virtio: Silence uninitialized variable warning
[deliverable/linux.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG /* Activate rbd_assert() calls */
51
52 /*
53 * The basic unit of block I/O is a sector. It is interpreted in a
54 * number of contexts in Linux (blk, bio, genhd), but the default is
55 * universally 512 bytes. These symbols are just slightly more
56 * meaningful than the bare numbers they represent.
57 */
58 #define SECTOR_SHIFT 9
59 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
60
61 /*
62 * Increment the given counter and return its updated value.
63 * If the counter is already 0 it will not be incremented.
64 * If the counter is already at its maximum value returns
65 * -EINVAL without updating it.
66 */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69 unsigned int counter;
70
71 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72 if (counter <= (unsigned int)INT_MAX)
73 return (int)counter;
74
75 atomic_dec(v);
76
77 return -EINVAL;
78 }
79
80 /* Decrement the counter. Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83 int counter;
84
85 counter = atomic_dec_return(v);
86 if (counter >= 0)
87 return counter;
88
89 atomic_inc(v);
90
91 return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR 256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN 16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN \
103 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME "-"
108
109 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX 64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX 64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING (1<<0)
120 #define RBD_FEATURE_STRIPINGV2 (1<<1)
121 #define RBD_FEATURES_ALL \
122 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
127
128 /*
129 * An RBD device name will be "rbd#", where the "rbd" comes from
130 * RBD_DRV_NAME above, and # is a unique integer identifier.
131 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132 * enough to hold all possible device names.
133 */
134 #define DEV_NAME_LEN 32
135 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138 * block device image metadata (in-memory version)
139 */
140 struct rbd_image_header {
141 /* These six fields never change for a given rbd image */
142 char *object_prefix;
143 __u8 obj_order;
144 __u8 crypt_type;
145 __u8 comp_type;
146 u64 stripe_unit;
147 u64 stripe_count;
148 u64 features; /* Might be changeable someday? */
149
150 /* The remaining fields need to be updated occasionally */
151 u64 image_size;
152 struct ceph_snap_context *snapc;
153 char *snap_names; /* format 1 only */
154 u64 *snap_sizes; /* format 1 only */
155 };
156
157 /*
158 * An rbd image specification.
159 *
160 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161 * identify an image. Each rbd_dev structure includes a pointer to
162 * an rbd_spec structure that encapsulates this identity.
163 *
164 * Each of the id's in an rbd_spec has an associated name. For a
165 * user-mapped image, the names are supplied and the id's associated
166 * with them are looked up. For a layered image, a parent image is
167 * defined by the tuple, and the names are looked up.
168 *
169 * An rbd_dev structure contains a parent_spec pointer which is
170 * non-null if the image it represents is a child in a layered
171 * image. This pointer will refer to the rbd_spec structure used
172 * by the parent rbd_dev for its own identity (i.e., the structure
173 * is shared between the parent and child).
174 *
175 * Since these structures are populated once, during the discovery
176 * phase of image construction, they are effectively immutable so
177 * we make no effort to synchronize access to them.
178 *
179 * Note that code herein does not assume the image name is known (it
180 * could be a null pointer).
181 */
182 struct rbd_spec {
183 u64 pool_id;
184 const char *pool_name;
185
186 const char *image_id;
187 const char *image_name;
188
189 u64 snap_id;
190 const char *snap_name;
191
192 struct kref kref;
193 };
194
195 /*
196 * an instance of the client. multiple devices may share an rbd client.
197 */
198 struct rbd_client {
199 struct ceph_client *client;
200 struct kref kref;
201 struct list_head node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217 OBJ_OP_WRITE,
218 OBJ_OP_READ,
219 OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
224 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
225 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
226 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230 const char *object_name;
231 u64 offset; /* object start byte */
232 u64 length; /* bytes from offset */
233 unsigned long flags;
234
235 /*
236 * An object request associated with an image will have its
237 * img_data flag set; a standalone object request will not.
238 *
239 * A standalone object request will have which == BAD_WHICH
240 * and a null obj_request pointer.
241 *
242 * An object request initiated in support of a layered image
243 * object (to check for its existence before a write) will
244 * have which == BAD_WHICH and a non-null obj_request pointer.
245 *
246 * Finally, an object request for rbd image data will have
247 * which != BAD_WHICH, and will have a non-null img_request
248 * pointer. The value of which will be in the range
249 * 0..(img_request->obj_request_count-1).
250 */
251 union {
252 struct rbd_obj_request *obj_request; /* STAT op */
253 struct {
254 struct rbd_img_request *img_request;
255 u64 img_offset;
256 /* links for img_request->obj_requests list */
257 struct list_head links;
258 };
259 };
260 u32 which; /* posn image request list */
261
262 enum obj_request_type type;
263 union {
264 struct bio *bio_list;
265 struct {
266 struct page **pages;
267 u32 page_count;
268 };
269 };
270 struct page **copyup_pages;
271 u32 copyup_page_count;
272
273 struct ceph_osd_request *osd_req;
274
275 u64 xferred; /* bytes transferred */
276 int result;
277
278 rbd_obj_callback_t callback;
279 struct completion completion;
280
281 struct kref kref;
282 };
283
284 enum img_req_flags {
285 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
286 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
287 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
288 IMG_REQ_DISCARD, /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292 struct rbd_device *rbd_dev;
293 u64 offset; /* starting image byte offset */
294 u64 length; /* byte count from offset */
295 unsigned long flags;
296 union {
297 u64 snap_id; /* for reads */
298 struct ceph_snap_context *snapc; /* for writes */
299 };
300 union {
301 struct request *rq; /* block request */
302 struct rbd_obj_request *obj_request; /* obj req initiator */
303 };
304 struct page **copyup_pages;
305 u32 copyup_page_count;
306 spinlock_t completion_lock;/* protects next_completion */
307 u32 next_completion;
308 rbd_img_callback_t callback;
309 u64 xferred;/* aggregate bytes transferred */
310 int result; /* first nonzero obj_request result */
311
312 u32 obj_request_count;
313 struct list_head obj_requests; /* rbd_obj_request structs */
314
315 struct kref kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326 u64 size;
327 u64 features;
328 bool read_only;
329 };
330
331 /*
332 * a single device
333 */
334 struct rbd_device {
335 int dev_id; /* blkdev unique id */
336
337 int major; /* blkdev assigned major */
338 int minor;
339 struct gendisk *disk; /* blkdev's gendisk and rq */
340
341 u32 image_format; /* Either 1 or 2 */
342 struct rbd_client *rbd_client;
343
344 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346 spinlock_t lock; /* queue, flags, open_count */
347
348 struct rbd_image_header header;
349 unsigned long flags; /* possibly lock protected */
350 struct rbd_spec *spec;
351 struct rbd_options *opts;
352
353 char *header_name;
354
355 struct ceph_file_layout layout;
356
357 struct ceph_osd_event *watch_event;
358 struct rbd_obj_request *watch_request;
359
360 struct rbd_spec *parent_spec;
361 u64 parent_overlap;
362 atomic_t parent_ref;
363 struct rbd_device *parent;
364
365 /* Block layer tags. */
366 struct blk_mq_tag_set tag_set;
367
368 /* protects updating the header */
369 struct rw_semaphore header_rwsem;
370
371 struct rbd_mapping mapping;
372
373 struct list_head node;
374
375 /* sysfs related */
376 struct device dev;
377 unsigned long open_count; /* protected by lock */
378 };
379
380 /*
381 * Flag bits for rbd_dev->flags. If atomicity is required,
382 * rbd_dev->lock is used to protect access.
383 *
384 * Currently, only the "removing" flag (which is coupled with the
385 * "open_count" field) requires atomic access.
