tracing: extend sched_pi_setprio
[deliverable/linux.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 spin_lock_irq(q->queue_lock);
519 queue_flag_set(QUEUE_FLAG_DYING, q);
520 spin_unlock_irq(q->queue_lock);
521
522 if (q->mq_ops)
523 blk_mq_wake_waiters(q);
524 else {
525 struct request_list *rl;
526
527 blk_queue_for_each_rl(rl, q) {
528 if (rl->rq_pool) {
529 wake_up(&rl->wait[BLK_RW_SYNC]);
530 wake_up(&rl->wait[BLK_RW_ASYNC]);
531 }
532 }
533 }
534 }
535 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
536
537 /**
538 * blk_cleanup_queue - shutdown a request queue
539 * @q: request queue to shutdown
540 *
541 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
542 * put it. All future requests will be failed immediately with -ENODEV.
543 */
544 void blk_cleanup_queue(struct request_queue *q)
545 {
546 spinlock_t *lock = q->queue_lock;
547
548 /* mark @q DYING, no new request or merges will be allowed afterwards */
549 mutex_lock(&q->sysfs_lock);
550 blk_set_queue_dying(q);
551 spin_lock_irq(lock);
552
553 /*
554 * A dying queue is permanently in bypass mode till released. Note
555 * that, unlike blk_queue_bypass_start(), we aren't performing
556 * synchronize_rcu() after entering bypass mode to avoid the delay
557 * as some drivers create and destroy a lot of queues while
558 * probing. This is still safe because blk_release_queue() will be
559 * called only after the queue refcnt drops to zero and nothing,
560 * RCU or not, would be traversing the queue by then.
561 */
562 q->bypass_depth++;
563 queue_flag_set(QUEUE_FLAG_BYPASS, q);
564
565 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
566 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
567 queue_flag_set(QUEUE_FLAG_DYING, q);
568 spin_unlock_irq(lock);
569 mutex_unlock(&q->sysfs_lock);
570
571 /*
572 * Drain all requests queued before DYING marking. Set DEAD flag to
573 * prevent that q->request_fn() gets invoked after draining finished.
574 */
575 blk_freeze_queue(q);
576 spin_lock_irq(lock);
577 if (!q->mq_ops)
578 __blk_drain_queue(q, true);
579 queue_flag_set(QUEUE_FLAG_DEAD, q);
580 spin_unlock_irq(lock);
581
582 /* for synchronous bio-based driver finish in-flight integrity i/o */
583 blk_flush_integrity();
584
585 /* @q won't process any more request, flush async actions */
586 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
587 blk_sync_queue(q);
588
589 if (q->mq_ops)
590 blk_mq_free_queue(q);
591 percpu_ref_exit(&q->q_usage_counter);
592
593 spin_lock_irq(lock);
594 if (q->queue_lock != &q->__queue_lock)
595 q->queue_lock = &q->__queue_lock;
596 spin_unlock_irq(lock);
597
598 bdi_unregister(&q->backing_dev_info);
599
600 /* @q is and will stay empty, shutdown and put */
601 blk_put_queue(q);
602 }
603 EXPORT_SYMBOL(blk_cleanup_queue);
604
605 /* Allocate memory local to the request queue */
606 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
607 {
608 int nid = (int)(long)data;
609 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
610 }
611
612 static void free_request_struct(void *element, void *unused)
613 {
614 kmem_cache_free(request_cachep, element);
615 }
616
617 int blk_init_rl(struct request_list *rl, struct request_queue *q,
618 gfp_t gfp_mask)
619 {
620 if (unlikely(rl->rq_pool))
621 return 0;
622
623 rl->q = q;
624 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
625 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
626 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
627 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
628
629 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
630 free_request_struct,
631 (void *)(long)q->node, gfp_mask,
632 q->node);
633 if (!rl->rq_pool)
634 return -ENOMEM;
635
636 return 0;
637 }
638
639 void blk_exit_rl(struct request_list *rl)
640 {
641 if (rl->rq_pool)
642 mempool_destroy(rl->rq_pool);
643 }
644
645 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
646 {
647 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
648 }
649 EXPORT_SYMBOL(blk_alloc_queue);
650
651 int blk_queue_enter(struct request_queue *q, bool nowait)
652 {
653 while (true) {
654 int ret;
655
656 if (percpu_ref_tryget_live(&q->q_usage_counter))
657 return 0;
658
659 if (nowait)
660 return -EBUSY;
661
662 ret = wait_event_interruptible(q->mq_freeze_wq,
663 !atomic_read(&q->mq_freeze_depth) ||
664 blk_queue_dying(q));
665 if (blk_queue_dying(q))
666 return -ENODEV;
667 if (ret)
668 return ret;
669 }
670 }
671
672 void blk_queue_exit(struct request_queue *q)
673 {
674 percpu_ref_put(&q->q_usage_counter);
675 }
676
677 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
678 {
679 struct request_queue *q =
680 container_of(ref, struct request_queue, q_usage_counter);
681
682 wake_up_all(&q->mq_freeze_wq);
683 }
684
685 static void blk_rq_timed_out_timer(unsigned long data)
686 {
687 struct request_queue *q = (struct request_queue *)data;
688
689 kblockd_schedule_work(&q->timeout_work);
690 }
691
692 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
693 {
694 struct request_queue *q;
695 int err;
696
697 q = kmem_cache_alloc_node(blk_requestq_cachep,
698 gfp_mask | __GFP_ZERO, node_id);
699 if (!q)
700 return NULL;
701
702 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
703 if (q->id < 0)
704 goto fail_q;
705
706 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
707 if (!q->bio_split)
708 goto fail_id;
709
710 q->backing_dev_info.ra_pages =
711 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
712 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
713 q->backing_dev_info.name = "block";
714 q->node = node_id;
715
716 err = bdi_init(&q->backing_dev_info);
717 if (err)
718 goto fail_split;
719
720 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
721 laptop_mode_timer_fn, (unsigned long) q);
722 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
723 INIT_LIST_HEAD(&q->queue_head);
724 INIT_LIST_HEAD(&q->timeout_list);
725 INIT_LIST_HEAD(&q->icq_list);
726 #ifdef CONFIG_BLK_CGROUP
727 INIT_LIST_HEAD(&q->blkg_list);
728 #endif
729 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
730
731 kobject_init(&q->kobj, &blk_queue_ktype);
732
733 mutex_init(&q->sysfs_lock);
734 spin_lock_init(&q->__queue_lock);
735
736 /*
737 * By default initialize queue_lock to internal lock and driver can
738 * override it later if need be.
739 */
740 q->queue_lock = &q->__queue_lock;
741
742 /*
743 * A queue starts its life with bypass turned on to avoid
744 * unnecessary bypass on/off overhead and nasty surprises during
745 * init. The initial bypass will be finished when the queue is
746 * registered by blk_register_queue().
747 */
748 q->bypass_depth = 1;
749 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
750
751 init_waitqueue_head(&q->mq_freeze_wq);
752
753 /*
754 * Init percpu_ref in atomic mode so that it's faster to shutdown.
755 * See blk_register_queue() for details.
756 */
757 if (percpu_ref_init(&q->q_usage_counter,
758 blk_queue_usage_counter_release,
759 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
760 goto fail_bdi;
761
762 if (blkcg_init_queue(q))
763 goto fail_ref;
764
765 return q;
766
767 fail_ref:
768 percpu_ref_exit(&q->q_usage_counter);
769 fail_bdi:
770 bdi_destroy(&q->backing_dev_info);
771 fail_split:
772 bioset_free(q->bio_split);
773 fail_id:
774 ida_simple_remove(&blk_queue_ida, q->id);
775 fail_q:
776 kmem_cache_free(blk_requestq_cachep, q);
777 return NULL;
778 }
779 EXPORT_SYMBOL(blk_alloc_queue_node);
780
781 /**
782 * blk_init_queue - prepare a request queue for use with a block device
783 * @rfn: The function to be called to process requests that have been
784 * placed on the queue.
785 * @lock: Request queue spin lock
786 *
787 * Description:
788 * If a block device wishes to use the standard request handling procedures,
789 * which sorts requests and coalesces adjacent requests, then it must
790 * call blk_init_queue(). The function @rfn will be called when there
791 * are requests on the queue that need to be processed. If the device
792 * supports plugging, then @rfn may not be called immediately when requests
793 * are available on the queue, but may be called at some time later instead.
794 * Plugged queues are generally unplugged when a buffer belonging to one
795 * of the requests on the queue is needed, or due to memory pressure.
796 *
797 * @rfn is not required, or even expected, to remove all requests off the
798 * queue, but only as many as it can handle at a time. If it does leave
799 * requests on the queue, it is responsible for arranging that the requests
800 * get dealt with eventually.
801 *
802 * The queue spin lock must be held while manipulating the requests on the
803 * request queue; this lock will be taken also from interrupt context, so irq
804 * disabling is needed for it.
805 *
806 * Function returns a pointer to the initialized request queue, or %NULL if
807 * it didn't succeed.
808 *
809 * Note:
810 * blk_init_queue() must be paired with a blk_cleanup_queue() call
811 * when the block device is deactivated (such as at module unload).
812 **/
813
814 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
815 {
816 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
817 }
818 EXPORT_SYMBOL(blk_init_queue);
819
820 struct request_queue *
821 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
822 {
823 struct request_queue *uninit_q, *q;
824
825 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
826 if (!uninit_q)
827 return NULL;
828
829 q = blk_init_allocated_queue(uninit_q, rfn, lock);
830 if (!q)
831 blk_cleanup_queue(uninit_q);
832
833 return q;
834 }
835 EXPORT_SYMBOL(blk_init_queue_node);
836
837 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
838
839 struct request_queue *
840 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
841 spinlock_t *lock)
842 {
843 if (!q)
844 return NULL;
845
846 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
847 if (!q->fq)
848 return NULL;
849
850 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
851 goto fail;
852
853 INIT_WORK(&q->timeout_work, blk_timeout_work);
854 q->request_fn = rfn;
855 q->prep_rq_fn = NULL;
856 q->unprep_rq_fn = NULL;
857 q->queue_flags |= QUEUE_FLAG_DEFAULT;
858
859 /* Override internal queue lock with supplied lock pointer */
860 if (lock)
861 q->queue_lock = lock;
862
863 /*
864 * This also sets hw/phys segments, boundary and size
865 */
866 blk_queue_make_request(q, blk_queue_bio);
867
868 q->sg_reserved_size = INT_MAX;
869
870 /* Protect q->elevator from elevator_change */
871 mutex_lock(&q->sysfs_lock);
872
873 /* init elevator */
874 if (elevator_init(q, NULL)) {
875 mutex_unlock(&q->sysfs_lock);
876 goto fail;
877 }
878
879 mutex_unlock(&q->sysfs_lock);
880
881 return q;
882
883 fail:
884 blk_free_flush_queue(q->fq);
885 return NULL;
886 }
887 EXPORT_SYMBOL(blk_init_allocated_queue);
888
889 bool blk_get_queue(struct request_queue *q)
890 {
891 if (likely(!blk_queue_dying(q))) {
892 __blk_get_queue(q);
893 return true;
894 }
895
896 return false;
897 }
898 EXPORT_SYMBOL(blk_get_queue);
899
900 static inline void blk_free_request(struct request_list *rl, struct request *rq)
901 {
902 if (rq->cmd_flags & REQ_ELVPRIV) {
903 elv_put_request(rl->q, rq);
904 if (rq->elv.icq)
905 put_io_context(rq->elv.icq->ioc);
906 }
907
908 mempool_free(rq, rl->rq_pool);
909 }
910
911 /*
912 * ioc_batching returns true if the ioc is a valid batching request and
913 * should be given priority access to a request.
