tracing: extend sched_pi_setprio
[deliverable/linux.git] / crypto / drbg.c
1 /*
2 * DRBG: Deterministic Random Bits Generator
3 * Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 * properties:
5 * * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 * * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 * * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 * * with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100 #include <crypto/drbg.h>
101 #include <linux/kernel.h>
102
103 /***************************************************************
104 * Backend cipher definitions available to DRBG
105 ***************************************************************/
106
107 /*
108 * The order of the DRBG definitions here matter: every DRBG is registered
109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
110 * they are defined in this array (see drbg_fill_array).
111 *
112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
114 * DRBGs are the latest entries in this array.
115 */
116 static const struct drbg_core drbg_cores[] = {
117 #ifdef CONFIG_CRYPTO_DRBG_CTR
118 {
119 .flags = DRBG_CTR | DRBG_STRENGTH128,
120 .statelen = 32, /* 256 bits as defined in 10.2.1 */
121 .blocklen_bytes = 16,
122 .cra_name = "ctr_aes128",
123 .backend_cra_name = "aes",
124 }, {
125 .flags = DRBG_CTR | DRBG_STRENGTH192,
126 .statelen = 40, /* 320 bits as defined in 10.2.1 */
127 .blocklen_bytes = 16,
128 .cra_name = "ctr_aes192",
129 .backend_cra_name = "aes",
130 }, {
131 .flags = DRBG_CTR | DRBG_STRENGTH256,
132 .statelen = 48, /* 384 bits as defined in 10.2.1 */
133 .blocklen_bytes = 16,
134 .cra_name = "ctr_aes256",
135 .backend_cra_name = "aes",
136 },
137 #endif /* CONFIG_CRYPTO_DRBG_CTR */
138 #ifdef CONFIG_CRYPTO_DRBG_HASH
139 {
140 .flags = DRBG_HASH | DRBG_STRENGTH128,
141 .statelen = 55, /* 440 bits */
142 .blocklen_bytes = 20,
143 .cra_name = "sha1",
144 .backend_cra_name = "sha1",
145 }, {
146 .flags = DRBG_HASH | DRBG_STRENGTH256,
147 .statelen = 111, /* 888 bits */
148 .blocklen_bytes = 48,
149 .cra_name = "sha384",
150 .backend_cra_name = "sha384",
151 }, {
152 .flags = DRBG_HASH | DRBG_STRENGTH256,
153 .statelen = 111, /* 888 bits */
154 .blocklen_bytes = 64,
155 .cra_name = "sha512",
156 .backend_cra_name = "sha512",
157 }, {
158 .flags = DRBG_HASH | DRBG_STRENGTH256,
159 .statelen = 55, /* 440 bits */
160 .blocklen_bytes = 32,
161 .cra_name = "sha256",
162 .backend_cra_name = "sha256",
163 },
164 #endif /* CONFIG_CRYPTO_DRBG_HASH */
165 #ifdef CONFIG_CRYPTO_DRBG_HMAC
166 {
167 .flags = DRBG_HMAC | DRBG_STRENGTH128,
168 .statelen = 20, /* block length of cipher */
169 .blocklen_bytes = 20,
170 .cra_name = "hmac_sha1",
171 .backend_cra_name = "hmac(sha1)",
172 }, {
173 .flags = DRBG_HMAC | DRBG_STRENGTH256,
174 .statelen = 48, /* block length of cipher */
175 .blocklen_bytes = 48,
176 .cra_name = "hmac_sha384",
177 .backend_cra_name = "hmac(sha384)",
178 }, {
179 .flags = DRBG_HMAC | DRBG_STRENGTH256,
180 .statelen = 64, /* block length of cipher */
181 .blocklen_bytes = 64,
182 .cra_name = "hmac_sha512",
183 .backend_cra_name = "hmac(sha512)",
184 }, {
185 .flags = DRBG_HMAC | DRBG_STRENGTH256,
186 .statelen = 32, /* block length of cipher */
187 .blocklen_bytes = 32,
188 .cra_name = "hmac_sha256",
189 .backend_cra_name = "hmac(sha256)",
190 },
191 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
192 };
193
194 static int drbg_uninstantiate(struct drbg_state *drbg);
195
196 /******************************************************************
197 * Generic helper functions
198 ******************************************************************/
199
200 /*
201 * Return strength of DRBG according to SP800-90A section 8.4
202 *
203 * @flags DRBG flags reference
204 *
205 * Return: normalized strength in *bytes* value or 32 as default
206 * to counter programming errors
207 */
208 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
209 {
210 switch (flags & DRBG_STRENGTH_MASK) {
211 case DRBG_STRENGTH128:
212 return 16;
213 case DRBG_STRENGTH192:
214 return 24;
215 case DRBG_STRENGTH256:
216 return 32;
217 default:
218 return 32;
219 }
220 }
221
222 /*
223 * Convert an integer into a byte representation of this integer.
224 * The byte representation is big-endian
225 *
226 * @val value to be converted
227 * @buf buffer holding the converted integer -- caller must ensure that
228 * buffer size is at least 32 bit
229 */
230 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
231 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
232 {
233 struct s {
234 __be32 conv;
235 };
236 struct s *conversion = (struct s *) buf;
237
238 conversion->conv = cpu_to_be32(val);
239 }
240 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
241
242 /******************************************************************
243 * CTR DRBG callback functions
244 ******************************************************************/
245
246 #ifdef CONFIG_CRYPTO_DRBG_CTR
247 #define CRYPTO_DRBG_CTR_STRING "CTR "
248 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
249 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
250 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
251 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
252 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
253 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
254
255 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
256 const unsigned char *key);
257 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
258 const struct drbg_string *in);
259 static int drbg_init_sym_kernel(struct drbg_state *drbg);
260 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
261 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
262 u8 *inbuf, u32 inbuflen,
263 u8 *outbuf, u32 outlen);
264 #define DRBG_CTR_NULL_LEN 128
265
266 /* BCC function for CTR DRBG as defined in 10.4.3 */
267 static int drbg_ctr_bcc(struct drbg_state *drbg,
268 unsigned char *out, const unsigned char *key,
269 struct list_head *in)
270 {
271 int ret = 0;
272 struct drbg_string *curr = NULL;
273 struct drbg_string data;
274 short cnt = 0;
275
276 drbg_string_fill(&data, out, drbg_blocklen(drbg));
277
278 /* 10.4.3 step 2 / 4 */
279 drbg_kcapi_symsetkey(drbg, key);
280 list_for_each_entry(curr, in, list) {
281 const unsigned char *pos = curr->buf;
282 size_t len = curr->len;
283 /* 10.4.3 step 4.1 */
284 while (len) {
285 /* 10.4.3 step 4.2 */
286 if (drbg_blocklen(drbg) == cnt) {
287 cnt = 0;
288 ret = drbg_kcapi_sym(drbg, out, &data);
289 if (ret)
290 return ret;
291 }
292 out[cnt] ^= *pos;
293 pos++;
294 cnt++;
295 len--;
296 }
297 }
298 /* 10.4.3 step 4.2 for last block */
299 if (cnt)
300 ret = drbg_kcapi_sym(drbg, out, &data);
301
302 return ret;
303 }
304
305 /*
306 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
307 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
308 * the scratchpad is used as follows:
309 * drbg_ctr_update:
310 * temp
311 * start: drbg->scratchpad
312 * length: drbg_statelen(drbg) + drbg_blocklen(drbg)
313 * note: the cipher writing into this variable works
314 * blocklen-wise. Now, when the statelen is not a multiple
315 * of blocklen, the generateion loop below "spills over"
316 * by at most blocklen. Thus, we need to give sufficient
317 * memory.