386 */
387 enum rbd_dev_flags {
388 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
389 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list); /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list); /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache *rbd_img_request_cache;
403 static struct kmem_cache *rbd_obj_request_cache;
404 static struct kmem_cache *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412 * Default to false for now, as single-major requires >= 0.75 version of
413 * userspace rbd utility.
414 */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422 size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424 size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426 size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428 size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448 &bus_attr_add.attr,
449 &bus_attr_remove.attr,
450 &bus_attr_add_single_major.attr,
451 &bus_attr_remove_single_major.attr,
452 NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456 struct attribute *attr, int index)
457 {
458 if (!single_major &&
459 (attr == &bus_attr_add_single_major.attr ||
460 attr == &bus_attr_remove_single_major.attr))
461 return 0;
462
463 return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467 .attrs = rbd_bus_attrs,
468 .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473 .name = "rbd",
474 .bus_groups = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482 .init_name = "rbd",
483 .release = rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489 struct va_format vaf;
490 va_list args;
491
492 va_start(args, fmt);
493 vaf.fmt = fmt;
494 vaf.va = &args;
495
496 if (!rbd_dev)
497 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498 else if (rbd_dev->disk)
499 printk(KERN_WARNING "%s: %s: %pV\n",
500 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501 else if (rbd_dev->spec && rbd_dev->spec->image_name)
502 printk(KERN_WARNING "%s: image %s: %pV\n",
503 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504 else if (rbd_dev->spec && rbd_dev->spec->image_id)
505 printk(KERN_WARNING "%s: id %s: %pV\n",
506 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507 else /* punt */
508 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509 RBD_DRV_NAME, rbd_dev, &vaf);
510 va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr) \
515 if (unlikely(!(expr))) { \
516 printk(KERN_ERR "\nAssertion failure in %s() " \
517 "at line %d:\n\n" \
518 "\trbd_assert(%s);\n\n", \
519 __func__, __LINE__, #expr); \
520 BUG(); \
521 }
522 #else /* !RBD_DEBUG */
523 # define rbd_assert(expr) ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536 u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540 u64 *snap_features);
541 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
542
543 static int rbd_open(struct block_device *bdev, fmode_t mode)
544 {
545 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
546 bool removing = false;
547
548 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
549 return -EROFS;
550
551 spin_lock_irq(&rbd_dev->lock);
552 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
553 removing = true;
554 else
555 rbd_dev->open_count++;
556 spin_unlock_irq(&rbd_dev->lock);
557 if (removing)
558 return -ENOENT;
559
560 (void) get_device(&rbd_dev->dev);
561
562 return 0;
563 }
564
565 static void rbd_release(struct gendisk *disk, fmode_t mode)
566 {
567 struct rbd_device *rbd_dev = disk->private_data;
568 unsigned long open_count_before;
569
570 spin_lock_irq(&rbd_dev->lock);
571 open_count_before = rbd_dev->open_count--;
572 spin_unlock_irq(&rbd_dev->lock);
573 rbd_assert(open_count_before > 0);
574
575 put_device(&rbd_dev->dev);
576 }
577
578 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
579 {
580 int ret = 0;
581 int val;
582 bool ro;
583 bool ro_changed = false;
584
585 /* get_user() may sleep, so call it before taking rbd_dev->lock */
586 if (get_user(val, (int __user *)(arg)))
587 return -EFAULT;
588
589 ro = val ? true : false;
590 /* Snapshot doesn't allow to write*/
591 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
592 return -EROFS;
593
594 spin_lock_irq(&rbd_dev->lock);
595 /* prevent others open this device */
596 if (rbd_dev->open_count > 1) {
597 ret = -EBUSY;
598 goto out;
599 }
600
601 if (rbd_dev->mapping.read_only != ro) {
602 rbd_dev->mapping.read_only = ro;
603 ro_changed = true;
604 }
605
606 out:
607 spin_unlock_irq(&rbd_dev->lock);
608 /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
609 if (ret == 0 && ro_changed)
610 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
611
612 return ret;
613 }
614
615 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
616 unsigned int cmd, unsigned long arg)
617 {
618 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
619 int ret = 0;
620
621 switch (cmd) {
622 case BLKROSET:
623 ret = rbd_ioctl_set_ro(rbd_dev, arg);
624 break;
625 default:
626 ret = -ENOTTY;
627 }
628
629 return ret;
630 }
631
632 #ifdef CONFIG_COMPAT
633 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
634 unsigned int cmd, unsigned long arg)
635 {
636 return rbd_ioctl(bdev, mode, cmd, arg);
637 }
638 #endif /* CONFIG_COMPAT */
639
640 static const struct block_device_operations rbd_bd_ops = {
641 .owner = THIS_MODULE,
642 .open = rbd_open,
643 .release = rbd_release,
644 .ioctl = rbd_ioctl,
645 #ifdef CONFIG_COMPAT
646 .compat_ioctl = rbd_compat_ioctl,
647 #endif
648 };
649
650 /*
651 * Initialize an rbd client instance. Success or not, this function
652 * consumes ceph_opts. Caller holds client_mutex.
653 */
654 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
655 {
656 struct rbd_client *rbdc;
657 int ret = -ENOMEM;
658
659 dout("%s:\n", __func__);
660 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
661 if (!rbdc)
662 goto out_opt;
663
664 kref_init(&rbdc->kref);
665 INIT_LIST_HEAD(&rbdc->node);
666
667 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
668 if (IS_ERR(rbdc->client))
669 goto out_rbdc;
670 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
671
672 ret = ceph_open_session(rbdc->client);
673 if (ret < 0)
674 goto out_client;
675
676 spin_lock(&rbd_client_list_lock);
677 list_add_tail(&rbdc->node, &rbd_client_list);
678 spin_unlock(&rbd_client_list_lock);
679
680 dout("%s: rbdc %p\n", __func__, rbdc);
681
682 return rbdc;
683 out_client:
684 ceph_destroy_client(rbdc->client);
685 out_rbdc:
686 kfree(rbdc);
687 out_opt:
688 if (ceph_opts)
689 ceph_destroy_options(ceph_opts);
690 dout("%s: error %d\n", __func__, ret);
691
692 return ERR_PTR(ret);
693 }
694
695 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
696 {
697 kref_get(&rbdc->kref);
698
699 return rbdc;
700 }
701
702 /*
703 * Find a ceph client with specific addr and configuration. If
704 * found, bump its reference count.
