tracing: extend sched_pi_setprio
[deliverable/linux.git] / crypto / mcryptd.c
1 /*
2 * Software multibuffer async crypto daemon.
3 *
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
5 *
6 * Adapted from crypto daemon.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 */
14
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
29
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
32
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 unsigned int tail);
35
36 struct mcryptd_flush_list {
37 struct list_head list;
38 struct mutex lock;
39 };
40
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
42
43 struct hashd_instance_ctx {
44 struct crypto_ahash_spawn spawn;
45 struct mcryptd_queue *queue;
46 };
47
48 static void mcryptd_queue_worker(struct work_struct *work);
49
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
51 {
52 struct mcryptd_flush_list *flist;
53
54 if (!cstate->flusher_engaged) {
55 /* put the flusher on the flush list */
56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 mutex_lock(&flist->lock);
58 list_add_tail(&cstate->flush_list, &flist->list);
59 cstate->flusher_engaged = true;
60 cstate->next_flush = jiffies + delay;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 &cstate->flush, delay);
63 mutex_unlock(&flist->lock);
64 }
65 }
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
67
68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 unsigned int max_cpu_qlen)
70 {
71 int cpu;
72 struct mcryptd_cpu_queue *cpu_queue;
73
74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 if (!queue->cpu_queue)
77 return -ENOMEM;
78 for_each_possible_cpu(cpu) {
79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 }
84 return 0;
85 }
86
87 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
88 {
89 int cpu;
90 struct mcryptd_cpu_queue *cpu_queue;
91
92 for_each_possible_cpu(cpu) {
93 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
94 BUG_ON(cpu_queue->queue.qlen);
95 }
96 free_percpu(queue->cpu_queue);
97 }
98
99 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
100 struct crypto_async_request *request,
101 struct mcryptd_hash_request_ctx *rctx)
102 {
103 int cpu, err;
104 struct mcryptd_cpu_queue *cpu_queue;
105
106 cpu = get_cpu();
107 cpu_queue = this_cpu_ptr(queue->cpu_queue);
108 rctx->tag.cpu = cpu;
109
110 err = crypto_enqueue_request(&cpu_queue->queue, request);
111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
112 cpu, cpu_queue, request);
113 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
114 put_cpu();
115
116 return err;
117 }
118
119 /*
120 * Try to opportunisticlly flush the partially completed jobs if
121 * crypto daemon is the only task running.
122 */
123 static void mcryptd_opportunistic_flush(void)
124 {
125 struct mcryptd_flush_list *flist;
126 struct mcryptd_alg_cstate *cstate;
127
128 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
129 while (single_task_running()) {
130 mutex_lock(&flist->lock);
131 cstate = list_first_entry_or_null(&flist->list,
132 struct mcryptd_alg_cstate, flush_list);
133 if (!cstate || !cstate->flusher_engaged) {
134 mutex_unlock(&flist->lock);
135 return;
136 }
137 list_del(&cstate->flush_list);
138 cstate->flusher_engaged = false;
139 mutex_unlock(&flist->lock);
140 cstate->alg_state->flusher(cstate);
141 }
142 }
143
144 /*
145 * Called in workqueue context, do one real cryption work (via
146 * req->complete) and reschedule itself if there are more work to
147 * do.
148 */
149 static void mcryptd_queue_worker(struct work_struct *work)
150 {
151 struct mcryptd_cpu_queue *cpu_queue;
152 struct crypto_async_request *req, *backlog;
153 int i;
154
155 /*
156 * Need to loop through more than once for multi-buffer to
157 * be effective.
