Merge remote-tracking branch 'driver-core/driver-core-next'
[deliverable/linux.git] / drivers / base / core.c
1 /*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 int (*platform_notify)(struct device *dev) = NULL;
48 int (*platform_notify_remove)(struct device *dev) = NULL;
49 static struct kobject *dev_kobj;
50 struct kobject *sysfs_dev_char_kobj;
51 struct kobject *sysfs_dev_block_kobj;
52
53 static DEFINE_MUTEX(device_hotplug_lock);
54
55 void lock_device_hotplug(void)
56 {
57 mutex_lock(&device_hotplug_lock);
58 }
59
60 void unlock_device_hotplug(void)
61 {
62 mutex_unlock(&device_hotplug_lock);
63 }
64
65 int lock_device_hotplug_sysfs(void)
66 {
67 if (mutex_trylock(&device_hotplug_lock))
68 return 0;
69
70 /* Avoid busy looping (5 ms of sleep should do). */
71 msleep(5);
72 return restart_syscall();
73 }
74
75 #ifdef CONFIG_BLOCK
76 static inline int device_is_not_partition(struct device *dev)
77 {
78 return !(dev->type == &part_type);
79 }
80 #else
81 static inline int device_is_not_partition(struct device *dev)
82 {
83 return 1;
84 }
85 #endif
86
87 /**
88 * dev_driver_string - Return a device's driver name, if at all possible
89 * @dev: struct device to get the name of
90 *
91 * Will return the device's driver's name if it is bound to a device. If
92 * the device is not bound to a driver, it will return the name of the bus
93 * it is attached to. If it is not attached to a bus either, an empty
94 * string will be returned.
95 */
96 const char *dev_driver_string(const struct device *dev)
97 {
98 struct device_driver *drv;
99
100 /* dev->driver can change to NULL underneath us because of unbinding,
101 * so be careful about accessing it. dev->bus and dev->class should
102 * never change once they are set, so they don't need special care.
103 */
104 drv = ACCESS_ONCE(dev->driver);
105 return drv ? drv->name :
106 (dev->bus ? dev->bus->name :
107 (dev->class ? dev->class->name : ""));
108 }
109 EXPORT_SYMBOL(dev_driver_string);
110
111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
112
113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
114 char *buf)
115 {
116 struct device_attribute *dev_attr = to_dev_attr(attr);
117 struct device *dev = kobj_to_dev(kobj);
118 ssize_t ret = -EIO;
119
120 if (dev_attr->show)
121 ret = dev_attr->show(dev, dev_attr, buf);
122 if (ret >= (ssize_t)PAGE_SIZE) {
123 print_symbol("dev_attr_show: %s returned bad count\n",
124 (unsigned long)dev_attr->show);
125 }
126 return ret;
127 }
128
129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
130 const char *buf, size_t count)
131 {
132 struct device_attribute *dev_attr = to_dev_attr(attr);
133 struct device *dev = kobj_to_dev(kobj);
134 ssize_t ret = -EIO;
135
136 if (dev_attr->store)
137 ret = dev_attr->store(dev, dev_attr, buf, count);
138 return ret;
139 }
140
141 static const struct sysfs_ops dev_sysfs_ops = {
142 .show = dev_attr_show,
143 .store = dev_attr_store,
144 };
145
146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
147
148 ssize_t device_store_ulong(struct device *dev,
149 struct device_attribute *attr,
150 const char *buf, size_t size)
151 {
152 struct dev_ext_attribute *ea = to_ext_attr(attr);
153 char *end;
154 unsigned long new = simple_strtoul(buf, &end, 0);
155 if (end == buf)
156 return -EINVAL;
157 *(unsigned long *)(ea->var) = new;
158 /* Always return full write size even if we didn't consume all */
159 return size;
160 }
161 EXPORT_SYMBOL_GPL(device_store_ulong);
162
163 ssize_t device_show_ulong(struct device *dev,
164 struct device_attribute *attr,
165 char *buf)
166 {
167 struct dev_ext_attribute *ea = to_ext_attr(attr);
168 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
169 }
170 EXPORT_SYMBOL_GPL(device_show_ulong);
171
172 ssize_t device_store_int(struct device *dev,
173 struct device_attribute *attr,
174 const char *buf, size_t size)
175 {
176 struct dev_ext_attribute *ea = to_ext_attr(attr);
177 char *end;
178 long new = simple_strtol(buf, &end, 0);
179 if (end == buf || new > INT_MAX || new < INT_MIN)
180 return -EINVAL;
181 *(int *)(ea->var) = new;
182 /* Always return full write size even if we didn't consume all */
183 return size;
184 }
185 EXPORT_SYMBOL_GPL(device_store_int);
186
187 ssize_t device_show_int(struct device *dev,
188 struct device_attribute *attr,
189 char *buf)
190 {
191 struct dev_ext_attribute *ea = to_ext_attr(attr);
192
193 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
194 }
195 EXPORT_SYMBOL_GPL(device_show_int);
196
197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
198 const char *buf, size_t size)
199 {
200 struct dev_ext_attribute *ea = to_ext_attr(attr);
201
202 if (strtobool(buf, ea->var) < 0)
203 return -EINVAL;
204
205 return size;
206 }
207 EXPORT_SYMBOL_GPL(device_store_bool);
208
209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
210 char *buf)
211 {
212 struct dev_ext_attribute *ea = to_ext_attr(attr);
213
214 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
215 }
216 EXPORT_SYMBOL_GPL(device_show_bool);
217
218 /**
219 * device_release - free device structure.
220 * @kobj: device's kobject.
221 *
222 * This is called once the reference count for the object
223 * reaches 0. We forward the call to the device's release
224 * method, which should handle actually freeing the structure.
225 */
226 static void device_release(struct kobject *kobj)
227 {
228 struct device *dev = kobj_to_dev(kobj);
229 struct device_private *p = dev->p;
230
231 /*
232 * Some platform devices are driven without driver attached
233 * and managed resources may have been acquired. Make sure
234 * all resources are released.
235 *
236 * Drivers still can add resources into device after device
237 * is deleted but alive, so release devres here to avoid
238 * possible memory leak.
239 */
240 devres_release_all(dev);
241
242 if (dev->release)
243 dev->release(dev);
244 else if (dev->type && dev->type->release)
245 dev->type->release(dev);
246 else if (dev->class && dev->class->dev_release)
247 dev->class->dev_release(dev);
248 else
249 WARN(1, KERN_ERR "Device '%s' does not have a release() "
250 "function, it is broken and must be fixed.\n",
251 dev_name(dev));
252 kfree(p);
253 }
254
255 static const void *device_namespace(struct kobject *kobj)
256 {
257 struct device *dev = kobj_to_dev(kobj);
258 const void *ns = NULL;
259
260 if (dev->class && dev->class->ns_type)
261 ns = dev->class->namespace(dev);
262
263 return ns;
264 }
265
266 static struct kobj_type device_ktype = {
267 .release = device_release,
268 .sysfs_ops = &dev_sysfs_ops,
269 .namespace = device_namespace,
270 };
271
272
273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
274 {
275 struct kobj_type *ktype = get_ktype(kobj);
276
277 if (ktype == &device_ktype) {
278 struct device *dev = kobj_to_dev(kobj);
279 if (dev->bus)
280 return 1;
281 if (dev->class)
282 return 1;
283 }
284 return 0;
285 }
286
287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
288 {
289 struct device *dev = kobj_to_dev(kobj);
290
291 if (dev->bus)
292 return dev->bus->name;
293 if (dev->class)
294 return dev->class->name;
295 return NULL;
296 }
297
298 static int dev_uevent(struct kset *kset, struct kobject *kobj,
299 struct kobj_uevent_env *env)
300 {
301 struct device *dev = kobj_to_dev(kobj);
302 int retval = 0;
303
304 /* add device node properties if present */
305 if (MAJOR(dev->devt)) {
306 const char *tmp;
307 const char *name;
308 umode_t mode = 0;
309 kuid_t uid = GLOBAL_ROOT_UID;
310 kgid_t gid = GLOBAL_ROOT_GID;
311
312 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
313 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
314 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
315 if (name) {
316 add_uevent_var(env, "DEVNAME=%s", name);
317 if (mode)
318 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
319 if (!uid_eq(uid, GLOBAL_ROOT_UID))
320 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
321 if (!gid_eq(gid, GLOBAL_ROOT_GID))
322 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
323 kfree(tmp);
324 }
325 }
326
327 if (dev->type && dev->type->name)
328 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
329
330 if (dev->driver)
331 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
332
333 /* Add common DT information about the device */
334 of_device_uevent(dev, env);
335
336 /* have the bus specific function add its stuff */
337 if (dev->bus && dev->bus->uevent) {