914 */
915 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
916 {
917 if (!ioc)
918 return 0;
919
920 /*
921 * Make sure the process is able to allocate at least 1 request
922 * even if the batch times out, otherwise we could theoretically
923 * lose wakeups.
924 */
925 return ioc->nr_batch_requests == q->nr_batching ||
926 (ioc->nr_batch_requests > 0
927 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
928 }
929
930 /*
931 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
932 * will cause the process to be a "batcher" on all queues in the system. This
933 * is the behaviour we want though - once it gets a wakeup it should be given
934 * a nice run.
935 */
936 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
937 {
938 if (!ioc || ioc_batching(q, ioc))
939 return;
940
941 ioc->nr_batch_requests = q->nr_batching;
942 ioc->last_waited = jiffies;
943 }
944
945 static void __freed_request(struct request_list *rl, int sync)
946 {
947 struct request_queue *q = rl->q;
948
949 if (rl->count[sync] < queue_congestion_off_threshold(q))
950 blk_clear_congested(rl, sync);
951
952 if (rl->count[sync] + 1 <= q->nr_requests) {
953 if (waitqueue_active(&rl->wait[sync]))
954 wake_up(&rl->wait[sync]);
955
956 blk_clear_rl_full(rl, sync);
957 }
958 }
959
960 /*
961 * A request has just been released. Account for it, update the full and
962 * congestion status, wake up any waiters. Called under q->queue_lock.
963 */
964 static void freed_request(struct request_list *rl, int op, unsigned int flags)
965 {
966 struct request_queue *q = rl->q;
967 int sync = rw_is_sync(op, flags);
968
969 q->nr_rqs[sync]--;
970 rl->count[sync]--;
971 if (flags & REQ_ELVPRIV)
972 q->nr_rqs_elvpriv--;
973
974 __freed_request(rl, sync);
975
976 if (unlikely(rl->starved[sync ^ 1]))
977 __freed_request(rl, sync ^ 1);
978 }
979
980 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
981 {
982 struct request_list *rl;
983 int on_thresh, off_thresh;
984
985 spin_lock_irq(q->queue_lock);
986 q->nr_requests = nr;
987 blk_queue_congestion_threshold(q);
988 on_thresh = queue_congestion_on_threshold(q);
989 off_thresh = queue_congestion_off_threshold(q);
990
991 blk_queue_for_each_rl(rl, q) {
992 if (rl->count[BLK_RW_SYNC] >= on_thresh)
993 blk_set_congested(rl, BLK_RW_SYNC);
994 else if (rl->count[BLK_RW_SYNC] < off_thresh)
995 blk_clear_congested(rl, BLK_RW_SYNC);
996
997 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
998 blk_set_congested(rl, BLK_RW_ASYNC);
999 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1000 blk_clear_congested(rl, BLK_RW_ASYNC);
1001
1002 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1003 blk_set_rl_full(rl, BLK_RW_SYNC);
1004 } else {
1005 blk_clear_rl_full(rl, BLK_RW_SYNC);
1006 wake_up(&rl->wait[BLK_RW_SYNC]);
1007 }
1008
1009 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1010 blk_set_rl_full(rl, BLK_RW_ASYNC);
1011 } else {
1012 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1013 wake_up(&rl->wait[BLK_RW_ASYNC]);
1014 }
1015 }
1016
1017 spin_unlock_irq(q->queue_lock);
1018 return 0;
1019 }
1020
1021 /*
1022 * Determine if elevator data should be initialized when allocating the
1023 * request associated with @bio.
1024 */
1025 static bool blk_rq_should_init_elevator(struct bio *bio)
1026 {
1027 if (!bio)
1028 return true;
1029
1030 /*
1031 * Flush requests do not use the elevator so skip initialization.
1032 * This allows a request to share the flush and elevator data.
1033 */
1034 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1035 return false;
1036
1037 return true;
1038 }
1039
1040 /**
1041 * rq_ioc - determine io_context for request allocation
1042 * @bio: request being allocated is for this bio (can be %NULL)
1043 *
1044 * Determine io_context to use for request allocation for @bio. May return
1045 * %NULL if %current->io_context doesn't exist.
1046 */
1047 static struct io_context *rq_ioc(struct bio *bio)
1048 {
1049 #ifdef CONFIG_BLK_CGROUP
1050 if (bio && bio->bi_ioc)
1051 return bio->bi_ioc;
1052 #endif
1053 return current->io_context;
1054 }
1055
1056 /**
1057 * __get_request - get a free request
1058 * @rl: request list to allocate from
1059 * @op: REQ_OP_READ/REQ_OP_WRITE
1060 * @op_flags: rq_flag_bits
1061 * @bio: bio to allocate request for (can be %NULL)
1062 * @gfp_mask: allocation mask
1063 *
1064 * Get a free request from @q. This function may fail under memory
1065 * pressure or if @q is dead.
1066 *
1067 * Must be called with @q->queue_lock held and,
1068 * Returns ERR_PTR on failure, with @q->queue_lock held.
1069 * Returns request pointer on success, with @q->queue_lock *not held*.
1070 */
1071 static struct request *__get_request(struct request_list *rl, int op,
1072 int op_flags, struct bio *bio,
1073 gfp_t gfp_mask)
1074 {
1075 struct request_queue *q = rl->q;
1076 struct request *rq;
1077 struct elevator_type *et = q->elevator->type;
1078 struct io_context *ioc = rq_ioc(bio);
1079 struct io_cq *icq = NULL;
1080 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1081 int may_queue;
1082
1083 if (unlikely(blk_queue_dying(q)))
1084 return ERR_PTR(-ENODEV);
1085
1086 may_queue = elv_may_queue(q, op, op_flags);
1087 if (may_queue == ELV_MQUEUE_NO)
1088 goto rq_starved;
1089
1090 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1091 if (rl->count[is_sync]+1 >= q->nr_requests) {
1092 /*
1093 * The queue will fill after this allocation, so set
1094 * it as full, and mark this process as "batching".
1095 * This process will be allowed to complete a batch of
1096 * requests, others will be blocked.
1097 */
1098 if (!blk_rl_full(rl, is_sync)) {
1099 ioc_set_batching(q, ioc);
1100 blk_set_rl_full(rl, is_sync);
1101 } else {
1102 if (may_queue != ELV_MQUEUE_MUST
1103 && !ioc_batching(q, ioc)) {
1104 /*
1105 * The queue is full and the allocating
1106 * process is not a "batcher", and not
1107 * exempted by the IO scheduler
1108 */
1109 return ERR_PTR(-ENOMEM);
1110 }
1111 }
1112 }
1113 blk_set_congested(rl, is_sync);
1114 }
1115
1116 /*
1117 * Only allow batching queuers to allocate up to 50% over the defined
1118 * limit of requests, otherwise we could have thousands of requests
1119 * allocated with any setting of ->nr_requests
1120 */
1121 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1122 return ERR_PTR(-ENOMEM);
1123
1124 q->nr_rqs[is_sync]++;
1125 rl->count[is_sync]++;
1126 rl->starved[is_sync] = 0;
1127
1128 /*
1129 * Decide whether the new request will be managed by elevator. If
1130 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1131 * prevent the current elevator from being destroyed until the new
1132 * request is freed. This guarantees icq's won't be destroyed and
1133 * makes creating new ones safe.
1134 *
1135 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1136 * it will be created after releasing queue_lock.
1137 */
1138 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1139 op_flags |= REQ_ELVPRIV;
1140 q->nr_rqs_elvpriv++;
1141 if (et->icq_cache && ioc)
1142 icq = ioc_lookup_icq(ioc, q);
1143 }
1144
1145 if (blk_queue_io_stat(q))
1146 op_flags |= REQ_IO_STAT;
1147 spin_unlock_irq(q->queue_lock);
1148
1149 /* allocate and init request */
1150 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1151 if (!rq)
1152 goto fail_alloc;
1153
1154 blk_rq_init(q, rq);
1155 blk_rq_set_rl(rq, rl);
1156 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1157
1158 /* init elvpriv */
1159 if (op_flags & REQ_ELVPRIV) {
1160 if (unlikely(et->icq_cache && !icq)) {
1161 if (ioc)
1162 icq = ioc_create_icq(ioc, q, gfp_mask);
1163 if (!icq)
1164 goto fail_elvpriv;
1165 }
1166
1167 rq->elv.icq = icq;
1168 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1169 goto fail_elvpriv;
1170
1171 /* @rq->elv.icq holds io_context until @rq is freed */
1172 if (icq)
1173 get_io_context(icq->ioc);
1174 }
1175 out:
1176 /*
1177 * ioc may be NULL here, and ioc_batching will be false. That's
1178 * OK, if the queue is under the request limit then requests need
1179 * not count toward the nr_batch_requests limit. There will always
1180 * be some limit enforced by BLK_BATCH_TIME.
1181 */
1182 if (ioc_batching(q, ioc))
1183 ioc->nr_batch_requests--;
1184
1185 trace_block_getrq(q, bio, op);
1186 return rq;
1187
1188 fail_elvpriv:
1189 /*
1190 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1191 * and may fail indefinitely under memory pressure and thus
1192 * shouldn't stall IO. Treat this request as !elvpriv. This will
1193 * disturb iosched and blkcg but weird is bettern than dead.
1194 */
1195 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1196 __func__, dev_name(q->backing_dev_info.dev));
1197
1198 rq->cmd_flags &= ~REQ_ELVPRIV;
1199 rq->elv.icq = NULL;
1200
1201 spin_lock_irq(q->queue_lock);
1202 q->nr_rqs_elvpriv--;
1203 spin_unlock_irq(q->queue_lock);
1204 goto out;
1205
1206 fail_alloc:
1207 /*
1208 * Allocation failed presumably due to memory. Undo anything we
1209 * might have messed up.
1210 *
1211 * Allocating task should really be put onto the front of the wait
1212 * queue, but this is pretty rare.
1213 */
1214 spin_lock_irq(q->queue_lock);
1215 freed_request(rl, op, op_flags);
1216
1217 /*
1218 * in the very unlikely event that allocation failed and no
1219 * requests for this direction was pending, mark us starved so that
1220 * freeing of a request in the other direction will notice
1221 * us. another possible fix would be to split the rq mempool into
1222 * READ and WRITE
1223 */
1224 rq_starved:
1225 if (unlikely(rl->count[is_sync] == 0))
1226 rl->starved[is_sync] = 1;
1227 return ERR_PTR(-ENOMEM);
1228 }
1229
1230 /**
1231 * get_request - get a free request
1232 * @q: request_queue to allocate request from
1233 * @op: REQ_OP_READ/REQ_OP_WRITE
1234 * @op_flags: rq_flag_bits
1235 * @bio: bio to allocate request for (can be %NULL)
1236 * @gfp_mask: allocation mask
1237 *
1238 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1239 * this function keeps retrying under memory pressure and fails iff @q is dead.
1240 *
1241 * Must be called with @q->queue_lock held and,
1242 * Returns ERR_PTR on failure, with @q->queue_lock held.
1243 * Returns request pointer on success, with @q->queue_lock *not held*.