158 */
159
160 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
161 i = 0;
162 while (i < MCRYPTD_BATCH || single_task_running()) {
163 /*
164 * preempt_disable/enable is used to prevent
165 * being preempted by mcryptd_enqueue_request()
166 */
167 local_bh_disable();
168 preempt_disable();
169 backlog = crypto_get_backlog(&cpu_queue->queue);
170 req = crypto_dequeue_request(&cpu_queue->queue);
171 preempt_enable();
172 local_bh_enable();
173
174 if (!req) {
175 mcryptd_opportunistic_flush();
176 return;
177 }
178
179 if (backlog)
180 backlog->complete(backlog, -EINPROGRESS);
181 req->complete(req, 0);
182 if (!cpu_queue->queue.qlen)
183 return;
184 ++i;
185 }
186 if (cpu_queue->queue.qlen)
187 queue_work(kcrypto_wq, &cpu_queue->work);
188 }
189
190 void mcryptd_flusher(struct work_struct *__work)
191 {
192 struct mcryptd_alg_cstate *alg_cpu_state;
193 struct mcryptd_alg_state *alg_state;
194 struct mcryptd_flush_list *flist;
195 int cpu;
196
197 cpu = smp_processor_id();
198 alg_cpu_state = container_of(to_delayed_work(__work),
199 struct mcryptd_alg_cstate, flush);
200 alg_state = alg_cpu_state->alg_state;
201 if (alg_cpu_state->cpu != cpu)
202 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
203 cpu, alg_cpu_state->cpu);
204
205 if (alg_cpu_state->flusher_engaged) {
206 flist = per_cpu_ptr(mcryptd_flist, cpu);
207 mutex_lock(&flist->lock);
208 list_del(&alg_cpu_state->flush_list);
209 alg_cpu_state->flusher_engaged = false;
210 mutex_unlock(&flist->lock);
211 alg_state->flusher(alg_cpu_state);
212 }
213 }
214 EXPORT_SYMBOL_GPL(mcryptd_flusher);
215
216 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
217 {
218 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
219 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
220
221 return ictx->queue;
222 }
223
224 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225 unsigned int tail)
226 {
227 char *p;
228 struct crypto_instance *inst;
229 int err;
230
231 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
232 if (!p)
233 return ERR_PTR(-ENOMEM);
234
235 inst = (void *)(p + head);
236
237 err = -ENAMETOOLONG;
238 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
239 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
240 goto out_free_inst;
241
242 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
243
244 inst->alg.cra_priority = alg->cra_priority + 50;
245 inst->alg.cra_blocksize = alg->cra_blocksize;
246 inst->alg.cra_alignmask = alg->cra_alignmask;
247
248 out:
249 return p;
250
251 out_free_inst:
252 kfree(p);
253 p = ERR_PTR(err);
254 goto out;
255 }
256
257 static inline void mcryptd_check_internal(struct rtattr **tb, u32 *type,
258 u32 *mask)
259 {
260 struct crypto_attr_type *algt;
261
262 algt = crypto_get_attr_type(tb);
263 if (IS_ERR(algt))
264 return;
265 if ((algt->type & CRYPTO_ALG_INTERNAL))
266 *type |= CRYPTO_ALG_INTERNAL;
267 if ((algt->mask & CRYPTO_ALG_INTERNAL))
268 *mask |= CRYPTO_ALG_INTERNAL;
269 }
270
271 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
272 {
273 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
274 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
275 struct crypto_ahash_spawn *spawn = &ictx->spawn;
276 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
277 struct crypto_ahash *hash;
278
279 hash = crypto_spawn_ahash(spawn);
280 if (IS_ERR(hash))
281 return PTR_ERR(hash);
282
283 ctx->child = hash;
284 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
285 sizeof(struct mcryptd_hash_request_ctx) +
286 crypto_ahash_reqsize(hash));
287 return 0;
288 }
289
290 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
291 {
292 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
293
294 crypto_free_ahash(ctx->child);
295 }
296
297 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
298 const u8 *key, unsigned int keylen)
299 {
300 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
301 struct crypto_ahash *child = ctx->child;
302 int err;
303
304 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
305 crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
306 CRYPTO_TFM_REQ_MASK);
307 err = crypto_ahash_setkey(child, key, keylen);
308 crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
309 CRYPTO_TFM_RES_MASK);
310 return err;
311 }
312
313 static int mcryptd_hash_enqueue(struct ahash_request *req,
314 crypto_completion_t complete)
315 {
316 int ret;
317
318 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
319 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
320 struct mcryptd_queue *queue =
321 mcryptd_get_queue(crypto_ahash_tfm(tfm));
322
323 rctx->complete = req->base.complete;
324 req->base.complete = complete;
325
326 ret = mcryptd_enqueue_request(queue, &req->base, rctx);
327
328 return ret;
329 }
330
331 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
332 {
333 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
334 struct crypto_ahash *child = ctx->child;