338 retval = dev->bus->uevent(dev, env);
339 if (retval)
340 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
341 dev_name(dev), __func__, retval);
342 }
343
344 /* have the class specific function add its stuff */
345 if (dev->class && dev->class->dev_uevent) {
346 retval = dev->class->dev_uevent(dev, env);
347 if (retval)
348 pr_debug("device: '%s': %s: class uevent() "
349 "returned %d\n", dev_name(dev),
350 __func__, retval);
351 }
352
353 /* have the device type specific function add its stuff */
354 if (dev->type && dev->type->uevent) {
355 retval = dev->type->uevent(dev, env);
356 if (retval)
357 pr_debug("device: '%s': %s: dev_type uevent() "
358 "returned %d\n", dev_name(dev),
359 __func__, retval);
360 }
361
362 return retval;
363 }
364
365 static const struct kset_uevent_ops device_uevent_ops = {
366 .filter = dev_uevent_filter,
367 .name = dev_uevent_name,
368 .uevent = dev_uevent,
369 };
370
371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
372 char *buf)
373 {
374 struct kobject *top_kobj;
375 struct kset *kset;
376 struct kobj_uevent_env *env = NULL;
377 int i;
378 size_t count = 0;
379 int retval;
380
381 /* search the kset, the device belongs to */
382 top_kobj = &dev->kobj;
383 while (!top_kobj->kset && top_kobj->parent)
384 top_kobj = top_kobj->parent;
385 if (!top_kobj->kset)
386 goto out;
387
388 kset = top_kobj->kset;
389 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
390 goto out;
391
392 /* respect filter */
393 if (kset->uevent_ops && kset->uevent_ops->filter)
394 if (!kset->uevent_ops->filter(kset, &dev->kobj))
395 goto out;
396
397 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
398 if (!env)
399 return -ENOMEM;
400
401 /* let the kset specific function add its keys */
402 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
403 if (retval)
404 goto out;
405
406 /* copy keys to file */
407 for (i = 0; i < env->envp_idx; i++)
408 count += sprintf(&buf[count], "%s\n", env->envp[i]);
409 out:
410 kfree(env);
411 return count;
412 }
413
414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
415 const char *buf, size_t count)
416 {
417 enum kobject_action action;
418
419 if (kobject_action_type(buf, count, &action) == 0)
420 kobject_uevent(&dev->kobj, action);
421 else
422 dev_err(dev, "uevent: unknown action-string\n");
423 return count;
424 }
425 static DEVICE_ATTR_RW(uevent);
426
427 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
428 char *buf)
429 {
430 bool val;
431
432 device_lock(dev);
433 val = !dev->offline;
434 device_unlock(dev);
435 return sprintf(buf, "%u\n", val);
436 }
437
438 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
439 const char *buf, size_t count)
440 {
441 bool val;
442 int ret;
443
444 ret = strtobool(buf, &val);
445 if (ret < 0)
446 return ret;
447
448 ret = lock_device_hotplug_sysfs();
449 if (ret)
450 return ret;
451
452 ret = val ? device_online(dev) : device_offline(dev);
453 unlock_device_hotplug();
454 return ret < 0 ? ret : count;
455 }
456 static DEVICE_ATTR_RW(online);
457
458 int device_add_groups(struct device *dev, const struct attribute_group **groups)
459 {
460 return sysfs_create_groups(&dev->kobj, groups);
461 }
462
463 void device_remove_groups(struct device *dev,
464 const struct attribute_group **groups)
465 {
466 sysfs_remove_groups(&dev->kobj, groups);
467 }
468
469 static int device_add_attrs(struct device *dev)
470 {
471 struct class *class = dev->class;
472 const struct device_type *type = dev->type;
473 int error;
474
475 if (class) {
476 error = device_add_groups(dev, class->dev_groups);
477 if (error)
478 return error;
479 }
480
481 if (type) {
482 error = device_add_groups(dev, type->groups);
483 if (error)
484 goto err_remove_class_groups;
485 }
486
487 error = device_add_groups(dev, dev->groups);
488 if (error)
489 goto err_remove_type_groups;
490
491 if (device_supports_offline(dev) && !dev->offline_disabled) {
492 error = device_create_file(dev, &dev_attr_online);
493 if (error)
494 goto err_remove_dev_groups;
495 }
496
497 return 0;
498
499 err_remove_dev_groups:
500 device_remove_groups(dev, dev->groups);
501 err_remove_type_groups:
502 if (type)
503 device_remove_groups(dev, type->groups);
504 err_remove_class_groups:
505 if (class)
506 device_remove_groups(dev, class->dev_groups);
507
508 return error;
509 }
510
511 static void device_remove_attrs(struct device *dev)
512 {
513 struct class *class = dev->class;
514 const struct device_type *type = dev->type;
515
516 device_remove_file(dev, &dev_attr_online);
517 device_remove_groups(dev, dev->groups);
518
519 if (type)
520 device_remove_groups(dev, type->groups);
521
522 if (class)
523 device_remove_groups(dev, class->dev_groups);
524 }
525
526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
527 char *buf)
528 {
529 return print_dev_t(buf, dev->devt);
530 }
531 static DEVICE_ATTR_RO(dev);
532
533 /* /sys/devices/ */
534 struct kset *devices_kset;
535
536 /**
537 * devices_kset_move_before - Move device in the devices_kset's list.
538 * @deva: Device to move.
539 * @devb: Device @deva should come before.
540 */
541 static void devices_kset_move_before(struct device *deva, struct device *devb)
542 {
543 if (!devices_kset)
544 return;
545 pr_debug("devices_kset: Moving %s before %s\n",
546 dev_name(deva), dev_name(devb));
547 spin_lock(&devices_kset->list_lock);
548 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
549 spin_unlock(&devices_kset->list_lock);
550 }
551
552 /**
553 * devices_kset_move_after - Move device in the devices_kset's list.
554 * @deva: Device to move
555 * @devb: Device @deva should come after.
556 */
557 static void devices_kset_move_after(struct device *deva, struct device *devb)
558 {
559 if (!devices_kset)
560 return;
561 pr_debug("devices_kset: Moving %s after %s\n",
562 dev_name(deva), dev_name(devb));
563 spin_lock(&devices_kset->list_lock);
564 list_move(&deva->kobj.entry, &devb->kobj.entry);
565 spin_unlock(&devices_kset->list_lock);
566 }
567
568 /**
569 * devices_kset_move_last - move the device to the end of devices_kset's list.
570 * @dev: device to move
571 */
572 void devices_kset_move_last(struct device *dev)
573 {
574 if (!devices_kset)
575 return;
576 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
577 spin_lock(&devices_kset->list_lock);
578 list_move_tail(&dev->kobj.entry, &devices_kset->list);
579 spin_unlock(&devices_kset->list_lock);
580 }
581
582 /**
583 * device_create_file - create sysfs attribute file for device.
584 * @dev: device.
585 * @attr: device attribute descriptor.
586 */
587 int device_create_file(struct device *dev,
588 const struct device_attribute *attr)
589 {
590 int error = 0;
591
592 if (dev) {
593 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
594 "Attribute %s: write permission without 'store'\n",
595 attr->attr.name);
596 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
597 "Attribute %s: read permission without 'show'\n",
598 attr->attr.name);
599 error = sysfs_create_file(&dev->kobj, &attr->attr);
600 }
601
602 return error;
603 }
604 EXPORT_SYMBOL_GPL(device_create_file);
605
606 /**
607 * device_remove_file - remove sysfs attribute file.
608 * @dev: device.
609 * @attr: device attribute descriptor.
610 */
611 void device_remove_file(struct device *dev,
612 const struct device_attribute *attr)
613 {
614 if (dev)
615 sysfs_remove_file(&dev->kobj, &attr->attr);
616 }
617 EXPORT_SYMBOL_GPL(device_remove_file);
618
619 /**
620 * device_remove_file_self - remove sysfs attribute file from its own method.
621 * @dev: device.
622 * @attr: device attribute descriptor.
623 *
624 * See kernfs_remove_self() for details.
625 */
626 bool device_remove_file_self(struct device *dev,
627 const struct device_attribute *attr)
628 {
629 if (dev)
630 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
631 else
632 return false;
633 }
634 EXPORT_SYMBOL_GPL(device_remove_file_self);
635
636 /**
637 * device_create_bin_file - create sysfs binary attribute file for device.
638 * @dev: device.
639 * @attr: device binary attribute descriptor.
640 */
641 int device_create_bin_file(struct device *dev,
642 const struct bin_attribute *attr)
643 {
644 int error = -EINVAL;
645 if (dev)
646 error = sysfs_create_bin_file(&dev->kobj, attr);
647 return error;
648 }
649 EXPORT_SYMBOL_GPL(device_create_bin_file);
650
651 /**
652 * device_remove_bin_file - remove sysfs binary attribute file
653 * @dev: device.
