intel_pstate: Fix intel_pstate_get()
[deliverable/linux.git] / crypto / Kconfig
1 #
2 # Generic algorithms support
3 #
4 config XOR_BLOCKS
5 tristate
6
7 #
8 # async_tx api: hardware offloaded memory transfer/transform support
9 #
10 source "crypto/async_tx/Kconfig"
11
12 #
13 # Cryptographic API Configuration
14 #
15 menuconfig CRYPTO
16 tristate "Cryptographic API"
17 help
18 This option provides the core Cryptographic API.
19
20 if CRYPTO
21
22 comment "Crypto core or helper"
23
24 config CRYPTO_FIPS
25 bool "FIPS 200 compliance"
26 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
27 depends on MODULE_SIG
28 help
29 This options enables the fips boot option which is
30 required if you want to system to operate in a FIPS 200
31 certification. You should say no unless you know what
32 this is.
33
34 config CRYPTO_ALGAPI
35 tristate
36 select CRYPTO_ALGAPI2
37 help
38 This option provides the API for cryptographic algorithms.
39
40 config CRYPTO_ALGAPI2
41 tristate
42
43 config CRYPTO_AEAD
44 tristate
45 select CRYPTO_AEAD2
46 select CRYPTO_ALGAPI
47
48 config CRYPTO_AEAD2
49 tristate
50 select CRYPTO_ALGAPI2
51 select CRYPTO_NULL2
52 select CRYPTO_RNG2
53
54 config CRYPTO_BLKCIPHER
55 tristate
56 select CRYPTO_BLKCIPHER2
57 select CRYPTO_ALGAPI
58
59 config CRYPTO_BLKCIPHER2
60 tristate
61 select CRYPTO_ALGAPI2
62 select CRYPTO_RNG2
63 select CRYPTO_WORKQUEUE
64
65 config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70 config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74 config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79 config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83 config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87 config CRYPTO_PCOMP
88 tristate
89 select CRYPTO_PCOMP2
90 select CRYPTO_ALGAPI
91
92 config CRYPTO_PCOMP2
93 tristate
94 select CRYPTO_ALGAPI2
95
96 config CRYPTO_AKCIPHER2
97 tristate
98 select CRYPTO_ALGAPI2
99
100 config CRYPTO_AKCIPHER
101 tristate
102 select CRYPTO_AKCIPHER2
103 select CRYPTO_ALGAPI
104
105 config CRYPTO_RSA
106 tristate "RSA algorithm"
107 select CRYPTO_AKCIPHER
108 select MPILIB
109 select ASN1
110 help
111 Generic implementation of the RSA public key algorithm.
112
113 config CRYPTO_MANAGER
114 tristate "Cryptographic algorithm manager"
115 select CRYPTO_MANAGER2
116 help
117 Create default cryptographic template instantiations such as
118 cbc(aes).
119
120 config CRYPTO_MANAGER2
121 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
122 select CRYPTO_AEAD2
123 select CRYPTO_HASH2
124 select CRYPTO_BLKCIPHER2
125 select CRYPTO_PCOMP2
126 select CRYPTO_AKCIPHER2
127
128 config CRYPTO_USER
129 tristate "Userspace cryptographic algorithm configuration"
130 depends on NET
131 select CRYPTO_MANAGER
132 help
133 Userspace configuration for cryptographic instantiations such as
134 cbc(aes).
135
136 config CRYPTO_MANAGER_DISABLE_TESTS
137 bool "Disable run-time self tests"
138 default y
139 depends on CRYPTO_MANAGER2
140 help
141 Disable run-time self tests that normally take place at
142 algorithm registration.
143
144 config CRYPTO_GF128MUL
145 tristate "GF(2^128) multiplication functions"
146 help
147 Efficient table driven implementation of multiplications in the
148 field GF(2^128). This is needed by some cypher modes. This
149 option will be selected automatically if you select such a
150 cipher mode. Only select this option by hand if you expect to load
151 an external module that requires these functions.
152
153 config CRYPTO_NULL
154 tristate "Null algorithms"
155 select CRYPTO_NULL2
156 help
157 These are 'Null' algorithms, used by IPsec, which do nothing.
158
159 config CRYPTO_NULL2
160 tristate
161 select CRYPTO_ALGAPI2
162 select CRYPTO_BLKCIPHER2
163 select CRYPTO_HASH2
164
165 config CRYPTO_PCRYPT
166 tristate "Parallel crypto engine"
167 depends on SMP
168 select PADATA
169 select CRYPTO_MANAGER
170 select CRYPTO_AEAD
171 help
172 This converts an arbitrary crypto algorithm into a parallel
173 algorithm that executes in kernel threads.
174
175 config CRYPTO_WORKQUEUE
176 tristate
177
178 config CRYPTO_CRYPTD
179 tristate "Software async crypto daemon"
180 select CRYPTO_BLKCIPHER
181 select CRYPTO_HASH
182 select CRYPTO_MANAGER
183 select CRYPTO_WORKQUEUE
184 help
185 This is a generic software asynchronous crypto daemon that
186 converts an arbitrary synchronous software crypto algorithm
187 into an asynchronous algorithm that executes in a kernel thread.
188
189 config CRYPTO_MCRYPTD
190 tristate "Software async multi-buffer crypto daemon"
191 select CRYPTO_BLKCIPHER
192 select CRYPTO_HASH
193 select CRYPTO_MANAGER
194 select CRYPTO_WORKQUEUE
195 help
196 This is a generic software asynchronous crypto daemon that
197 provides the kernel thread to assist multi-buffer crypto
198 algorithms for submitting jobs and flushing jobs in multi-buffer
199 crypto algorithms. Multi-buffer crypto algorithms are executed
200 in the context of this kernel thread and drivers can post
201 their crypto request asynchronously to be processed by this daemon.
202
203 config CRYPTO_AUTHENC
204 tristate "Authenc support"
205 select CRYPTO_AEAD
206 select CRYPTO_BLKCIPHER
207 select CRYPTO_MANAGER
208 select CRYPTO_HASH
209 select CRYPTO_NULL
210 help
211 Authenc: Combined mode wrapper for IPsec.
212 This is required for IPSec.
213
214 config CRYPTO_TEST
215 tristate "Testing module"
216 depends on m
217 select CRYPTO_MANAGER
218 help
219 Quick & dirty crypto test module.
220
221 config CRYPTO_ABLK_HELPER
222 tristate
223 select CRYPTO_CRYPTD
224
225 config CRYPTO_GLUE_HELPER_X86
226 tristate
227 depends on X86
228 select CRYPTO_ALGAPI
229
230 comment "Authenticated Encryption with Associated Data"
231
232 config CRYPTO_CCM
233 tristate "CCM support"