705 */
706 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
707 {
708 struct rbd_client *client_node;
709 bool found = false;
710
711 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
712 return NULL;
713
714 spin_lock(&rbd_client_list_lock);
715 list_for_each_entry(client_node, &rbd_client_list, node) {
716 if (!ceph_compare_options(ceph_opts, client_node->client)) {
717 __rbd_get_client(client_node);
718
719 found = true;
720 break;
721 }
722 }
723 spin_unlock(&rbd_client_list_lock);
724
725 return found ? client_node : NULL;
726 }
727
728 /*
729 * (Per device) rbd map options
730 */
731 enum {
732 Opt_queue_depth,
733 Opt_last_int,
734 /* int args above */
735 Opt_last_string,
736 /* string args above */
737 Opt_read_only,
738 Opt_read_write,
739 Opt_err
740 };
741
742 static match_table_t rbd_opts_tokens = {
743 {Opt_queue_depth, "queue_depth=%d"},
744 /* int args above */
745 /* string args above */
746 {Opt_read_only, "read_only"},
747 {Opt_read_only, "ro"}, /* Alternate spelling */
748 {Opt_read_write, "read_write"},
749 {Opt_read_write, "rw"}, /* Alternate spelling */
750 {Opt_err, NULL}
751 };
752
753 struct rbd_options {
754 int queue_depth;
755 bool read_only;
756 };
757
758 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
759 #define RBD_READ_ONLY_DEFAULT false
760
761 static int parse_rbd_opts_token(char *c, void *private)
762 {
763 struct rbd_options *rbd_opts = private;
764 substring_t argstr[MAX_OPT_ARGS];
765 int token, intval, ret;
766
767 token = match_token(c, rbd_opts_tokens, argstr);
768 if (token < Opt_last_int) {
769 ret = match_int(&argstr[0], &intval);
770 if (ret < 0) {
771 pr_err("bad mount option arg (not int) at '%s'\n", c);
772 return ret;
773 }
774 dout("got int token %d val %d\n", token, intval);
775 } else if (token > Opt_last_int && token < Opt_last_string) {
776 dout("got string token %d val %s\n", token, argstr[0].from);
777 } else {
778 dout("got token %d\n", token);
779 }
780
781 switch (token) {
782 case Opt_queue_depth:
783 if (intval < 1) {
784 pr_err("queue_depth out of range\n");
785 return -EINVAL;
786 }
787 rbd_opts->queue_depth = intval;
788 break;
789 case Opt_read_only:
790 rbd_opts->read_only = true;
791 break;
792 case Opt_read_write:
793 rbd_opts->read_only = false;
794 break;
795 default:
796 /* libceph prints "bad option" msg */
797 return -EINVAL;
798 }
799
800 return 0;
801 }
802
803 static char* obj_op_name(enum obj_operation_type op_type)
804 {
805 switch (op_type) {
806 case OBJ_OP_READ:
807 return "read";
808 case OBJ_OP_WRITE:
809 return "write";
810 case OBJ_OP_DISCARD:
811 return "discard";
812 default:
813 return "???";
814 }
815 }
816
817 /*
818 * Get a ceph client with specific addr and configuration, if one does
819 * not exist create it. Either way, ceph_opts is consumed by this
820 * function.
821 */
822 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
823 {
824 struct rbd_client *rbdc;
825
826 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
827 rbdc = rbd_client_find(ceph_opts);
828 if (rbdc) /* using an existing client */
829 ceph_destroy_options(ceph_opts);
830 else
831 rbdc = rbd_client_create(ceph_opts);
832 mutex_unlock(&client_mutex);
833
834 return rbdc;
835 }
836
837 /*
838 * Destroy ceph client
839 *
840 * Caller must hold rbd_client_list_lock.
841 */
842 static void rbd_client_release(struct kref *kref)
843 {
844 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
845
846 dout("%s: rbdc %p\n", __func__, rbdc);
847 spin_lock(&rbd_client_list_lock);
848 list_del(&rbdc->node);
849 spin_unlock(&rbd_client_list_lock);
850
851 ceph_destroy_client(rbdc->client);
852 kfree(rbdc);
853 }
854
855 /*
856 * Drop reference to ceph client node. If it's not referenced anymore, release
857 * it.
858 */
859 static void rbd_put_client(struct rbd_client *rbdc)
860 {
861 if (rbdc)
862 kref_put(&rbdc->kref, rbd_client_release);
863 }
864
865 static bool rbd_image_format_valid(u32 image_format)
866 {
867 return image_format == 1 || image_format == 2;
868 }
869
870 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
871 {
872 size_t size;
873 u32 snap_count;
874
875 /* The header has to start with the magic rbd header text */
876 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
877 return false;
878
879 /* The bio layer requires at least sector-sized I/O */
880
881 if (ondisk->options.order < SECTOR_SHIFT)
882 return false;
883
884 /* If we use u64 in a few spots we may be able to loosen this */
885
886 if (ondisk->options.order > 8 * sizeof (int) - 1)
887 return false;
888
889 /*
890 * The size of a snapshot header has to fit in a size_t, and
891 * that limits the number of snapshots.
892 */
893 snap_count = le32_to_cpu(ondisk->snap_count);
894 size = SIZE_MAX - sizeof (struct ceph_snap_context);
895 if (snap_count > size / sizeof (__le64))
896 return false;
897
898 /*
899 * Not only that, but the size of the entire the snapshot
900 * header must also be representable in a size_t.
901 */
902 size -= snap_count * sizeof (__le64);
903 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
904 return false;
905
906 return true;
907 }
908
909 /*
910 * Fill an rbd image header with information from the given format 1
911 * on-disk header.
912 */
913 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
914 struct rbd_image_header_ondisk *ondisk)
915 {
916 struct rbd_image_header *header = &rbd_dev->header;
917 bool first_time = header->object_prefix == NULL;
918 struct ceph_snap_context *snapc;
919 char *object_prefix = NULL;
920 char *snap_names = NULL;
921 u64 *snap_sizes = NULL;
922 u32 snap_count;
923 size_t size;
924 int ret = -ENOMEM;
925 u32 i;
926
927 /* Allocate this now to avoid having to handle failure below */
928
929 if (first_time) {
930 size_t len;
931
932 len = strnlen(ondisk->object_prefix,
933 sizeof (ondisk->object_prefix));
934 object_prefix = kmalloc(len + 1, GFP_KERNEL);
935 if (!object_prefix)
936 return -ENOMEM;
937 memcpy(object_prefix, ondisk->object_prefix, len);
938 object_prefix[len] = '\0';
939 }
940
941 /* Allocate the snapshot context and fill it in */
942
943 snap_count = le32_to_cpu(ondisk->snap_count);
944 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
945 if (!snapc)
946 goto out_err;
947 snapc->seq = le64_to_cpu(ondisk->snap_seq);
948 if (snap_count) {
949 struct rbd_image_snap_ondisk *snaps;
950 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
951
952 /* We'll keep a copy of the snapshot names... */
953
954 if (snap_names_len > (u64)SIZE_MAX)
955 goto out_2big;
956 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
957 if (!snap_names)
958 goto out_err;
959
960 /* ...as well as the array of their sizes. */
961
962 size = snap_count * sizeof (*header->snap_sizes);
963 snap_sizes = kmalloc(size, GFP_KERNEL);
964 if (!snap_sizes)
965 goto out_err;
966
967 /*
968 * Copy the names, and fill in each snapshot's id
969 * and size.
970 *
971 * Note that rbd_dev_v1_header_info() guarantees the
972 * ondisk buffer we're working with has
973 * snap_names_len bytes beyond the end of the
974 * snapshot id array, this memcpy() is safe.
975 */
976 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
977 snaps = ondisk->snaps;
978 for (i = 0; i < snap_count; i++) {
979 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
980 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
981 }
982 }
983
984 /* We won't fail any more, fill in the header */
985
986 if (first_time) {
987 header->object_prefix = object_prefix;
988 header->obj_order = ondisk->options.order;
989 header->crypt_type = ondisk->options.crypt_type;
990 header->comp_type = ondisk->options.comp_type;
991 /* The rest aren't used for format 1 images */
992 header->stripe_unit = 0;
993 header->stripe_count = 0;
994 header->features = 0;
995 } else {
996 ceph_put_snap_context(header->snapc);
997 kfree(header->snap_names);
998 kfree(header->snap_sizes);
999 }
1000
1001 /* The remaining fields always get updated (when we refresh) */
1002
1003 header->image_size = le64_to_cpu(ondisk->image_size);
1004 header->snapc = snapc;
1005 header->snap_names = snap_names;
1006 header->snap_sizes = snap_sizes;
1007
1008 return 0;
1009 out_2big:
1010 ret = -EIO;
1011 out_err:
1012 kfree(snap_sizes);
1013 kfree(snap_names);
1014 ceph_put_snap_context(snapc);
1015 kfree(object_prefix);
1016
1017 return ret;
1018 }
1019
1020 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1021 {
1022 const char *snap_name;
1023
1024 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1025
1026 /* Skip over names until we find the one we are looking for */
1027
1028 snap_name = rbd_dev->header.snap_names;
1029 while (which--)
1030 snap_name += strlen(snap_name) + 1;
1031
1032 return kstrdup(snap_name, GFP_KERNEL);
1033 }
1034
1035 /*
1036 * Snapshot id comparison function for use with qsort()/bsearch().