335 struct ahash_request *req = ahash_request_cast(req_async);
336 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
337 struct ahash_request *desc = &rctx->areq;
338
339 if (unlikely(err == -EINPROGRESS))
340 goto out;
341
342 ahash_request_set_tfm(desc, child);
343 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
344 rctx->complete, req_async);
345
346 rctx->out = req->result;
347 err = crypto_ahash_init(desc);
348
349 out:
350 local_bh_disable();
351 rctx->complete(&req->base, err);
352 local_bh_enable();
353 }
354
355 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
356 {
357 return mcryptd_hash_enqueue(req, mcryptd_hash_init);
358 }
359
360 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
361 {
362 struct ahash_request *req = ahash_request_cast(req_async);
363 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
364
365 if (unlikely(err == -EINPROGRESS))
366 goto out;
367
368 rctx->out = req->result;
369 err = ahash_mcryptd_update(&rctx->areq);
370 if (err) {
371 req->base.complete = rctx->complete;
372 goto out;
373 }
374
375 return;
376 out:
377 local_bh_disable();
378 rctx->complete(&req->base, err);
379 local_bh_enable();
380 }
381
382 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
383 {
384 return mcryptd_hash_enqueue(req, mcryptd_hash_update);
385 }
386
387 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
388 {
389 struct ahash_request *req = ahash_request_cast(req_async);
390 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
391
392 if (unlikely(err == -EINPROGRESS))
393 goto out;
394
395 rctx->out = req->result;
396 err = ahash_mcryptd_final(&rctx->areq);
397 if (err) {
398 req->base.complete = rctx->complete;
399 goto out;
400 }
401
402 return;
403 out:
404 local_bh_disable();
405 rctx->complete(&req->base, err);
406 local_bh_enable();
407 }
408
409 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
410 {
411 return mcryptd_hash_enqueue(req, mcryptd_hash_final);
412 }
413
414 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
415 {
416 struct ahash_request *req = ahash_request_cast(req_async);
417 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
418
419 if (unlikely(err == -EINPROGRESS))
420 goto out;
421 rctx->out = req->result;
422 err = ahash_mcryptd_finup(&rctx->areq);
423
424 if (err) {
425 req->base.complete = rctx->complete;
426 goto out;
427 }
428
429 return;
430 out:
431 local_bh_disable();
432 rctx->complete(&req->base, err);
433 local_bh_enable();
434 }
435
436 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
437 {
438 return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
439 }
440
441 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
442 {
443 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
444 struct crypto_ahash *child = ctx->child;
445 struct ahash_request *req = ahash_request_cast(req_async);
446 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
447 struct ahash_request *desc = &rctx->areq;
448
449 if (unlikely(err == -EINPROGRESS))
450 goto out;
451
452 ahash_request_set_tfm(desc, child);
453 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
454 rctx->complete, req_async);
455
456 rctx->out = req->result;
457 err = ahash_mcryptd_digest(desc);
458
459 out:
460 local_bh_disable();
461 rctx->complete(&req->base, err);
462 local_bh_enable();
463 }
464
465 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
466 {
467 return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
468 }
469
470 static int mcryptd_hash_export(struct ahash_request *req, void *out)
471 {
472 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
473
474 return crypto_ahash_export(&rctx->areq, out);
475 }
476
477 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
478 {
479 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
480
481 return crypto_ahash_import(&rctx->areq, in);
482 }
483
484 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
485 struct mcryptd_queue *queue)
486 {
487 struct hashd_instance_ctx *ctx;
488 struct ahash_instance *inst;
489 struct hash_alg_common *halg;
490 struct crypto_alg *alg;
491 u32 type = 0;
492 u32 mask = 0;
493 int err;
494
495 mcryptd_check_internal(tb, &type, &mask);
496
497 halg = ahash_attr_alg(tb[1], type, mask);
498 if (IS_ERR(halg))
499 return PTR_ERR(halg);
500
501 alg = &halg->base;
502 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
503 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
504 sizeof(*ctx));
505 err = PTR_ERR(inst);
506 if (IS_ERR(inst))
507 goto out_put_alg;
508
509 ctx = ahash_instance_ctx(inst);
510 ctx->queue = queue;
511
512 err = crypto_init_ahash_spawn(&ctx->spawn, halg,
513 ahash_crypto_instance(inst));
514 if (err)
515 goto out_free_inst;
516
517 type = CRYPTO_ALG_ASYNC;
518 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
519 type |= CRYPTO_ALG_INTERNAL;
520 inst->alg.halg.base.cra_flags = type;
521
522 inst->alg.halg.digestsize = halg->digestsize;