234 select CRYPTO_CTR
235 select CRYPTO_AEAD
236 help
237 Support for Counter with CBC MAC. Required for IPsec.
238
239 config CRYPTO_GCM
240 tristate "GCM/GMAC support"
241 select CRYPTO_CTR
242 select CRYPTO_AEAD
243 select CRYPTO_GHASH
244 select CRYPTO_NULL
245 help
246 Support for Galois/Counter Mode (GCM) and Galois Message
247 Authentication Code (GMAC). Required for IPSec.
248
249 config CRYPTO_CHACHA20POLY1305
250 tristate "ChaCha20-Poly1305 AEAD support"
251 select CRYPTO_CHACHA20
252 select CRYPTO_POLY1305
253 select CRYPTO_AEAD
254 help
255 ChaCha20-Poly1305 AEAD support, RFC7539.
256
257 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
258 with the Poly1305 authenticator. It is defined in RFC7539 for use in
259 IETF protocols.
260
261 config CRYPTO_SEQIV
262 tristate "Sequence Number IV Generator"
263 select CRYPTO_AEAD
264 select CRYPTO_BLKCIPHER
265 select CRYPTO_NULL
266 select CRYPTO_RNG_DEFAULT
267 help
268 This IV generator generates an IV based on a sequence number by
269 xoring it with a salt. This algorithm is mainly useful for CTR
270
271 config CRYPTO_ECHAINIV
272 tristate "Encrypted Chain IV Generator"
273 select CRYPTO_AEAD
274 select CRYPTO_NULL
275 select CRYPTO_RNG_DEFAULT
276 default m
277 help
278 This IV generator generates an IV based on the encryption of
279 a sequence number xored with a salt. This is the default
280 algorithm for CBC.
281
282 comment "Block modes"
283
284 config CRYPTO_CBC
285 tristate "CBC support"
286 select CRYPTO_BLKCIPHER
287 select CRYPTO_MANAGER
288 help
289 CBC: Cipher Block Chaining mode
290 This block cipher algorithm is required for IPSec.
291
292 config CRYPTO_CTR
293 tristate "CTR support"
294 select CRYPTO_BLKCIPHER
295 select CRYPTO_SEQIV
296 select CRYPTO_MANAGER
297 help
298 CTR: Counter mode
299 This block cipher algorithm is required for IPSec.
300
301 config CRYPTO_CTS
302 tristate "CTS support"
303 select CRYPTO_BLKCIPHER
304 help
305 CTS: Cipher Text Stealing
306 This is the Cipher Text Stealing mode as described by
307 Section 8 of rfc2040 and referenced by rfc3962.
308 (rfc3962 includes errata information in its Appendix A)
309 This mode is required for Kerberos gss mechanism support
310 for AES encryption.
311
312 config CRYPTO_ECB
313 tristate "ECB support"
314 select CRYPTO_BLKCIPHER
315 select CRYPTO_MANAGER
316 help
317 ECB: Electronic CodeBook mode
318 This is the simplest block cipher algorithm. It simply encrypts
319 the input block by block.
320
321 config CRYPTO_LRW
322 tristate "LRW support"
323 select CRYPTO_BLKCIPHER
324 select CRYPTO_MANAGER
325 select CRYPTO_GF128MUL
326 help
327 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
328 narrow block cipher mode for dm-crypt. Use it with cipher
329 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
330 The first 128, 192 or 256 bits in the key are used for AES and the
331 rest is used to tie each cipher block to its logical position.
332
333 config CRYPTO_PCBC
334 tristate "PCBC support"
335 select CRYPTO_BLKCIPHER
336 select CRYPTO_MANAGER
337 help
338 PCBC: Propagating Cipher Block Chaining mode
339 This block cipher algorithm is required for RxRPC.
340
341 config CRYPTO_XTS
342 tristate "XTS support"
343 select CRYPTO_BLKCIPHER
344 select CRYPTO_MANAGER
345 select CRYPTO_GF128MUL
346 help
347 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
348 key size 256, 384 or 512 bits. This implementation currently
349 can't handle a sectorsize which is not a multiple of 16 bytes.
350
351 config CRYPTO_KEYWRAP
352 tristate "Key wrapping support"
353 select CRYPTO_BLKCIPHER
354 help
355 Support for key wrapping (NIST SP800-38F / RFC3394) without
356 padding.
357
358 comment "Hash modes"
359
360 config CRYPTO_CMAC
361 tristate "CMAC support"
362 select CRYPTO_HASH
363 select CRYPTO_MANAGER
364 help
365 Cipher-based Message Authentication Code (CMAC) specified by
366 The National Institute of Standards and Technology (NIST).
367
368 https://tools.ietf.org/html/rfc4493
369 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
370
371 config CRYPTO_HMAC
372 tristate "HMAC support"
373 select CRYPTO_HASH
374 select CRYPTO_MANAGER
375 help
376 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
377 This is required for IPSec.
378
379 config CRYPTO_XCBC
380 tristate "XCBC support"
381 select CRYPTO_HASH
382 select CRYPTO_MANAGER
383 help
384 XCBC: Keyed-Hashing with encryption algorithm
385 http://www.ietf.org/rfc/rfc3566.txt
386 http://csrc.nist.gov/encryption/modes/proposedmodes/
387 xcbc-mac/xcbc-mac-spec.pdf
388
389 config CRYPTO_VMAC
390 tristate "VMAC support"
391 select CRYPTO_HASH
392 select CRYPTO_MANAGER
393 help
394 VMAC is a message authentication algorithm designed for
395 very high speed on 64-bit architectures.
396
397 See also:
398 <http://fastcrypto.org/vmac>
399
400 comment "Digest"
401
402 config CRYPTO_CRC32C
403 tristate "CRC32c CRC algorithm"
404 select CRYPTO_HASH
405 select CRC32
406 help
407 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
408 by iSCSI for header and data digests and by others.
409 See Castagnoli93. Module will be crc32c.
410
411 config CRYPTO_CRC32C_INTEL
412 tristate "CRC32c INTEL hardware acceleration"
413 depends on X86
414 select CRYPTO_HASH
415 help
416 In Intel processor with SSE4.2 supported, the processor will
417 support CRC32C implementation using hardware accelerated CRC32
418 instruction. This option will create 'crc32c-intel' module,
419 which will enable any routine to use the CRC32 instruction to
420 gain performance compared with software implementation.
421 Module will be crc32c-intel.
422
423 config CRYPTO_CRC32C_SPARC64
424 tristate "CRC32c CRC algorithm (SPARC64)"
425 depends on SPARC64
426 select CRYPTO_HASH
427 select CRC32
428 help
429 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
430 when available.
431
432 config CRYPTO_CRC32
433 tristate "CRC32 CRC algorithm"
434 select CRYPTO_HASH
435 select CRC32
436 help
437 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
438 Shash crypto api wrappers to crc32_le function.
439
440 config CRYPTO_CRC32_PCLMUL
441 tristate "CRC32 PCLMULQDQ hardware acceleration"
442 depends on X86
443 select CRYPTO_HASH
444 select CRC32
445 help
446 From Intel Westmere and AMD Bulldozer processor with SSE4.2
447 and PCLMULQDQ supported, the processor will support
448 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
449 instruction. This option will create 'crc32-plcmul' module,
450 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
451 and gain better performance as compared with the table implementation.