318 * df_data
319 * start: drbg->scratchpad +
320 * drbg_statelen(drbg) + drbg_blocklen(drbg)
321 * length: drbg_statelen(drbg)
322 *
323 * drbg_ctr_df:
324 * pad
325 * start: df_data + drbg_statelen(drbg)
326 * length: drbg_blocklen(drbg)
327 * iv
328 * start: pad + drbg_blocklen(drbg)
329 * length: drbg_blocklen(drbg)
330 * temp
331 * start: iv + drbg_blocklen(drbg)
332 * length: drbg_satelen(drbg) + drbg_blocklen(drbg)
333 * note: temp is the buffer that the BCC function operates
334 * on. BCC operates blockwise. drbg_statelen(drbg)
335 * is sufficient when the DRBG state length is a multiple
336 * of the block size. For AES192 (and maybe other ciphers)
337 * this is not correct and the length for temp is
338 * insufficient (yes, that also means for such ciphers,
339 * the final output of all BCC rounds are truncated).
340 * Therefore, add drbg_blocklen(drbg) to cover all
341 * possibilities.
342 */
343
344 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
345 static int drbg_ctr_df(struct drbg_state *drbg,
346 unsigned char *df_data, size_t bytes_to_return,
347 struct list_head *seedlist)
348 {
349 int ret = -EFAULT;
350 unsigned char L_N[8];
351 /* S3 is input */
352 struct drbg_string S1, S2, S4, cipherin;
353 LIST_HEAD(bcc_list);
354 unsigned char *pad = df_data + drbg_statelen(drbg);
355 unsigned char *iv = pad + drbg_blocklen(drbg);
356 unsigned char *temp = iv + drbg_blocklen(drbg);
357 size_t padlen = 0;
358 unsigned int templen = 0;
359 /* 10.4.2 step 7 */
360 unsigned int i = 0;
361 /* 10.4.2 step 8 */
362 const unsigned char *K = (unsigned char *)
363 "\x00\x01\x02\x03\x04\x05\x06\x07"
364 "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
365 "\x10\x11\x12\x13\x14\x15\x16\x17"
366 "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
367 unsigned char *X;
368 size_t generated_len = 0;
369 size_t inputlen = 0;
370 struct drbg_string *seed = NULL;
371
372 memset(pad, 0, drbg_blocklen(drbg));
373 memset(iv, 0, drbg_blocklen(drbg));
374
375 /* 10.4.2 step 1 is implicit as we work byte-wise */
376
377 /* 10.4.2 step 2 */
378 if ((512/8) < bytes_to_return)
379 return -EINVAL;
380
381 /* 10.4.2 step 2 -- calculate the entire length of all input data */
382 list_for_each_entry(seed, seedlist, list)
383 inputlen += seed->len;
384 drbg_cpu_to_be32(inputlen, &L_N[0]);
385
386 /* 10.4.2 step 3 */
387 drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
388
389 /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
390 padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
391 /* wrap the padlen appropriately */
392 if (padlen)
393 padlen = drbg_blocklen(drbg) - padlen;
394 /*
395 * pad / padlen contains the 0x80 byte and the following zero bytes.
396 * As the calculated padlen value only covers the number of zero
397 * bytes, this value has to be incremented by one for the 0x80 byte.
398 */
399 padlen++;
400 pad[0] = 0x80;
401
402 /* 10.4.2 step 4 -- first fill the linked list and then order it */
403 drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
404 list_add_tail(&S1.list, &bcc_list);
405 drbg_string_fill(&S2, L_N, sizeof(L_N));
406 list_add_tail(&S2.list, &bcc_list);
407 list_splice_tail(seedlist, &bcc_list);
408 drbg_string_fill(&S4, pad, padlen);
409 list_add_tail(&S4.list, &bcc_list);
410
411 /* 10.4.2 step 9 */
412 while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
413 /*
414 * 10.4.2 step 9.1 - the padding is implicit as the buffer
415 * holds zeros after allocation -- even the increment of i
416 * is irrelevant as the increment remains within length of i
417 */
418 drbg_cpu_to_be32(i, iv);
419 /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
420 ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
421 if (ret)
422 goto out;
423 /* 10.4.2 step 9.3 */
424 i++;
425 templen += drbg_blocklen(drbg);
426 }
427
428 /* 10.4.2 step 11 */
429 X = temp + (drbg_keylen(drbg));
430 drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
431
432 /* 10.4.2 step 12: overwriting of outval is implemented in next step */
433
434 /* 10.4.2 step 13 */
435 drbg_kcapi_symsetkey(drbg, temp);
436 while (generated_len < bytes_to_return) {
437 short blocklen = 0;
438 /*
439 * 10.4.2 step 13.1: the truncation of the key length is
440 * implicit as the key is only drbg_blocklen in size based on
441 * the implementation of the cipher function callback
442 */
443 ret = drbg_kcapi_sym(drbg, X, &cipherin);
444 if (ret)
445 goto out;
446 blocklen = (drbg_blocklen(drbg) <
447 (bytes_to_return - generated_len)) ?
448 drbg_blocklen(drbg) :
449 (bytes_to_return - generated_len);
450 /* 10.4.2 step 13.2 and 14 */
451 memcpy(df_data + generated_len, X, blocklen);
452 generated_len += blocklen;
453 }
454
455 ret = 0;
456
457 out:
458 memset(iv, 0, drbg_blocklen(drbg));
459 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
460 memset(pad, 0, drbg_blocklen(drbg));
461 return ret;
462 }
463
464 /*
465 * update function of CTR DRBG as defined in 10.2.1.2
466 *
467 * The reseed variable has an enhanced meaning compared to the update
468 * functions of the other DRBGs as follows:
469 * 0 => initial seed from initialization
470 * 1 => reseed via drbg_seed
471 * 2 => first invocation from drbg_ctr_update when addtl is present. In
472 * this case, the df_data scratchpad is not deleted so that it is
473 * available for another calls to prevent calling the DF function
474 * again.
475 * 3 => second invocation from drbg_ctr_update. When the update function
476 * was called with addtl, the df_data memory already contains the
477 * DFed addtl information and we do not need to call DF again.
478 */
479 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
480 int reseed)
481 {
482 int ret = -EFAULT;
483 /* 10.2.1.2 step 1 */
484 unsigned char *temp = drbg->scratchpad;
485 unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
486 drbg_blocklen(drbg);
487
488 if (3 > reseed)
489 memset(df_data, 0, drbg_statelen(drbg));
490
491 if (!reseed) {
492 /*
493 * The DRBG uses the CTR mode of the underlying AES cipher. The
494 * CTR mode increments the counter value after the AES operation
495 * but SP800-90A requires that the counter is incremented before
496 * the AES operation. Hence, we increment it at the time we set
497 * it by one.