1037 * Note that result is for snapshots in *descending* order.
1038 */
1039 static int snapid_compare_reverse(const void *s1, const void *s2)
1040 {
1041 u64 snap_id1 = *(u64 *)s1;
1042 u64 snap_id2 = *(u64 *)s2;
1043
1044 if (snap_id1 < snap_id2)
1045 return 1;
1046 return snap_id1 == snap_id2 ? 0 : -1;
1047 }
1048
1049 /*
1050 * Search a snapshot context to see if the given snapshot id is
1051 * present.
1052 *
1053 * Returns the position of the snapshot id in the array if it's found,
1054 * or BAD_SNAP_INDEX otherwise.
1055 *
1056 * Note: The snapshot array is in kept sorted (by the osd) in
1057 * reverse order, highest snapshot id first.
1058 */
1059 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1060 {
1061 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1062 u64 *found;
1063
1064 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1065 sizeof (snap_id), snapid_compare_reverse);
1066
1067 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1068 }
1069
1070 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1071 u64 snap_id)
1072 {
1073 u32 which;
1074 const char *snap_name;
1075
1076 which = rbd_dev_snap_index(rbd_dev, snap_id);
1077 if (which == BAD_SNAP_INDEX)
1078 return ERR_PTR(-ENOENT);
1079
1080 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1081 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1082 }
1083
1084 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1085 {
1086 if (snap_id == CEPH_NOSNAP)
1087 return RBD_SNAP_HEAD_NAME;
1088
1089 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1090 if (rbd_dev->image_format == 1)
1091 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1092
1093 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1094 }
1095
1096 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1097 u64 *snap_size)
1098 {
1099 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1100 if (snap_id == CEPH_NOSNAP) {
1101 *snap_size = rbd_dev->header.image_size;
1102 } else if (rbd_dev->image_format == 1) {
1103 u32 which;
1104
1105 which = rbd_dev_snap_index(rbd_dev, snap_id);
1106 if (which == BAD_SNAP_INDEX)
1107 return -ENOENT;
1108
1109 *snap_size = rbd_dev->header.snap_sizes[which];
1110 } else {
1111 u64 size = 0;
1112 int ret;
1113
1114 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1115 if (ret)
1116 return ret;
1117
1118 *snap_size = size;
1119 }
1120 return 0;
1121 }
1122
1123 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1124 u64 *snap_features)
1125 {
1126 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1127 if (snap_id == CEPH_NOSNAP) {
1128 *snap_features = rbd_dev->header.features;
1129 } else if (rbd_dev->image_format == 1) {
1130 *snap_features = 0; /* No features for format 1 */
1131 } else {
1132 u64 features = 0;
1133 int ret;
1134
1135 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1136 if (ret)
1137 return ret;
1138
1139 *snap_features = features;
1140 }
1141 return 0;
1142 }
1143
1144 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1145 {
1146 u64 snap_id = rbd_dev->spec->snap_id;
1147 u64 size = 0;
1148 u64 features = 0;
1149 int ret;
1150
1151 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1152 if (ret)
1153 return ret;
1154 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1155 if (ret)
1156 return ret;
1157
1158 rbd_dev->mapping.size = size;
1159 rbd_dev->mapping.features = features;
1160
1161 return 0;
1162 }
1163
1164 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1165 {
1166 rbd_dev->mapping.size = 0;
1167 rbd_dev->mapping.features = 0;
1168 }
1169
1170 static void rbd_segment_name_free(const char *name)
1171 {
1172 /* The explicit cast here is needed to drop the const qualifier */
1173
1174 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1175 }
1176
1177 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1178 {
1179 char *name;
1180 u64 segment;
1181 int ret;
1182 char *name_format;
1183
1184 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1185 if (!name)
1186 return NULL;
1187 segment = offset >> rbd_dev->header.obj_order;
1188 name_format = "%s.%012llx";
1189 if (rbd_dev->image_format == 2)
1190 name_format = "%s.%016llx";
1191 ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1192 rbd_dev->header.object_prefix, segment);
1193 if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1194 pr_err("error formatting segment name for #%llu (%d)\n",
1195 segment, ret);
1196 rbd_segment_name_free(name);
1197 name = NULL;
1198 }
1199
1200 return name;
1201 }
1202
1203 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1204 {
1205 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1206
1207 return offset & (segment_size - 1);
1208 }
1209
1210 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1211 u64 offset, u64 length)
1212 {
1213 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1214
1215 offset &= segment_size - 1;
1216
1217 rbd_assert(length <= U64_MAX - offset);
1218 if (offset + length > segment_size)
1219 length = segment_size - offset;
1220
1221 return length;
1222 }
1223
1224 /*
1225 * returns the size of an object in the image
1226 */
1227 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1228 {
1229 return 1 << header->obj_order;
1230 }
1231
1232 /*
1233 * bio helpers
1234 */
1235
1236 static void bio_chain_put(struct bio *chain)
1237 {
1238 struct bio *tmp;
1239
1240 while (chain) {
1241 tmp = chain;
1242 chain = chain->bi_next;
1243 bio_put(tmp);
1244 }
1245 }
1246
1247 /*
1248 * zeros a bio chain, starting at specific offset
1249 */
1250 static void zero_bio_chain(struct bio *chain, int start_ofs)
1251 {
1252 struct bio_vec bv;
1253 struct bvec_iter iter;
1254 unsigned long flags;
1255 void *buf;
1256 int pos = 0;
1257
1258 while (chain) {
1259 bio_for_each_segment(bv, chain, iter) {
1260 if (pos + bv.bv_len > start_ofs) {
1261 int remainder = max(start_ofs - pos, 0);
1262 buf = bvec_kmap_irq(&bv, &flags);
1263 memset(buf + remainder, 0,
1264 bv.bv_len - remainder);
1265 flush_dcache_page(bv.bv_page);
1266 bvec_kunmap_irq(buf, &flags);
1267 }
1268 pos += bv.bv_len;
1269 }
1270
1271 chain = chain->bi_next;
1272 }
1273 }
1274
1275 /*
1276 * similar to zero_bio_chain(), zeros data defined by a page array,
1277 * starting at the given byte offset from the start of the array and
1278 * continuing up to the given end offset. The pages array is
1279 * assumed to be big enough to hold all bytes up to the end.
1280 */
1281 static void zero_pages(struct page **pages, u64 offset, u64 end)
1282 {
1283 struct page **page = &pages[offset >> PAGE_SHIFT];
1284
1285 rbd_assert(end > offset);
1286 rbd_assert(end - offset <= (u64)SIZE_MAX);
1287 while (offset < end) {
1288 size_t page_offset;
1289 size_t length;
1290 unsigned long flags;
1291 void *kaddr;
1292
1293 page_offset = offset & ~PAGE_MASK;
1294 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1295 local_irq_save(flags);
1296 kaddr = kmap_atomic(*page);
1297 memset(kaddr + page_offset, 0, length);
1298 flush_dcache_page(*page);
1299 kunmap_atomic(kaddr);
1300 local_irq_restore(flags);
1301
1302 offset += length;
1303 page++;
1304 }
1305 }
1306
1307 /*
1308 * Clone a portion of a bio, starting at the given byte offset
1309 * and continuing for the number of bytes indicated.