452
453 config CRYPTO_CRCT10DIF
454 tristate "CRCT10DIF algorithm"
455 select CRYPTO_HASH
456 help
457 CRC T10 Data Integrity Field computation is being cast as
458 a crypto transform. This allows for faster crc t10 diff
459 transforms to be used if they are available.
460
461 config CRYPTO_CRCT10DIF_PCLMUL
462 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
463 depends on X86 && 64BIT && CRC_T10DIF
464 select CRYPTO_HASH
465 help
466 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
467 CRC T10 DIF PCLMULQDQ computation can be hardware
468 accelerated PCLMULQDQ instruction. This option will create
469 'crct10dif-plcmul' module, which is faster when computing the
470 crct10dif checksum as compared with the generic table implementation.
471
472 config CRYPTO_GHASH
473 tristate "GHASH digest algorithm"
474 select CRYPTO_GF128MUL
475 select CRYPTO_HASH
476 help
477 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
478
479 config CRYPTO_POLY1305
480 tristate "Poly1305 authenticator algorithm"
481 select CRYPTO_HASH
482 help
483 Poly1305 authenticator algorithm, RFC7539.
484
485 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
486 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
487 in IETF protocols. This is the portable C implementation of Poly1305.
488
489 config CRYPTO_POLY1305_X86_64
490 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
491 depends on X86 && 64BIT
492 select CRYPTO_POLY1305
493 help
494 Poly1305 authenticator algorithm, RFC7539.
495
496 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
497 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
498 in IETF protocols. This is the x86_64 assembler implementation using SIMD
499 instructions.
500
501 config CRYPTO_MD4
502 tristate "MD4 digest algorithm"
503 select CRYPTO_HASH
504 help
505 MD4 message digest algorithm (RFC1320).
506
507 config CRYPTO_MD5
508 tristate "MD5 digest algorithm"
509 select CRYPTO_HASH
510 help
511 MD5 message digest algorithm (RFC1321).
512
513 config CRYPTO_MD5_OCTEON
514 tristate "MD5 digest algorithm (OCTEON)"
515 depends on CPU_CAVIUM_OCTEON
516 select CRYPTO_MD5
517 select CRYPTO_HASH
518 help
519 MD5 message digest algorithm (RFC1321) implemented
520 using OCTEON crypto instructions, when available.
521
522 config CRYPTO_MD5_PPC
523 tristate "MD5 digest algorithm (PPC)"
524 depends on PPC
525 select CRYPTO_HASH
526 help
527 MD5 message digest algorithm (RFC1321) implemented
528 in PPC assembler.
529
530 config CRYPTO_MD5_SPARC64
531 tristate "MD5 digest algorithm (SPARC64)"
532 depends on SPARC64
533 select CRYPTO_MD5
534 select CRYPTO_HASH
535 help
536 MD5 message digest algorithm (RFC1321) implemented
537 using sparc64 crypto instructions, when available.
538
539 config CRYPTO_MICHAEL_MIC
540 tristate "Michael MIC keyed digest algorithm"
541 select CRYPTO_HASH
542 help
543 Michael MIC is used for message integrity protection in TKIP
544 (IEEE 802.11i). This algorithm is required for TKIP, but it
545 should not be used for other purposes because of the weakness
546 of the algorithm.
547
548 config CRYPTO_RMD128
549 tristate "RIPEMD-128 digest algorithm"
550 select CRYPTO_HASH
551 help
552 RIPEMD-128 (ISO/IEC 10118-3:2004).
553
554 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
555 be used as a secure replacement for RIPEMD. For other use cases,
556 RIPEMD-160 should be used.
557
558 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
559 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
560
561 config CRYPTO_RMD160
562 tristate "RIPEMD-160 digest algorithm"
563 select CRYPTO_HASH
564 help
565 RIPEMD-160 (ISO/IEC 10118-3:2004).
566
567 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
568 to be used as a secure replacement for the 128-bit hash functions
569 MD4, MD5 and it's predecessor RIPEMD
570 (not to be confused with RIPEMD-128).
571
572 It's speed is comparable to SHA1 and there are no known attacks
573 against RIPEMD-160.
574
575 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
576 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
577
578 config CRYPTO_RMD256
579 tristate "RIPEMD-256 digest algorithm"
580 select CRYPTO_HASH
581 help
582 RIPEMD-256 is an optional extension of RIPEMD-128 with a
583 256 bit hash. It is intended for applications that require
584 longer hash-results, without needing a larger security level
585 (than RIPEMD-128).
586
587 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
588 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
589
590 config CRYPTO_RMD320
591 tristate "RIPEMD-320 digest algorithm"
592 select CRYPTO_HASH
593 help
594 RIPEMD-320 is an optional extension of RIPEMD-160 with a
595 320 bit hash. It is intended for applications that require
596 longer hash-results, without needing a larger security level
597 (than RIPEMD-160).
598
599 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
600 See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
601
602 config CRYPTO_SHA1
603 tristate "SHA1 digest algorithm"
604 select CRYPTO_HASH
605 help
606 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
607
608 config CRYPTO_SHA1_SSSE3
609 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
610 depends on X86 && 64BIT
611 select CRYPTO_SHA1
612 select CRYPTO_HASH
613 help
614 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
615 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
616 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
617 when available.
618
619 config CRYPTO_SHA256_SSSE3
620 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
621 depends on X86 && 64BIT
622 select CRYPTO_SHA256
623 select CRYPTO_HASH
624 help
625 SHA-256 secure hash standard (DFIPS 180-2) implemented
626 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
627 Extensions version 1 (AVX1), or Advanced Vector Extensions
628 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
629 Instructions) when available.
630
631 config CRYPTO_SHA512_SSSE3
632 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
633 depends on X86 && 64BIT
634 select CRYPTO_SHA512
635 select CRYPTO_HASH
636 help
637 SHA-512 secure hash standard (DFIPS 180-2) implemented
638 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
639 Extensions version 1 (AVX1), or Advanced Vector Extensions
640 version 2 (AVX2) instructions, when available.
641
642 config CRYPTO_SHA1_OCTEON
643 tristate "SHA1 digest algorithm (OCTEON)"
644 depends on CPU_CAVIUM_OCTEON
645 select CRYPTO_SHA1
646 select CRYPTO_HASH
647 help
648 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
649 using OCTEON crypto instructions, when available.
650
651 config CRYPTO_SHA1_SPARC64
652 tristate "SHA1 digest algorithm (SPARC64)"
653 depends on SPARC64
654 select CRYPTO_SHA1
655 select CRYPTO_HASH
656 help
657 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
658 using sparc64 crypto instructions, when available.
659
660 config CRYPTO_SHA1_PPC
661 tristate "SHA1 digest algorithm (powerpc)"
662 depends on PPC
663 help
664 This is the powerpc hardware accelerated implementation of the
665 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
666
667 config CRYPTO_SHA1_PPC_SPE
668 tristate "SHA1 digest algorithm (PPC SPE)"
669 depends on PPC && SPE
670 help
671 SHA-1 secure hash standard (DFIPS 180-4) implemented
672 using powerpc SPE SIMD instruction set.