1244 */
1245 static struct request *get_request(struct request_queue *q, int op,
1246 int op_flags, struct bio *bio,
1247 gfp_t gfp_mask)
1248 {
1249 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1250 DEFINE_WAIT(wait);
1251 struct request_list *rl;
1252 struct request *rq;
1253
1254 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1255 retry:
1256 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1257 if (!IS_ERR(rq))
1258 return rq;
1259
1260 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1261 blk_put_rl(rl);
1262 return rq;
1263 }
1264
1265 /* wait on @rl and retry */
1266 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 TASK_UNINTERRUPTIBLE);
1268
1269 trace_block_sleeprq(q, bio, op);
1270
1271 spin_unlock_irq(q->queue_lock);
1272 io_schedule();
1273
1274 /*
1275 * After sleeping, we become a "batching" process and will be able
1276 * to allocate at least one request, and up to a big batch of them
1277 * for a small period time. See ioc_batching, ioc_set_batching
1278 */
1279 ioc_set_batching(q, current->io_context);
1280
1281 spin_lock_irq(q->queue_lock);
1282 finish_wait(&rl->wait[is_sync], &wait);
1283
1284 goto retry;
1285 }
1286
1287 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 gfp_t gfp_mask)
1289 {
1290 struct request *rq;
1291
1292 BUG_ON(rw != READ && rw != WRITE);
1293
1294 /* create ioc upfront */
1295 create_io_context(gfp_mask, q->node);
1296
1297 spin_lock_irq(q->queue_lock);
1298 rq = get_request(q, rw, 0, NULL, gfp_mask);
1299 if (IS_ERR(rq)) {
1300 spin_unlock_irq(q->queue_lock);
1301 return rq;
1302 }
1303
1304 /* q->queue_lock is unlocked at this point */
1305 rq->__data_len = 0;
1306 rq->__sector = (sector_t) -1;
1307 rq->bio = rq->biotail = NULL;
1308 return rq;
1309 }
1310
1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312 {
1313 if (q->mq_ops)
1314 return blk_mq_alloc_request(q, rw,
1315 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 0 : BLK_MQ_REQ_NOWAIT);
1317 else
1318 return blk_old_get_request(q, rw, gfp_mask);
1319 }
1320 EXPORT_SYMBOL(blk_get_request);
1321
1322 /**
1323 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1324 * @rq: request to be initialized
1325 *
1326 */
1327 void blk_rq_set_block_pc(struct request *rq)
1328 {
1329 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1330 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1331 }
1332 EXPORT_SYMBOL(blk_rq_set_block_pc);
1333
1334 /**
1335 * blk_requeue_request - put a request back on queue
1336 * @q: request queue where request should be inserted
1337 * @rq: request to be inserted
1338 *
1339 * Description:
1340 * Drivers often keep queueing requests until the hardware cannot accept
1341 * more, when that condition happens we need to put the request back
1342 * on the queue. Must be called with queue lock held.
1343 */
1344 void blk_requeue_request(struct request_queue *q, struct request *rq)
1345 {
1346 blk_delete_timer(rq);
1347 blk_clear_rq_complete(rq);
1348 trace_block_rq_requeue(q, rq);
1349
1350 if (rq->cmd_flags & REQ_QUEUED)
1351 blk_queue_end_tag(q, rq);
1352
1353 BUG_ON(blk_queued_rq(rq));
1354
1355 elv_requeue_request(q, rq);
1356 }
1357 EXPORT_SYMBOL(blk_requeue_request);
1358
1359 static void add_acct_request(struct request_queue *q, struct request *rq,
1360 int where)
1361 {
1362 blk_account_io_start(rq, true);
1363 __elv_add_request(q, rq, where);
1364 }
1365
1366 static void part_round_stats_single(int cpu, struct hd_struct *part,
1367 unsigned long now)
1368 {
1369 int inflight;
1370
1371 if (now == part->stamp)
1372 return;
1373
1374 inflight = part_in_flight(part);
1375 if (inflight) {
1376 __part_stat_add(cpu, part, time_in_queue,
1377 inflight * (now - part->stamp));
1378 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1379 }
1380 part->stamp = now;
1381 }
1382
1383 /**
1384 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1385 * @cpu: cpu number for stats access
1386 * @part: target partition
1387 *
1388 * The average IO queue length and utilisation statistics are maintained
1389 * by observing the current state of the queue length and the amount of
1390 * time it has been in this state for.
1391 *
1392 * Normally, that accounting is done on IO completion, but that can result
1393 * in more than a second's worth of IO being accounted for within any one
1394 * second, leading to >100% utilisation. To deal with that, we call this
1395 * function to do a round-off before returning the results when reading
1396 * /proc/diskstats. This accounts immediately for all queue usage up to
1397 * the current jiffies and restarts the counters again.
1398 */
1399 void part_round_stats(int cpu, struct hd_struct *part)
1400 {
1401 unsigned long now = jiffies;
1402
1403 if (part->partno)
1404 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1405 part_round_stats_single(cpu, part, now);
1406 }
1407 EXPORT_SYMBOL_GPL(part_round_stats);
1408
1409 #ifdef CONFIG_PM
1410 static void blk_pm_put_request(struct request *rq)
1411 {
1412 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1413 pm_runtime_mark_last_busy(rq->q->dev);
1414 }
1415 #else
1416 static inline void blk_pm_put_request(struct request *rq) {}
1417 #endif
1418
1419 /*
1420 * queue lock must be held
1421 */
1422 void __blk_put_request(struct request_queue *q, struct request *req)
1423 {
1424 if (unlikely(!q))
1425 return;
1426
1427 if (q->mq_ops) {
1428 blk_mq_free_request(req);
1429 return;
1430 }
1431
1432 blk_pm_put_request(req);
1433
1434 elv_completed_request(q, req);
1435
1436 /* this is a bio leak */
1437 WARN_ON(req->bio != NULL);
1438
1439 /*
1440 * Request may not have originated from ll_rw_blk. if not,
1441 * it didn't come out of our reserved rq pools
1442 */
1443 if (req->cmd_flags & REQ_ALLOCED) {
1444 unsigned int flags = req->cmd_flags;
1445 int op = req_op(req);
1446 struct request_list *rl = blk_rq_rl(req);
1447
1448 BUG_ON(!list_empty(&req->queuelist));
1449 BUG_ON(ELV_ON_HASH(req));
1450
1451 blk_free_request(rl, req);
1452 freed_request(rl, op, flags);
1453 blk_put_rl(rl);
1454 }
1455 }
1456 EXPORT_SYMBOL_GPL(__blk_put_request);
1457
1458 void blk_put_request(struct request *req)
1459 {
1460 struct request_queue *q = req->q;
1461
1462 if (q->mq_ops)
1463 blk_mq_free_request(req);
1464 else {
1465 unsigned long flags;
1466
1467 spin_lock_irqsave(q->queue_lock, flags);
1468 __blk_put_request(q, req);
1469 spin_unlock_irqrestore(q->queue_lock, flags);
1470 }
1471 }
1472 EXPORT_SYMBOL(blk_put_request);
1473
1474 /**
1475 * blk_add_request_payload - add a payload to a request
1476 * @rq: request to update
1477 * @page: page backing the payload
1478 * @offset: offset in page
1479 * @len: length of the payload.
1480 *
1481 * This allows to later add a payload to an already submitted request by
1482 * a block driver. The driver needs to take care of freeing the payload
1483 * itself.
1484 *
1485 * Note that this is a quite horrible hack and nothing but handling of
1486 * discard requests should ever use it.
1487 */
1488 void blk_add_request_payload(struct request *rq, struct page *page,
1489 int offset, unsigned int len)
1490 {
1491 struct bio *bio = rq->bio;
1492
1493 bio->bi_io_vec->bv_page = page;
1494 bio->bi_io_vec->bv_offset = offset;
1495 bio->bi_io_vec->bv_len = len;
1496
1497 bio->bi_iter.bi_size = len;
1498 bio->bi_vcnt = 1;
1499 bio->bi_phys_segments = 1;
1500
1501 rq->__data_len = rq->resid_len = len;
1502 rq->nr_phys_segments = 1;
1503 }
1504 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1505
1506 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1507 struct bio *bio)
1508 {
1509 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1510
1511 if (!ll_back_merge_fn(q, req, bio))
1512 return false;
1513
1514 trace_block_bio_backmerge(q, req, bio);
1515
1516 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1517 blk_rq_set_mixed_merge(req);
1518
1519 req->biotail->bi_next = bio;
1520 req->biotail = bio;
1521 req->__data_len += bio->bi_iter.bi_size;
1522 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1523
1524 blk_account_io_start(req, false);
1525 return true;
1526 }
1527
1528 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1529 struct bio *bio)
1530 {
1531 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1532
1533 if (!ll_front_merge_fn(q, req, bio))
1534 return false;
1535
1536 trace_block_bio_frontmerge(q, req, bio);
1537
1538 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1539 blk_rq_set_mixed_merge(req);
1540
1541 bio->bi_next = req->bio;
1542 req->bio = bio;
1543
1544 req->__sector = bio->bi_iter.bi_sector;
1545 req->__data_len += bio->bi_iter.bi_size;
1546 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1547
1548 blk_account_io_start(req, false);
1549 return true;
1550 }
1551
1552 /**
1553 * blk_attempt_plug_merge - try to merge with %current's plugged list
1554 * @q: request_queue new bio is being queued at
1555 * @bio: new bio being queued
1556 * @request_count: out parameter for number of traversed plugged requests
1557 * @same_queue_rq: pointer to &struct request that gets filled in when
1558 * another request associated with @q is found on the plug list
1559 * (optional, may be %NULL)
1560 *
1561 * Determine whether @bio being queued on @q can be merged with a request
1562 * on %current's plugged list. Returns %true if merge was successful,
1563 * otherwise %false.
1564 *
1565 * Plugging coalesces IOs from the same issuer for the same purpose without
1566 * going through @q->queue_lock. As such it's more of an issuing mechanism
1567 * than scheduling, and the request, while may have elvpriv data, is not
1568 * added on the elevator at this point. In addition, we don't have
1569 * reliable access to the elevator outside queue lock. Only check basic
1570 * merging parameters without querying the elevator.
1571 *
1572 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1573 */
1574 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1575 unsigned int *request_count,
1576 struct request **same_queue_rq)
1577 {
1578 struct blk_plug *plug;
1579 struct request *rq;
1580 bool ret = false;
1581 struct list_head *plug_list;
1582
1583 plug = current->plug;
1584 if (!plug)
1585 goto out;
1586 *request_count = 0;
1587
1588 if (q->mq_ops)
1589 plug_list = &plug->mq_list;
1590 else
1591 plug_list = &plug->list;
1592
1593 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1594 int el_ret;
1595
1596 if (rq->q == q) {
1597 (*request_count)++;
1598 /*
1599 * Only blk-mq multiple hardware queues case checks the
1600 * rq in the same queue, there should be only one such
1601 * rq in a queue
1602 **/
1603 if (same_queue_rq)
1604 *same_queue_rq = rq;
1605 }
1606
1607 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1608 continue;
1609
1610 el_ret = blk_try_merge(rq, bio);
1611 if (el_ret == ELEVATOR_BACK_MERGE) {
1612 ret = bio_attempt_back_merge(q, rq, bio);
1613 if (ret)
1614 break;
1615 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1616 ret = bio_attempt_front_merge(q, rq, bio);
1617 if (ret)
1618 break;
1619 }
1620 }
1621 out:
1622 return ret;
1623 }
1624
1625 unsigned int blk_plug_queued_count(struct request_queue *q)
1626 {
1627 struct blk_plug *plug;
1628 struct request *rq;
1629 struct list_head *plug_list;
1630 unsigned int ret = 0;
1631
1632 plug = current->plug;
1633 if (!plug)
1634 goto out;
1635
1636 if (q->mq_ops)
1637 plug_list = &plug->mq_list;
1638 else
1639 plug_list = &plug->list;
1640
1641 list_for_each_entry(rq, plug_list, queuelist) {
1642 if (rq->q == q)
1643 ret++;
1644 }
1645 out:
1646 return ret;
1647 }
1648
1649 void init_request_from_bio(struct request *req, struct bio *bio)
1650 {
1651 req->cmd_type = REQ_TYPE_FS;
1652
1653 req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK;
1654 if (bio->bi_opf & REQ_RAHEAD)
1655 req->cmd_flags |= REQ_FAILFAST_MASK;
1656
1657 req->errors = 0;
1658 req->__sector = bio->bi_iter.bi_sector;
1659 req->ioprio = bio_prio(bio);
1660 blk_rq_bio_prep(req->q, req, bio);
1661 }
1662
1663 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1664 {
1665 const bool sync = !!(bio->bi_opf & REQ_SYNC);
1666 struct blk_plug *plug;
1667 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1668 struct request *req;
1669 unsigned int request_count = 0;
1670
1671 /*
1672 * low level driver can indicate that it wants pages above a
1673 * certain limit bounced to low memory (ie for highmem, or even
1674 * ISA dma in theory)
1675 */
1676 blk_queue_bounce(q, &bio);
1677
1678 blk_queue_split(q, &bio, q->bio_split);
1679
1680 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1681 bio->bi_error = -EIO;
1682 bio_endio(bio);
1683 return BLK_QC_T_NONE;
1684 }
1685
1686 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1687 spin_lock_irq(q->queue_lock);
1688 where = ELEVATOR_INSERT_FLUSH;
1689 goto get_rq;
1690 }
1691
1692 /*
1693 * Check if we can merge with the plugged list before grabbing
1694 * any locks.