523 inst->alg.halg.statesize = halg->statesize;
524 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
525
526 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
527 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
528
529 inst->alg.init = mcryptd_hash_init_enqueue;
530 inst->alg.update = mcryptd_hash_update_enqueue;
531 inst->alg.final = mcryptd_hash_final_enqueue;
532 inst->alg.finup = mcryptd_hash_finup_enqueue;
533 inst->alg.export = mcryptd_hash_export;
534 inst->alg.import = mcryptd_hash_import;
535 inst->alg.setkey = mcryptd_hash_setkey;
536 inst->alg.digest = mcryptd_hash_digest_enqueue;
537
538 err = ahash_register_instance(tmpl, inst);
539 if (err) {
540 crypto_drop_ahash(&ctx->spawn);
541 out_free_inst:
542 kfree(inst);
543 }
544
545 out_put_alg:
546 crypto_mod_put(alg);
547 return err;
548 }
549
550 static struct mcryptd_queue mqueue;
551
552 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
553 {
554 struct crypto_attr_type *algt;
555
556 algt = crypto_get_attr_type(tb);
557 if (IS_ERR(algt))
558 return PTR_ERR(algt);
559
560 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
561 case CRYPTO_ALG_TYPE_DIGEST:
562 return mcryptd_create_hash(tmpl, tb, &mqueue);
563 break;
564 }
565
566 return -EINVAL;
567 }
568
569 static void mcryptd_free(struct crypto_instance *inst)
570 {
571 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
572 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
573
574 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
575 case CRYPTO_ALG_TYPE_AHASH:
576 crypto_drop_ahash(&hctx->spawn);
577 kfree(ahash_instance(inst));
578 return;
579 default:
580 crypto_drop_spawn(&ctx->spawn);
581 kfree(inst);
582 }
583 }
584
585 static struct crypto_template mcryptd_tmpl = {
586 .name = "mcryptd",
587 .create = mcryptd_create,
588 .free = mcryptd_free,
589 .module = THIS_MODULE,
590 };
591
592 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
593 u32 type, u32 mask)
594 {
595 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
596 struct crypto_ahash *tfm;
597
598 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
599 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
600 return ERR_PTR(-EINVAL);
601 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
602 if (IS_ERR(tfm))
603 return ERR_CAST(tfm);
604 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
605 crypto_free_ahash(tfm);
606 return ERR_PTR(-EINVAL);
607 }
608
609 return __mcryptd_ahash_cast(tfm);
610 }
611 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
612
613 int ahash_mcryptd_digest(struct ahash_request *desc)
614 {
615 int err;
616
617 err = crypto_ahash_init(desc) ?:
618 ahash_mcryptd_finup(desc);
619
620 return err;
621 }
622
623 int ahash_mcryptd_update(struct ahash_request *desc)
624 {
625 /* alignment is to be done by multi-buffer crypto algorithm if needed */
626
627 return crypto_ahash_update(desc);
628 }
629
630 int ahash_mcryptd_finup(struct ahash_request *desc)
631 {
632 /* alignment is to be done by multi-buffer crypto algorithm if needed */
633
634 return crypto_ahash_finup(desc);
635 }
636
637 int ahash_mcryptd_final(struct ahash_request *desc)
638 {
639 /* alignment is to be done by multi-buffer crypto algorithm if needed */
640
641 return crypto_ahash_final(desc);
642 }
643
644 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
645 {
646 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
647
648 return ctx->child;
649 }
650 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
651
652 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
653 {
654 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
655 return &rctx->areq;
656 }
657 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
658
659 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
660 {
661 crypto_free_ahash(&tfm->base);
662 }
663 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
664
665 static int __init mcryptd_init(void)
666 {
667 int err, cpu;
668 struct mcryptd_flush_list *flist;
669
670 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
671 for_each_possible_cpu(cpu) {
672 flist = per_cpu_ptr(mcryptd_flist, cpu);
673 INIT_LIST_HEAD(&flist->list);
674 mutex_init(&flist->lock);
675 }
676
677 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
678 if (err) {
679 free_percpu(mcryptd_flist);
680 return err;
681 }
682
683 err = crypto_register_template(&mcryptd_tmpl);
684 if (err) {
685 mcryptd_fini_queue(&mqueue);
686 free_percpu(mcryptd_flist);
687 }
688
689 return err;
690 }
691
692 static void __exit mcryptd_exit(void)
693 {
694 mcryptd_fini_queue(&mqueue);
695 crypto_unregister_template(&mcryptd_tmpl);
696 free_percpu(mcryptd_flist);
697 }
698
699 subsys_initcall(mcryptd_init);
700 module_exit(mcryptd_exit);
701
702 MODULE_LICENSE("GPL");
703 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
704 MODULE_ALIAS_CRYPTO("mcryptd");
This page took 0.044809 seconds and 5 git commands to generate.