673
674 config CRYPTO_SHA1_MB
675 tristate "SHA1 digest algorithm (x86_64 Multi-Buffer, Experimental)"
676 depends on X86 && 64BIT
677 select CRYPTO_SHA1
678 select CRYPTO_HASH
679 select CRYPTO_MCRYPTD
680 help
681 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
682 using multi-buffer technique. This algorithm computes on
683 multiple data lanes concurrently with SIMD instructions for
684 better throughput. It should not be enabled by default but
685 used when there is significant amount of work to keep the keep
686 the data lanes filled to get performance benefit. If the data
687 lanes remain unfilled, a flush operation will be initiated to
688 process the crypto jobs, adding a slight latency.
689
690 config CRYPTO_SHA256
691 tristate "SHA224 and SHA256 digest algorithm"
692 select CRYPTO_HASH
693 help
694 SHA256 secure hash standard (DFIPS 180-2).
695
696 This version of SHA implements a 256 bit hash with 128 bits of
697 security against collision attacks.
698
699 This code also includes SHA-224, a 224 bit hash with 112 bits
700 of security against collision attacks.
701
702 config CRYPTO_SHA256_PPC_SPE
703 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
704 depends on PPC && SPE
705 select CRYPTO_SHA256
706 select CRYPTO_HASH
707 help
708 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
709 implemented using powerpc SPE SIMD instruction set.
710
711 config CRYPTO_SHA256_OCTEON
712 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
713 depends on CPU_CAVIUM_OCTEON
714 select CRYPTO_SHA256
715 select CRYPTO_HASH
716 help
717 SHA-256 secure hash standard (DFIPS 180-2) implemented
718 using OCTEON crypto instructions, when available.
719
720 config CRYPTO_SHA256_SPARC64
721 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
722 depends on SPARC64
723 select CRYPTO_SHA256
724 select CRYPTO_HASH
725 help
726 SHA-256 secure hash standard (DFIPS 180-2) implemented
727 using sparc64 crypto instructions, when available.
728
729 config CRYPTO_SHA512
730 tristate "SHA384 and SHA512 digest algorithms"
731 select CRYPTO_HASH
732 help
733 SHA512 secure hash standard (DFIPS 180-2).
734
735 This version of SHA implements a 512 bit hash with 256 bits of
736 security against collision attacks.
737
738 This code also includes SHA-384, a 384 bit hash with 192 bits
739 of security against collision attacks.
740
741 config CRYPTO_SHA512_OCTEON
742 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
743 depends on CPU_CAVIUM_OCTEON
744 select CRYPTO_SHA512
745 select CRYPTO_HASH
746 help
747 SHA-512 secure hash standard (DFIPS 180-2) implemented
748 using OCTEON crypto instructions, when available.
749
750 config CRYPTO_SHA512_SPARC64
751 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
752 depends on SPARC64
753 select CRYPTO_SHA512
754 select CRYPTO_HASH
755 help
756 SHA-512 secure hash standard (DFIPS 180-2) implemented
757 using sparc64 crypto instructions, when available.
758
759 config CRYPTO_TGR192
760 tristate "Tiger digest algorithms"
761 select CRYPTO_HASH
762 help
763 Tiger hash algorithm 192, 160 and 128-bit hashes
764
765 Tiger is a hash function optimized for 64-bit processors while
766 still having decent performance on 32-bit processors.
767 Tiger was developed by Ross Anderson and Eli Biham.
768
769 See also:
770 <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
771
772 config CRYPTO_WP512
773 tristate "Whirlpool digest algorithms"
774 select CRYPTO_HASH
775 help
776 Whirlpool hash algorithm 512, 384 and 256-bit hashes
777
778 Whirlpool-512 is part of the NESSIE cryptographic primitives.
779 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
780
781 See also:
782 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
783
784 config CRYPTO_GHASH_CLMUL_NI_INTEL
785 tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
786 depends on X86 && 64BIT
787 select CRYPTO_CRYPTD
788 help
789 GHASH is message digest algorithm for GCM (Galois/Counter Mode).
790 The implementation is accelerated by CLMUL-NI of Intel.
791
792 comment "Ciphers"
793
794 config CRYPTO_AES
795 tristate "AES cipher algorithms"
796 select CRYPTO_ALGAPI
797 help
798 AES cipher algorithms (FIPS-197). AES uses the Rijndael
799 algorithm.
800
801 Rijndael appears to be consistently a very good performer in
802 both hardware and software across a wide range of computing
803 environments regardless of its use in feedback or non-feedback
804 modes. Its key setup time is excellent, and its key agility is
805 good. Rijndael's very low memory requirements make it very well
806 suited for restricted-space environments, in which it also
807 demonstrates excellent performance. Rijndael's operations are
808 among the easiest to defend against power and timing attacks.
809
810 The AES specifies three key sizes: 128, 192 and 256 bits
811
812 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
813
814 config CRYPTO_AES_586
815 tristate "AES cipher algorithms (i586)"
816 depends on (X86 || UML_X86) && !64BIT
817 select CRYPTO_ALGAPI
818 select CRYPTO_AES
819 help
820 AES cipher algorithms (FIPS-197). AES uses the Rijndael
821 algorithm.
822
823 Rijndael appears to be consistently a very good performer in
824 both hardware and software across a wide range of computing
825 environments regardless of its use in feedback or non-feedback
826 modes. Its key setup time is excellent, and its key agility is
827 good. Rijndael's very low memory requirements make it very well
828 suited for restricted-space environments, in which it also
829 demonstrates excellent performance. Rijndael's operations are
830 among the easiest to defend against power and timing attacks.
831
832 The AES specifies three key sizes: 128, 192 and 256 bits
833
834 See <http://csrc.nist.gov/encryption/aes/> for more information.
835
836 config CRYPTO_AES_X86_64
837 tristate "AES cipher algorithms (x86_64)"
838 depends on (X86 || UML_X86) && 64BIT
839 select CRYPTO_ALGAPI
840 select CRYPTO_AES
841 help
842 AES cipher algorithms (FIPS-197). AES uses the Rijndael
843 algorithm.
844
845 Rijndael appears to be consistently a very good performer in
846 both hardware and software across a wide range of computing
847 environments regardless of its use in feedback or non-feedback
848 modes. Its key setup time is excellent, and its key agility is
849 good. Rijndael's very low memory requirements make it very well
850 suited for restricted-space environments, in which it also
851 demonstrates excellent performance. Rijndael's operations are
852 among the easiest to defend against power and timing attacks.