1310 */
1311 static struct bio *bio_clone_range(struct bio *bio_src,
1312 unsigned int offset,
1313 unsigned int len,
1314 gfp_t gfpmask)
1315 {
1316 struct bio *bio;
1317
1318 bio = bio_clone(bio_src, gfpmask);
1319 if (!bio)
1320 return NULL; /* ENOMEM */
1321
1322 bio_advance(bio, offset);
1323 bio->bi_iter.bi_size = len;
1324
1325 return bio;
1326 }
1327
1328 /*
1329 * Clone a portion of a bio chain, starting at the given byte offset
1330 * into the first bio in the source chain and continuing for the
1331 * number of bytes indicated. The result is another bio chain of
1332 * exactly the given length, or a null pointer on error.
1333 *
1334 * The bio_src and offset parameters are both in-out. On entry they
1335 * refer to the first source bio and the offset into that bio where
1336 * the start of data to be cloned is located.
1337 *
1338 * On return, bio_src is updated to refer to the bio in the source
1339 * chain that contains first un-cloned byte, and *offset will
1340 * contain the offset of that byte within that bio.
1341 */
1342 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1343 unsigned int *offset,
1344 unsigned int len,
1345 gfp_t gfpmask)
1346 {
1347 struct bio *bi = *bio_src;
1348 unsigned int off = *offset;
1349 struct bio *chain = NULL;
1350 struct bio **end;
1351
1352 /* Build up a chain of clone bios up to the limit */
1353
1354 if (!bi || off >= bi->bi_iter.bi_size || !len)
1355 return NULL; /* Nothing to clone */
1356
1357 end = &chain;
1358 while (len) {
1359 unsigned int bi_size;
1360 struct bio *bio;
1361
1362 if (!bi) {
1363 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1364 goto out_err; /* EINVAL; ran out of bio's */
1365 }
1366 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1367 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1368 if (!bio)
1369 goto out_err; /* ENOMEM */
1370
1371 *end = bio;
1372 end = &bio->bi_next;
1373
1374 off += bi_size;
1375 if (off == bi->bi_iter.bi_size) {
1376 bi = bi->bi_next;
1377 off = 0;
1378 }
1379 len -= bi_size;
1380 }
1381 *bio_src = bi;
1382 *offset = off;
1383
1384 return chain;
1385 out_err:
1386 bio_chain_put(chain);
1387
1388 return NULL;
1389 }
1390
1391 /*
1392 * The default/initial value for all object request flags is 0. For
1393 * each flag, once its value is set to 1 it is never reset to 0
1394 * again.
1395 */
1396 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1397 {
1398 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1399 struct rbd_device *rbd_dev;
1400
1401 rbd_dev = obj_request->img_request->rbd_dev;
1402 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1403 obj_request);
1404 }
1405 }
1406
1407 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1408 {
1409 smp_mb();
1410 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1411 }
1412
1413 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1414 {
1415 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1416 struct rbd_device *rbd_dev = NULL;
1417
1418 if (obj_request_img_data_test(obj_request))
1419 rbd_dev = obj_request->img_request->rbd_dev;
1420 rbd_warn(rbd_dev, "obj_request %p already marked done",
1421 obj_request);
1422 }
1423 }
1424
1425 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1426 {
1427 smp_mb();
1428 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1429 }
1430
1431 /*
1432 * This sets the KNOWN flag after (possibly) setting the EXISTS
1433 * flag. The latter is set based on the "exists" value provided.
1434 *
1435 * Note that for our purposes once an object exists it never goes
1436 * away again. It's possible that the response from two existence
1437 * checks are separated by the creation of the target object, and
1438 * the first ("doesn't exist") response arrives *after* the second
1439 * ("does exist"). In that case we ignore the second one.
1440 */
1441 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1442 bool exists)
1443 {
1444 if (exists)
1445 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1446 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1447 smp_mb();
1448 }
1449
1450 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1451 {
1452 smp_mb();
1453 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1454 }
1455
1456 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1457 {
1458 smp_mb();
1459 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1460 }
1461
1462 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1463 {
1464 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1465
1466 return obj_request->img_offset <
1467 round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1468 }
1469
1470 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1471 {
1472 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1473 atomic_read(&obj_request->kref.refcount));
1474 kref_get(&obj_request->kref);
1475 }
1476
1477 static void rbd_obj_request_destroy(struct kref *kref);
1478 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1479 {
1480 rbd_assert(obj_request != NULL);
1481 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1482 atomic_read(&obj_request->kref.refcount));
1483 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1484 }
1485
1486 static void rbd_img_request_get(struct rbd_img_request *img_request)
1487 {
1488 dout("%s: img %p (was %d)\n", __func__, img_request,
1489 atomic_read(&img_request->kref.refcount));
1490 kref_get(&img_request->kref);
1491 }
1492
1493 static bool img_request_child_test(struct rbd_img_request *img_request);
1494 static void rbd_parent_request_destroy(struct kref *kref);
1495 static void rbd_img_request_destroy(struct kref *kref);
1496 static void rbd_img_request_put(struct rbd_img_request *img_request)
1497 {
1498 rbd_assert(img_request != NULL);
1499 dout("%s: img %p (was %d)\n", __func__, img_request,
1500 atomic_read(&img_request->kref.refcount));
1501 if (img_request_child_test(img_request))
1502 kref_put(&img_request->kref, rbd_parent_request_destroy);
1503 else
1504 kref_put(&img_request->kref, rbd_img_request_destroy);
1505 }
1506
1507 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1508 struct rbd_obj_request *obj_request)
1509 {
1510 rbd_assert(obj_request->img_request == NULL);
1511
1512 /* Image request now owns object's original reference */
1513 obj_request->img_request = img_request;
1514 obj_request->which = img_request->obj_request_count;
1515 rbd_assert(!obj_request_img_data_test(obj_request));
1516 obj_request_img_data_set(obj_request);
1517 rbd_assert(obj_request->which != BAD_WHICH);
1518 img_request->obj_request_count++;
1519 list_add_tail(&obj_request->links, &img_request->obj_requests);
1520 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1521 obj_request->which);
1522 }
1523
1524 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1525 struct rbd_obj_request *obj_request)
1526 {
1527 rbd_assert(obj_request->which != BAD_WHICH);
1528
1529 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1530 obj_request->which);
1531 list_del(&obj_request->links);
1532 rbd_assert(img_request->obj_request_count > 0);
1533 img_request->obj_request_count--;
1534 rbd_assert(obj_request->which == img_request->obj_request_count);
1535 obj_request->which = BAD_WHICH;
1536 rbd_assert(obj_request_img_data_test(obj_request));
1537 rbd_assert(obj_request->img_request == img_request);
1538 obj_request->img_request = NULL;
1539 obj_request->callback = NULL;
1540 rbd_obj_request_put(obj_request);
1541 }
1542
1543 static bool obj_request_type_valid(enum obj_request_type type)
1544 {
1545 switch (type) {
1546 case OBJ_REQUEST_NODATA:
1547 case OBJ_REQUEST_BIO:
1548 case OBJ_REQUEST_PAGES:
1549 return true;
1550 default:
1551 return false;
1552 }
1553 }
1554
1555 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1556 struct rbd_obj_request *obj_request)
1557 {
1558 dout("%s %p\n", __func__, obj_request);
1559 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1560 }
1561
1562 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1563 {
1564 dout("%s %p\n", __func__, obj_request);
1565 ceph_osdc_cancel_request(obj_request->osd_req);
1566 }
1567
1568 /*
1569 * Wait for an object request to complete. If interrupted, cancel the
1570 * underlying osd request.
