init_pages("unused kernel",
667 (unsigned long)(&__init_begin),
668 (unsigned long)(&__init_end));
669 }
670
671 #ifdef CONFIG_BLK_DEV_INITRD
672 void __init free_initrd_mem(unsigned long start, unsigned long end)
673 {
674 #ifdef CONFIG_MICROCODE_EARLY
675 /*
676 * Remember, initrd memory may contain microcode or other useful things.
677 * Before we lose initrd mem, we need to find a place to hold them
678 * now that normal virtual memory is enabled.
679 */
680 save_microcode_in_initrd();
681 #endif
682
683 /*
684 * end could be not aligned, and We can not align that,
685 * decompresser could be confused by aligned initrd_end
686 * We already reserve the end partial page before in
687 * - i386_start_kernel()
688 * - x86_64_start_kernel()
689 * - relocate_initrd()
690 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
691 */
692 free_init_pages("initrd", start, PAGE_ALIGN(end));
693 }
694 #endif
695
696 void __init zone_sizes_init(void)
697 {
698 unsigned long max_zone_pfns[MAX_NR_ZONES];
699
700 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
701
702 #ifdef CONFIG_ZONE_DMA
703 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
704 #endif
705 #ifdef CONFIG_ZONE_DMA32
706 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
707 #endif
708 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
709 #ifdef CONFIG_HIGHMEM
710 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
711 #endif
712
713 free_area_init_nodes(max_zone_pfns);
714 }
715
716 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
717 {
718 /* entry 0 MUST be WB (hardwired to speed up translations) */
719 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
720
721 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
722 __pte2cachemode_tbl[entry] = cache;
723 }
This page took 0.043832 seconds and 5 git commands to generate.