853
854 The AES specifies three key sizes: 128, 192 and 256 bits
855
856 See <http://csrc.nist.gov/encryption/aes/> for more information.
857
858 config CRYPTO_AES_NI_INTEL
859 tristate "AES cipher algorithms (AES-NI)"
860 depends on X86
861 select CRYPTO_AES_X86_64 if 64BIT
862 select CRYPTO_AES_586 if !64BIT
863 select CRYPTO_CRYPTD
864 select CRYPTO_ABLK_HELPER
865 select CRYPTO_ALGAPI
866 select CRYPTO_GLUE_HELPER_X86 if 64BIT
867 select CRYPTO_LRW
868 select CRYPTO_XTS
869 help
870 Use Intel AES-NI instructions for AES algorithm.
871
872 AES cipher algorithms (FIPS-197). AES uses the Rijndael
873 algorithm.
874
875 Rijndael appears to be consistently a very good performer in
876 both hardware and software across a wide range of computing
877 environments regardless of its use in feedback or non-feedback
878 modes. Its key setup time is excellent, and its key agility is
879 good. Rijndael's very low memory requirements make it very well
880 suited for restricted-space environments, in which it also
881 demonstrates excellent performance. Rijndael's operations are
882 among the easiest to defend against power and timing attacks.
883
884 The AES specifies three key sizes: 128, 192 and 256 bits
885
886 See <http://csrc.nist.gov/encryption/aes/> for more information.
887
888 In addition to AES cipher algorithm support, the acceleration
889 for some popular block cipher mode is supported too, including
890 ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
891 acceleration for CTR.
892
893 config CRYPTO_AES_SPARC64
894 tristate "AES cipher algorithms (SPARC64)"
895 depends on SPARC64
896 select CRYPTO_CRYPTD
897 select CRYPTO_ALGAPI
898 help
899 Use SPARC64 crypto opcodes for AES algorithm.
900
901 AES cipher algorithms (FIPS-197). AES uses the Rijndael
902 algorithm.
903
904 Rijndael appears to be consistently a very good performer in
905 both hardware and software across a wide range of computing
906 environments regardless of its use in feedback or non-feedback
907 modes. Its key setup time is excellent, and its key agility is
908 good. Rijndael's very low memory requirements make it very well
909 suited for restricted-space environments, in which it also
910 demonstrates excellent performance. Rijndael's operations are
911 among the easiest to defend against power and timing attacks.
912
913 The AES specifies three key sizes: 128, 192 and 256 bits
914
915 See <http://csrc.nist.gov/encryption/aes/> for more information.
916
917 In addition to AES cipher algorithm support, the acceleration
918 for some popular block cipher mode is supported too, including
919 ECB and CBC.
920
921 config CRYPTO_AES_PPC_SPE
922 tristate "AES cipher algorithms (PPC SPE)"
923 depends on PPC && SPE
924 help
925 AES cipher algorithms (FIPS-197). Additionally the acceleration
926 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
927 This module should only be used for low power (router) devices
928 without hardware AES acceleration (e.g. caam crypto). It reduces the
929 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
930 timining attacks. Nevertheless it might be not as secure as other
931 architecture specific assembler implementations that work on 1KB
932 tables or 256 bytes S-boxes.
933
934 config CRYPTO_ANUBIS
935 tristate "Anubis cipher algorithm"
936 select CRYPTO_ALGAPI
937 help
938 Anubis cipher algorithm.
939
940 Anubis is a variable key length cipher which can use keys from
941 128 bits to 320 bits in length. It was evaluated as a entrant
942 in the NESSIE competition.
943
944 See also:
945 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
946 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
947
948 config CRYPTO_ARC4
949 tristate "ARC4 cipher algorithm"
950 select CRYPTO_BLKCIPHER
951 help
952 ARC4 cipher algorithm.
953
954 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
955 bits in length. This algorithm is required for driver-based
956 WEP, but it should not be for other purposes because of the
957 weakness of the algorithm.
958
959 config CRYPTO_BLOWFISH
960 tristate "Blowfish cipher algorithm"
961 select CRYPTO_ALGAPI
962 select CRYPTO_BLOWFISH_COMMON
963 help
964 Blowfish cipher algorithm, by Bruce Schneier.
965
966 This is a variable key length cipher which can use keys from 32
967 bits to 448 bits in length. It's fast, simple and specifically
968 designed for use on "large microprocessors".
969
970 See also:
971 <http://www.schneier.com/blowfish.html>
972
973 config CRYPTO_BLOWFISH_COMMON
974 tristate
975 help
976 Common parts of the Blowfish cipher algorithm shared by the
977 generic c and the assembler implementations.
978
979 See also:
980 <http://www.schneier.com/blowfish.html>
981
982 config CRYPTO_BLOWFISH_X86_64
983 tristate "Blowfish cipher algorithm (x86_64)"
984 depends on X86 && 64BIT
985 select CRYPTO_ALGAPI
986 select CRYPTO_BLOWFISH_COMMON
987 help
988 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
989
990 This is a variable key length cipher which can use keys from 32
991 bits to 448 bits in length. It's fast, simple and specifically
992 designed for use on "large microprocessors".
993
994 See also:
995 <http://www.schneier.com/blowfish.html>
996
997 config CRYPTO_CAMELLIA
998 tristate "Camellia cipher algorithms"
999 depends on CRYPTO
1000 select CRYPTO_ALGAPI
1001 help
1002 Camellia cipher algorithms module.
1003
1004 Camellia is a symmetric key block cipher developed jointly
1005 at NTT and Mitsubishi Electric Corporation.
1006
1007 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1008
1009 See also:
1010 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1011
1012 config CRYPTO_CAMELLIA_X86_64
1013 tristate "Camellia cipher algorithm (x86_64)"
1014 depends on X86 && 64BIT
1015 depends on CRYPTO
1016 select CRYPTO_ALGAPI
1017 select CRYPTO_GLUE_HELPER_X86
1018 select CRYPTO_LRW
1019 select CRYPTO_XTS
1020 help
1021 Camellia cipher algorithm module (x86_64).
1022
1023 Camellia is a symmetric key block cipher developed jointly
1024 at NTT and Mitsubishi Electric Corporation.
1025
1026 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1027
1028 See also:
1029 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1030
1031 config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1032 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1033 depends on X86 && 64BIT
1034 depends on CRYPTO
1035 select CRYPTO_ALGAPI
1036 select CRYPTO_CRYPTD
1037 select CRYPTO_ABLK_HELPER
1038 select CRYPTO_GLUE_HELPER_X86
1039 select CRYPTO_CAMELLIA_X86_64
1040 select CRYPTO_LRW
1041 select CRYPTO_XTS
1042 help
1043 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1044
1045 Camellia is a symmetric key block cipher developed jointly
1046 at NTT and Mitsubishi Electric Corporation.
1047
1048 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1049
1050 See also:
1051 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1052
1053 config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1054 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1055 depends on X86 && 64BIT
1056 depends on CRYPTO
1057 select CRYPTO_ALGAPI
1058 select CRYPTO_CRYPTD
1059 select CRYPTO_ABLK_HELPER
1060 select CRYPTO_GLUE_HELPER_X86
1061 select CRYPTO_CAMELLIA_X86_64
1062 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1063 select CRYPTO_LRW
1064 select CRYPTO_XTS
1065 help
1066 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1067
1068 Camellia is a symmetric key block cipher developed jointly
1069 at NTT and Mitsubishi Electric Corporation.