1571 *
1572 * @timeout: in jiffies, 0 means "wait forever"
1573 */
1574 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1575 unsigned long timeout)
1576 {
1577 long ret;
1578
1579 dout("%s %p\n", __func__, obj_request);
1580 ret = wait_for_completion_interruptible_timeout(
1581 &obj_request->completion,
1582 ceph_timeout_jiffies(timeout));
1583 if (ret <= 0) {
1584 if (ret == 0)
1585 ret = -ETIMEDOUT;
1586 rbd_obj_request_end(obj_request);
1587 } else {
1588 ret = 0;
1589 }
1590
1591 dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1592 return ret;
1593 }
1594
1595 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1596 {
1597 return __rbd_obj_request_wait(obj_request, 0);
1598 }
1599
1600 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1601 unsigned long timeout)
1602 {
1603 return __rbd_obj_request_wait(obj_request, timeout);
1604 }
1605
1606 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1607 {
1608
1609 dout("%s: img %p\n", __func__, img_request);
1610
1611 /*
1612 * If no error occurred, compute the aggregate transfer
1613 * count for the image request. We could instead use
1614 * atomic64_cmpxchg() to update it as each object request
1615 * completes; not clear which way is better off hand.
1616 */
1617 if (!img_request->result) {
1618 struct rbd_obj_request *obj_request;
1619 u64 xferred = 0;
1620
1621 for_each_obj_request(img_request, obj_request)
1622 xferred += obj_request->xferred;
1623 img_request->xferred = xferred;
1624 }
1625
1626 if (img_request->callback)
1627 img_request->callback(img_request);
1628 else
1629 rbd_img_request_put(img_request);
1630 }
1631
1632 /*
1633 * The default/initial value for all image request flags is 0. Each
1634 * is conditionally set to 1 at image request initialization time
1635 * and currently never change thereafter.
1636 */
1637 static void img_request_write_set(struct rbd_img_request *img_request)
1638 {
1639 set_bit(IMG_REQ_WRITE, &img_request->flags);
1640 smp_mb();
1641 }
1642
1643 static bool img_request_write_test(struct rbd_img_request *img_request)
1644 {
1645 smp_mb();
1646 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1647 }
1648
1649 /*
1650 * Set the discard flag when the img_request is an discard request
1651 */
1652 static void img_request_discard_set(struct rbd_img_request *img_request)
1653 {
1654 set_bit(IMG_REQ_DISCARD, &img_request->flags);
1655 smp_mb();
1656 }
1657
1658 static bool img_request_discard_test(struct rbd_img_request *img_request)
1659 {
1660 smp_mb();
1661 return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1662 }
1663
1664 static void img_request_child_set(struct rbd_img_request *img_request)
1665 {
1666 set_bit(IMG_REQ_CHILD, &img_request->flags);
1667 smp_mb();
1668 }
1669
1670 static void img_request_child_clear(struct rbd_img_request *img_request)
1671 {
1672 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1673 smp_mb();
1674 }
1675
1676 static bool img_request_child_test(struct rbd_img_request *img_request)
1677 {
1678 smp_mb();
1679 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1680 }
1681
1682 static void img_request_layered_set(struct rbd_img_request *img_request)
1683 {
1684 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1685 smp_mb();
1686 }
1687
1688 static void img_request_layered_clear(struct rbd_img_request *img_request)
1689 {
1690 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1691 smp_mb();
1692 }
1693
1694 static bool img_request_layered_test(struct rbd_img_request *img_request)
1695 {
1696 smp_mb();
1697 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1698 }
1699
1700 static enum obj_operation_type
1701 rbd_img_request_op_type(struct rbd_img_request *img_request)
1702 {
1703 if (img_request_write_test(img_request))
1704 return OBJ_OP_WRITE;
1705 else if (img_request_discard_test(img_request))
1706 return OBJ_OP_DISCARD;
1707 else
1708 return OBJ_OP_READ;
1709 }
1710
1711 static void
1712 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1713 {
1714 u64 xferred = obj_request->xferred;
1715 u64 length = obj_request->length;
1716
1717 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1718 obj_request, obj_request->img_request, obj_request->result,
1719 xferred, length);
1720 /*
1721 * ENOENT means a hole in the image. We zero-fill the entire
1722 * length of the request. A short read also implies zero-fill
1723 * to the end of the request. An error requires the whole
1724 * length of the request to be reported finished with an error
1725 * to the block layer. In each case we update the xferred
1726 * count to indicate the whole request was satisfied.
1727 */
1728 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1729 if (obj_request->result == -ENOENT) {
1730 if (obj_request->type == OBJ_REQUEST_BIO)
1731 zero_bio_chain(obj_request->bio_list, 0);
1732 else
1733 zero_pages(obj_request->pages, 0, length);
1734 obj_request->result = 0;
1735 } else if (xferred < length && !obj_request->result) {
1736 if (obj_request->type == OBJ_REQUEST_BIO)
1737 zero_bio_chain(obj_request->bio_list, xferred);
1738 else
1739 zero_pages(obj_request->pages, xferred, length);
1740 }
1741 obj_request->xferred = length;
1742 obj_request_done_set(obj_request);
1743 }
1744
1745 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1746 {
1747 dout("%s: obj %p cb %p\n", __func__, obj_request,
1748 obj_request->callback);
1749 if (obj_request->callback)
1750 obj_request->callback(obj_request);
1751 else
1752 complete_all(&obj_request->completion);
1753 }
1754
1755 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1756 {
1757 dout("%s: obj %p\n", __func__, obj_request);
1758 obj_request_done_set(obj_request);
1759 }
1760
1761 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1762 {
1763 struct rbd_img_request *img_request = NULL;
1764 struct rbd_device *rbd_dev = NULL;
1765 bool layered = false;
1766
1767 if (obj_request_img_data_test(obj_request)) {
1768 img_request = obj_request->img_request;
1769 layered = img_request && img_request_layered_test(img_request);
1770 rbd_dev = img_request->rbd_dev;
1771 }
1772
1773 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1774 obj_request, img_request, obj_request->result,
1775 obj_request->xferred, obj_request->length);
1776 if (layered && obj_request->result == -ENOENT &&
1777 obj_request->img_offset < rbd_dev->parent_overlap)
1778 rbd_img_parent_read(obj_request);
1779 else if (img_request)
1780 rbd_img_obj_request_read_callback(obj_request);
1781 else
1782 obj_request_done_set(obj_request);
1783 }
1784
1785 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1786 {
1787 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1788 obj_request->result, obj_request->length);
1789 /*
1790 * There is no such thing as a successful short write. Set
1791 * it to our originally-requested length.
1792 */
1793 obj_request->xferred = obj_request->length;
1794 obj_request_done_set(obj_request);
1795 }
1796
1797 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1798 {
1799 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1800 obj_request->result, obj_request->length);
1801 /*
1802 * There is no such thing as a successful short discard. Set
1803 * it to our originally-requested length.
1804 */
1805 obj_request->xferred = obj_request->length;
1806 /* discarding a non-existent object is not a problem */
1807 if (obj_request->result == -ENOENT)
1808 obj_request->result = 0;
1809 obj_request_done_set(obj_request);
1810 }
1811
1812 /*
1813 * For a simple stat call there's nothing to do. We'll do more if
1814 * this is part of a write sequence for a layered image.