654 * @attr: device binary attribute descriptor.
655 */
656 void device_remove_bin_file(struct device *dev,
657 const struct bin_attribute *attr)
658 {
659 if (dev)
660 sysfs_remove_bin_file(&dev->kobj, attr);
661 }
662 EXPORT_SYMBOL_GPL(device_remove_bin_file);
663
664 static void klist_children_get(struct klist_node *n)
665 {
666 struct device_private *p = to_device_private_parent(n);
667 struct device *dev = p->device;
668
669 get_device(dev);
670 }
671
672 static void klist_children_put(struct klist_node *n)
673 {
674 struct device_private *p = to_device_private_parent(n);
675 struct device *dev = p->device;
676
677 put_device(dev);
678 }
679
680 /**
681 * device_initialize - init device structure.
682 * @dev: device.
683 *
684 * This prepares the device for use by other layers by initializing
685 * its fields.
686 * It is the first half of device_register(), if called by
687 * that function, though it can also be called separately, so one
688 * may use @dev's fields. In particular, get_device()/put_device()
689 * may be used for reference counting of @dev after calling this
690 * function.
691 *
692 * All fields in @dev must be initialized by the caller to 0, except
693 * for those explicitly set to some other value. The simplest
694 * approach is to use kzalloc() to allocate the structure containing
695 * @dev.
696 *
697 * NOTE: Use put_device() to give up your reference instead of freeing
698 * @dev directly once you have called this function.
699 */
700 void device_initialize(struct device *dev)
701 {
702 dev->kobj.kset = devices_kset;
703 kobject_init(&dev->kobj, &device_ktype);
704 INIT_LIST_HEAD(&dev->dma_pools);
705 mutex_init(&dev->mutex);
706 lockdep_set_novalidate_class(&dev->mutex);
707 spin_lock_init(&dev->devres_lock);
708 INIT_LIST_HEAD(&dev->devres_head);
709 device_pm_init(dev);
710 set_dev_node(dev, -1);
711 #ifdef CONFIG_GENERIC_MSI_IRQ
712 INIT_LIST_HEAD(&dev->msi_list);
713 #endif
714 }
715 EXPORT_SYMBOL_GPL(device_initialize);
716
717 struct kobject *virtual_device_parent(struct device *dev)
718 {
719 static struct kobject *virtual_dir = NULL;
720
721 if (!virtual_dir)
722 virtual_dir = kobject_create_and_add("virtual",
723 &devices_kset->kobj);
724
725 return virtual_dir;
726 }
727
728 struct class_dir {
729 struct kobject kobj;
730 struct class *class;
731 };
732
733 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
734
735 static void class_dir_release(struct kobject *kobj)
736 {
737 struct class_dir *dir = to_class_dir(kobj);
738 kfree(dir);
739 }
740
741 static const
742 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
743 {
744 struct class_dir *dir = to_class_dir(kobj);
745 return dir->class->ns_type;
746 }
747
748 static struct kobj_type class_dir_ktype = {
749 .release = class_dir_release,
750 .sysfs_ops = &kobj_sysfs_ops,
751 .child_ns_type = class_dir_child_ns_type
752 };
753
754 static struct kobject *
755 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
756 {
757 struct class_dir *dir;
758 int retval;
759
760 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
761 if (!dir)
762 return NULL;
763
764 dir->class = class;
765 kobject_init(&dir->kobj, &class_dir_ktype);
766
767 dir->kobj.kset = &class->p->glue_dirs;
768
769 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
770 if (retval < 0) {
771 kobject_put(&dir->kobj);
772 return NULL;
773 }
774 return &dir->kobj;
775 }
776
777 static DEFINE_MUTEX(gdp_mutex);
778
779 static struct kobject *get_device_parent(struct device *dev,
780 struct device *parent)
781 {
782 if (dev->class) {
783 struct kobject *kobj = NULL;
784 struct kobject *parent_kobj;
785 struct kobject *k;
786
787 #ifdef CONFIG_BLOCK
788 /* block disks show up in /sys/block */
789 if (sysfs_deprecated && dev->class == &block_class) {
790 if (parent && parent->class == &block_class)
791 return &parent->kobj;
792 return &block_class.p->subsys.kobj;
793 }
794 #endif
795
796 /*
797 * If we have no parent, we live in "virtual".
798 * Class-devices with a non class-device as parent, live
799 * in a "glue" directory to prevent namespace collisions.
800 */
801 if (parent == NULL)
802 parent_kobj = virtual_device_parent(dev);
803 else if (parent->class && !dev->class->ns_type)
804 return &parent->kobj;
805 else
806 parent_kobj = &parent->kobj;
807
808 mutex_lock(&gdp_mutex);
809
810 /* find our class-directory at the parent and reference it */
811 spin_lock(&dev->class->p->glue_dirs.list_lock);
812 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
813 if (k->parent == parent_kobj) {
814 kobj = kobject_get(k);
815 break;
816 }
817 spin_unlock(&dev->class->p->glue_dirs.list_lock);
818 if (kobj) {
819 mutex_unlock(&gdp_mutex);
820 return kobj;
821 }
822
823 /* or create a new class-directory at the parent device */
824 k = class_dir_create_and_add(dev->class, parent_kobj);
825 /* do not emit an uevent for this simple "glue" directory */
826 mutex_unlock(&gdp_mutex);
827 return k;
828 }
829
830 /* subsystems can specify a default root directory for their devices */
831 if (!parent && dev->bus && dev->bus->dev_root)
832 return &dev->bus->dev_root->kobj;
833
834 if (parent)
835 return &parent->kobj;
836 return NULL;
837 }
838
839 static inline bool live_in_glue_dir(struct kobject *kobj,
840 struct device *dev)
841 {
842 if (!kobj || !dev->class ||
843 kobj->kset != &dev->class->p->glue_dirs)
844 return false;
845 return true;
846 }
847
848 static inline struct kobject *get_glue_dir(struct device *dev)
849 {
850 return dev->kobj.parent;
851 }
852
853 /*
854 * make sure cleaning up dir as the last step, we need to make
855 * sure .release handler of kobject is run with holding the
856 * global lock
857 */
858 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
859 {
860 /* see if we live in a "glue" directory */
861 if (!live_in_glue_dir(glue_dir, dev))
862 return;
863
864 mutex_lock(&gdp_mutex);
865 kobject_put(glue_dir);
866 mutex_unlock(&gdp_mutex);
867 }
868
869 static int device_add_class_symlinks(struct device *dev)
870 {
871 struct device_node *of_node = dev_of_node(dev);
872 int error;
873
874 if (of_node) {
875 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
876 if (error)
877 dev_warn(dev, "Error %d creating of_node link\n",error);
878 /* An error here doesn't warrant bringing down the device */
879 }
880
881 if (!dev->class)
882 return 0;
883
884 error = sysfs_create_link(&dev->kobj,
885 &dev->class->p->subsys.kobj,
886 "subsystem");
887 if (error)
888 goto out_devnode;
889
890 if (dev->parent && device_is_not_partition(dev)) {
891 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
892 "device");
893 if (error)
894 goto out_subsys;
895 }
896
897 #ifdef CONFIG_BLOCK
898 /* /sys/block has directories and does not need symlinks */
899 if (sysfs_deprecated && dev->class == &block_class)
900 return 0;
901 #endif
902
903 /* link in the class directory pointing to the device */
904 error = sysfs_create_link(&dev->class->p->subsys.kobj,
905 &dev->kobj, dev_name(dev));
906 if (error)
907 goto out_device;
908
909 return 0;
910
911 out_device:
912 sysfs_remove_link(&dev->kobj, "device");
913
914 out_subsys:
915 sysfs_remove_link(&dev->kobj, "subsystem");
916 out_devnode:
917 sysfs_remove_link(&dev->kobj, "of_node");
918 return error;
919 }
920
921 static void device_remove_class_symlinks(struct device *dev)
922 {
923 if (dev_of_node(dev))
924 sysfs_remove_link(&dev->kobj, "of_node");
925
926 if (!dev->class)
927 return;
928
929 if (dev->parent && device_is_not_partition(dev))
930 sysfs_remove_link(&dev->kobj, "device");
931 sysfs_remove_link(&dev->kobj, "subsystem");
932 #ifdef CONFIG_BLOCK
933 if (sysfs_deprecated && dev->class == &block_class)
934 return;
935 #endif
936 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
937 }
938
939 /**
940 * dev_set_name - set a device name
941 * @dev: device
942 * @fmt: format string for the device's name
943 */
944 int dev_set_name(struct device *dev, const char *fmt, ...)