1070
1071 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1072
1073 See also:
1074 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1075
1076 config CRYPTO_CAMELLIA_SPARC64
1077 tristate "Camellia cipher algorithm (SPARC64)"
1078 depends on SPARC64
1079 depends on CRYPTO
1080 select CRYPTO_ALGAPI
1081 help
1082 Camellia cipher algorithm module (SPARC64).
1083
1084 Camellia is a symmetric key block cipher developed jointly
1085 at NTT and Mitsubishi Electric Corporation.
1086
1087 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1088
1089 See also:
1090 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1091
1092 config CRYPTO_CAST_COMMON
1093 tristate
1094 help
1095 Common parts of the CAST cipher algorithms shared by the
1096 generic c and the assembler implementations.
1097
1098 config CRYPTO_CAST5
1099 tristate "CAST5 (CAST-128) cipher algorithm"
1100 select CRYPTO_ALGAPI
1101 select CRYPTO_CAST_COMMON
1102 help
1103 The CAST5 encryption algorithm (synonymous with CAST-128) is
1104 described in RFC2144.
1105
1106 config CRYPTO_CAST5_AVX_X86_64
1107 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1108 depends on X86 && 64BIT
1109 select CRYPTO_ALGAPI
1110 select CRYPTO_CRYPTD
1111 select CRYPTO_ABLK_HELPER
1112 select CRYPTO_CAST_COMMON
1113 select CRYPTO_CAST5
1114 help
1115 The CAST5 encryption algorithm (synonymous with CAST-128) is
1116 described in RFC2144.
1117
1118 This module provides the Cast5 cipher algorithm that processes
1119 sixteen blocks parallel using the AVX instruction set.
1120
1121 config CRYPTO_CAST6
1122 tristate "CAST6 (CAST-256) cipher algorithm"
1123 select CRYPTO_ALGAPI
1124 select CRYPTO_CAST_COMMON
1125 help
1126 The CAST6 encryption algorithm (synonymous with CAST-256) is
1127 described in RFC2612.
1128
1129 config CRYPTO_CAST6_AVX_X86_64
1130 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1131 depends on X86 && 64BIT
1132 select CRYPTO_ALGAPI
1133 select CRYPTO_CRYPTD
1134 select CRYPTO_ABLK_HELPER
1135 select CRYPTO_GLUE_HELPER_X86
1136 select CRYPTO_CAST_COMMON
1137 select CRYPTO_CAST6
1138 select CRYPTO_LRW
1139 select CRYPTO_XTS
1140 help
1141 The CAST6 encryption algorithm (synonymous with CAST-256) is
1142 described in RFC2612.
1143
1144 This module provides the Cast6 cipher algorithm that processes
1145 eight blocks parallel using the AVX instruction set.
1146
1147 config CRYPTO_DES
1148 tristate "DES and Triple DES EDE cipher algorithms"
1149 select CRYPTO_ALGAPI
1150 help
1151 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1152
1153 config CRYPTO_DES_SPARC64
1154 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1155 depends on SPARC64
1156 select CRYPTO_ALGAPI
1157 select CRYPTO_DES
1158 help
1159 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1160 optimized using SPARC64 crypto opcodes.
1161
1162 config CRYPTO_DES3_EDE_X86_64
1163 tristate "Triple DES EDE cipher algorithm (x86-64)"
1164 depends on X86 && 64BIT
1165 select CRYPTO_ALGAPI
1166 select CRYPTO_DES
1167 help
1168 Triple DES EDE (FIPS 46-3) algorithm.
1169
1170 This module provides implementation of the Triple DES EDE cipher
1171 algorithm that is optimized for x86-64 processors. Two versions of
1172 algorithm are provided; regular processing one input block and
1173 one that processes three blocks parallel.
1174
1175 config CRYPTO_FCRYPT
1176 tristate "FCrypt cipher algorithm"
1177 select CRYPTO_ALGAPI
1178 select CRYPTO_BLKCIPHER
1179 help
1180 FCrypt algorithm used by RxRPC.
1181
1182 config CRYPTO_KHAZAD
1183 tristate "Khazad cipher algorithm"
1184 select CRYPTO_ALGAPI
1185 help
1186 Khazad cipher algorithm.
1187
1188 Khazad was a finalist in the initial NESSIE competition. It is
1189 an algorithm optimized for 64-bit processors with good performance
1190 on 32-bit processors. Khazad uses an 128 bit key size.
1191
1192 See also:
1193 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1194
1195 config CRYPTO_SALSA20
1196 tristate "Salsa20 stream cipher algorithm"
1197 select CRYPTO_BLKCIPHER
1198 help
1199 Salsa20 stream cipher algorithm.
1200
1201 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1202 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1203
1204 The Salsa20 stream cipher algorithm is designed by Daniel J.
1205 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1206
1207 config CRYPTO_SALSA20_586
1208 tristate "Salsa20 stream cipher algorithm (i586)"
1209 depends on (X86 || UML_X86) && !64BIT
1210 select CRYPTO_BLKCIPHER
1211 help
1212 Salsa20 stream cipher algorithm.
1213
1214 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1215 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1216
1217 The Salsa20 stream cipher algorithm is designed by Daniel J.
1218 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1219
1220 config CRYPTO_SALSA20_X86_64
1221 tristate "Salsa20 stream cipher algorithm (x86_64)"
1222 depends on (X86 || UML_X86) && 64BIT
1223 select CRYPTO_BLKCIPHER
1224 help
1225 Salsa20 stream cipher algorithm.
1226
1227 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1228 Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
1229
1230 The Salsa20 stream cipher algorithm is designed by Daniel J.
1231 Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
1232
1233 config CRYPTO_CHACHA20
1234 tristate "ChaCha20 cipher algorithm"
1235 select CRYPTO_BLKCIPHER
1236 help
1237 ChaCha20 cipher algorithm, RFC7539.
1238
1239 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1240 Bernstein and further specified in RFC7539 for use in IETF protocols.
1241 This is the portable C implementation of ChaCha20.
1242
1243 See also:
1244 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1245
1246 config CRYPTO_CHACHA20_X86_64
1247 tristate "ChaCha20 cipher algorithm (x86_64/SSSE3/AVX2)"
1248 depends on X86 && 64BIT
1249 select CRYPTO_BLKCIPHER
1250 select CRYPTO_CHACHA20
1251 help
1252 ChaCha20 cipher algorithm, RFC7539.
1253
1254 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1255 Bernstein and further specified in RFC7539 for use in IETF protocols.
1256 This is the x86_64 assembler implementation using SIMD instructions.
1257
1258 See also:
1259 <http://cr.yp.to/chacha/chacha-20080128.pdf>
1260
1261 config CRYPTO_SEED
1262 tristate "SEED cipher algorithm"
1263 select CRYPTO_ALGAPI
1264 help
1265 SEED cipher algorithm (RFC4269).
1266
1267 SEED is a 128-bit symmetric key block cipher that has been
1268 developed by KISA (Korea Information Security Agency) as a
1269 national standard encryption algorithm of the Republic of Korea.