1815 */
1816 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1817 {
1818 dout("%s: obj %p\n", __func__, obj_request);
1819 obj_request_done_set(obj_request);
1820 }
1821
1822 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1823 {
1824 dout("%s: obj %p\n", __func__, obj_request);
1825
1826 if (obj_request_img_data_test(obj_request))
1827 rbd_osd_copyup_callback(obj_request);
1828 else
1829 obj_request_done_set(obj_request);
1830 }
1831
1832 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1833 struct ceph_msg *msg)
1834 {
1835 struct rbd_obj_request *obj_request = osd_req->r_priv;
1836 u16 opcode;
1837
1838 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1839 rbd_assert(osd_req == obj_request->osd_req);
1840 if (obj_request_img_data_test(obj_request)) {
1841 rbd_assert(obj_request->img_request);
1842 rbd_assert(obj_request->which != BAD_WHICH);
1843 } else {
1844 rbd_assert(obj_request->which == BAD_WHICH);
1845 }
1846
1847 if (osd_req->r_result < 0)
1848 obj_request->result = osd_req->r_result;
1849
1850 /*
1851 * We support a 64-bit length, but ultimately it has to be
1852 * passed to the block layer, which just supports a 32-bit
1853 * length field.
1854 */
1855 obj_request->xferred = osd_req->r_ops[0].outdata_len;
1856 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1857
1858 opcode = osd_req->r_ops[0].op;
1859 switch (opcode) {
1860 case CEPH_OSD_OP_READ:
1861 rbd_osd_read_callback(obj_request);
1862 break;
1863 case CEPH_OSD_OP_SETALLOCHINT:
1864 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1865 osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1866 /* fall through */
1867 case CEPH_OSD_OP_WRITE:
1868 case CEPH_OSD_OP_WRITEFULL:
1869 rbd_osd_write_callback(obj_request);
1870 break;
1871 case CEPH_OSD_OP_STAT:
1872 rbd_osd_stat_callback(obj_request);
1873 break;
1874 case CEPH_OSD_OP_DELETE:
1875 case CEPH_OSD_OP_TRUNCATE:
1876 case CEPH_OSD_OP_ZERO:
1877 rbd_osd_discard_callback(obj_request);
1878 break;
1879 case CEPH_OSD_OP_CALL:
1880 rbd_osd_call_callback(obj_request);
1881 break;
1882 case CEPH_OSD_OP_NOTIFY_ACK:
1883 case CEPH_OSD_OP_WATCH:
1884 rbd_osd_trivial_callback(obj_request);
1885 break;
1886 default:
1887 rbd_warn(NULL, "%s: unsupported op %hu",
1888 obj_request->object_name, (unsigned short) opcode);
1889 break;
1890 }
1891
1892 if (obj_request_done_test(obj_request))
1893 rbd_obj_request_complete(obj_request);
1894 }
1895
1896 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1897 {
1898 struct rbd_img_request *img_request = obj_request->img_request;
1899 struct ceph_osd_request *osd_req = obj_request->osd_req;
1900 u64 snap_id;
1901
1902 rbd_assert(osd_req != NULL);
1903
1904 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1905 ceph_osdc_build_request(osd_req, obj_request->offset,
1906 NULL, snap_id, NULL);
1907 }
1908
1909 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1910 {
1911 struct rbd_img_request *img_request = obj_request->img_request;
1912 struct ceph_osd_request *osd_req = obj_request->osd_req;
1913 struct ceph_snap_context *snapc;
1914 struct timespec mtime = CURRENT_TIME;
1915
1916 rbd_assert(osd_req != NULL);
1917
1918 snapc = img_request ? img_request->snapc : NULL;
1919 ceph_osdc_build_request(osd_req, obj_request->offset,
1920 snapc, CEPH_NOSNAP, &mtime);
1921 }
1922
1923 /*
1924 * Create an osd request. A read request has one osd op (read).
1925 * A write request has either one (watch) or two (hint+write) osd ops.
1926 * (All rbd data writes are prefixed with an allocation hint op, but
1927 * technically osd watch is a write request, hence this distinction.)
1928 */
1929 static struct ceph_osd_request *rbd_osd_req_create(
1930 struct rbd_device *rbd_dev,
1931 enum obj_operation_type op_type,
1932 unsigned int num_ops,
1933 struct rbd_obj_request *obj_request)
1934 {
1935 struct ceph_snap_context *snapc = NULL;
1936 struct ceph_osd_client *osdc;
1937 struct ceph_osd_request *osd_req;
1938
1939 if (obj_request_img_data_test(obj_request) &&
1940 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1941 struct rbd_img_request *img_request = obj_request->img_request;
1942 if (op_type == OBJ_OP_WRITE) {
1943 rbd_assert(img_request_write_test(img_request));
1944 } else {
1945 rbd_assert(img_request_discard_test(img_request));
1946 }
1947 snapc = img_request->snapc;
1948 }
1949
1950 rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1951
1952 /* Allocate and initialize the request, for the num_ops ops */
1953
1954 osdc = &rbd_dev->rbd_client->client->osdc;
1955 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1956 GFP_NOIO);
1957 if (!osd_req)
1958 return NULL; /* ENOMEM */
1959
1960 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1961 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1962 else
1963 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1964
1965 osd_req->r_callback = rbd_osd_req_callback;
1966 osd_req->r_priv = obj_request;
1967
1968 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1969 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1970
1971 return osd_req;
1972 }
1973
1974 /*
1975 * Create a copyup osd request based on the information in the object
1976 * request supplied. A copyup request has two or three osd ops, a
1977 * copyup method call, potentially a hint op, and a write or truncate
1978 * or zero op.
1979 */
1980 static struct ceph_osd_request *
1981 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1982 {
1983 struct rbd_img_request *img_request;
1984 struct ceph_snap_context *snapc;
1985 struct rbd_device *rbd_dev;
1986 struct ceph_osd_client *osdc;
1987 struct ceph_osd_request *osd_req;
1988 int num_osd_ops = 3;
1989
1990 rbd_assert(obj_request_img_data_test(obj_request));
1991 img_request = obj_request->img_request;
1992 rbd_assert(img_request);
1993 rbd_assert(img_request_write_test(img_request) ||
1994 img_request_discard_test(img_request));
1995
1996 if (img_request_discard_test(img_request))
1997 num_osd_ops = 2;
1998
1999 /* Allocate and initialize the request, for all the ops */
2000
2001 snapc = img_request->snapc;
2002 rbd_dev = img_request->rbd_dev;
2003 osdc = &rbd_dev->rbd_client->client->osdc;
2004 osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2005 false, GFP_NOIO);
2006 if (!osd_req)
2007 return NULL; /* ENOMEM */
2008
2009 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2010 osd_req->r_callback = rbd_osd_req_callback;
2011 osd_req->r_priv = obj_request;
2012
2013 osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2014 ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2015
2016 return osd_req;
2017 }
2018
2019
2020 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2021 {
2022 ceph_osdc_put_request(osd_req);
2023 }
2024
2025 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2026
2027 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2028 u64 offset, u64 length,
2029 enum obj_request_type type)
2030 {
2031 struct rbd_obj_request *obj_request;
2032 size_t size;
2033 char *name;
2034
2035 rbd_assert(obj_request_type_valid(type));
2036
2037 size = strlen(object_name) + 1;
2038 name = kmalloc(size, GFP_NOIO);
2039 if (!name)
2040 return NULL;
2041
2042 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2043 if (!obj_request) {
2044 kfree(name);
2045 return NULL;
2046 }
2047
2048 obj_request->object_name = memcpy(name, object_name, size);
2049 obj_request->offset = offset;
2050 obj_request->length = length;
2051 obj_request->flags = 0;
2052 obj_request->which = BAD_WHICH;
2053 obj_request->type = type;
2054 INIT_LIST_HEAD(&obj_request->links);
2055 init_completion(&obj_request->completion);
2056 kref_init(&obj_request->kref);
2057
2058 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2059 offset, length, (int)type, obj_request);
2060
2061 return obj_request;
2062 }
2063
2064 static void rbd_obj_request_destroy(struct kref *kref)
2065 {
2066 struct rbd_obj_request *obj_request;
2067
2068 obj_request = container_of(kref, struct rbd_obj_request, kref);
2069
2070 dout("%s: obj %p\n", __func__, obj_request);
2071
2072 rbd_assert(obj_request->img_request == NULL);
2073 rbd_assert(obj_request->which == BAD_WHICH);
2074
2075 if (obj_request->osd_req)
2076 rbd_osd_req_destroy(obj_request->osd_req);
2077
2078 rbd_assert(obj_request_type_valid(obj_request->type));
2079 switch (obj_request->type) {
2080 case OBJ_REQUEST_NODATA:
2081 break; /* Nothing to do */
2082 case OBJ_REQUEST_BIO:
2083 if (obj_request->bio_list)
2084 bio_chain_put(obj_request->bio_list);
2085 break;
2086 case OBJ_REQUEST_PAGES:
2087 if (obj_request->pages)
2088 ceph_release_page_vector(obj_request->pages,
2089 obj_request->page_count);
2090 break;
2091 }
2092
2093 kfree(obj_request->object_name);
2094 obj_request->object_name = NULL;
2095 kmem_cache_free(rbd_obj_request_cache, obj_request);
2096 }
2097
2098 /* It's OK to call this for a device with no parent */
2099
2100 static void rbd_spec_put(struct rbd_spec *spec);
2101 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2102 {
2103 rbd_dev_remove_parent(rbd_dev);
2104 rbd_spec_put(rbd_dev->parent_spec);
2105 rbd_dev->parent_spec = NULL;
2106 rbd_dev->parent_overlap = 0;
2107 }
2108
2109 /*
2110 * Parent image reference counting is used to determine when an
2111 * image's parent fields can be safely torn down--after there are no
2112 * more in-flight requests to the parent image. When the last
2113 * reference is dropped, cleaning them up is safe.