945 {
946 va_list vargs;
947 int err;
948
949 va_start(vargs, fmt);
950 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
951 va_end(vargs);
952 return err;
953 }
954 EXPORT_SYMBOL_GPL(dev_set_name);
955
956 /**
957 * device_to_dev_kobj - select a /sys/dev/ directory for the device
958 * @dev: device
959 *
960 * By default we select char/ for new entries. Setting class->dev_obj
961 * to NULL prevents an entry from being created. class->dev_kobj must
962 * be set (or cleared) before any devices are registered to the class
963 * otherwise device_create_sys_dev_entry() and
964 * device_remove_sys_dev_entry() will disagree about the presence of
965 * the link.
966 */
967 static struct kobject *device_to_dev_kobj(struct device *dev)
968 {
969 struct kobject *kobj;
970
971 if (dev->class)
972 kobj = dev->class->dev_kobj;
973 else
974 kobj = sysfs_dev_char_kobj;
975
976 return kobj;
977 }
978
979 static int device_create_sys_dev_entry(struct device *dev)
980 {
981 struct kobject *kobj = device_to_dev_kobj(dev);
982 int error = 0;
983 char devt_str[15];
984
985 if (kobj) {
986 format_dev_t(devt_str, dev->devt);
987 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
988 }
989
990 return error;
991 }
992
993 static void device_remove_sys_dev_entry(struct device *dev)
994 {
995 struct kobject *kobj = device_to_dev_kobj(dev);
996 char devt_str[15];
997
998 if (kobj) {
999 format_dev_t(devt_str, dev->devt);
1000 sysfs_remove_link(kobj, devt_str);
1001 }
1002 }
1003
1004 int device_private_init(struct device *dev)
1005 {
1006 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1007 if (!dev->p)
1008 return -ENOMEM;
1009 dev->p->device = dev;
1010 klist_init(&dev->p->klist_children, klist_children_get,
1011 klist_children_put);
1012 INIT_LIST_HEAD(&dev->p->deferred_probe);
1013 return 0;
1014 }
1015
1016 /**
1017 * device_add - add device to device hierarchy.
1018 * @dev: device.
1019 *
1020 * This is part 2 of device_register(), though may be called
1021 * separately _iff_ device_initialize() has been called separately.
1022 *
1023 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1024 * to the global and sibling lists for the device, then
1025 * adds it to the other relevant subsystems of the driver model.
1026 *
1027 * Do not call this routine or device_register() more than once for
1028 * any device structure. The driver model core is not designed to work
1029 * with devices that get unregistered and then spring back to life.
1030 * (Among other things, it's very hard to guarantee that all references
1031 * to the previous incarnation of @dev have been dropped.) Allocate
1032 * and register a fresh new struct device instead.
1033 *
1034 * NOTE: _Never_ directly free @dev after calling this function, even
1035 * if it returned an error! Always use put_device() to give up your
1036 * reference instead.
1037 */
1038 int device_add(struct device *dev)
1039 {
1040 struct device *parent = NULL;
1041 struct kobject *kobj;
1042 struct class_interface *class_intf;
1043 int error = -EINVAL;
1044 struct kobject *glue_dir = NULL;
1045
1046 dev = get_device(dev);
1047 if (!dev)
1048 goto done;
1049
1050 if (!dev->p) {
1051 error = device_private_init(dev);
1052 if (error)
1053 goto done;
1054 }
1055
1056 /*
1057 * for statically allocated devices, which should all be converted
1058 * some day, we need to initialize the name. We prevent reading back
1059 * the name, and force the use of dev_name()
1060 */
1061 if (dev->init_name) {
1062 dev_set_name(dev, "%s", dev->init_name);
1063 dev->init_name = NULL;
1064 }
1065
1066 /* subsystems can specify simple device enumeration */
1067 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1068 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1069
1070 if (!dev_name(dev)) {
1071 error = -EINVAL;
1072 goto name_error;
1073 }
1074
1075 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1076
1077 parent = get_device(dev->parent);
1078 kobj = get_device_parent(dev, parent);
1079 if (kobj)
1080 dev->kobj.parent = kobj;
1081
1082 /* use parent numa_node */
1083 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1084 set_dev_node(dev, dev_to_node(parent));
1085
1086 /* first, register with generic layer. */
1087 /* we require the name to be set before, and pass NULL */
1088 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1089 if (error) {
1090 glue_dir = get_glue_dir(dev);
1091 goto Error;
1092 }
1093
1094 /* notify platform of device entry */
1095 if (platform_notify)
1096 platform_notify(dev);
1097
1098 error = device_create_file(dev, &dev_attr_uevent);
1099 if (error)
1100 goto attrError;
1101
1102 error = device_add_class_symlinks(dev);
1103 if (error)
1104 goto SymlinkError;
1105 error = device_add_attrs(dev);
1106 if (error)
1107 goto AttrsError;
1108 error = bus_add_device(dev);
1109 if (error)
1110 goto BusError;
1111 error = dpm_sysfs_add(dev);
1112 if (error)
1113 goto DPMError;
1114 device_pm_add(dev);
1115
1116 if (MAJOR(dev->devt)) {
1117 error = device_create_file(dev, &dev_attr_dev);
1118 if (error)
1119 goto DevAttrError;
1120
1121 error = device_create_sys_dev_entry(dev);
1122 if (error)
1123 goto SysEntryError;
1124
1125 devtmpfs_create_node(dev);
1126 }
1127
1128 /* Notify clients of device addition. This call must come
1129 * after dpm_sysfs_add() and before kobject_uevent().
1130 */
1131 if (dev->bus)
1132 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1133 BUS_NOTIFY_ADD_DEVICE, dev);
1134
1135 kobject_uevent(&dev->kobj, KOBJ_ADD);
1136 bus_probe_device(dev);
1137 if (parent)
1138 klist_add_tail(&dev->p->knode_parent,
1139 &parent->p->klist_children);
1140
1141 if (dev->class) {
1142 mutex_lock(&dev->class->p->mutex);
1143 /* tie the class to the device */
1144 klist_add_tail(&dev->knode_class,
1145 &dev->class->p->klist_devices);
1146
1147 /* notify any interfaces that the device is here */
1148 list_for_each_entry(class_intf,
1149 &dev->class->p->interfaces, node)
1150 if (class_intf->add_dev)
1151 class_intf->add_dev(dev, class_intf);
1152 mutex_unlock(&dev->class->p->mutex);
1153 }
1154 done:
1155 put_device(dev);
1156 return error;
1157 SysEntryError:
1158 if (MAJOR(dev->devt))
1159 device_remove_file(dev, &dev_attr_dev);
1160 DevAttrError:
1161 device_pm_remove(dev);
1162 dpm_sysfs_remove(dev);
1163 DPMError:
1164 bus_remove_device(dev);
1165 BusError:
1166 device_remove_attrs(dev);
1167 AttrsError:
1168 device_remove_class_symlinks(dev);
1169 SymlinkError:
1170 device_remove_file(dev, &dev_attr_uevent);
1171 attrError:
1172 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1173 glue_dir = get_glue_dir(dev);
1174 kobject_del(&dev->kobj);
1175 Error:
1176 cleanup_glue_dir(dev, glue_dir);
1177 put_device(parent);
1178 name_error:
1179 kfree(dev->p);
1180 dev->p = NULL;
1181 goto done;
1182 }
1183 EXPORT_SYMBOL_GPL(device_add);
1184
1185 /**
1186 * device_register - register a device with the system.
1187 * @dev: pointer to the device structure
1188 *
1189 * This happens in two clean steps - initialize the device
1190 * and add it to the system. The two steps can be called
1191 * separately, but this is the easiest and most common.
1192 * I.e. you should only call the two helpers separately if
1193 * have a clearly defined need to use and refcount the device
1194 * before it is added to the hierarchy.
1195 *
1196 * For more information, see the kerneldoc for device_initialize()
1197 * and device_add().
1198 *
1199 * NOTE: _Never_ directly free @dev after calling this function, even
1200 * if it returned an error! Always use put_device() to give up the
1201 * reference initialized in this function instead.
1202 */
1203 int device_register(struct device *dev)
1204 {
1205 device_initialize(dev);
1206 return device_add(dev);
1207 }
1208 EXPORT_SYMBOL_GPL(device_register);
1209
1210 /**
1211 * get_device - increment reference count for device.
1212 * @dev: device.
1213 *
1214 * This simply forwards the call to kobject_get(), though
1215 * we do take care to provide for the case that we get a NULL
1216 * pointer passed in.
1217 */
1218 struct device *get_device(struct device *dev)
1219 {
1220 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1221 }
1222 EXPORT_SYMBOL_GPL(get_device);
1223
1224 /**
1225 * put_device - decrement reference count.
1226 * @dev: device in question.