1695 */
1696 if (!blk_queue_nomerges(q)) {
1697 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1698 return BLK_QC_T_NONE;
1699 } else
1700 request_count = blk_plug_queued_count(q);
1701
1702 spin_lock_irq(q->queue_lock);
1703
1704 el_ret = elv_merge(q, &req, bio);
1705 if (el_ret == ELEVATOR_BACK_MERGE) {
1706 if (bio_attempt_back_merge(q, req, bio)) {
1707 elv_bio_merged(q, req, bio);
1708 if (!attempt_back_merge(q, req))
1709 elv_merged_request(q, req, el_ret);
1710 goto out_unlock;
1711 }
1712 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1713 if (bio_attempt_front_merge(q, req, bio)) {
1714 elv_bio_merged(q, req, bio);
1715 if (!attempt_front_merge(q, req))
1716 elv_merged_request(q, req, el_ret);
1717 goto out_unlock;
1718 }
1719 }
1720
1721 get_rq:
1722 /*
1723 * This sync check and mask will be re-done in init_request_from_bio(),
1724 * but we need to set it earlier to expose the sync flag to the
1725 * rq allocator and io schedulers.
1726 */
1727 if (sync)
1728 rw_flags |= REQ_SYNC;
1729
1730 /*
1731 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1732 */
1733 rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO));
1734
1735 /*
1736 * Grab a free request. This is might sleep but can not fail.
1737 * Returns with the queue unlocked.
1738 */
1739 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1740 if (IS_ERR(req)) {
1741 bio->bi_error = PTR_ERR(req);
1742 bio_endio(bio);
1743 goto out_unlock;
1744 }
1745
1746 /*
1747 * After dropping the lock and possibly sleeping here, our request
1748 * may now be mergeable after it had proven unmergeable (above).
1749 * We don't worry about that case for efficiency. It won't happen
1750 * often, and the elevators are able to handle it.
1751 */
1752 init_request_from_bio(req, bio);
1753
1754 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1755 req->cpu = raw_smp_processor_id();
1756
1757 plug = current->plug;
1758 if (plug) {
1759 /*
1760 * If this is the first request added after a plug, fire
1761 * of a plug trace.
1762 */
1763 if (!request_count)
1764 trace_block_plug(q);
1765 else {
1766 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1767 blk_flush_plug_list(plug, false);
1768 trace_block_plug(q);
1769 }
1770 }
1771 list_add_tail(&req->queuelist, &plug->list);
1772 blk_account_io_start(req, true);
1773 } else {
1774 spin_lock_irq(q->queue_lock);
1775 add_acct_request(q, req, where);
1776 __blk_run_queue(q);
1777 out_unlock:
1778 spin_unlock_irq(q->queue_lock);
1779 }
1780
1781 return BLK_QC_T_NONE;
1782 }
1783
1784 /*
1785 * If bio->bi_dev is a partition, remap the location
1786 */
1787 static inline void blk_partition_remap(struct bio *bio)
1788 {
1789 struct block_device *bdev = bio->bi_bdev;
1790
1791 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1792 struct hd_struct *p = bdev->bd_part;
1793
1794 bio->bi_iter.bi_sector += p->start_sect;
1795 bio->bi_bdev = bdev->bd_contains;
1796
1797 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1798 bdev->bd_dev,
1799 bio->bi_iter.bi_sector - p->start_sect);
1800 }
1801 }
1802
1803 static void handle_bad_sector(struct bio *bio)
1804 {
1805 char b[BDEVNAME_SIZE];
1806
1807 printk(KERN_INFO "attempt to access beyond end of device\n");
1808 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1809 bdevname(bio->bi_bdev, b),
1810 bio->bi_opf,
1811 (unsigned long long)bio_end_sector(bio),
1812 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1813 }
1814
1815 #ifdef CONFIG_FAIL_MAKE_REQUEST
1816
1817 static DECLARE_FAULT_ATTR(fail_make_request);
1818
1819 static int __init setup_fail_make_request(char *str)
1820 {
1821 return setup_fault_attr(&fail_make_request, str);
1822 }
1823 __setup("fail_make_request=", setup_fail_make_request);
1824
1825 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1826 {
1827 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1828 }
1829
1830 static int __init fail_make_request_debugfs(void)
1831 {
1832 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1833 NULL, &fail_make_request);
1834
1835 return PTR_ERR_OR_ZERO(dir);
1836 }
1837
1838 late_initcall(fail_make_request_debugfs);
1839
1840 #else /* CONFIG_FAIL_MAKE_REQUEST */
1841
1842 static inline bool should_fail_request(struct hd_struct *part,
1843 unsigned int bytes)
1844 {
1845 return false;
1846 }
1847
1848 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1849
1850 /*
1851 * Check whether this bio extends beyond the end of the device.
1852 */
1853 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1854 {
1855 sector_t maxsector;
1856
1857 if (!nr_sectors)
1858 return 0;
1859
1860 /* Test device or partition size, when known. */
1861 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1862 if (maxsector) {
1863 sector_t sector = bio->bi_iter.bi_sector;
1864
1865 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1866 /*
1867 * This may well happen - the kernel calls bread()
1868 * without checking the size of the device, e.g., when
1869 * mounting a device.
1870 */
1871 handle_bad_sector(bio);
1872 return 1;
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
1879 static noinline_for_stack bool
1880 generic_make_request_checks(struct bio *bio)
1881 {
1882 struct request_queue *q;
1883 int nr_sectors = bio_sectors(bio);
1884 int err = -EIO;
1885 char b[BDEVNAME_SIZE];
1886 struct hd_struct *part;
1887
1888 might_sleep();
1889
1890 if (bio_check_eod(bio, nr_sectors))
1891 goto end_io;
1892
1893 q = bdev_get_queue(bio->bi_bdev);
1894 if (unlikely(!q)) {
1895 printk(KERN_ERR
1896 "generic_make_request: Trying to access "
1897 "nonexistent block-device %s (%Lu)\n",
1898 bdevname(bio->bi_bdev, b),
1899 (long long) bio->bi_iter.bi_sector);
1900 goto end_io;
1901 }
1902
1903 part = bio->bi_bdev->bd_part;
1904 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1905 should_fail_request(&part_to_disk(part)->part0,
1906 bio->bi_iter.bi_size))
1907 goto end_io;
1908
1909 /*
1910 * If this device has partitions, remap block n
1911 * of partition p to block n+start(p) of the disk.
1912 */
1913 blk_partition_remap(bio);
1914
1915 if (bio_check_eod(bio, nr_sectors))
1916 goto end_io;
1917
1918 /*
1919 * Filter flush bio's early so that make_request based
1920 * drivers without flush support don't have to worry
1921 * about them.
1922 */
1923 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1924 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1925 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1926 if (!nr_sectors) {
1927 err = 0;
1928 goto end_io;
1929 }
1930 }
1931
1932 switch (bio_op(bio)) {
1933 case REQ_OP_DISCARD:
1934 if (!blk_queue_discard(q))
1935 goto not_supported;
1936 break;
1937 case REQ_OP_SECURE_ERASE:
1938 if (!blk_queue_secure_erase(q))
1939 goto not_supported;
1940 break;
1941 case REQ_OP_WRITE_SAME:
1942 if (!bdev_write_same(bio->bi_bdev))
1943 goto not_supported;
1944 break;
1945 default:
1946 break;
1947 }
1948
1949 /*
1950 * Various block parts want %current->io_context and lazy ioc
1951 * allocation ends up trading a lot of pain for a small amount of
1952 * memory. Just allocate it upfront. This may fail and block
1953 * layer knows how to live with it.
1954 */
1955 create_io_context(GFP_ATOMIC, q->node);
1956
1957 if (!blkcg_bio_issue_check(q, bio))
1958 return false;
1959
1960 trace_block_bio_queue(q, bio);
1961 return true;
1962
1963 not_supported:
1964 err = -EOPNOTSUPP;
1965 end_io:
1966 bio->bi_error = err;
1967 bio_endio(bio);
1968 return false;
1969 }
1970
1971 /**
1972 * generic_make_request - hand a buffer to its device driver for I/O
1973 * @bio: The bio describing the location in memory and on the device.
1974 *
1975 * generic_make_request() is used to make I/O requests of block
1976 * devices. It is passed a &struct bio, which describes the I/O that needs
1977 * to be done.
1978 *
1979 * generic_make_request() does not return any status. The
1980 * success/failure status of the request, along with notification of
1981 * completion, is delivered asynchronously through the bio->bi_end_io
1982 * function described (one day) else where.
1983 *
1984 * The caller of generic_make_request must make sure that bi_io_vec
1985 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1986 * set to describe the device address, and the
1987 * bi_end_io and optionally bi_private are set to describe how
1988 * completion notification should be signaled.
1989 *
1990 * generic_make_request and the drivers it calls may use bi_next if this
1991 * bio happens to be merged with someone else, and may resubmit the bio to
1992 * a lower device by calling into generic_make_request recursively, which
1993 * means the bio should NOT be touched after the call to ->make_request_fn.
1994 */
1995 blk_qc_t generic_make_request(struct bio *bio)
1996 {
1997 struct bio_list bio_list_on_stack;
1998 blk_qc_t ret = BLK_QC_T_NONE;
1999
2000 if (!generic_make_request_checks(bio))
2001 goto out;
2002
2003 /*
2004 * We only want one ->make_request_fn to be active at a time, else
2005 * stack usage with stacked devices could be a problem. So use
2006 * current->bio_list to keep a list of requests submited by a
2007 * make_request_fn function. current->bio_list is also used as a
2008 * flag to say if generic_make_request is currently active in this
2009 * task or not. If it is NULL, then no make_request is active. If
2010 * it is non-NULL, then a make_request is active, and new requests
2011 * should be added at the tail
2012 */
2013 if (current->bio_list) {
2014 bio_list_add(current->bio_list, bio);
2015 goto out;
2016 }
2017
2018 /* following loop may be a bit non-obvious, and so deserves some
2019 * explanation.
2020 * Before entering the loop, bio->bi_next is NULL (as all callers
2021 * ensure that) so we have a list with a single bio.