498 */
499 crypto_inc(drbg->V, drbg_blocklen(drbg));
500
501 ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
502 drbg_keylen(drbg));
503 if (ret)
504 goto out;
505 }
506
507 /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
508 if (seed) {
509 ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
510 if (ret)
511 goto out;
512 }
513
514 ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
515 temp, drbg_statelen(drbg));
516 if (ret)
517 return ret;
518
519 /* 10.2.1.2 step 5 */
520 ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
521 drbg_keylen(drbg));
522 if (ret)
523 goto out;
524 /* 10.2.1.2 step 6 */
525 memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
526 /* See above: increment counter by one to compensate timing of CTR op */
527 crypto_inc(drbg->V, drbg_blocklen(drbg));
528 ret = 0;
529
530 out:
531 memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
532 if (2 != reseed)
533 memset(df_data, 0, drbg_statelen(drbg));
534 return ret;
535 }
536
537 /*
538 * scratchpad use: drbg_ctr_update is called independently from
539 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
540 */
541 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
542 static int drbg_ctr_generate(struct drbg_state *drbg,
543 unsigned char *buf, unsigned int buflen,
544 struct list_head *addtl)
545 {
546 int ret;
547 int len = min_t(int, buflen, INT_MAX);
548
549 /* 10.2.1.5.2 step 2 */
550 if (addtl && !list_empty(addtl)) {
551 ret = drbg_ctr_update(drbg, addtl, 2);
552 if (ret)
553 return 0;
554 }
555
556 /* 10.2.1.5.2 step 4.1 */
557 ret = drbg_kcapi_sym_ctr(drbg, drbg->ctr_null_value, DRBG_CTR_NULL_LEN,
558 buf, len);
559 if (ret)
560 return ret;
561
562 /* 10.2.1.5.2 step 6 */
563 ret = drbg_ctr_update(drbg, NULL, 3);
564 if (ret)
565 len = ret;
566
567 return len;
568 }
569
570 static const struct drbg_state_ops drbg_ctr_ops = {
571 .update = drbg_ctr_update,
572 .generate = drbg_ctr_generate,
573 .crypto_init = drbg_init_sym_kernel,
574 .crypto_fini = drbg_fini_sym_kernel,
575 };
576 #endif /* CONFIG_CRYPTO_DRBG_CTR */
577
578 /******************************************************************
579 * HMAC DRBG callback functions
580 ******************************************************************/
581
582 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
583 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
584 const struct list_head *in);
585 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
586 const unsigned char *key);
587 static int drbg_init_hash_kernel(struct drbg_state *drbg);
588 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
589 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
590
591 #ifdef CONFIG_CRYPTO_DRBG_HMAC
592 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
593 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
594 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
595 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
596 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
597 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
598 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
599 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
600 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
601
602 /* update function of HMAC DRBG as defined in 10.1.2.2 */
603 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
604 int reseed)
605 {
606 int ret = -EFAULT;
607 int i = 0;
608 struct drbg_string seed1, seed2, vdata;
609 LIST_HEAD(seedlist);
610 LIST_HEAD(vdatalist);
611
612 if (!reseed) {
613 /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
614 memset(drbg->V, 1, drbg_statelen(drbg));
615 drbg_kcapi_hmacsetkey(drbg, drbg->C);
616 }
617
618 drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
619 list_add_tail(&seed1.list, &seedlist);
620 /* buffer of seed2 will be filled in for loop below with one byte */
621 drbg_string_fill(&seed2, NULL, 1);
622 list_add_tail(&seed2.list, &seedlist);
623 /* input data of seed is allowed to be NULL at this point */
624 if (seed)
625 list_splice_tail(seed, &seedlist);
626
627 drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
628 list_add_tail(&vdata.list, &vdatalist);
629 for (i = 2; 0 < i; i--) {
630 /* first round uses 0x0, second 0x1 */
631 unsigned char prefix = DRBG_PREFIX0;
632 if (1 == i)
633 prefix = DRBG_PREFIX1;
634 /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
635 seed2.buf = &prefix;
636 ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
637 if (ret)
638 return ret;
639 drbg_kcapi_hmacsetkey(drbg, drbg->C);
640
641 /* 10.1.2.2 step 2 and 5 -- HMAC for V */
642 ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
643 if (ret)
644 return ret;
645
646 /* 10.1.2.2 step 3 */
647 if (!seed)
648 return ret;
649 }
650
651 return 0;
652 }
653
654 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
655 static int drbg_hmac_generate(struct drbg_state *drbg,
656 unsigned char *buf,
657 unsigned int buflen,
658 struct list_head *addtl)
659 {
660 int len = 0;
661 int ret = 0;
662 struct drbg_string data;
663 LIST_HEAD(datalist);
664
665 /* 10.1.2.5 step 2 */
666 if (addtl && !list_empty(addtl)) {
667 ret = drbg_hmac_update(drbg, addtl, 1);
668 if (ret)
669 return ret;
670 }
671
672 drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
673 list_add_tail(&data.list, &datalist);
674 while (len < buflen) {
675 unsigned int outlen = 0;
676 /* 10.1.2.5 step 4.1 */
677 ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
678 if (ret)
679 return ret;
680 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
681 drbg_blocklen(drbg) : (buflen - len);
682
683 /* 10.1.2.5 step 4.2 */
684 memcpy(buf + len, drbg->V, outlen);
685 len += outlen;
686 }
687
688 /* 10.1.2.5 step 6 */
689 if (addtl && !list_empty(addtl))
690 ret = drbg_hmac_update(drbg, addtl, 1);
691 else
692 ret = drbg_hmac_update(drbg, NULL, 1);
693 if (ret)
694 return ret;
695
696 return len;
697 }
698
699 static const struct drbg_state_ops drbg_hmac_ops = {
700 .update = drbg_hmac_update,
701 .generate = drbg_hmac_generate,
702 .crypto_init = drbg_init_hash_kernel,
703 .crypto_fini = drbg_fini_hash_kernel,
704 };
705 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
706
707 /******************************************************************
708 * Hash DRBG callback functions
709 ******************************************************************/
710
711 #ifdef CONFIG_CRYPTO_DRBG_HASH
712 #define CRYPTO_DRBG_HASH_STRING "HASH "
713 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
714 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
715 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
716 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
717 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
718 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
719 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
720 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
721
722 /*
723 * Increment buffer
724 *
725 * @dst buffer to increment
726 * @add value to add
727 */
728 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
729 const unsigned char *add, size_t addlen)
730 {
731 /* implied: dstlen > addlen */
732 unsigned char *dstptr;
733 const unsigned char *addptr;
734 unsigned int remainder = 0;
735 size_t len = addlen;
736
737 dstptr = dst + (dstlen-1);
738 addptr = add + (addlen-1);
739 while (len) {
740 remainder += *dstptr + *addptr;
741 *dstptr = remainder & 0xff;
742 remainder >>= 8;
743 len--; dstptr--; addptr--;
744 }
745 len = dstlen - addlen;
746 while (len && remainder > 0) {
747 remainder = *dstptr + 1;
748 *dstptr = remainder & 0xff;
749 remainder >>= 8;
750 len--; dstptr--;
751 }
752 }
753
754 /*
755 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
756 * interlinked, the scratchpad is used as follows:
757 * drbg_hash_update
758 * start: drbg->scratchpad
759 * length: drbg_statelen(drbg)
760 * drbg_hash_df:
761 * start: drbg->scratchpad + drbg_statelen(drbg)
762 * length: drbg_blocklen(drbg)
763 *
764 * drbg_hash_process_addtl uses the scratchpad, but fully completes
765 * before either of the functions mentioned before are invoked. Therefore,
766 * drbg_hash_process_addtl does not need to be specifically considered.