1227 */
1228 void put_device(struct device *dev)
1229 {
1230 /* might_sleep(); */
1231 if (dev)
1232 kobject_put(&dev->kobj);
1233 }
1234 EXPORT_SYMBOL_GPL(put_device);
1235
1236 /**
1237 * device_del - delete device from system.
1238 * @dev: device.
1239 *
1240 * This is the first part of the device unregistration
1241 * sequence. This removes the device from the lists we control
1242 * from here, has it removed from the other driver model
1243 * subsystems it was added to in device_add(), and removes it
1244 * from the kobject hierarchy.
1245 *
1246 * NOTE: this should be called manually _iff_ device_add() was
1247 * also called manually.
1248 */
1249 void device_del(struct device *dev)
1250 {
1251 struct device *parent = dev->parent;
1252 struct kobject *glue_dir = NULL;
1253 struct class_interface *class_intf;
1254
1255 /* Notify clients of device removal. This call must come
1256 * before dpm_sysfs_remove().
1257 */
1258 if (dev->bus)
1259 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1260 BUS_NOTIFY_DEL_DEVICE, dev);
1261 dpm_sysfs_remove(dev);
1262 if (parent)
1263 klist_del(&dev->p->knode_parent);
1264 if (MAJOR(dev->devt)) {
1265 devtmpfs_delete_node(dev);
1266 device_remove_sys_dev_entry(dev);
1267 device_remove_file(dev, &dev_attr_dev);
1268 }
1269 if (dev->class) {
1270 device_remove_class_symlinks(dev);
1271
1272 mutex_lock(&dev->class->p->mutex);
1273 /* notify any interfaces that the device is now gone */
1274 list_for_each_entry(class_intf,
1275 &dev->class->p->interfaces, node)
1276 if (class_intf->remove_dev)
1277 class_intf->remove_dev(dev, class_intf);
1278 /* remove the device from the class list */
1279 klist_del(&dev->knode_class);
1280 mutex_unlock(&dev->class->p->mutex);
1281 }
1282 device_remove_file(dev, &dev_attr_uevent);
1283 device_remove_attrs(dev);
1284 bus_remove_device(dev);
1285 device_pm_remove(dev);
1286 driver_deferred_probe_del(dev);
1287 device_remove_properties(dev);
1288
1289 /* Notify the platform of the removal, in case they
1290 * need to do anything...
1291 */
1292 if (platform_notify_remove)
1293 platform_notify_remove(dev);
1294 if (dev->bus)
1295 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1296 BUS_NOTIFY_REMOVED_DEVICE, dev);
1297 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1298 glue_dir = get_glue_dir(dev);
1299 kobject_del(&dev->kobj);
1300 cleanup_glue_dir(dev, glue_dir);
1301 put_device(parent);
1302 }
1303 EXPORT_SYMBOL_GPL(device_del);
1304
1305 /**
1306 * device_unregister - unregister device from system.
1307 * @dev: device going away.
1308 *
1309 * We do this in two parts, like we do device_register(). First,
1310 * we remove it from all the subsystems with device_del(), then
1311 * we decrement the reference count via put_device(). If that
1312 * is the final reference count, the device will be cleaned up
1313 * via device_release() above. Otherwise, the structure will
1314 * stick around until the final reference to the device is dropped.
1315 */
1316 void device_unregister(struct device *dev)
1317 {
1318 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1319 device_del(dev);
1320 put_device(dev);
1321 }
1322 EXPORT_SYMBOL_GPL(device_unregister);
1323
1324 static struct device *prev_device(struct klist_iter *i)
1325 {
1326 struct klist_node *n = klist_prev(i);
1327 struct device *dev = NULL;
1328 struct device_private *p;
1329
1330 if (n) {
1331 p = to_device_private_parent(n);
1332 dev = p->device;
1333 }
1334 return dev;
1335 }
1336
1337 static struct device *next_device(struct klist_iter *i)
1338 {
1339 struct klist_node *n = klist_next(i);
1340 struct device *dev = NULL;
1341 struct device_private *p;
1342
1343 if (n) {
1344 p = to_device_private_parent(n);
1345 dev = p->device;
1346 }
1347 return dev;
1348 }
1349
1350 /**
1351 * device_get_devnode - path of device node file
1352 * @dev: device
1353 * @mode: returned file access mode
1354 * @uid: returned file owner
1355 * @gid: returned file group
1356 * @tmp: possibly allocated string
1357 *
1358 * Return the relative path of a possible device node.
1359 * Non-default names may need to allocate a memory to compose
1360 * a name. This memory is returned in tmp and needs to be
1361 * freed by the caller.
1362 */
1363 const char *device_get_devnode(struct device *dev,
1364 umode_t *mode, kuid_t *uid, kgid_t *gid,
1365 const char **tmp)
1366 {
1367 char *s;
1368
1369 *tmp = NULL;
1370
1371 /* the device type may provide a specific name */
1372 if (dev->type && dev->type->devnode)
1373 *tmp = dev->type->devnode(dev, mode, uid, gid);
1374 if (*tmp)
1375 return *tmp;
1376
1377 /* the class may provide a specific name */
1378 if (dev->class && dev->class->devnode)
1379 *tmp = dev->class->devnode(dev, mode);
1380 if (*tmp)
1381 return *tmp;
1382
1383 /* return name without allocation, tmp == NULL */
1384 if (strchr(dev_name(dev), '!') == NULL)
1385 return dev_name(dev);
1386
1387 /* replace '!' in the name with '/' */
1388 s = kstrdup(dev_name(dev), GFP_KERNEL);
1389 if (!s)
1390 return NULL;
1391 strreplace(s, '!', '/');
1392 return *tmp = s;
1393 }
1394
1395 /**
1396 * device_for_each_child - device child iterator.
1397 * @parent: parent struct device.
1398 * @fn: function to be called for each device.
1399 * @data: data for the callback.
1400 *
1401 * Iterate over @parent's child devices, and call @fn for each,
1402 * passing it @data.
1403 *
1404 * We check the return of @fn each time. If it returns anything
1405 * other than 0, we break out and return that value.
1406 */
1407 int device_for_each_child(struct device *parent, void *data,
1408 int (*fn)(struct device *dev, void *data))
1409 {
1410 struct klist_iter i;
1411 struct device *child;
1412 int error = 0;
1413
1414 if (!parent->p)
1415 return 0;
1416
1417 klist_iter_init(&parent->p->klist_children, &i);
1418 while ((child = next_device(&i)) && !error)
1419 error = fn(child, data);
1420 klist_iter_exit(&i);
1421 return error;
1422 }
1423 EXPORT_SYMBOL_GPL(device_for_each_child);
1424
1425 /**
1426 * device_for_each_child_reverse - device child iterator in reversed order.
1427 * @parent: parent struct device.
1428 * @fn: function to be called for each device.
1429 * @data: data for the callback.
1430 *
1431 * Iterate over @parent's child devices, and call @fn for each,
1432 * passing it @data.
1433 *
1434 * We check the return of @fn each time. If it returns anything
1435 * other than 0, we break out and return that value.
1436 */
1437 int device_for_each_child_reverse(struct device *parent, void *data,
1438 int (*fn)(struct device *dev, void *data))
1439 {
1440 struct klist_iter i;
1441 struct device *child;
1442 int error = 0;
1443
1444 if (!parent->p)
1445 return 0;
1446
1447 klist_iter_init(&parent->p->klist_children, &i);
1448 while ((child = prev_device(&i)) && !error)
1449 error = fn(child, data);
1450 klist_iter_exit(&i);
1451 return error;
1452 }
1453 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
1454
1455 /**
1456 * device_find_child - device iterator for locating a particular device.
1457 * @parent: parent struct device
1458 * @match: Callback function to check device
1459 * @data: Data to pass to match function
1460 *
1461 * This is similar to the device_for_each_child() function above, but it
1462 * returns a reference to a device that is 'found' for later use, as
1463 * determined by the @match callback.
1464 *
1465 * The callback should return 0 if the device doesn't match and non-zero
1466 * if it does. If the callback returns non-zero and a reference to the
1467 * current device can be obtained, this function will return to the caller
1468 * and not iterate over any more devices.
1469 *
1470 * NOTE: you will need to drop the reference with put_device() after use.