2022 * We pretend that we have just taken it off a longer list, so
2023 * we assign bio_list to a pointer to the bio_list_on_stack,
2024 * thus initialising the bio_list of new bios to be
2025 * added. ->make_request() may indeed add some more bios
2026 * through a recursive call to generic_make_request. If it
2027 * did, we find a non-NULL value in bio_list and re-enter the loop
2028 * from the top. In this case we really did just take the bio
2029 * of the top of the list (no pretending) and so remove it from
2030 * bio_list, and call into ->make_request() again.
2031 */
2032 BUG_ON(bio->bi_next);
2033 bio_list_init(&bio_list_on_stack);
2034 current->bio_list = &bio_list_on_stack;
2035 do {
2036 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2037
2038 if (likely(blk_queue_enter(q, false) == 0)) {
2039 ret = q->make_request_fn(q, bio);
2040
2041 blk_queue_exit(q);
2042
2043 bio = bio_list_pop(current->bio_list);
2044 } else {
2045 struct bio *bio_next = bio_list_pop(current->bio_list);
2046
2047 bio_io_error(bio);
2048 bio = bio_next;
2049 }
2050 } while (bio);
2051 current->bio_list = NULL; /* deactivate */
2052
2053 out:
2054 return ret;
2055 }
2056 EXPORT_SYMBOL(generic_make_request);
2057
2058 /**
2059 * submit_bio - submit a bio to the block device layer for I/O
2060 * @bio: The &struct bio which describes the I/O
2061 *
2062 * submit_bio() is very similar in purpose to generic_make_request(), and
2063 * uses that function to do most of the work. Both are fairly rough
2064 * interfaces; @bio must be presetup and ready for I/O.
2065 *
2066 */
2067 blk_qc_t submit_bio(struct bio *bio)
2068 {
2069 /*
2070 * If it's a regular read/write or a barrier with data attached,
2071 * go through the normal accounting stuff before submission.
2072 */
2073 if (bio_has_data(bio)) {
2074 unsigned int count;
2075
2076 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2077 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2078 else
2079 count = bio_sectors(bio);
2080
2081 if (op_is_write(bio_op(bio))) {
2082 count_vm_events(PGPGOUT, count);
2083 } else {
2084 task_io_account_read(bio->bi_iter.bi_size);
2085 count_vm_events(PGPGIN, count);
2086 }
2087
2088 if (unlikely(block_dump)) {
2089 char b[BDEVNAME_SIZE];
2090 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2091 current->comm, task_pid_nr(current),
2092 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2093 (unsigned long long)bio->bi_iter.bi_sector,
2094 bdevname(bio->bi_bdev, b),
2095 count);
2096 }
2097 }
2098
2099 return generic_make_request(bio);
2100 }
2101 EXPORT_SYMBOL(submit_bio);
2102
2103 /**
2104 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2105 * for new the queue limits
2106 * @q: the queue
2107 * @rq: the request being checked
2108 *
2109 * Description:
2110 * @rq may have been made based on weaker limitations of upper-level queues
2111 * in request stacking drivers, and it may violate the limitation of @q.
2112 * Since the block layer and the underlying device driver trust @rq
2113 * after it is inserted to @q, it should be checked against @q before
2114 * the insertion using this generic function.
2115 *
2116 * Request stacking drivers like request-based dm may change the queue
2117 * limits when retrying requests on other queues. Those requests need
2118 * to be checked against the new queue limits again during dispatch.
2119 */
2120 static int blk_cloned_rq_check_limits(struct request_queue *q,
2121 struct request *rq)
2122 {
2123 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2124 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2125 return -EIO;
2126 }
2127
2128 /*
2129 * queue's settings related to segment counting like q->bounce_pfn
2130 * may differ from that of other stacking queues.
2131 * Recalculate it to check the request correctly on this queue's
2132 * limitation.
2133 */
2134 blk_recalc_rq_segments(rq);
2135 if (rq->nr_phys_segments > queue_max_segments(q)) {
2136 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2137 return -EIO;
2138 }
2139
2140 return 0;
2141 }
2142
2143 /**
2144 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2145 * @q: the queue to submit the request
2146 * @rq: the request being queued
2147 */
2148 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2149 {
2150 unsigned long flags;
2151 int where = ELEVATOR_INSERT_BACK;
2152
2153 if (blk_cloned_rq_check_limits(q, rq))
2154 return -EIO;
2155
2156 if (rq->rq_disk &&
2157 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2158 return -EIO;
2159
2160 if (q->mq_ops) {
2161 if (blk_queue_io_stat(q))
2162 blk_account_io_start(rq, true);
2163 blk_mq_insert_request(rq, false, true, false);
2164 return 0;
2165 }
2166
2167 spin_lock_irqsave(q->queue_lock, flags);
2168 if (unlikely(blk_queue_dying(q))) {
2169 spin_unlock_irqrestore(q->queue_lock, flags);
2170 return -ENODEV;
2171 }
2172
2173 /*
2174 * Submitting request must be dequeued before calling this function
2175 * because it will be linked to another request_queue
2176 */
2177 BUG_ON(blk_queued_rq(rq));
2178
2179 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2180 where = ELEVATOR_INSERT_FLUSH;
2181
2182 add_acct_request(q, rq, where);
2183 if (where == ELEVATOR_INSERT_FLUSH)
2184 __blk_run_queue(q);
2185 spin_unlock_irqrestore(q->queue_lock, flags);
2186
2187 return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2190
2191 /**
2192 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2193 * @rq: request to examine
2194 *
2195 * Description:
2196 * A request could be merge of IOs which require different failure
2197 * handling. This function determines the number of bytes which
2198 * can be failed from the beginning of the request without
2199 * crossing into area which need to be retried further.
2200 *
2201 * Return:
2202 * The number of bytes to fail.
2203 *
2204 * Context:
2205 * queue_lock must be held.
2206 */
2207 unsigned int blk_rq_err_bytes(const struct request *rq)
2208 {
2209 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2210 unsigned int bytes = 0;
2211 struct bio *bio;
2212
2213 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2214 return blk_rq_bytes(rq);
2215
2216 /*
2217 * Currently the only 'mixing' which can happen is between
2218 * different fastfail types. We can safely fail portions
2219 * which have all the failfast bits that the first one has -
2220 * the ones which are at least as eager to fail as the first
2221 * one.
2222 */
2223 for (bio = rq->bio; bio; bio = bio->bi_next) {
2224 if ((bio->bi_opf & ff) != ff)
2225 break;
2226 bytes += bio->bi_iter.bi_size;
2227 }
2228
2229 /* this could lead to infinite loop */
2230 BUG_ON(blk_rq_bytes(rq) && !bytes);
2231 return bytes;
2232 }
2233 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2234
2235 void blk_account_io_completion(struct request *req, unsigned int bytes)
2236 {
2237 if (blk_do_io_stat(req)) {
2238 const int rw = rq_data_dir(req);
2239 struct hd_struct *part;
2240 int cpu;
2241
2242 cpu = part_stat_lock();
2243 part = req->part;
2244 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2245 part_stat_unlock();
2246 }
2247 }
2248
2249 void blk_account_io_done(struct request *req)
2250 {
2251 /*
2252 * Account IO completion. flush_rq isn't accounted as a
2253 * normal IO on queueing nor completion. Accounting the
2254 * containing request is enough.
2255 */
2256 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2257 unsigned long duration = jiffies - req->start_time;
2258 const int rw = rq_data_dir(req);
2259 struct hd_struct *part;
2260 int cpu;
2261
2262 cpu = part_stat_lock();
2263 part = req->part;
2264
2265 part_stat_inc(cpu, part, ios[rw]);
2266 part_stat_add(cpu, part, ticks[rw], duration);
2267 part_round_stats(cpu, part);
2268 part_dec_in_flight(part, rw);
2269
2270 hd_struct_put(part);
2271 part_stat_unlock();
2272 }
2273 }
2274
2275 #ifdef CONFIG_PM
2276 /*
2277 * Don't process normal requests when queue is suspended
2278 * or in the process of suspending/resuming
2279 */
2280 static struct request *blk_pm_peek_request(struct request_queue *q,
2281 struct request *rq)
2282 {
2283 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2284 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2285 return NULL;
2286 else
2287 return rq;
2288 }
2289 #else
2290 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2291 struct request *rq)
2292 {
2293 return rq;
2294 }
2295 #endif
2296
2297 void blk_account_io_start(struct request *rq, bool new_io)
2298 {
2299 struct hd_struct *part;
2300 int rw = rq_data_dir(rq);
2301 int cpu;
2302
2303 if (!blk_do_io_stat(rq))
2304 return;
2305
2306 cpu = part_stat_lock();
2307
2308 if (!new_io) {
2309 part = rq->part;
2310 part_stat_inc(cpu, part, merges[rw]);
2311 } else {
2312 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2313 if (!hd_struct_try_get(part)) {
2314 /*
2315 * The partition is already being removed,
2316 * the request will be accounted on the disk only
2317 *
2318 * We take a reference on disk->part0 although that
2319 * partition will never be deleted, so we can treat
2320 * it as any other partition.
2321 */
2322 part = &rq->rq_disk->part0;
2323 hd_struct_get(part);
2324 }
2325 part_round_stats(cpu, part);
2326 part_inc_in_flight(part, rw);
2327 rq->part = part;
2328 }
2329
2330 part_stat_unlock();
2331 }
2332
2333 /**
2334 * blk_peek_request - peek at the top of a request queue
2335 * @q: request queue to peek at
2336 *
2337 * Description:
2338 * Return the request at the top of @q. The returned request
2339 * should be started using blk_start_request() before LLD starts
2340 * processing it.
2341 *
2342 * Return:
2343 * Pointer to the request at the top of @q if available. Null
2344 * otherwise.
2345 *
2346 * Context:
2347 * queue_lock must be held.
2348 */
2349 struct request *blk_peek_request(struct request_queue *q)
2350 {
2351 struct request *rq;
2352 int ret;
2353
2354 while ((rq = __elv_next_request(q)) != NULL) {
2355
2356 rq = blk_pm_peek_request(q, rq);
2357 if (!rq)
2358 break;
2359
2360 if (!(rq->cmd_flags & REQ_STARTED)) {
2361 /*
2362 * This is the first time the device driver
2363 * sees this request (possibly after
2364 * requeueing). Notify IO scheduler.
2365 */
2366 if (rq->cmd_flags & REQ_SORTED)
2367 elv_activate_rq(q, rq);
2368
2369 /*
2370 * just mark as started even if we don't start
2371 * it, a request that has been delayed should
2372 * not be passed by new incoming requests
2373 */
2374 rq->cmd_flags |= REQ_STARTED;
2375 trace_block_rq_issue(q, rq);
2376 }
2377
2378 if (!q->boundary_rq || q->boundary_rq == rq) {
2379 q->end_sector = rq_end_sector(rq);
2380 q->boundary_rq = NULL;
2381 }
2382
2383 if (rq->cmd_flags & REQ_DONTPREP)
2384 break;
2385
2386 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2387 /*
2388 * make sure space for the drain appears we
2389 * know we can do this because max_hw_segments
2390 * has been adjusted to be one fewer than the
2391 * device can handle
2392 */
2393 rq->nr_phys_segments++;
2394 }
2395
2396 if (!q->prep_rq_fn)
2397 break;
2398
2399 ret = q->prep_rq_fn(q, rq);
2400 if (ret == BLKPREP_OK) {
2401 break;
2402 } else if (ret == BLKPREP_DEFER) {
2403 /*
2404 * the request may have been (partially) prepped.
2405 * we need to keep this request in the front to
2406 * avoid resource deadlock. REQ_STARTED will
2407 * prevent other fs requests from passing this one.