767 */
768
769 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
770 static int drbg_hash_df(struct drbg_state *drbg,
771 unsigned char *outval, size_t outlen,
772 struct list_head *entropylist)
773 {
774 int ret = 0;
775 size_t len = 0;
776 unsigned char input[5];
777 unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
778 struct drbg_string data;
779
780 /* 10.4.1 step 3 */
781 input[0] = 1;
782 drbg_cpu_to_be32((outlen * 8), &input[1]);
783
784 /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
785 drbg_string_fill(&data, input, 5);
786 list_add(&data.list, entropylist);
787
788 /* 10.4.1 step 4 */
789 while (len < outlen) {
790 short blocklen = 0;
791 /* 10.4.1 step 4.1 */
792 ret = drbg_kcapi_hash(drbg, tmp, entropylist);
793 if (ret)
794 goto out;
795 /* 10.4.1 step 4.2 */
796 input[0]++;
797 blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
798 drbg_blocklen(drbg) : (outlen - len);
799 memcpy(outval + len, tmp, blocklen);
800 len += blocklen;
801 }
802
803 out:
804 memset(tmp, 0, drbg_blocklen(drbg));
805 return ret;
806 }
807
808 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
809 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
810 int reseed)
811 {
812 int ret = 0;
813 struct drbg_string data1, data2;
814 LIST_HEAD(datalist);
815 LIST_HEAD(datalist2);
816 unsigned char *V = drbg->scratchpad;
817 unsigned char prefix = DRBG_PREFIX1;
818
819 if (!seed)
820 return -EINVAL;
821
822 if (reseed) {
823 /* 10.1.1.3 step 1 */
824 memcpy(V, drbg->V, drbg_statelen(drbg));
825 drbg_string_fill(&data1, &prefix, 1);
826 list_add_tail(&data1.list, &datalist);
827 drbg_string_fill(&data2, V, drbg_statelen(drbg));
828 list_add_tail(&data2.list, &datalist);
829 }
830 list_splice_tail(seed, &datalist);
831
832 /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
833 ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
834 if (ret)
835 goto out;
836
837 /* 10.1.1.2 / 10.1.1.3 step 4 */
838 prefix = DRBG_PREFIX0;
839 drbg_string_fill(&data1, &prefix, 1);
840 list_add_tail(&data1.list, &datalist2);
841 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
842 list_add_tail(&data2.list, &datalist2);
843 /* 10.1.1.2 / 10.1.1.3 step 4 */
844 ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
845
846 out:
847 memset(drbg->scratchpad, 0, drbg_statelen(drbg));
848 return ret;
849 }
850
851 /* processing of additional information string for Hash DRBG */
852 static int drbg_hash_process_addtl(struct drbg_state *drbg,
853 struct list_head *addtl)
854 {
855 int ret = 0;
856 struct drbg_string data1, data2;
857 LIST_HEAD(datalist);
858 unsigned char prefix = DRBG_PREFIX2;
859
860 /* 10.1.1.4 step 2 */
861 if (!addtl || list_empty(addtl))
862 return 0;
863
864 /* 10.1.1.4 step 2a */
865 drbg_string_fill(&data1, &prefix, 1);
866 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
867 list_add_tail(&data1.list, &datalist);
868 list_add_tail(&data2.list, &datalist);
869 list_splice_tail(addtl, &datalist);
870 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
871 if (ret)
872 goto out;
873
874 /* 10.1.1.4 step 2b */
875 drbg_add_buf(drbg->V, drbg_statelen(drbg),
876 drbg->scratchpad, drbg_blocklen(drbg));
877
878 out:
879 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
880 return ret;
881 }
882
883 /* Hashgen defined in 10.1.1.4 */
884 static int drbg_hash_hashgen(struct drbg_state *drbg,
885 unsigned char *buf,
886 unsigned int buflen)
887 {
888 int len = 0;
889 int ret = 0;
890 unsigned char *src = drbg->scratchpad;
891 unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
892 struct drbg_string data;
893 LIST_HEAD(datalist);
894
895 /* 10.1.1.4 step hashgen 2 */
896 memcpy(src, drbg->V, drbg_statelen(drbg));
897
898 drbg_string_fill(&data, src, drbg_statelen(drbg));
899 list_add_tail(&data.list, &datalist);
900 while (len < buflen) {
901 unsigned int outlen = 0;
902 /* 10.1.1.4 step hashgen 4.1 */
903 ret = drbg_kcapi_hash(drbg, dst, &datalist);
904 if (ret) {
905 len = ret;
906 goto out;
907 }
908 outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
909 drbg_blocklen(drbg) : (buflen - len);
910 /* 10.1.1.4 step hashgen 4.2 */
911 memcpy(buf + len, dst, outlen);
912 len += outlen;
913 /* 10.1.1.4 hashgen step 4.3 */
914 if (len < buflen)
915 crypto_inc(src, drbg_statelen(drbg));
916 }
917
918 out:
919 memset(drbg->scratchpad, 0,
920 (drbg_statelen(drbg) + drbg_blocklen(drbg)));
921 return len;
922 }
923
924 /* generate function for Hash DRBG as defined in 10.1.1.4 */
925 static int drbg_hash_generate(struct drbg_state *drbg,
926 unsigned char *buf, unsigned int buflen,
927 struct list_head *addtl)
928 {
929 int len = 0;
930 int ret = 0;
931 union {
932 unsigned char req[8];
933 __be64 req_int;
934 } u;
935 unsigned char prefix = DRBG_PREFIX3;
936 struct drbg_string data1, data2;
937 LIST_HEAD(datalist);
938
939 /* 10.1.1.4 step 2 */
940 ret = drbg_hash_process_addtl(drbg, addtl);
941 if (ret)
942 return ret;
943 /* 10.1.1.4 step 3 */
944 len = drbg_hash_hashgen(drbg, buf, buflen);
945
946 /* this is the value H as documented in 10.1.1.4 */
947 /* 10.1.1.4 step 4 */
948 drbg_string_fill(&data1, &prefix, 1);
949 list_add_tail(&data1.list, &datalist);
950 drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
951 list_add_tail(&data2.list, &datalist);
952 ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
953 if (ret) {
954 len = ret;
955 goto out;
956 }
957
958 /* 10.1.1.4 step 5 */
959 drbg_add_buf(drbg->V, drbg_statelen(drbg),
960 drbg->scratchpad, drbg_blocklen(drbg));
961 drbg_add_buf(drbg->V, drbg_statelen(drbg),
962 drbg->C, drbg_statelen(drbg));
963 u.req_int = cpu_to_be64(drbg->reseed_ctr);
964 drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
965
966 out:
967 memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
968 return len;
969 }
970
971 /*
972 * scratchpad usage: as update and generate are used isolated, both
973 * can use the scratchpad
974 */
975 static const struct drbg_state_ops drbg_hash_ops = {
976 .update = drbg_hash_update,
977 .generate = drbg_hash_generate,
978 .crypto_init = drbg_init_hash_kernel,
979 .crypto_fini = drbg_fini_hash_kernel,
980 };
981 #endif /* CONFIG_CRYPTO_DRBG_HASH */
982
983 /******************************************************************
984 * Functions common for DRBG implementations
985 ******************************************************************/
986
987 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
988 int reseed)
989 {
990 int ret = drbg->d_ops->update(drbg, seed, reseed);
991
992 if (ret)
993 return ret;
994
995 drbg->seeded = true;
996 /* 10.1.1.2 / 10.1.1.3 step 5 */
997 drbg->reseed_ctr = 1;
998
999 return ret;
1000 }
1001
1002 static void drbg_async_seed(struct work_struct *work)
1003 {
1004 struct drbg_string data;
1005 LIST_HEAD(seedlist);
1006 struct drbg_state *drbg = container_of(work, struct drbg_state,
1007 seed_work);
1008 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1009 unsigned char entropy[32];
1010
1011 BUG_ON(!entropylen);
1012 BUG_ON(entropylen > sizeof(entropy));
1013 get_random_bytes(entropy, entropylen);
1014
1015 drbg_string_fill(&data, entropy, entropylen);
1016 list_add_tail(&data.list, &seedlist);
1017
1018 mutex_lock(&drbg->drbg_mutex);
1019
1020 /* If nonblocking pool is initialized, deactivate Jitter RNG */
1021 crypto_free_rng(drbg->jent);
1022 drbg->jent = NULL;
1023
1024 /* Set seeded to false so that if __drbg_seed fails the
1025 * next generate call will trigger a reseed.
1026 */
1027 drbg->seeded = false;
1028
1029 __drbg_seed(drbg, &seedlist, true);
1030
1031 if (drbg->seeded)
1032 drbg->reseed_threshold = drbg_max_requests(drbg);
1033
1034 mutex_unlock(&drbg->drbg_mutex);
1035
1036 memzero_explicit(entropy, entropylen);
1037 }
1038
1039 /*
1040 * Seeding or reseeding of the DRBG
1041 *
1042 * @drbg: DRBG state struct
1043 * @pers: personalization / additional information buffer
1044 * @reseed: 0 for initial seed process, 1 for reseeding
1045 *
1046 * return:
1047 * 0 on success
1048 * error value otherwise
1049 */
1050 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1051 bool reseed)
1052 {
1053 int ret;
1054 unsigned char entropy[((32 + 16) * 2)];
1055 unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1056 struct drbg_string data1;
1057 LIST_HEAD(seedlist);
1058
1059 /* 9.1 / 9.2 / 9.3.1 step 3 */
1060 if (pers && pers->len > (drbg_max_addtl(drbg))) {
1061 pr_devel("DRBG: personalization string too long %zu\n",
1062 pers->len);
1063 return -EINVAL;
1064 }
1065
1066 if (list_empty(&drbg->test_data.list)) {
1067 drbg_string_fill(&data1, drbg->test_data.buf,
1068 drbg->test_data.len);
1069 pr_devel("DRBG: using test entropy\n");
1070 } else {
1071 /*
1072 * Gather entropy equal to the security strength of the DRBG.