1471 */
1472 struct device *device_find_child(struct device *parent, void *data,
1473 int (*match)(struct device *dev, void *data))
1474 {
1475 struct klist_iter i;
1476 struct device *child;
1477
1478 if (!parent)
1479 return NULL;
1480
1481 klist_iter_init(&parent->p->klist_children, &i);
1482 while ((child = next_device(&i)))
1483 if (match(child, data) && get_device(child))
1484 break;
1485 klist_iter_exit(&i);
1486 return child;
1487 }
1488 EXPORT_SYMBOL_GPL(device_find_child);
1489
1490 int __init devices_init(void)
1491 {
1492 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
1493 if (!devices_kset)
1494 return -ENOMEM;
1495 dev_kobj = kobject_create_and_add("dev", NULL);
1496 if (!dev_kobj)
1497 goto dev_kobj_err;
1498 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
1499 if (!sysfs_dev_block_kobj)
1500 goto block_kobj_err;
1501 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
1502 if (!sysfs_dev_char_kobj)
1503 goto char_kobj_err;
1504
1505 return 0;
1506
1507 char_kobj_err:
1508 kobject_put(sysfs_dev_block_kobj);
1509 block_kobj_err:
1510 kobject_put(dev_kobj);
1511 dev_kobj_err:
1512 kset_unregister(devices_kset);
1513 return -ENOMEM;
1514 }
1515
1516 static int device_check_offline(struct device *dev, void *not_used)
1517 {
1518 int ret;
1519
1520 ret = device_for_each_child(dev, NULL, device_check_offline);
1521 if (ret)
1522 return ret;
1523
1524 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
1525 }
1526
1527 /**
1528 * device_offline - Prepare the device for hot-removal.
1529 * @dev: Device to be put offline.
1530 *
1531 * Execute the device bus type's .offline() callback, if present, to prepare
1532 * the device for a subsequent hot-removal. If that succeeds, the device must
1533 * not be used until either it is removed or its bus type's .online() callback
1534 * is executed.
1535 *
1536 * Call under device_hotplug_lock.
1537 */
1538 int device_offline(struct device *dev)
1539 {
1540 int ret;
1541
1542 if (dev->offline_disabled)
1543 return -EPERM;
1544
1545 ret = device_for_each_child(dev, NULL, device_check_offline);
1546 if (ret)
1547 return ret;
1548
1549 device_lock(dev);
1550 if (device_supports_offline(dev)) {
1551 if (dev->offline) {
1552 ret = 1;
1553 } else {
1554 ret = dev->bus->offline(dev);
1555 if (!ret) {
1556 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
1557 dev->offline = true;
1558 }
1559 }
1560 }
1561 device_unlock(dev);
1562
1563 return ret;
1564 }
1565
1566 /**
1567 * device_online - Put the device back online after successful device_offline().
1568 * @dev: Device to be put back online.
1569 *
1570 * If device_offline() has been successfully executed for @dev, but the device
1571 * has not been removed subsequently, execute its bus type's .online() callback
1572 * to indicate that the device can be used again.
1573 *
1574 * Call under device_hotplug_lock.
1575 */
1576 int device_online(struct device *dev)
1577 {
1578 int ret = 0;
1579
1580 device_lock(dev);
1581 if (device_supports_offline(dev)) {
1582 if (dev->offline) {
1583 ret = dev->bus->online(dev);
1584 if (!ret) {
1585 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
1586 dev->offline = false;
1587 }
1588 } else {
1589 ret = 1;
1590 }
1591 }
1592 device_unlock(dev);
1593
1594 return ret;
1595 }
1596
1597 struct root_device {
1598 struct device dev;
1599 struct module *owner;
1600 };
1601
1602 static inline struct root_device *to_root_device(struct device *d)
1603 {
1604 return container_of(d, struct root_device, dev);
1605 }
1606
1607 static void root_device_release(struct device *dev)
1608 {
1609 kfree(to_root_device(dev));
1610 }
1611
1612 /**
1613 * __root_device_register - allocate and register a root device
1614 * @name: root device name
1615 * @owner: owner module of the root device, usually THIS_MODULE
1616 *
1617 * This function allocates a root device and registers it
1618 * using device_register(). In order to free the returned
1619 * device, use root_device_unregister().
1620 *
1621 * Root devices are dummy devices which allow other devices
1622 * to be grouped under /sys/devices. Use this function to
1623 * allocate a root device and then use it as the parent of
1624 * any device which should appear under /sys/devices/{name}
1625 *
1626 * The /sys/devices/{name} directory will also contain a
1627 * 'module' symlink which points to the @owner directory
1628 * in sysfs.
1629 *
1630 * Returns &struct device pointer on success, or ERR_PTR() on error.
1631 *
1632 * Note: You probably want to use root_device_register().
1633 */
1634 struct device *__root_device_register(const char *name, struct module *owner)
1635 {
1636 struct root_device *root;
1637 int err = -ENOMEM;
1638
1639 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
1640 if (!root)
1641 return ERR_PTR(err);
1642
1643 err = dev_set_name(&root->dev, "%s", name);
1644 if (err) {
1645 kfree(root);
1646 return ERR_PTR(err);
1647 }
1648
1649 root->dev.release = root_device_release;
1650
1651 err = device_register(&root->dev);
1652 if (err) {
1653 put_device(&root->dev);
1654 return ERR_PTR(err);
1655 }
1656
1657 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
1658 if (owner) {
1659 struct module_kobject *mk = &owner->mkobj;
1660
1661 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
1662 if (err) {
1663 device_unregister(&root->dev);
1664 return ERR_PTR(err);
1665 }
1666 root->owner = owner;
1667 }
1668 #endif
1669
1670 return &root->dev;
1671 }
1672 EXPORT_SYMBOL_GPL(__root_device_register);
1673
1674 /**
1675 * root_device_unregister - unregister and free a root device
1676 * @dev: device going away
1677 *
1678 * This function unregisters and cleans up a device that was created by
1679 * root_device_register().
1680 */
1681 void root_device_unregister(struct device *dev)
1682 {
1683 struct root_device *root = to_root_device(dev);
1684
1685 if (root->owner)
1686 sysfs_remove_link(&root->dev.kobj, "module");
1687
1688 device_unregister(dev);
1689 }
1690 EXPORT_SYMBOL_GPL(root_device_unregister);
1691
1692
1693 static void device_create_release(struct device *dev)
1694 {
1695 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1696 kfree(dev);
1697 }
1698
1699 static struct device *
1700 device_create_groups_vargs(struct class *class, struct device *parent,
1701 dev_t devt, void *drvdata,
1702 const struct attribute_group **groups,
1703 const char *fmt, va_list args)
1704 {
1705 struct device *dev = NULL;
1706 int retval = -ENODEV;
1707
1708 if (class == NULL || IS_ERR(class))
1709 goto error;
1710
1711 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1712 if (!dev) {
1713 retval = -ENOMEM;
1714 goto error;
1715 }
1716
1717 device_initialize(dev);
1718 dev->devt = devt;
1719 dev->class = class;
1720 dev->parent = parent;
1721 dev->groups = groups;
1722 dev->release = device_create_release;
1723 dev_set_drvdata(dev, drvdata);
1724
1725 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
1726 if (retval)
1727 goto error;
1728
1729 retval = device_add(dev);
1730 if (retval)
1731 goto error;
1732
1733 return dev;
1734
1735 error:
1736 put_device(dev);
1737 return ERR_PTR(retval);
1738 }
1739
1740 /**
1741 * device_create_vargs - creates a device and registers it with sysfs
1742 * @class: pointer to the struct class that this device should be registered to
1743 * @parent: pointer to the parent struct device of this new device, if any
1744 * @devt: the dev_t for the char device to be added
1745 * @drvdata: the data to be added to the device for callbacks
1746 * @fmt: string for the device's name
1747 * @args: va_list for the device's name
1748 *
1749 * This function can be used by char device classes. A struct device
1750 * will be created in sysfs, registered to the specified class.
1751 *
1752 * A "dev" file will be created, showing the dev_t for the device, if
1753 * the dev_t is not 0,0.
1754 * If a pointer to a parent struct device is passed in, the newly created
1755 * struct device will be a child of that device in sysfs.
1756 * The pointer to the struct device will be returned from the call.
1757 * Any further sysfs files that might be required can be created using this
1758 * pointer.
1759 *
1760 * Returns &struct device pointer on success, or ERR_PTR() on error.
1761 *
1762 * Note: the struct class passed to this function must have previously
1763 * been created with a call to class_create().
1764 */
1765 struct device *device_create_vargs(struct class *class, struct device *parent,
1766 dev_t devt, void *drvdata, const char *fmt,
1767 va_list args)
1768 {
1769 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
1770 fmt, args);
1771 }
1772 EXPORT_SYMBOL_GPL(device_create_vargs);
1773
1774 /**
1775 * device_create - creates a device and registers it with sysfs
1776 * @class: pointer to the struct class that this device should be registered to
1777 * @parent: pointer to the parent struct device of this new device, if any
1778 * @devt: the dev_t for the char device to be added
1779 * @drvdata: the data to be added to the device for callbacks
1780 * @fmt: string for the device's name
1781 *
1782 * This function can be used by char device classes. A struct device
1783 * will be created in sysfs, registered to the specified class.