1270 It is a 16 round block cipher with the key size of 128 bit.
1271
1272 See also:
1273 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1274
1275 config CRYPTO_SERPENT
1276 tristate "Serpent cipher algorithm"
1277 select CRYPTO_ALGAPI
1278 help
1279 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1280
1281 Keys are allowed to be from 0 to 256 bits in length, in steps
1282 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1283 variant of Serpent for compatibility with old kerneli.org code.
1284
1285 See also:
1286 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1287
1288 config CRYPTO_SERPENT_SSE2_X86_64
1289 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1290 depends on X86 && 64BIT
1291 select CRYPTO_ALGAPI
1292 select CRYPTO_CRYPTD
1293 select CRYPTO_ABLK_HELPER
1294 select CRYPTO_GLUE_HELPER_X86
1295 select CRYPTO_SERPENT
1296 select CRYPTO_LRW
1297 select CRYPTO_XTS
1298 help
1299 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1300
1301 Keys are allowed to be from 0 to 256 bits in length, in steps
1302 of 8 bits.
1303
1304 This module provides Serpent cipher algorithm that processes eight
1305 blocks parallel using SSE2 instruction set.
1306
1307 See also:
1308 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1309
1310 config CRYPTO_SERPENT_SSE2_586
1311 tristate "Serpent cipher algorithm (i586/SSE2)"
1312 depends on X86 && !64BIT
1313 select CRYPTO_ALGAPI
1314 select CRYPTO_CRYPTD
1315 select CRYPTO_ABLK_HELPER
1316 select CRYPTO_GLUE_HELPER_X86
1317 select CRYPTO_SERPENT
1318 select CRYPTO_LRW
1319 select CRYPTO_XTS
1320 help
1321 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1322
1323 Keys are allowed to be from 0 to 256 bits in length, in steps
1324 of 8 bits.
1325
1326 This module provides Serpent cipher algorithm that processes four
1327 blocks parallel using SSE2 instruction set.
1328
1329 See also:
1330 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1331
1332 config CRYPTO_SERPENT_AVX_X86_64
1333 tristate "Serpent cipher algorithm (x86_64/AVX)"
1334 depends on X86 && 64BIT
1335 select CRYPTO_ALGAPI
1336 select CRYPTO_CRYPTD
1337 select CRYPTO_ABLK_HELPER
1338 select CRYPTO_GLUE_HELPER_X86
1339 select CRYPTO_SERPENT
1340 select CRYPTO_LRW
1341 select CRYPTO_XTS
1342 help
1343 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1344
1345 Keys are allowed to be from 0 to 256 bits in length, in steps
1346 of 8 bits.
1347
1348 This module provides the Serpent cipher algorithm that processes
1349 eight blocks parallel using the AVX instruction set.
1350
1351 See also:
1352 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1353
1354 config CRYPTO_SERPENT_AVX2_X86_64
1355 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1356 depends on X86 && 64BIT
1357 select CRYPTO_ALGAPI
1358 select CRYPTO_CRYPTD
1359 select CRYPTO_ABLK_HELPER
1360 select CRYPTO_GLUE_HELPER_X86
1361 select CRYPTO_SERPENT
1362 select CRYPTO_SERPENT_AVX_X86_64
1363 select CRYPTO_LRW
1364 select CRYPTO_XTS
1365 help
1366 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1367
1368 Keys are allowed to be from 0 to 256 bits in length, in steps
1369 of 8 bits.
1370
1371 This module provides Serpent cipher algorithm that processes 16
1372 blocks parallel using AVX2 instruction set.
1373
1374 See also:
1375 <http://www.cl.cam.ac.uk/~rja14/serpent.html>
1376
1377 config CRYPTO_TEA
1378 tristate "TEA, XTEA and XETA cipher algorithms"
1379 select CRYPTO_ALGAPI
1380 help
1381 TEA cipher algorithm.
1382
1383 Tiny Encryption Algorithm is a simple cipher that uses
1384 many rounds for security. It is very fast and uses
1385 little memory.
1386
1387 Xtendend Tiny Encryption Algorithm is a modification to
1388 the TEA algorithm to address a potential key weakness
1389 in the TEA algorithm.
1390
1391 Xtendend Encryption Tiny Algorithm is a mis-implementation
1392 of the XTEA algorithm for compatibility purposes.
1393
1394 config CRYPTO_TWOFISH
1395 tristate "Twofish cipher algorithm"
1396 select CRYPTO_ALGAPI
1397 select CRYPTO_TWOFISH_COMMON
1398 help
1399 Twofish cipher algorithm.
1400
1401 Twofish was submitted as an AES (Advanced Encryption Standard)
1402 candidate cipher by researchers at CounterPane Systems. It is a
1403 16 round block cipher supporting key sizes of 128, 192, and 256
1404 bits.
1405
1406 See also:
1407 <http://www.schneier.com/twofish.html>
1408
1409 config CRYPTO_TWOFISH_COMMON
1410 tristate
1411 help
1412 Common parts of the Twofish cipher algorithm shared by the
1413 generic c and the assembler implementations.
1414
1415 config CRYPTO_TWOFISH_586
1416 tristate "Twofish cipher algorithms (i586)"
1417 depends on (X86 || UML_X86) && !64BIT
1418 select CRYPTO_ALGAPI
1419 select CRYPTO_TWOFISH_COMMON
1420 help
1421 Twofish cipher algorithm.
1422
1423 Twofish was submitted as an AES (Advanced Encryption Standard)
1424 candidate cipher by researchers at CounterPane Systems. It is a
1425 16 round block cipher supporting key sizes of 128, 192, and 256
1426 bits.
1427
1428 See also:
1429 <http://www.schneier.com/twofish.html>
1430
1431 config CRYPTO_TWOFISH_X86_64
1432 tristate "Twofish cipher algorithm (x86_64)"
1433 depends on (X86 || UML_X86) && 64BIT
1434 select CRYPTO_ALGAPI
1435 select CRYPTO_TWOFISH_COMMON
1436 help
1437 Twofish cipher algorithm (x86_64).
1438
1439 Twofish was submitted as an AES (Advanced Encryption Standard)
1440 candidate cipher by researchers at CounterPane Systems. It is a
1441 16 round block cipher supporting key sizes of 128, 192, and 256
1442 bits.
1443
1444 See also:
1445 <http://www.schneier.com/twofish.html>
1446
1447 config CRYPTO_TWOFISH_X86_64_3WAY
1448 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1449 depends on X86 && 64BIT
1450 select CRYPTO_ALGAPI
1451 select CRYPTO_TWOFISH_COMMON
1452 select CRYPTO_TWOFISH_X86_64
1453 select CRYPTO_GLUE_HELPER_X86
1454 select CRYPTO_LRW
1455 select CRYPTO_XTS
1456 help
1457 Twofish cipher algorithm (x86_64, 3-way parallel).
1458
1459 Twofish was submitted as an AES (Advanced Encryption Standard)
1460 candidate cipher by researchers at CounterPane Systems. It is a
1461 16 round block cipher supporting key sizes of 128, 192, and 256
1462 bits.