1073 * With a derivation function, a nonce is required in addition
1074 * to the entropy. A nonce must be at least 1/2 of the security
1075 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1076 * of the strength. The consideration of a nonce is only
1077 * applicable during initial seeding.
1078 */
1079 BUG_ON(!entropylen);
1080 if (!reseed)
1081 entropylen = ((entropylen + 1) / 2) * 3;
1082 BUG_ON((entropylen * 2) > sizeof(entropy));
1083
1084 /* Get seed from in-kernel /dev/urandom */
1085 get_random_bytes(entropy, entropylen);
1086
1087 if (!drbg->jent) {
1088 drbg_string_fill(&data1, entropy, entropylen);
1089 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1090 entropylen);
1091 } else {
1092 /* Get seed from Jitter RNG */
1093 ret = crypto_rng_get_bytes(drbg->jent,
1094 entropy + entropylen,
1095 entropylen);
1096 if (ret) {
1097 pr_devel("DRBG: jent failed with %d\n", ret);
1098 return ret;
1099 }
1100
1101 drbg_string_fill(&data1, entropy, entropylen * 2);
1102 pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1103 entropylen * 2);
1104 }
1105 }
1106 list_add_tail(&data1.list, &seedlist);
1107
1108 /*
1109 * concatenation of entropy with personalization str / addtl input)
1110 * the variable pers is directly handed in by the caller, so check its
1111 * contents whether it is appropriate
1112 */
1113 if (pers && pers->buf && 0 < pers->len) {
1114 list_add_tail(&pers->list, &seedlist);
1115 pr_devel("DRBG: using personalization string\n");
1116 }
1117
1118 if (!reseed) {
1119 memset(drbg->V, 0, drbg_statelen(drbg));
1120 memset(drbg->C, 0, drbg_statelen(drbg));
1121 }
1122
1123 ret = __drbg_seed(drbg, &seedlist, reseed);
1124
1125 memzero_explicit(entropy, entropylen * 2);
1126
1127 return ret;
1128 }
1129
1130 /* Free all substructures in a DRBG state without the DRBG state structure */
1131 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1132 {
1133 if (!drbg)
1134 return;
1135 kzfree(drbg->V);
1136 drbg->Vbuf = NULL;
1137 kzfree(drbg->C);
1138 drbg->Cbuf = NULL;
1139 kzfree(drbg->scratchpadbuf);
1140 drbg->scratchpadbuf = NULL;
1141 drbg->reseed_ctr = 0;
1142 drbg->d_ops = NULL;
1143 drbg->core = NULL;
1144 }
1145
1146 /*
1147 * Allocate all sub-structures for a DRBG state.
1148 * The DRBG state structure must already be allocated.
1149 */
1150 static inline int drbg_alloc_state(struct drbg_state *drbg)
1151 {
1152 int ret = -ENOMEM;
1153 unsigned int sb_size = 0;
1154
1155 switch (drbg->core->flags & DRBG_TYPE_MASK) {
1156 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1157 case DRBG_HMAC:
1158 drbg->d_ops = &drbg_hmac_ops;
1159 break;
1160 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1161 #ifdef CONFIG_CRYPTO_DRBG_HASH
1162 case DRBG_HASH:
1163 drbg->d_ops = &drbg_hash_ops;
1164 break;
1165 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1166 #ifdef CONFIG_CRYPTO_DRBG_CTR
1167 case DRBG_CTR:
1168 drbg->d_ops = &drbg_ctr_ops;
1169 break;
1170 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1171 default:
1172 ret = -EOPNOTSUPP;
1173 goto err;
1174 }
1175
1176 ret = drbg->d_ops->crypto_init(drbg);
1177 if (ret < 0)
1178 goto err;
1179
1180 drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1181 if (!drbg->Vbuf) {
1182 ret = -ENOMEM;
1183 goto fini;
1184 }
1185 drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1186 drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1187 if (!drbg->Cbuf) {
1188 ret = -ENOMEM;
1189 goto fini;
1190 }
1191 drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1192 /* scratchpad is only generated for CTR and Hash */
1193 if (drbg->core->flags & DRBG_HMAC)
1194 sb_size = 0;
1195 else if (drbg->core->flags & DRBG_CTR)
1196 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1197 drbg_statelen(drbg) + /* df_data */
1198 drbg_blocklen(drbg) + /* pad */
1199 drbg_blocklen(drbg) + /* iv */
1200 drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1201 else
1202 sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1203
1204 if (0 < sb_size) {
1205 drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1206 if (!drbg->scratchpadbuf) {
1207 ret = -ENOMEM;
1208 goto fini;
1209 }
1210 drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1211 }
1212
1213 return 0;
1214
1215 fini:
1216 drbg->d_ops->crypto_fini(drbg);
1217 err:
1218 drbg_dealloc_state(drbg);
1219 return ret;
1220 }
1221
1222 /*************************************************************************
1223 * DRBG interface functions
1224 *************************************************************************/
1225
1226 /*
1227 * DRBG generate function as required by SP800-90A - this function
1228 * generates random numbers
1229 *
1230 * @drbg DRBG state handle
1231 * @buf Buffer where to store the random numbers -- the buffer must already
1232 * be pre-allocated by caller
1233 * @buflen Length of output buffer - this value defines the number of random
1234 * bytes pulled from DRBG
1235 * @addtl Additional input that is mixed into state, may be NULL -- note
1236 * the entropy is pulled by the DRBG internally unconditionally
1237 * as defined in SP800-90A. The additional input is mixed into
1238 * the state in addition to the pulled entropy.
1239 *
1240 * return: 0 when all bytes are generated; < 0 in case of an error
1241 */
1242 static int drbg_generate(struct drbg_state *drbg,
1243 unsigned char *buf, unsigned int buflen,
1244 struct drbg_string *addtl)
1245 {
1246 int len = 0;
1247 LIST_HEAD(addtllist);
1248
1249 if (!drbg->core) {
1250 pr_devel("DRBG: not yet seeded\n");
1251 return -EINVAL;
1252 }
1253 if (0 == buflen || !buf) {
1254 pr_devel("DRBG: no output buffer provided\n");
1255 return -EINVAL;
1256 }
1257 if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1258 pr_devel("DRBG: wrong format of additional information\n");
1259 return -EINVAL;
1260 }
1261
1262 /* 9.3.1 step 2 */
1263 len = -EINVAL;
1264 if (buflen > (drbg_max_request_bytes(drbg))) {
1265 pr_devel("DRBG: requested random numbers too large %u\n",
1266 buflen);
1267 goto err;
1268 }
1269
1270 /* 9.3.1 step 3 is implicit with the chosen DRBG */
1271
1272 /* 9.3.1 step 4 */
1273 if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1274 pr_devel("DRBG: additional information string too long %zu\n",
1275 addtl->len);
1276 goto err;
1277 }
1278 /* 9.3.1 step 5 is implicit with the chosen DRBG */
1279
1280 /*
1281 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1282 * here. The spec is a bit convoluted here, we make it simpler.
1283 */
1284 if (drbg->reseed_threshold < drbg->reseed_ctr)
1285 drbg->seeded = false;
1286
1287 if (drbg->pr || !drbg->seeded) {
1288 pr_devel("DRBG: reseeding before generation (prediction "
1289 "resistance: %s, state %s)\n",
1290 drbg->pr ? "true" : "false",
1291 drbg->seeded ? "seeded" : "unseeded");
1292 /* 9.3.1 steps 7.1 through 7.3 */
1293 len = drbg_seed(drbg, addtl, true);
1294 if (len)
1295 goto err;
1296 /* 9.3.1 step 7.4 */
1297 addtl = NULL;
1298 }
1299
1300 if (addtl && 0 < addtl->len)
1301 list_add_tail(&addtl->list, &addtllist);
1302 /* 9.3.1 step 8 and 10 */
1303 len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1304
1305 /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1306 drbg->reseed_ctr++;
1307 if (0 >= len)
1308 goto err;
1309
1310 /*
1311 * Section 11.3.3 requires to re-perform self tests after some
1312 * generated random numbers. The chosen value after which self
1313 * test is performed is arbitrary, but it should be reasonable.