2408 */
2409 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2410 !(rq->cmd_flags & REQ_DONTPREP)) {
2411 /*
2412 * remove the space for the drain we added
2413 * so that we don't add it again
2414 */
2415 --rq->nr_phys_segments;
2416 }
2417
2418 rq = NULL;
2419 break;
2420 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2421 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2422
2423 rq->cmd_flags |= REQ_QUIET;
2424 /*
2425 * Mark this request as started so we don't trigger
2426 * any debug logic in the end I/O path.
2427 */
2428 blk_start_request(rq);
2429 __blk_end_request_all(rq, err);
2430 } else {
2431 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2432 break;
2433 }
2434 }
2435
2436 return rq;
2437 }
2438 EXPORT_SYMBOL(blk_peek_request);
2439
2440 void blk_dequeue_request(struct request *rq)
2441 {
2442 struct request_queue *q = rq->q;
2443
2444 BUG_ON(list_empty(&rq->queuelist));
2445 BUG_ON(ELV_ON_HASH(rq));
2446
2447 list_del_init(&rq->queuelist);
2448
2449 /*
2450 * the time frame between a request being removed from the lists
2451 * and to it is freed is accounted as io that is in progress at
2452 * the driver side.
2453 */
2454 if (blk_account_rq(rq)) {
2455 q->in_flight[rq_is_sync(rq)]++;
2456 set_io_start_time_ns(rq);
2457 }
2458 }
2459
2460 /**
2461 * blk_start_request - start request processing on the driver
2462 * @req: request to dequeue
2463 *
2464 * Description:
2465 * Dequeue @req and start timeout timer on it. This hands off the
2466 * request to the driver.
2467 *
2468 * Block internal functions which don't want to start timer should
2469 * call blk_dequeue_request().
2470 *
2471 * Context:
2472 * queue_lock must be held.
2473 */
2474 void blk_start_request(struct request *req)
2475 {
2476 blk_dequeue_request(req);
2477
2478 /*
2479 * We are now handing the request to the hardware, initialize
2480 * resid_len to full count and add the timeout handler.
2481 */
2482 req->resid_len = blk_rq_bytes(req);
2483 if (unlikely(blk_bidi_rq(req)))
2484 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2485
2486 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2487 blk_add_timer(req);
2488 }
2489 EXPORT_SYMBOL(blk_start_request);
2490
2491 /**
2492 * blk_fetch_request - fetch a request from a request queue
2493 * @q: request queue to fetch a request from
2494 *
2495 * Description:
2496 * Return the request at the top of @q. The request is started on
2497 * return and LLD can start processing it immediately.
2498 *
2499 * Return:
2500 * Pointer to the request at the top of @q if available. Null
2501 * otherwise.
2502 *
2503 * Context:
2504 * queue_lock must be held.
2505 */
2506 struct request *blk_fetch_request(struct request_queue *q)
2507 {
2508 struct request *rq;
2509
2510 rq = blk_peek_request(q);
2511 if (rq)
2512 blk_start_request(rq);
2513 return rq;
2514 }
2515 EXPORT_SYMBOL(blk_fetch_request);
2516
2517 /**
2518 * blk_update_request - Special helper function for request stacking drivers
2519 * @req: the request being processed
2520 * @error: %0 for success, < %0 for error
2521 * @nr_bytes: number of bytes to complete @req
2522 *
2523 * Description:
2524 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2525 * the request structure even if @req doesn't have leftover.
2526 * If @req has leftover, sets it up for the next range of segments.
2527 *
2528 * This special helper function is only for request stacking drivers
2529 * (e.g. request-based dm) so that they can handle partial completion.
2530 * Actual device drivers should use blk_end_request instead.
2531 *
2532 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2533 * %false return from this function.
2534 *
2535 * Return:
2536 * %false - this request doesn't have any more data
2537 * %true - this request has more data
2538 **/
2539 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2540 {
2541 int total_bytes;
2542
2543 trace_block_rq_complete(req->q, req, nr_bytes);
2544
2545 if (!req->bio)
2546 return false;
2547
2548 /*
2549 * For fs requests, rq is just carrier of independent bio's
2550 * and each partial completion should be handled separately.
2551 * Reset per-request error on each partial completion.
2552 *
2553 * TODO: tj: This is too subtle. It would be better to let
2554 * low level drivers do what they see fit.
2555 */
2556 if (req->cmd_type == REQ_TYPE_FS)
2557 req->errors = 0;
2558
2559 if (error && req->cmd_type == REQ_TYPE_FS &&
2560 !(req->cmd_flags & REQ_QUIET)) {
2561 char *error_type;
2562
2563 switch (error) {
2564 case -ENOLINK:
2565 error_type = "recoverable transport";
2566 break;
2567 case -EREMOTEIO:
2568 error_type = "critical target";
2569 break;
2570 case -EBADE:
2571 error_type = "critical nexus";
2572 break;
2573 case -ETIMEDOUT:
2574 error_type = "timeout";
2575 break;
2576 case -ENOSPC:
2577 error_type = "critical space allocation";
2578 break;
2579 case -ENODATA:
2580 error_type = "critical medium";
2581 break;
2582 case -EIO:
2583 default:
2584 error_type = "I/O";
2585 break;
2586 }
2587 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2588 __func__, error_type, req->rq_disk ?
2589 req->rq_disk->disk_name : "?",
2590 (unsigned long long)blk_rq_pos(req));
2591
2592 }
2593
2594 blk_account_io_completion(req, nr_bytes);
2595
2596 total_bytes = 0;
2597 while (req->bio) {
2598 struct bio *bio = req->bio;
2599 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2600
2601 if (bio_bytes == bio->bi_iter.bi_size)
2602 req->bio = bio->bi_next;
2603
2604 req_bio_endio(req, bio, bio_bytes, error);
2605
2606 total_bytes += bio_bytes;
2607 nr_bytes -= bio_bytes;
2608
2609 if (!nr_bytes)
2610 break;
2611 }
2612
2613 /*
2614 * completely done
2615 */
2616 if (!req->bio) {
2617 /*
2618 * Reset counters so that the request stacking driver
2619 * can find how many bytes remain in the request
2620 * later.
2621 */
2622 req->__data_len = 0;
2623 return false;
2624 }
2625
2626 req->__data_len -= total_bytes;
2627
2628 /* update sector only for requests with clear definition of sector */
2629 if (req->cmd_type == REQ_TYPE_FS)
2630 req->__sector += total_bytes >> 9;
2631
2632 /* mixed attributes always follow the first bio */
2633 if (req->cmd_flags & REQ_MIXED_MERGE) {
2634 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2635 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2636 }
2637
2638 /*
2639 * If total number of sectors is less than the first segment
2640 * size, something has gone terribly wrong.
2641 */
2642 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2643 blk_dump_rq_flags(req, "request botched");
2644 req->__data_len = blk_rq_cur_bytes(req);
2645 }
2646
2647 /* recalculate the number of segments */
2648 blk_recalc_rq_segments(req);
2649
2650 return true;
2651 }
2652 EXPORT_SYMBOL_GPL(blk_update_request);
2653
2654 static bool blk_update_bidi_request(struct request *rq, int error,
2655 unsigned int nr_bytes,
2656 unsigned int bidi_bytes)
2657 {
2658 if (blk_update_request(rq, error, nr_bytes))
2659 return true;
2660
2661 /* Bidi request must be completed as a whole */
2662 if (unlikely(blk_bidi_rq(rq)) &&
2663 blk_update_request(rq->next_rq, error, bidi_bytes))
2664 return true;
2665
2666 if (blk_queue_add_random(rq->q))
2667 add_disk_randomness(rq->rq_disk);
2668
2669 return false;
2670 }
2671
2672 /**
2673 * blk_unprep_request - unprepare a request
2674 * @req: the request
2675 *
2676 * This function makes a request ready for complete resubmission (or
2677 * completion). It happens only after all error handling is complete,
2678 * so represents the appropriate moment to deallocate any resources
2679 * that were allocated to the request in the prep_rq_fn. The queue
2680 * lock is held when calling this.
2681 */
2682 void blk_unprep_request(struct request *req)
2683 {
2684 struct request_queue *q = req->q;
2685
2686 req->cmd_flags &= ~REQ_DONTPREP;
2687 if (q->unprep_rq_fn)
2688 q->unprep_rq_fn(q, req);
2689 }
2690 EXPORT_SYMBOL_GPL(blk_unprep_request);
2691
2692 /*
2693 * queue lock must be held
2694 */
2695 void blk_finish_request(struct request *req, int error)
2696 {
2697 if (req->cmd_flags & REQ_QUEUED)
2698 blk_queue_end_tag(req->q, req);
2699
2700 BUG_ON(blk_queued_rq(req));
2701
2702 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2703 laptop_io_completion(&req->q->backing_dev_info);
2704
2705 blk_delete_timer(req);
2706
2707 if (req->cmd_flags & REQ_DONTPREP)
2708 blk_unprep_request(req);
2709
2710 blk_account_io_done(req);
2711
2712 if (req->end_io)
2713 req->end_io(req, error);
2714 else {
2715 if (blk_bidi_rq(req))
2716 __blk_put_request(req->next_rq->q, req->next_rq);
2717
2718 __blk_put_request(req->q, req);
2719 }
2720 }
2721 EXPORT_SYMBOL(blk_finish_request);
2722
2723 /**
2724 * blk_end_bidi_request - Complete a bidi request
2725 * @rq: the request to complete
2726 * @error: %0 for success, < %0 for error
2727 * @nr_bytes: number of bytes to complete @rq
2728 * @bidi_bytes: number of bytes to complete @rq->next_rq
2729 *
2730 * Description:
2731 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2732 * Drivers that supports bidi can safely call this member for any
2733 * type of request, bidi or uni. In the later case @bidi_bytes is
2734 * just ignored.
2735 *
2736 * Return:
2737 * %false - we are done with this request
2738 * %true - still buffers pending for this request
2739 **/
2740 static bool blk_end_bidi_request(struct request *rq, int error,
2741 unsigned int nr_bytes, unsigned int bidi_bytes)
2742 {
2743 struct request_queue *q = rq->q;
2744 unsigned long flags;
2745
2746 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2747 return true;
2748
2749 spin_lock_irqsave(q->queue_lock, flags);
2750 blk_finish_request(rq, error);
2751 spin_unlock_irqrestore(q->queue_lock, flags);
2752
2753 return false;
2754 }
2755
2756 /**
2757 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2758 * @rq: the request to complete
2759 * @error: %0 for success, < %0 for error
2760 * @nr_bytes: number of bytes to complete @rq
2761 * @bidi_bytes: number of bytes to complete @rq->next_rq
2762 *
2763 * Description:
2764 * Identical to blk_end_bidi_request() except that queue lock is
2765 * assumed to be locked on entry and remains so on return.
2766 *
2767 * Return:
2768 * %false - we are done with this request
2769 * %true - still buffers pending for this request
2770 **/
2771 bool __blk_end_bidi_request(struct request *rq, int error,
2772 unsigned int nr_bytes, unsigned int bidi_bytes)
2773 {
2774 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2775 return true;
2776
2777 blk_finish_request(rq, error);
2778
2779 return false;
2780 }
2781
2782 /**
2783 * blk_end_request - Helper function for drivers to complete the request.
2784 * @rq: the request being processed
2785 * @error: %0 for success, < %0 for error
2786 * @nr_bytes: number of bytes to complete
2787 *
2788 * Description:
2789 * Ends I/O on a number of bytes attached to @rq.
2790 * If @rq has leftover, sets it up for the next range of segments.