1463
1464 This module provides Twofish cipher algorithm that processes three
1465 blocks parallel, utilizing resources of out-of-order CPUs better.
1466
1467 See also:
1468 <http://www.schneier.com/twofish.html>
1469
1470 config CRYPTO_TWOFISH_AVX_X86_64
1471 tristate "Twofish cipher algorithm (x86_64/AVX)"
1472 depends on X86 && 64BIT
1473 select CRYPTO_ALGAPI
1474 select CRYPTO_CRYPTD
1475 select CRYPTO_ABLK_HELPER
1476 select CRYPTO_GLUE_HELPER_X86
1477 select CRYPTO_TWOFISH_COMMON
1478 select CRYPTO_TWOFISH_X86_64
1479 select CRYPTO_TWOFISH_X86_64_3WAY
1480 select CRYPTO_LRW
1481 select CRYPTO_XTS
1482 help
1483 Twofish cipher algorithm (x86_64/AVX).
1484
1485 Twofish was submitted as an AES (Advanced Encryption Standard)
1486 candidate cipher by researchers at CounterPane Systems. It is a
1487 16 round block cipher supporting key sizes of 128, 192, and 256
1488 bits.
1489
1490 This module provides the Twofish cipher algorithm that processes
1491 eight blocks parallel using the AVX Instruction Set.
1492
1493 See also:
1494 <http://www.schneier.com/twofish.html>
1495
1496 comment "Compression"
1497
1498 config CRYPTO_DEFLATE
1499 tristate "Deflate compression algorithm"
1500 select CRYPTO_ALGAPI
1501 select ZLIB_INFLATE
1502 select ZLIB_DEFLATE
1503 help
1504 This is the Deflate algorithm (RFC1951), specified for use in
1505 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1506
1507 You will most probably want this if using IPSec.
1508
1509 config CRYPTO_ZLIB
1510 tristate "Zlib compression algorithm"
1511 select CRYPTO_PCOMP
1512 select ZLIB_INFLATE
1513 select ZLIB_DEFLATE
1514 select NLATTR
1515 help
1516 This is the zlib algorithm.
1517
1518 config CRYPTO_LZO
1519 tristate "LZO compression algorithm"
1520 select CRYPTO_ALGAPI
1521 select LZO_COMPRESS
1522 select LZO_DECOMPRESS
1523 help
1524 This is the LZO algorithm.
1525
1526 config CRYPTO_842
1527 tristate "842 compression algorithm"
1528 select CRYPTO_ALGAPI
1529 select 842_COMPRESS
1530 select 842_DECOMPRESS
1531 help
1532 This is the 842 algorithm.
1533
1534 config CRYPTO_LZ4
1535 tristate "LZ4 compression algorithm"
1536 select CRYPTO_ALGAPI
1537 select LZ4_COMPRESS
1538 select LZ4_DECOMPRESS
1539 help
1540 This is the LZ4 algorithm.
1541
1542 config CRYPTO_LZ4HC
1543 tristate "LZ4HC compression algorithm"
1544 select CRYPTO_ALGAPI
1545 select LZ4HC_COMPRESS
1546 select LZ4_DECOMPRESS
1547 help
1548 This is the LZ4 high compression mode algorithm.
1549
1550 comment "Random Number Generation"
1551
1552 config CRYPTO_ANSI_CPRNG
1553 tristate "Pseudo Random Number Generation for Cryptographic modules"
1554 select CRYPTO_AES
1555 select CRYPTO_RNG
1556 help
1557 This option enables the generic pseudo random number generator
1558 for cryptographic modules. Uses the Algorithm specified in
1559 ANSI X9.31 A.2.4. Note that this option must be enabled if
1560 CRYPTO_FIPS is selected
1561
1562 menuconfig CRYPTO_DRBG_MENU
1563 tristate "NIST SP800-90A DRBG"
1564 help
1565 NIST SP800-90A compliant DRBG. In the following submenu, one or
1566 more of the DRBG types must be selected.
1567
1568 if CRYPTO_DRBG_MENU
1569
1570 config CRYPTO_DRBG_HMAC
1571 bool
1572 default y
1573 select CRYPTO_HMAC
1574 select CRYPTO_SHA256
1575
1576 config CRYPTO_DRBG_HASH
1577 bool "Enable Hash DRBG"
1578 select CRYPTO_SHA256
1579 help
1580 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1581
1582 config CRYPTO_DRBG_CTR
1583 bool "Enable CTR DRBG"
1584 select CRYPTO_AES
1585 help
1586 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1587
1588 config CRYPTO_DRBG
1589 tristate
1590 default CRYPTO_DRBG_MENU
1591 select CRYPTO_RNG
1592 select CRYPTO_JITTERENTROPY
1593
1594 endif # if CRYPTO_DRBG_MENU
1595
1596 config CRYPTO_JITTERENTROPY
1597 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1598 help
1599 The Jitterentropy RNG is a noise that is intended
1600 to provide seed to another RNG. The RNG does not
1601 perform any cryptographic whitening of the generated
1602 random numbers. This Jitterentropy RNG registers with
1603 the kernel crypto API and can be used by any caller.
1604
1605 config CRYPTO_USER_API
1606 tristate
1607
1608 config CRYPTO_USER_API_HASH
1609 tristate "User-space interface for hash algorithms"
1610 depends on NET
1611 select CRYPTO_HASH
1612 select CRYPTO_USER_API
1613 help
1614 This option enables the user-spaces interface for hash
1615 algorithms.
1616
1617 config CRYPTO_USER_API_SKCIPHER
1618 tristate "User-space interface for symmetric key cipher algorithms"
1619 depends on NET
1620 select CRYPTO_BLKCIPHER
1621 select CRYPTO_USER_API
1622 help
1623 This option enables the user-spaces interface for symmetric
1624 key cipher algorithms.
1625
1626 config CRYPTO_USER_API_RNG
1627 tristate "User-space interface for random number generator algorithms"
1628 depends on NET
1629 select CRYPTO_RNG
1630 select CRYPTO_USER_API
1631 help
1632 This option enables the user-spaces interface for random
1633 number generator algorithms.
1634
1635 config CRYPTO_USER_API_AEAD
1636 tristate "User-space interface for AEAD cipher algorithms"
1637 depends on NET
1638 select CRYPTO_AEAD
1639 select CRYPTO_USER_API
1640 help
1641 This option enables the user-spaces interface for AEAD
1642 cipher algorithms.
1643
1644 config CRYPTO_HASH_INFO
1645 bool
1646
1647 source "drivers/crypto/Kconfig"
1648 source crypto/asymmetric_keys/Kconfig
1649 source certs/Kconfig
1650
1651 endif # if CRYPTO
This page took 0.061788 seconds and 5 git commands to generate.