1314 * However, we do not perform the self tests because of the following
1315 * reasons: it is mathematically impossible that the initial self tests
1316 * were successfully and the following are not. If the initial would
1317 * pass and the following would not, the kernel integrity is violated.
1318 * In this case, the entire kernel operation is questionable and it
1319 * is unlikely that the integrity violation only affects the
1320 * correct operation of the DRBG.
1321 *
1322 * Albeit the following code is commented out, it is provided in
1323 * case somebody has a need to implement the test of 11.3.3.
1324 */
1325 #if 0
1326 if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1327 int err = 0;
1328 pr_devel("DRBG: start to perform self test\n");
1329 if (drbg->core->flags & DRBG_HMAC)
1330 err = alg_test("drbg_pr_hmac_sha256",
1331 "drbg_pr_hmac_sha256", 0, 0);
1332 else if (drbg->core->flags & DRBG_CTR)
1333 err = alg_test("drbg_pr_ctr_aes128",
1334 "drbg_pr_ctr_aes128", 0, 0);
1335 else
1336 err = alg_test("drbg_pr_sha256",
1337 "drbg_pr_sha256", 0, 0);
1338 if (err) {
1339 pr_err("DRBG: periodical self test failed\n");
1340 /*
1341 * uninstantiate implies that from now on, only errors
1342 * are returned when reusing this DRBG cipher handle
1343 */
1344 drbg_uninstantiate(drbg);
1345 return 0;
1346 } else {
1347 pr_devel("DRBG: self test successful\n");
1348 }
1349 }
1350 #endif
1351
1352 /*
1353 * All operations were successful, return 0 as mandated by
1354 * the kernel crypto API interface.
1355 */
1356 len = 0;
1357 err:
1358 return len;
1359 }
1360
1361 /*
1362 * Wrapper around drbg_generate which can pull arbitrary long strings
1363 * from the DRBG without hitting the maximum request limitation.
1364 *
1365 * Parameters: see drbg_generate
1366 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1367 * the entire drbg_generate_long request fails
1368 */
1369 static int drbg_generate_long(struct drbg_state *drbg,
1370 unsigned char *buf, unsigned int buflen,
1371 struct drbg_string *addtl)
1372 {
1373 unsigned int len = 0;
1374 unsigned int slice = 0;
1375 do {
1376 int err = 0;
1377 unsigned int chunk = 0;
1378 slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1379 chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1380 mutex_lock(&drbg->drbg_mutex);
1381 err = drbg_generate(drbg, buf + len, chunk, addtl);
1382 mutex_unlock(&drbg->drbg_mutex);
1383 if (0 > err)
1384 return err;
1385 len += chunk;
1386 } while (slice > 0 && (len < buflen));
1387 return 0;
1388 }
1389
1390 static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1391 {
1392 struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1393 random_ready);
1394
1395 schedule_work(&drbg->seed_work);
1396 }
1397
1398 static int drbg_prepare_hrng(struct drbg_state *drbg)
1399 {
1400 int err;
1401
1402 /* We do not need an HRNG in test mode. */
1403 if (list_empty(&drbg->test_data.list))
1404 return 0;
1405
1406 INIT_WORK(&drbg->seed_work, drbg_async_seed);
1407
1408 drbg->random_ready.owner = THIS_MODULE;
1409 drbg->random_ready.func = drbg_schedule_async_seed;
1410
1411 err = add_random_ready_callback(&drbg->random_ready);
1412
1413 switch (err) {
1414 case 0:
1415 break;
1416
1417 case -EALREADY:
1418 err = 0;
1419 /* fall through */
1420
1421 default:
1422 drbg->random_ready.func = NULL;
1423 return err;
1424 }
1425
1426 drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1427
1428 /*
1429 * Require frequent reseeds until the seed source is fully
1430 * initialized.
1431 */
1432 drbg->reseed_threshold = 50;
1433
1434 return err;
1435 }
1436
1437 /*
1438 * DRBG instantiation function as required by SP800-90A - this function
1439 * sets up the DRBG handle, performs the initial seeding and all sanity
1440 * checks required by SP800-90A
1441 *
1442 * @drbg memory of state -- if NULL, new memory is allocated
1443 * @pers Personalization string that is mixed into state, may be NULL -- note
1444 * the entropy is pulled by the DRBG internally unconditionally
1445 * as defined in SP800-90A. The additional input is mixed into
1446 * the state in addition to the pulled entropy.
1447 * @coreref reference to core
1448 * @pr prediction resistance enabled
1449 *
1450 * return
1451 * 0 on success
1452 * error value otherwise
1453 */
1454 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1455 int coreref, bool pr)
1456 {
1457 int ret;
1458 bool reseed = true;
1459
1460 pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1461 "%s\n", coreref, pr ? "enabled" : "disabled");
1462 mutex_lock(&drbg->drbg_mutex);
1463
1464 /* 9.1 step 1 is implicit with the selected DRBG type */
1465
1466 /*
1467 * 9.1 step 2 is implicit as caller can select prediction resistance
1468 * and the flag is copied into drbg->flags --
1469 * all DRBG types support prediction resistance
1470 */
1471
1472 /* 9.1 step 4 is implicit in drbg_sec_strength */
1473
1474 if (!drbg->core) {
1475 drbg->core = &drbg_cores[coreref];
1476 drbg->pr = pr;
1477 drbg->seeded = false;
1478 drbg->reseed_threshold = drbg_max_requests(drbg);
1479
1480 ret = drbg_alloc_state(drbg);
1481 if (ret)
1482 goto unlock;
1483
1484 ret = drbg_prepare_hrng(drbg);
1485 if (ret)
1486 goto free_everything;
1487
1488 if (IS_ERR(drbg->jent)) {
1489 ret = PTR_ERR(drbg->jent);
1490 drbg->jent = NULL;
1491 if (fips_enabled || ret != -ENOENT)
1492 goto free_everything;
1493 pr_info("DRBG: Continuing without Jitter RNG\n");
1494 }
1495
1496 reseed = false;
1497 }
1498
1499 ret = drbg_seed(drbg, pers, reseed);
1500
1501 if (ret && !reseed)
1502 goto free_everything;
1503
1504 mutex_unlock(&drbg->drbg_mutex);
1505 return ret;
1506
1507 unlock:
1508 mutex_unlock(&drbg->drbg_mutex);
1509 return ret;
1510
1511 free_everything:
1512 mutex_unlock(&drbg->drbg_mutex);
1513 drbg_uninstantiate(drbg);
1514 return ret;
1515 }
1516
1517 /*
1518 * DRBG uninstantiate function as required by SP800-90A - this function
1519 * frees all buffers and the DRBG handle
1520 *
1521 * @drbg DRBG state handle
1522 *
1523 * return
1524 * 0 on success
1525 */
1526 static int drbg_uninstantiate(struct drbg_state *drbg)
1527 {
1528 if (drbg->random_ready.func) {
1529 del_random_ready_callback(&drbg->random_ready);
1530 cancel_work_sync(&drbg->seed_work);
1531 crypto_free_rng(drbg->jent);
1532 drbg->jent = NULL;
1533 }
1534
1535 if (drbg->d_ops)
1536 drbg->d_ops->crypto_fini(drbg);
1537 drbg_dealloc_state(drbg);
1538 /* no scrubbing of test_data -- this shall survive an uninstantiate */
1539 return 0;
1540 }
1541
1542 /*
1543 * Helper function for setting the test data in the DRBG
1544 *
1545 * @drbg DRBG state handle
1546 * @data test data
1547 * @len test data length
1548 */
1549 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1550 const u8 *data, unsigned int len)
1551 {
1552 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1553
1554 mutex_lock(&drbg->drbg_mutex);
1555 drbg_string_fill(&drbg->test_data, data, len);
1556 mutex_unlock(&drbg->drbg_mutex);
1557 }
1558
1559 /***************************************************************
1560 * Kernel crypto API cipher invocations requested by DRBG
1561 ***************************************************************/
1562
1563 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1564 struct sdesc {
1565 struct shash_desc shash;
1566 char ctx[];
1567 };
1568
1569 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1570 {
1571 struct sdesc *sdesc;
1572 struct crypto_shash *tfm;