2791 *
2792 * Return:
2793 * %false - we are done with this request
2794 * %true - still buffers pending for this request
2795 **/
2796 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2797 {
2798 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2799 }
2800 EXPORT_SYMBOL(blk_end_request);
2801
2802 /**
2803 * blk_end_request_all - Helper function for drives to finish the request.
2804 * @rq: the request to finish
2805 * @error: %0 for success, < %0 for error
2806 *
2807 * Description:
2808 * Completely finish @rq.
2809 */
2810 void blk_end_request_all(struct request *rq, int error)
2811 {
2812 bool pending;
2813 unsigned int bidi_bytes = 0;
2814
2815 if (unlikely(blk_bidi_rq(rq)))
2816 bidi_bytes = blk_rq_bytes(rq->next_rq);
2817
2818 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2819 BUG_ON(pending);
2820 }
2821 EXPORT_SYMBOL(blk_end_request_all);
2822
2823 /**
2824 * blk_end_request_cur - Helper function to finish the current request chunk.
2825 * @rq: the request to finish the current chunk for
2826 * @error: %0 for success, < %0 for error
2827 *
2828 * Description:
2829 * Complete the current consecutively mapped chunk from @rq.
2830 *
2831 * Return:
2832 * %false - we are done with this request
2833 * %true - still buffers pending for this request
2834 */
2835 bool blk_end_request_cur(struct request *rq, int error)
2836 {
2837 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2838 }
2839 EXPORT_SYMBOL(blk_end_request_cur);
2840
2841 /**
2842 * blk_end_request_err - Finish a request till the next failure boundary.
2843 * @rq: the request to finish till the next failure boundary for
2844 * @error: must be negative errno
2845 *
2846 * Description:
2847 * Complete @rq till the next failure boundary.
2848 *
2849 * Return:
2850 * %false - we are done with this request
2851 * %true - still buffers pending for this request
2852 */
2853 bool blk_end_request_err(struct request *rq, int error)
2854 {
2855 WARN_ON(error >= 0);
2856 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2857 }
2858 EXPORT_SYMBOL_GPL(blk_end_request_err);
2859
2860 /**
2861 * __blk_end_request - Helper function for drivers to complete the request.
2862 * @rq: the request being processed
2863 * @error: %0 for success, < %0 for error
2864 * @nr_bytes: number of bytes to complete
2865 *
2866 * Description:
2867 * Must be called with queue lock held unlike blk_end_request().
2868 *
2869 * Return:
2870 * %false - we are done with this request
2871 * %true - still buffers pending for this request
2872 **/
2873 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2874 {
2875 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2876 }
2877 EXPORT_SYMBOL(__blk_end_request);
2878
2879 /**
2880 * __blk_end_request_all - Helper function for drives to finish the request.
2881 * @rq: the request to finish
2882 * @error: %0 for success, < %0 for error
2883 *
2884 * Description:
2885 * Completely finish @rq. Must be called with queue lock held.
2886 */
2887 void __blk_end_request_all(struct request *rq, int error)
2888 {
2889 bool pending;
2890 unsigned int bidi_bytes = 0;
2891
2892 if (unlikely(blk_bidi_rq(rq)))
2893 bidi_bytes = blk_rq_bytes(rq->next_rq);
2894
2895 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2896 BUG_ON(pending);
2897 }
2898 EXPORT_SYMBOL(__blk_end_request_all);
2899
2900 /**
2901 * __blk_end_request_cur - Helper function to finish the current request chunk.
2902 * @rq: the request to finish the current chunk for
2903 * @error: %0 for success, < %0 for error
2904 *
2905 * Description:
2906 * Complete the current consecutively mapped chunk from @rq. Must
2907 * be called with queue lock held.
2908 *
2909 * Return:
2910 * %false - we are done with this request
2911 * %true - still buffers pending for this request
2912 */
2913 bool __blk_end_request_cur(struct request *rq, int error)
2914 {
2915 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2916 }
2917 EXPORT_SYMBOL(__blk_end_request_cur);
2918
2919 /**
2920 * __blk_end_request_err - Finish a request till the next failure boundary.
2921 * @rq: the request to finish till the next failure boundary for
2922 * @error: must be negative errno
2923 *
2924 * Description:
2925 * Complete @rq till the next failure boundary. Must be called
2926 * with queue lock held.
2927 *
2928 * Return:
2929 * %false - we are done with this request
2930 * %true - still buffers pending for this request
2931 */
2932 bool __blk_end_request_err(struct request *rq, int error)
2933 {
2934 WARN_ON(error >= 0);
2935 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2936 }
2937 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2938
2939 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2940 struct bio *bio)
2941 {
2942 req_set_op(rq, bio_op(bio));
2943
2944 if (bio_has_data(bio))
2945 rq->nr_phys_segments = bio_phys_segments(q, bio);
2946
2947 rq->__data_len = bio->bi_iter.bi_size;
2948 rq->bio = rq->biotail = bio;
2949
2950 if (bio->bi_bdev)
2951 rq->rq_disk = bio->bi_bdev->bd_disk;
2952 }
2953
2954 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2955 /**
2956 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2957 * @rq: the request to be flushed
2958 *
2959 * Description:
2960 * Flush all pages in @rq.
2961 */
2962 void rq_flush_dcache_pages(struct request *rq)
2963 {
2964 struct req_iterator iter;
2965 struct bio_vec bvec;
2966
2967 rq_for_each_segment(bvec, rq, iter)
2968 flush_dcache_page(bvec.bv_page);
2969 }
2970 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2971 #endif
2972
2973 /**
2974 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2975 * @q : the queue of the device being checked
2976 *
2977 * Description:
2978 * Check if underlying low-level drivers of a device are busy.
2979 * If the drivers want to export their busy state, they must set own
2980 * exporting function using blk_queue_lld_busy() first.
2981 *
2982 * Basically, this function is used only by request stacking drivers
2983 * to stop dispatching requests to underlying devices when underlying
2984 * devices are busy. This behavior helps more I/O merging on the queue
2985 * of the request stacking driver and prevents I/O throughput regression
2986 * on burst I/O load.
2987 *
2988 * Return:
2989 * 0 - Not busy (The request stacking driver should dispatch request)
2990 * 1 - Busy (The request stacking driver should stop dispatching request)
2991 */
2992 int blk_lld_busy(struct request_queue *q)
2993 {
2994 if (q->lld_busy_fn)
2995 return q->lld_busy_fn(q);
2996
2997 return 0;
2998 }
2999 EXPORT_SYMBOL_GPL(blk_lld_busy);
3000
3001 /**
3002 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3003 * @rq: the clone request to be cleaned up
3004 *
3005 * Description:
3006 * Free all bios in @rq for a cloned request.
3007 */
3008 void blk_rq_unprep_clone(struct request *rq)
3009 {
3010 struct bio *bio;
3011
3012 while ((bio = rq->bio) != NULL) {
3013 rq->bio = bio->bi_next;
3014
3015 bio_put(bio);
3016 }
3017 }
3018 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3019
3020 /*
3021 * Copy attributes of the original request to the clone request.
3022 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3023 */
3024 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3025 {
3026 dst->cpu = src->cpu;
3027 req_set_op_attrs(dst, req_op(src),
3028 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3029 dst->cmd_type = src->cmd_type;
3030 dst->__sector = blk_rq_pos(src);
3031 dst->__data_len = blk_rq_bytes(src);
3032 dst->nr_phys_segments = src->nr_phys_segments;
3033 dst->ioprio = src->ioprio;
3034 dst->extra_len = src->extra_len;
3035 }
3036
3037 /**
3038 * blk_rq_prep_clone - Helper function to setup clone request
3039 * @rq: the request to be setup
3040 * @rq_src: original request to be cloned
3041 * @bs: bio_set that bios for clone are allocated from
3042 * @gfp_mask: memory allocation mask for bio
3043 * @bio_ctr: setup function to be called for each clone bio.
3044 * Returns %0 for success, non %0 for failure.
3045 * @data: private data to be passed to @bio_ctr
3046 *
3047 * Description:
3048 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3049 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3050 * are not copied, and copying such parts is the caller's responsibility.
3051 * Also, pages which the original bios are pointing to are not copied
3052 * and the cloned bios just point same pages.
3053 * So cloned bios must be completed before original bios, which means
3054 * the caller must complete @rq before @rq_src.
3055 */
3056 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3057 struct bio_set *bs, gfp_t gfp_mask,
3058 int (*bio_ctr)(struct bio *, struct bio *, void *),
3059 void *data)
3060 {
3061 struct bio *bio, *bio_src;
3062
3063 if (!bs)
3064 bs = fs_bio_set;
3065
3066 __rq_for_each_bio(bio_src, rq_src) {
3067 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3068 if (!bio)
3069 goto free_and_out;
3070
3071 if (bio_ctr && bio_ctr(bio, bio_src, data))
3072 goto free_and_out;
3073
3074 if (rq->bio) {
3075 rq->biotail->bi_next = bio;
3076 rq->biotail = bio;
3077 } else
3078 rq->bio = rq->biotail = bio;
3079 }
3080
3081 __blk_rq_prep_clone(rq, rq_src);
3082
3083 return 0;
3084
3085 free_and_out:
3086 if (bio)
3087 bio_put(bio);
3088 blk_rq_unprep_clone(rq);
3089
3090 return -ENOMEM;
3091 }
3092 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3093
3094 int kblockd_schedule_work(struct work_struct *work)
3095 {
3096 return queue_work(kblockd_workqueue, work);
3097 }
3098 EXPORT_SYMBOL(kblockd_schedule_work);
3099
3100 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3101 {
3102 return queue_work_on(cpu, kblockd_workqueue, work);
3103 }
3104 EXPORT_SYMBOL(kblockd_schedule_work_on);
3105
3106 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3107 unsigned long delay)
3108 {
3109 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3110 }
3111 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3112
3113 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3114 unsigned long delay)
3115 {
3116 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3117 }
3118 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3119
3120 /**
3121 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3122 * @plug: The &struct blk_plug that needs to be initialized
3123 *
3124 * Description:
3125 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3126 * pending I/O should the task end up blocking between blk_start_plug() and
3127 * blk_finish_plug(). This is important from a performance perspective, but
3128 * also ensures that we don't deadlock. For instance, if the task is blocking
3129 * for a memory allocation, memory reclaim could end up wanting to free a
3130 * page belonging to that request that is currently residing in our private
3131 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3132 * this kind of deadlock.
3133 */
3134 void blk_start_plug(struct blk_plug *plug)
3135 {
3136 struct task_struct *tsk = current;
3137
3138 /*
3139 * If this is a nested plug, don't actually assign it.
3140 */
3141 if (tsk->plug)
3142 return;
3143
3144 INIT_LIST_HEAD(&plug->list);
3145 INIT_LIST_HEAD(&plug->mq_list);
3146 INIT_LIST_HEAD(&plug->cb_list);
3147 /*
3148 * Store ordering should not be needed here, since a potential
3149 * preempt will imply a full memory barrier
3150 */
3151 tsk->plug = plug;
3152 }
3153 EXPORT_SYMBOL(blk_start_plug);
3154
3155 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3156 {
3157 struct request *rqa = container_of(a, struct request, queuelist);
3158 struct request *rqb = container_of(b, struct request, queuelist);
3159
3160 return !(rqa->q < rqb->q ||
3161 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3162 }
3163
3164 /*
3165 * If 'from_schedule' is true, then postpone the dispatch of requests
3166 * until a safe kblockd context. We due this to avoid accidental big
3167 * additional stack usage in driver dispatch, in places where the originally
3168 * plugger did not intend it.