1784 *
1785 * A "dev" file will be created, showing the dev_t for the device, if
1786 * the dev_t is not 0,0.
1787 * If a pointer to a parent struct device is passed in, the newly created
1788 * struct device will be a child of that device in sysfs.
1789 * The pointer to the struct device will be returned from the call.
1790 * Any further sysfs files that might be required can be created using this
1791 * pointer.
1792 *
1793 * Returns &struct device pointer on success, or ERR_PTR() on error.
1794 *
1795 * Note: the struct class passed to this function must have previously
1796 * been created with a call to class_create().
1797 */
1798 struct device *device_create(struct class *class, struct device *parent,
1799 dev_t devt, void *drvdata, const char *fmt, ...)
1800 {
1801 va_list vargs;
1802 struct device *dev;
1803
1804 va_start(vargs, fmt);
1805 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
1806 va_end(vargs);
1807 return dev;
1808 }
1809 EXPORT_SYMBOL_GPL(device_create);
1810
1811 /**
1812 * device_create_with_groups - creates a device and registers it with sysfs
1813 * @class: pointer to the struct class that this device should be registered to
1814 * @parent: pointer to the parent struct device of this new device, if any
1815 * @devt: the dev_t for the char device to be added
1816 * @drvdata: the data to be added to the device for callbacks
1817 * @groups: NULL-terminated list of attribute groups to be created
1818 * @fmt: string for the device's name
1819 *
1820 * This function can be used by char device classes. A struct device
1821 * will be created in sysfs, registered to the specified class.
1822 * Additional attributes specified in the groups parameter will also
1823 * be created automatically.
1824 *
1825 * A "dev" file will be created, showing the dev_t for the device, if
1826 * the dev_t is not 0,0.
1827 * If a pointer to a parent struct device is passed in, the newly created
1828 * struct device will be a child of that device in sysfs.
1829 * The pointer to the struct device will be returned from the call.
1830 * Any further sysfs files that might be required can be created using this
1831 * pointer.
1832 *
1833 * Returns &struct device pointer on success, or ERR_PTR() on error.
1834 *
1835 * Note: the struct class passed to this function must have previously
1836 * been created with a call to class_create().
1837 */
1838 struct device *device_create_with_groups(struct class *class,
1839 struct device *parent, dev_t devt,
1840 void *drvdata,
1841 const struct attribute_group **groups,
1842 const char *fmt, ...)
1843 {
1844 va_list vargs;
1845 struct device *dev;
1846
1847 va_start(vargs, fmt);
1848 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
1849 fmt, vargs);
1850 va_end(vargs);
1851 return dev;
1852 }
1853 EXPORT_SYMBOL_GPL(device_create_with_groups);
1854
1855 static int __match_devt(struct device *dev, const void *data)
1856 {
1857 const dev_t *devt = data;
1858
1859 return dev->devt == *devt;
1860 }
1861
1862 /**
1863 * device_destroy - removes a device that was created with device_create()
1864 * @class: pointer to the struct class that this device was registered with
1865 * @devt: the dev_t of the device that was previously registered
1866 *
1867 * This call unregisters and cleans up a device that was created with a
1868 * call to device_create().
1869 */
1870 void device_destroy(struct class *class, dev_t devt)
1871 {
1872 struct device *dev;
1873
1874 dev = class_find_device(class, NULL, &devt, __match_devt);
1875 if (dev) {
1876 put_device(dev);
1877 device_unregister(dev);
1878 }
1879 }
1880 EXPORT_SYMBOL_GPL(device_destroy);
1881
1882 /**
1883 * device_rename - renames a device
1884 * @dev: the pointer to the struct device to be renamed
1885 * @new_name: the new name of the device
1886 *
1887 * It is the responsibility of the caller to provide mutual
1888 * exclusion between two different calls of device_rename
1889 * on the same device to ensure that new_name is valid and
1890 * won't conflict with other devices.
1891 *
1892 * Note: Don't call this function. Currently, the networking layer calls this
1893 * function, but that will change. The following text from Kay Sievers offers
1894 * some insight:
1895 *
1896 * Renaming devices is racy at many levels, symlinks and other stuff are not
1897 * replaced atomically, and you get a "move" uevent, but it's not easy to
1898 * connect the event to the old and new device. Device nodes are not renamed at
1899 * all, there isn't even support for that in the kernel now.
1900 *
1901 * In the meantime, during renaming, your target name might be taken by another
1902 * driver, creating conflicts. Or the old name is taken directly after you
1903 * renamed it -- then you get events for the same DEVPATH, before you even see
1904 * the "move" event. It's just a mess, and nothing new should ever rely on
1905 * kernel device renaming. Besides that, it's not even implemented now for
1906 * other things than (driver-core wise very simple) network devices.
1907 *
1908 * We are currently about to change network renaming in udev to completely
1909 * disallow renaming of devices in the same namespace as the kernel uses,
1910 * because we can't solve the problems properly, that arise with swapping names
1911 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
1912 * be allowed to some other name than eth[0-9]*, for the aforementioned
1913 * reasons.
1914 *
1915 * Make up a "real" name in the driver before you register anything, or add
1916 * some other attributes for userspace to find the device, or use udev to add
1917 * symlinks -- but never rename kernel devices later, it's a complete mess. We
1918 * don't even want to get into that and try to implement the missing pieces in
1919 * the core. We really have other pieces to fix in the driver core mess. :)
1920 */
1921 int device_rename(struct device *dev, const char *new_name)
1922 {
1923 struct kobject *kobj = &dev->kobj;
1924 char *old_device_name = NULL;
1925 int error;
1926
1927 dev = get_device(dev);
1928 if (!dev)
1929 return -EINVAL;
1930
1931 dev_dbg(dev, "renaming to %s\n", new_name);
1932
1933 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
1934 if (!old_device_name) {
1935 error = -ENOMEM;
1936 goto out;
1937 }
1938
1939 if (dev->class) {
1940 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
1941 kobj, old_device_name,
1942 new_name, kobject_namespace(kobj));
1943 if (error)
1944 goto out;
1945 }
1946
1947 error = kobject_rename(kobj, new_name);
1948 if (error)
1949 goto out;
1950
1951 out:
1952 put_device(dev);
1953
1954 kfree(old_device_name);
1955
1956 return error;
1957 }
1958 EXPORT_SYMBOL_GPL(device_rename);
1959
1960 static int device_move_class_links(struct device *dev,
1961 struct device *old_parent,
1962 struct device *new_parent)
1963 {
1964 int error = 0;
1965
1966 if (old_parent)
1967 sysfs_remove_link(&dev->kobj, "device");
1968 if (new_parent)
1969 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
1970 "device");
1971 return error;
1972 }
1973
1974 /**
1975 * device_move - moves a device to a new parent
1976 * @dev: the pointer to the struct device to be moved
1977 * @new_parent: the new parent of the device (can by NULL)
1978 * @dpm_order: how to reorder the dpm_list
1979 */
1980 int device_move(struct device *dev, struct device *new_parent,
1981 enum dpm_order dpm_order)
1982 {
1983 int error;
1984 struct device *old_parent;
1985 struct kobject *new_parent_kobj;
1986
1987 dev = get_device(dev);
1988 if (!dev)
1989 return -EINVAL;
1990
1991 device_pm_lock();
1992 new_parent = get_device(new_parent);
1993 new_parent_kobj = get_device_parent(dev, new_parent);
1994
1995 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
1996 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
1997 error = kobject_move(&dev->kobj, new_parent_kobj);
1998 if (error) {
1999 cleanup_glue_dir(dev, new_parent_kobj);
2000 put_device(new_parent);
2001 goto out;
2002 }
2003 old_parent = dev->parent;
2004 dev->parent = new_parent;
2005 if (old_parent)
2006 klist_remove(&dev->p->knode_parent);
2007 if (new_parent) {
2008 klist_add_tail(&dev->p->knode_parent,
2009 &new_parent->p->klist_children);
2010 set_dev_node(dev, dev_to_node(new_parent));
2011 }
2012
2013 if (dev->class) {
2014 error = device_move_class_links(dev, old_parent, new_parent);
2015 if (error) {
2016 /* We ignore errors on cleanup since we're hosed anyway... */
2017 device_move_class_links(dev, new_parent, old_parent);
2018 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2019 if (new_parent)
2020 klist_remove(&dev->p->knode_parent);
2021 dev->parent = old_parent;
2022 if (old_parent) {
2023 klist_add_tail(&dev->p->knode_parent,
2024 &old_parent->p->klist_children);
2025 set_dev_node(dev, dev_to_node(old_parent));
2026 }
2027 }
2028 cleanup_glue_dir(dev, new_parent_kobj);
2029 put_device(new_parent);
2030 goto out;
2031 }
2032 }
2033 switch (dpm_order) {
2034 case DPM_ORDER_NONE:
2035 break;
2036 case DPM_ORDER_DEV_AFTER_PARENT:
2037 device_pm_move_after(dev, new_parent);
2038 devices_kset_move_after(dev, new_parent);
2039 break;
2040 case DPM_ORDER_PARENT_BEFORE_DEV:
2041 device_pm_move_before(new_parent, dev);
2042 devices_kset_move_before(new_parent, dev);
2043 break;
2044 case DPM_ORDER_DEV_LAST:
2045 device_pm_move_last(dev);
2046 devices_kset_move_last(dev);
2047 break;
2048 }
2049
2050 put_device(old_parent);
2051 out:
2052 device_pm_unlock();
2053 put_device(dev);
2054 return error;
2055 }
2056 EXPORT_SYMBOL_GPL(device_move);
2057
2058 /**
2059 * device_shutdown - call ->shutdown() on each device to shutdown.