1573
1574 tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1575 if (IS_ERR(tfm)) {
1576 pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1577 drbg->core->backend_cra_name);
1578 return PTR_ERR(tfm);
1579 }
1580 BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1581 sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1582 GFP_KERNEL);
1583 if (!sdesc) {
1584 crypto_free_shash(tfm);
1585 return -ENOMEM;
1586 }
1587
1588 sdesc->shash.tfm = tfm;
1589 sdesc->shash.flags = 0;
1590 drbg->priv_data = sdesc;
1591
1592 return crypto_shash_alignmask(tfm);
1593 }
1594
1595 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1596 {
1597 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1598 if (sdesc) {
1599 crypto_free_shash(sdesc->shash.tfm);
1600 kzfree(sdesc);
1601 }
1602 drbg->priv_data = NULL;
1603 return 0;
1604 }
1605
1606 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1607 const unsigned char *key)
1608 {
1609 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1610
1611 crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1612 }
1613
1614 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1615 const struct list_head *in)
1616 {
1617 struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1618 struct drbg_string *input = NULL;
1619
1620 crypto_shash_init(&sdesc->shash);
1621 list_for_each_entry(input, in, list)
1622 crypto_shash_update(&sdesc->shash, input->buf, input->len);
1623 return crypto_shash_final(&sdesc->shash, outval);
1624 }
1625 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1626
1627 #ifdef CONFIG_CRYPTO_DRBG_CTR
1628 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1629 {
1630 struct crypto_cipher *tfm =
1631 (struct crypto_cipher *)drbg->priv_data;
1632 if (tfm)
1633 crypto_free_cipher(tfm);
1634 drbg->priv_data = NULL;
1635
1636 if (drbg->ctr_handle)
1637 crypto_free_skcipher(drbg->ctr_handle);
1638 drbg->ctr_handle = NULL;
1639
1640 if (drbg->ctr_req)
1641 skcipher_request_free(drbg->ctr_req);
1642 drbg->ctr_req = NULL;
1643
1644 kfree(drbg->ctr_null_value_buf);
1645 drbg->ctr_null_value = NULL;
1646
1647 return 0;
1648 }
1649
1650 static void drbg_skcipher_cb(struct crypto_async_request *req, int error)
1651 {
1652 struct drbg_state *drbg = req->data;
1653
1654 if (error == -EINPROGRESS)
1655 return;
1656 drbg->ctr_async_err = error;
1657 complete(&drbg->ctr_completion);
1658 }
1659
1660 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1661 {
1662 struct crypto_cipher *tfm;
1663 struct crypto_skcipher *sk_tfm;
1664 struct skcipher_request *req;
1665 unsigned int alignmask;
1666 char ctr_name[CRYPTO_MAX_ALG_NAME];
1667
1668 tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1669 if (IS_ERR(tfm)) {
1670 pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1671 drbg->core->backend_cra_name);
1672 return PTR_ERR(tfm);
1673 }
1674 BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1675 drbg->priv_data = tfm;
1676
1677 if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1678 drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1679 drbg_fini_sym_kernel(drbg);
1680 return -EINVAL;
1681 }
1682 sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1683 if (IS_ERR(sk_tfm)) {
1684 pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1685 ctr_name);
1686 drbg_fini_sym_kernel(drbg);
1687 return PTR_ERR(sk_tfm);
1688 }
1689 drbg->ctr_handle = sk_tfm;
1690
1691 req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1692 if (!req) {
1693 pr_info("DRBG: could not allocate request queue\n");
1694 drbg_fini_sym_kernel(drbg);
1695 return -ENOMEM;
1696 }
1697 drbg->ctr_req = req;
1698 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1699 drbg_skcipher_cb, drbg);
1700
1701 alignmask = crypto_skcipher_alignmask(sk_tfm);
1702 drbg->ctr_null_value_buf = kzalloc(DRBG_CTR_NULL_LEN + alignmask,
1703 GFP_KERNEL);
1704 if (!drbg->ctr_null_value_buf) {
1705 drbg_fini_sym_kernel(drbg);
1706 return -ENOMEM;
1707 }
1708 drbg->ctr_null_value = (u8 *)PTR_ALIGN(drbg->ctr_null_value_buf,
1709 alignmask + 1);
1710
1711 return alignmask;
1712 }
1713
1714 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1715 const unsigned char *key)
1716 {
1717 struct crypto_cipher *tfm =
1718 (struct crypto_cipher *)drbg->priv_data;
1719
1720 crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1721 }
1722
1723 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1724 const struct drbg_string *in)
1725 {
1726 struct crypto_cipher *tfm =
1727 (struct crypto_cipher *)drbg->priv_data;
1728
1729 /* there is only component in *in */
1730 BUG_ON(in->len < drbg_blocklen(drbg));
1731 crypto_cipher_encrypt_one(tfm, outval, in->buf);
1732 return 0;
1733 }
1734
1735 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1736 u8 *inbuf, u32 inlen,
1737 u8 *outbuf, u32 outlen)
1738 {
1739 struct scatterlist sg_in;
1740
1741 sg_init_one(&sg_in, inbuf, inlen);
1742
1743 while (outlen) {
1744 u32 cryptlen = min_t(u32, inlen, outlen);
1745 struct scatterlist sg_out;
1746 int ret;
1747
1748 sg_init_one(&sg_out, outbuf, cryptlen);
1749 skcipher_request_set_crypt(drbg->ctr_req, &sg_in, &sg_out,
1750 cryptlen, drbg->V);
1751 ret = crypto_skcipher_encrypt(drbg->ctr_req);
1752 switch (ret) {
1753 case 0:
1754 break;
1755 case -EINPROGRESS:
1756 case -EBUSY:
1757 ret = wait_for_completion_interruptible(
1758 &drbg->ctr_completion);
1759 if (!ret && !drbg->ctr_async_err) {
1760 reinit_completion(&drbg->ctr_completion);
1761 break;
1762 }
1763 default:
1764 return ret;
1765 }
1766 init_completion(&drbg->ctr_completion);
1767
1768 outlen -= cryptlen;
1769 }
1770
1771 return 0;
1772 }
1773 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1774
1775 /***************************************************************
1776 * Kernel crypto API interface to register DRBG
1777 ***************************************************************/
1778
1779 /*
1780 * Look up the DRBG flags by given kernel crypto API cra_name
1781 * The code uses the drbg_cores definition to do this
1782 *
1783 * @cra_name kernel crypto API cra_name
1784 * @coreref reference to integer which is filled with the pointer to
1785 * the applicable core
1786 * @pr reference for setting prediction resistance
1787 *
1788 * return: flags
1789 */
1790 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1791 int *coreref, bool *pr)
1792 {
1793 int i = 0;
1794 size_t start = 0;
1795 int len = 0;
1796
1797 *pr = true;
1798 /* disassemble the names */
1799 if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1800 start = 10;
1801 *pr = false;
1802 } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1803 start = 8;
1804 } else {
1805 return;
1806 }
1807
1808 /* remove the first part */
1809 len = strlen(cra_driver_name) - start;
1810 for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1811 if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1812 len)) {
1813 *coreref = i;
1814 return;
1815 }
1816 }
1817 }
1818
1819 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1820 {
1821 struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1822
1823 mutex_init(&drbg->drbg_mutex);
1824
1825 return 0;
1826 }
1827
1828 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1829 {
1830 drbg_uninstantiate(crypto_tfm_ctx(tfm));
1831 }
1832
1833 /*
1834 * Generate random numbers invoked by the kernel crypto API:
1835 * The API of the kernel crypto API is extended as follows:
1836 *
1837 * src is additional input supplied to the RNG.