3169 */
3170 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3171 bool from_schedule)
3172 __releases(q->queue_lock)
3173 {
3174 trace_block_unplug(q, depth, !from_schedule);
3175
3176 if (from_schedule)
3177 blk_run_queue_async(q);
3178 else
3179 __blk_run_queue(q);
3180 spin_unlock(q->queue_lock);
3181 }
3182
3183 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3184 {
3185 LIST_HEAD(callbacks);
3186
3187 while (!list_empty(&plug->cb_list)) {
3188 list_splice_init(&plug->cb_list, &callbacks);
3189
3190 while (!list_empty(&callbacks)) {
3191 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3192 struct blk_plug_cb,
3193 list);
3194 list_del(&cb->list);
3195 cb->callback(cb, from_schedule);
3196 }
3197 }
3198 }
3199
3200 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3201 int size)
3202 {
3203 struct blk_plug *plug = current->plug;
3204 struct blk_plug_cb *cb;
3205
3206 if (!plug)
3207 return NULL;
3208
3209 list_for_each_entry(cb, &plug->cb_list, list)
3210 if (cb->callback == unplug && cb->data == data)
3211 return cb;
3212
3213 /* Not currently on the callback list */
3214 BUG_ON(size < sizeof(*cb));
3215 cb = kzalloc(size, GFP_ATOMIC);
3216 if (cb) {
3217 cb->data = data;
3218 cb->callback = unplug;
3219 list_add(&cb->list, &plug->cb_list);
3220 }
3221 return cb;
3222 }
3223 EXPORT_SYMBOL(blk_check_plugged);
3224
3225 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3226 {
3227 struct request_queue *q;
3228 unsigned long flags;
3229 struct request *rq;
3230 LIST_HEAD(list);
3231 unsigned int depth;
3232
3233 flush_plug_callbacks(plug, from_schedule);
3234
3235 if (!list_empty(&plug->mq_list))
3236 blk_mq_flush_plug_list(plug, from_schedule);
3237
3238 if (list_empty(&plug->list))
3239 return;
3240
3241 list_splice_init(&plug->list, &list);
3242
3243 list_sort(NULL, &list, plug_rq_cmp);
3244
3245 q = NULL;
3246 depth = 0;
3247
3248 /*
3249 * Save and disable interrupts here, to avoid doing it for every
3250 * queue lock we have to take.
3251 */
3252 local_irq_save(flags);
3253 while (!list_empty(&list)) {
3254 rq = list_entry_rq(list.next);
3255 list_del_init(&rq->queuelist);
3256 BUG_ON(!rq->q);
3257 if (rq->q != q) {
3258 /*
3259 * This drops the queue lock
3260 */
3261 if (q)
3262 queue_unplugged(q, depth, from_schedule);
3263 q = rq->q;
3264 depth = 0;
3265 spin_lock(q->queue_lock);
3266 }
3267
3268 /*
3269 * Short-circuit if @q is dead
3270 */
3271 if (unlikely(blk_queue_dying(q))) {
3272 __blk_end_request_all(rq, -ENODEV);
3273 continue;
3274 }
3275
3276 /*
3277 * rq is already accounted, so use raw insert
3278 */
3279 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3280 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3281 else
3282 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3283
3284 depth++;
3285 }
3286
3287 /*
3288 * This drops the queue lock
3289 */
3290 if (q)
3291 queue_unplugged(q, depth, from_schedule);
3292
3293 local_irq_restore(flags);
3294 }
3295
3296 void blk_finish_plug(struct blk_plug *plug)
3297 {
3298 if (plug != current->plug)
3299 return;
3300 blk_flush_plug_list(plug, false);
3301
3302 current->plug = NULL;
3303 }
3304 EXPORT_SYMBOL(blk_finish_plug);
3305
3306 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3307 {
3308 struct blk_plug *plug;
3309 long state;
3310
3311 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3312 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3313 return false;
3314
3315 plug = current->plug;
3316 if (plug)
3317 blk_flush_plug_list(plug, false);
3318
3319 state = current->state;
3320 while (!need_resched()) {
3321 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3322 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3323 int ret;
3324
3325 hctx->poll_invoked++;
3326
3327 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3328 if (ret > 0) {
3329 hctx->poll_success++;
3330 set_current_state(TASK_RUNNING);
3331 return true;
3332 }
3333
3334 if (signal_pending_state(state, current))
3335 set_current_state(TASK_RUNNING);
3336
3337 if (current->state == TASK_RUNNING)
3338 return true;
3339 if (ret < 0)
3340 break;
3341 cpu_relax();
3342 }
3343
3344 return false;
3345 }
3346 EXPORT_SYMBOL_GPL(blk_poll);
3347
3348 #ifdef CONFIG_PM
3349 /**
3350 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3351 * @q: the queue of the device
3352 * @dev: the device the queue belongs to
3353 *
3354 * Description:
3355 * Initialize runtime-PM-related fields for @q and start auto suspend for
3356 * @dev. Drivers that want to take advantage of request-based runtime PM
3357 * should call this function after @dev has been initialized, and its
3358 * request queue @q has been allocated, and runtime PM for it can not happen
3359 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3360 * cases, driver should call this function before any I/O has taken place.
3361 *
3362 * This function takes care of setting up using auto suspend for the device,
3363 * the autosuspend delay is set to -1 to make runtime suspend impossible
3364 * until an updated value is either set by user or by driver. Drivers do
3365 * not need to touch other autosuspend settings.
3366 *
3367 * The block layer runtime PM is request based, so only works for drivers
3368 * that use request as their IO unit instead of those directly use bio's.
3369 */
3370 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3371 {
3372 q->dev = dev;
3373 q->rpm_status = RPM_ACTIVE;
3374 pm_runtime_set_autosuspend_delay(q->dev, -1);
3375 pm_runtime_use_autosuspend(q->dev);
3376 }
3377 EXPORT_SYMBOL(blk_pm_runtime_init);
3378
3379 /**
3380 * blk_pre_runtime_suspend - Pre runtime suspend check
3381 * @q: the queue of the device
3382 *
3383 * Description:
3384 * This function will check if runtime suspend is allowed for the device
3385 * by examining if there are any requests pending in the queue. If there
3386 * are requests pending, the device can not be runtime suspended; otherwise,
3387 * the queue's status will be updated to SUSPENDING and the driver can
3388 * proceed to suspend the device.
3389 *
3390 * For the not allowed case, we mark last busy for the device so that
3391 * runtime PM core will try to autosuspend it some time later.
3392 *
3393 * This function should be called near the start of the device's
3394 * runtime_suspend callback.
3395 *
3396 * Return:
3397 * 0 - OK to runtime suspend the device
3398 * -EBUSY - Device should not be runtime suspended
3399 */
3400 int blk_pre_runtime_suspend(struct request_queue *q)
3401 {
3402 int ret = 0;
3403
3404 if (!q->dev)
3405 return ret;
3406
3407 spin_lock_irq(q->queue_lock);
3408 if (q->nr_pending) {
3409 ret = -EBUSY;
3410 pm_runtime_mark_last_busy(q->dev);
3411 } else {
3412 q->rpm_status = RPM_SUSPENDING;
3413 }
3414 spin_unlock_irq(q->queue_lock);
3415 return ret;
3416 }
3417 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3418
3419 /**
3420 * blk_post_runtime_suspend - Post runtime suspend processing
3421 * @q: the queue of the device
3422 * @err: return value of the device's runtime_suspend function
3423 *
3424 * Description:
3425 * Update the queue's runtime status according to the return value of the
3426 * device's runtime suspend function and mark last busy for the device so
3427 * that PM core will try to auto suspend the device at a later time.
3428 *
3429 * This function should be called near the end of the device's
3430 * runtime_suspend callback.
3431 */
3432 void blk_post_runtime_suspend(struct request_queue *q, int err)
3433 {
3434 if (!q->dev)
3435 return;
3436
3437 spin_lock_irq(q->queue_lock);
3438 if (!err) {
3439 q->rpm_status = RPM_SUSPENDED;
3440 } else {
3441 q->rpm_status = RPM_ACTIVE;
3442 pm_runtime_mark_last_busy(q->dev);
3443 }
3444 spin_unlock_irq(q->queue_lock);
3445 }
3446 EXPORT_SYMBOL(blk_post_runtime_suspend);
3447
3448 /**
3449 * blk_pre_runtime_resume - Pre runtime resume processing
3450 * @q: the queue of the device
3451 *
3452 * Description:
3453 * Update the queue's runtime status to RESUMING in preparation for the
3454 * runtime resume of the device.
3455 *
3456 * This function should be called near the start of the device's
3457 * runtime_resume callback.
3458 */
3459 void blk_pre_runtime_resume(struct request_queue *q)
3460 {
3461 if (!q->dev)
3462 return;
3463
3464 spin_lock_irq(q->queue_lock);
3465 q->rpm_status = RPM_RESUMING;
3466 spin_unlock_irq(q->queue_lock);
3467 }
3468 EXPORT_SYMBOL(blk_pre_runtime_resume);
3469
3470 /**
3471 * blk_post_runtime_resume - Post runtime resume processing
3472 * @q: the queue of the device
3473 * @err: return value of the device's runtime_resume function
3474 *
3475 * Description:
3476 * Update the queue's runtime status according to the return value of the
3477 * device's runtime_resume function. If it is successfully resumed, process
3478 * the requests that are queued into the device's queue when it is resuming
3479 * and then mark last busy and initiate autosuspend for it.
3480 *
3481 * This function should be called near the end of the device's
3482 * runtime_resume callback.
3483 */
3484 void blk_post_runtime_resume(struct request_queue *q, int err)
3485 {
3486 if (!q->dev)
3487 return;
3488
3489 spin_lock_irq(q->queue_lock);
3490 if (!err) {
3491 q->rpm_status = RPM_ACTIVE;
3492 __blk_run_queue(q);
3493 pm_runtime_mark_last_busy(q->dev);
3494 pm_request_autosuspend(q->dev);
3495 } else {
3496 q->rpm_status = RPM_SUSPENDED;
3497 }
3498 spin_unlock_irq(q->queue_lock);
3499 }
3500 EXPORT_SYMBOL(blk_post_runtime_resume);
3501
3502 /**
3503 * blk_set_runtime_active - Force runtime status of the queue to be active
3504 * @q: the queue of the device
3505 *
3506 * If the device is left runtime suspended during system suspend the resume
3507 * hook typically resumes the device and corrects runtime status
3508 * accordingly. However, that does not affect the queue runtime PM status
3509 * which is still "suspended". This prevents processing requests from the
3510 * queue.
3511 *
3512 * This function can be used in driver's resume hook to correct queue
3513 * runtime PM status and re-enable peeking requests from the queue. It
3514 * should be called before first request is added to the queue.
3515 */
3516 void blk_set_runtime_active(struct request_queue *q)
3517 {
3518 spin_lock_irq(q->queue_lock);
3519 q->rpm_status = RPM_ACTIVE;
3520 pm_runtime_mark_last_busy(q->dev);
3521 pm_request_autosuspend(q->dev);
3522 spin_unlock_irq(q->queue_lock);
3523 }
3524 EXPORT_SYMBOL(blk_set_runtime_active);
3525 #endif
3526
3527 int __init blk_dev_init(void)
3528 {
3529 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3530 FIELD_SIZEOF(struct request, cmd_flags));
3531
3532 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3533 kblockd_workqueue = alloc_workqueue("kblockd",
3534 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3535 if (!kblockd_workqueue)
3536 panic("Failed to create kblockd\n");
3537
3538 request_cachep = kmem_cache_create("blkdev_requests",
3539 sizeof(struct request), 0, SLAB_PANIC, NULL);
3540
3541 blk_requestq_cachep = kmem_cache_create("request_queue",
3542 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3543
3544 return 0;
3545 }
This page took 0.101423 seconds and 5 git commands to generate.