2060 */
2061 void device_shutdown(void)
2062 {
2063 struct device *dev, *parent;
2064
2065 spin_lock(&devices_kset->list_lock);
2066 /*
2067 * Walk the devices list backward, shutting down each in turn.
2068 * Beware that device unplug events may also start pulling
2069 * devices offline, even as the system is shutting down.
2070 */
2071 while (!list_empty(&devices_kset->list)) {
2072 dev = list_entry(devices_kset->list.prev, struct device,
2073 kobj.entry);
2074
2075 /*
2076 * hold reference count of device's parent to
2077 * prevent it from being freed because parent's
2078 * lock is to be held
2079 */
2080 parent = get_device(dev->parent);
2081 get_device(dev);
2082 /*
2083 * Make sure the device is off the kset list, in the
2084 * event that dev->*->shutdown() doesn't remove it.
2085 */
2086 list_del_init(&dev->kobj.entry);
2087 spin_unlock(&devices_kset->list_lock);
2088
2089 /* hold lock to avoid race with probe/release */
2090 if (parent)
2091 device_lock(parent);
2092 device_lock(dev);
2093
2094 /* Don't allow any more runtime suspends */
2095 pm_runtime_get_noresume(dev);
2096 pm_runtime_barrier(dev);
2097
2098 if (dev->bus && dev->bus->shutdown) {
2099 if (initcall_debug)
2100 dev_info(dev, "shutdown\n");
2101 dev->bus->shutdown(dev);
2102 } else if (dev->driver && dev->driver->shutdown) {
2103 if (initcall_debug)
2104 dev_info(dev, "shutdown\n");
2105 dev->driver->shutdown(dev);
2106 }
2107
2108 device_unlock(dev);
2109 if (parent)
2110 device_unlock(parent);
2111
2112 put_device(dev);
2113 put_device(parent);
2114
2115 spin_lock(&devices_kset->list_lock);
2116 }
2117 spin_unlock(&devices_kset->list_lock);
2118 }
2119
2120 /*
2121 * Device logging functions
2122 */
2123
2124 #ifdef CONFIG_PRINTK
2125 static int
2126 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2127 {
2128 const char *subsys;
2129 size_t pos = 0;
2130
2131 if (dev->class)
2132 subsys = dev->class->name;
2133 else if (dev->bus)
2134 subsys = dev->bus->name;
2135 else
2136 return 0;
2137
2138 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2139 if (pos >= hdrlen)
2140 goto overflow;
2141
2142 /*
2143 * Add device identifier DEVICE=:
2144 * b12:8 block dev_t
2145 * c127:3 char dev_t
2146 * n8 netdev ifindex
2147 * +sound:card0 subsystem:devname
2148 */
2149 if (MAJOR(dev->devt)) {
2150 char c;
2151
2152 if (strcmp(subsys, "block") == 0)
2153 c = 'b';
2154 else
2155 c = 'c';
2156 pos++;
2157 pos += snprintf(hdr + pos, hdrlen - pos,
2158 "DEVICE=%c%u:%u",
2159 c, MAJOR(dev->devt), MINOR(dev->devt));
2160 } else if (strcmp(subsys, "net") == 0) {
2161 struct net_device *net = to_net_dev(dev);
2162
2163 pos++;
2164 pos += snprintf(hdr + pos, hdrlen - pos,
2165 "DEVICE=n%u", net->ifindex);
2166 } else {
2167 pos++;
2168 pos += snprintf(hdr + pos, hdrlen - pos,
2169 "DEVICE=+%s:%s", subsys, dev_name(dev));
2170 }
2171
2172 if (pos >= hdrlen)
2173 goto overflow;
2174
2175 return pos;
2176
2177 overflow:
2178 dev_WARN(dev, "device/subsystem name too long");
2179 return 0;
2180 }
2181
2182 int dev_vprintk_emit(int level, const struct device *dev,
2183 const char *fmt, va_list args)
2184 {
2185 char hdr[128];
2186 size_t hdrlen;
2187
2188 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2189
2190 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2191 }
2192 EXPORT_SYMBOL(dev_vprintk_emit);
2193
2194 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2195 {
2196 va_list args;
2197 int r;
2198
2199 va_start(args, fmt);
2200
2201 r = dev_vprintk_emit(level, dev, fmt, args);
2202
2203 va_end(args);
2204
2205 return r;
2206 }
2207 EXPORT_SYMBOL(dev_printk_emit);
2208
2209 static void __dev_printk(const char *level, const struct device *dev,
2210 struct va_format *vaf)
2211 {
2212 if (dev)
2213 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2214 dev_driver_string(dev), dev_name(dev), vaf);
2215 else
2216 printk("%s(NULL device *): %pV", level, vaf);
2217 }
2218
2219 void dev_printk(const char *level, const struct device *dev,
2220 const char *fmt, ...)
2221 {
2222 struct va_format vaf;
2223 va_list args;
2224
2225 va_start(args, fmt);
2226
2227 vaf.fmt = fmt;
2228 vaf.va = &args;
2229
2230 __dev_printk(level, dev, &vaf);
2231
2232 va_end(args);
2233 }
2234 EXPORT_SYMBOL(dev_printk);
2235
2236 #define define_dev_printk_level(func, kern_level) \
2237 void func(const struct device *dev, const char *fmt, ...) \
2238 { \
2239 struct va_format vaf; \
2240 va_list args; \
2241 \
2242 va_start(args, fmt); \
2243 \
2244 vaf.fmt = fmt; \
2245 vaf.va = &args; \
2246 \
2247 __dev_printk(kern_level, dev, &vaf); \
2248 \
2249 va_end(args); \
2250 } \
2251 EXPORT_SYMBOL(func);
2252
2253 define_dev_printk_level(dev_emerg, KERN_EMERG);
2254 define_dev_printk_level(dev_alert, KERN_ALERT);
2255 define_dev_printk_level(dev_crit, KERN_CRIT);
2256 define_dev_printk_level(dev_err, KERN_ERR);
2257 define_dev_printk_level(dev_warn, KERN_WARNING);
2258 define_dev_printk_level(dev_notice, KERN_NOTICE);
2259 define_dev_printk_level(_dev_info, KERN_INFO);
2260
2261 #endif
2262
2263 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2264 {
2265 return fwnode && !IS_ERR(fwnode->secondary);
2266 }
2267
2268 /**
2269 * set_primary_fwnode - Change the primary firmware node of a given device.
2270 * @dev: Device to handle.
2271 * @fwnode: New primary firmware node of the device.
2272 *
2273 * Set the device's firmware node pointer to @fwnode, but if a secondary
2274 * firmware node of the device is present, preserve it.
2275 */
2276 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2277 {
2278 if (fwnode) {
2279 struct fwnode_handle *fn = dev->fwnode;
2280
2281 if (fwnode_is_primary(fn))
2282 fn = fn->secondary;
2283
2284 if (fn) {
2285 WARN_ON(fwnode->secondary);
2286 fwnode->secondary = fn;
2287 }
2288 dev->fwnode = fwnode;
2289 } else {
2290 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2291 dev->fwnode->secondary : NULL;
2292 }
2293 }
2294 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2295
2296 /**
2297 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2298 * @dev: Device to handle.
2299 * @fwnode: New secondary firmware node of the device.
2300 *
2301 * If a primary firmware node of the device is present, set its secondary
2302 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
2303 * @fwnode.
2304 */
2305 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2306 {
2307 if (fwnode)
2308 fwnode->secondary = ERR_PTR(-ENODEV);
2309
2310 if (fwnode_is_primary(dev->fwnode))
2311 dev->fwnode->secondary = fwnode;
2312 else
2313 dev->fwnode = fwnode;
2314 }
This page took 0.095467 seconds and 5 git commands to generate.