1838 * slen is the length of src.
1839 * dst is the output buffer where random data is to be stored.
1840 * dlen is the length of dst.
1841 */
1842 static int drbg_kcapi_random(struct crypto_rng *tfm,
1843 const u8 *src, unsigned int slen,
1844 u8 *dst, unsigned int dlen)
1845 {
1846 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1847 struct drbg_string *addtl = NULL;
1848 struct drbg_string string;
1849
1850 if (slen) {
1851 /* linked list variable is now local to allow modification */
1852 drbg_string_fill(&string, src, slen);
1853 addtl = &string;
1854 }
1855
1856 return drbg_generate_long(drbg, dst, dlen, addtl);
1857 }
1858
1859 /*
1860 * Seed the DRBG invoked by the kernel crypto API
1861 */
1862 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1863 const u8 *seed, unsigned int slen)
1864 {
1865 struct drbg_state *drbg = crypto_rng_ctx(tfm);
1866 struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1867 bool pr = false;
1868 struct drbg_string string;
1869 struct drbg_string *seed_string = NULL;
1870 int coreref = 0;
1871
1872 drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1873 &pr);
1874 if (0 < slen) {
1875 drbg_string_fill(&string, seed, slen);
1876 seed_string = &string;
1877 }
1878
1879 return drbg_instantiate(drbg, seed_string, coreref, pr);
1880 }
1881
1882 /***************************************************************
1883 * Kernel module: code to load the module
1884 ***************************************************************/
1885
1886 /*
1887 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1888 * of the error handling.
1889 *
1890 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1891 * as seed source of get_random_bytes does not fail.
1892 *
1893 * Note 2: There is no sensible way of testing the reseed counter
1894 * enforcement, so skip it.
1895 */
1896 static inline int __init drbg_healthcheck_sanity(void)
1897 {
1898 int len = 0;
1899 #define OUTBUFLEN 16
1900 unsigned char buf[OUTBUFLEN];
1901 struct drbg_state *drbg = NULL;
1902 int ret = -EFAULT;
1903 int rc = -EFAULT;
1904 bool pr = false;
1905 int coreref = 0;
1906 struct drbg_string addtl;
1907 size_t max_addtllen, max_request_bytes;
1908
1909 /* only perform test in FIPS mode */
1910 if (!fips_enabled)
1911 return 0;
1912
1913 #ifdef CONFIG_CRYPTO_DRBG_CTR
1914 drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1915 #elif defined CONFIG_CRYPTO_DRBG_HASH
1916 drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1917 #else
1918 drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1919 #endif
1920
1921 drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1922 if (!drbg)
1923 return -ENOMEM;
1924
1925 mutex_init(&drbg->drbg_mutex);
1926 drbg->core = &drbg_cores[coreref];
1927 drbg->reseed_threshold = drbg_max_requests(drbg);
1928
1929 /*
1930 * if the following tests fail, it is likely that there is a buffer
1931 * overflow as buf is much smaller than the requested or provided
1932 * string lengths -- in case the error handling does not succeed
1933 * we may get an OOPS. And we want to get an OOPS as this is a
1934 * grave bug.
1935 */
1936
1937 max_addtllen = drbg_max_addtl(drbg);
1938 max_request_bytes = drbg_max_request_bytes(drbg);
1939 drbg_string_fill(&addtl, buf, max_addtllen + 1);
1940 /* overflow addtllen with additonal info string */
1941 len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1942 BUG_ON(0 < len);
1943 /* overflow max_bits */
1944 len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1945 BUG_ON(0 < len);
1946
1947 /* overflow max addtllen with personalization string */
1948 ret = drbg_seed(drbg, &addtl, false);
1949 BUG_ON(0 == ret);
1950 /* all tests passed */
1951 rc = 0;
1952
1953 pr_devel("DRBG: Sanity tests for failure code paths successfully "
1954 "completed\n");
1955
1956 kfree(drbg);
1957 return rc;
1958 }
1959
1960 static struct rng_alg drbg_algs[22];
1961
1962 /*
1963 * Fill the array drbg_algs used to register the different DRBGs
1964 * with the kernel crypto API. To fill the array, the information
1965 * from drbg_cores[] is used.
1966 */
1967 static inline void __init drbg_fill_array(struct rng_alg *alg,
1968 const struct drbg_core *core, int pr)
1969 {
1970 int pos = 0;
1971 static int priority = 200;
1972
1973 memcpy(alg->base.cra_name, "stdrng", 6);
1974 if (pr) {
1975 memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1976 pos = 8;
1977 } else {
1978 memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1979 pos = 10;
1980 }
1981 memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1982 strlen(core->cra_name));
1983
1984 alg->base.cra_priority = priority;
1985 priority++;
1986 /*
1987 * If FIPS mode enabled, the selected DRBG shall have the
1988 * highest cra_priority over other stdrng instances to ensure
1989 * it is selected.
1990 */
1991 if (fips_enabled)
1992 alg->base.cra_priority += 200;
1993
1994 alg->base.cra_ctxsize = sizeof(struct drbg_state);
1995 alg->base.cra_module = THIS_MODULE;
1996 alg->base.cra_init = drbg_kcapi_init;
1997 alg->base.cra_exit = drbg_kcapi_cleanup;
1998 alg->generate = drbg_kcapi_random;
1999 alg->seed = drbg_kcapi_seed;
2000 alg->set_ent = drbg_kcapi_set_entropy;
2001 alg->seedsize = 0;
2002 }
2003
2004 static int __init drbg_init(void)
2005 {
2006 unsigned int i = 0; /* pointer to drbg_algs */
2007 unsigned int j = 0; /* pointer to drbg_cores */
2008 int ret;
2009
2010 ret = drbg_healthcheck_sanity();
2011 if (ret)
2012 return ret;
2013
2014 if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2015 pr_info("DRBG: Cannot register all DRBG types"
2016 "(slots needed: %zu, slots available: %zu)\n",
2017 ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2018 return -EFAULT;
2019 }
2020
2021 /*
2022 * each DRBG definition can be used with PR and without PR, thus
2023 * we instantiate each DRBG in drbg_cores[] twice.
2024 *
2025 * As the order of placing them into the drbg_algs array matters
2026 * (the later DRBGs receive a higher cra_priority) we register the
2027 * prediction resistance DRBGs first as the should not be too
2028 * interesting.
2029 */
2030 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2031 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2032 for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2033 drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2034 return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2035 }
2036
2037 static void __exit drbg_exit(void)
2038 {
2039 crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2040 }
2041
2042 module_init(drbg_init);
2043 module_exit(drbg_exit);
2044 #ifndef CRYPTO_DRBG_HASH_STRING
2045 #define CRYPTO_DRBG_HASH_STRING ""
2046 #endif
2047 #ifndef CRYPTO_DRBG_HMAC_STRING
2048 #define CRYPTO_DRBG_HMAC_STRING ""
2049 #endif
2050 #ifndef CRYPTO_DRBG_CTR_STRING
2051 #define CRYPTO_DRBG_CTR_STRING ""
2052 #endif
2053 MODULE_LICENSE("GPL");
2054 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2055 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2056 "using following cores: "
2057 CRYPTO_DRBG_HASH_STRING
2058 CRYPTO_DRBG_HMAC_STRING
2059 CRYPTO_DRBG_CTR_STRING);
2060 MODULE_ALIAS_CRYPTO("stdrng");
This page took 0.084718 seconds and 5 git commands to generate.