2114 */
2115 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2116 {
2117 int counter;
2118
2119 if (!rbd_dev->parent_spec)
2120 return;
2121
2122 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2123 if (counter > 0)
2124 return;
2125
2126 /* Last reference; clean up parent data structures */
2127
2128 if (!counter)
2129 rbd_dev_unparent(rbd_dev);
2130 else
2131 rbd_warn(rbd_dev, "parent reference underflow");
2132 }
2133
2134 /*
2135 * If an image has a non-zero parent overlap, get a reference to its
2136 * parent.
2137 *
2138 * Returns true if the rbd device has a parent with a non-zero
2139 * overlap and a reference for it was successfully taken, or
2140 * false otherwise.
2141 */
2142 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2143 {
2144 int counter = 0;
2145
2146 if (!rbd_dev->parent_spec)
2147 return false;
2148
2149 down_read(&rbd_dev->header_rwsem);
2150 if (rbd_dev->parent_overlap)
2151 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2152 up_read(&rbd_dev->header_rwsem);
2153
2154 if (counter < 0)
2155 rbd_warn(rbd_dev, "parent reference overflow");
2156
2157 return counter > 0;
2158 }
2159
2160 /*
2161 * Caller is responsible for filling in the list of object requests
2162 * that comprises the image request, and the Linux request pointer
2163 * (if there is one).
2164 */
2165 static struct rbd_img_request *rbd_img_request_create(
2166 struct rbd_device *rbd_dev,
2167 u64 offset, u64 length,
2168 enum obj_operation_type op_type,
2169 struct ceph_snap_context *snapc)
2170 {
2171 struct rbd_img_request *img_request;
2172
2173 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2174 if (!img_request)
2175 return NULL;
2176
2177 img_request->rq = NULL;
2178 img_request->rbd_dev = rbd_dev;
2179 img_request->offset = offset;
2180 img_request->length = length;
2181 img_request->flags = 0;
2182 if (op_type == OBJ_OP_DISCARD) {
2183 img_request_discard_set(img_request);
2184 img_request->snapc = snapc;
2185 } else if (op_type == OBJ_OP_WRITE) {
2186 img_request_write_set(img_request);
2187 img_request->snapc = snapc;
2188 } else {
2189 img_request->snap_id = rbd_dev->spec->snap_id;
2190 }
2191 if (rbd_dev_parent_get(rbd_dev))
2192 img_request_layered_set(img_request);
2193 spin_lock_init(&img_request->completion_lock);
2194 img_request->next_completion = 0;
2195 img_request->callback = NULL;
2196 img_request->result = 0;
2197 img_request->obj_request_count = 0;
2198 INIT_LIST_HEAD(&img_request->obj_requests);
2199 kref_init(&img_request->kref);
2200
2201 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2202 obj_op_name(op_type), offset, length, img_request);
2203
2204 return img_request;
2205 }
2206
2207 static void rbd_img_request_destroy(struct kref *kref)
2208 {
2209 struct rbd_img_request *img_request;
2210 struct rbd_obj_request *obj_request;
2211 struct rbd_obj_request *next_obj_request;
2212
2213 img_request = container_of(kref, struct rbd_img_request, kref);
2214
2215 dout("%s: img %p\n", __func__, img_request);
2216
2217 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2218 rbd_img_obj_request_del(img_request, obj_request);
2219 rbd_assert(img_request->obj_request_count == 0);
2220
2221 if (img_request_layered_test(img_request)) {
2222 img_request_layered_clear(img_request);
2223 rbd_dev_parent_put(img_request->rbd_dev);
2224 }
2225
2226 if (img_request_write_test(img_request) ||
2227 img_request_discard_test(img_request))
2228 ceph_put_snap_context(img_request->snapc);
2229
2230 kmem_cache_free(rbd_img_request_cache, img_request);
2231 }
2232
2233 static struct rbd_img_request *rbd_parent_request_create(
2234 struct rbd_obj_request *obj_request,
2235 u64 img_offset, u64 length)
2236 {
2237 struct rbd_img_request *parent_request;
2238 struct rbd_device *rbd_dev;
2239
2240 rbd_assert(obj_request->img_request);
2241 rbd_dev = obj_request->img_request->rbd_dev;
2242
2243 parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2244 length, OBJ_OP_READ, NULL);
2245 if (!parent_request)
2246 return NULL;
2247
2248 img_request_child_set(parent_request);
2249 rbd_obj_request_get(obj_request);
2250 parent_request->obj_request = obj_request;
2251
2252 return parent_request;
2253 }
2254
2255 static void rbd_parent_request_destroy(struct kref *kref)
2256 {
2257 struct rbd_img_request *parent_request;
2258 struct rbd_obj_request *orig_request;
2259
2260 parent_request = container_of(kref, struct rbd_img_request, kref);
2261 orig_request = parent_request->obj_request;
2262
2263 parent_request->obj_request = NULL;
2264 rbd_obj_request_put(orig_request);
2265 img_request_child_clear(parent_request);
2266
2267 rbd_img_request_destroy(kref);
2268 }
2269
2270 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2271 {
2272 struct rbd_img_request *img_request;
2273 unsigned int xferred;
2274 int result;
2275 bool more;
2276
2277 rbd_assert(obj_request_img_data_test(obj_request));
2278 img_request = obj_request->img_request;
2279
2280 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2281 xferred = (unsigned int)obj_request->xferred;
2282 result = obj_request->result;
2283 if (result) {
2284 struct rbd_device *rbd_dev = img_request->rbd_dev;
2285 enum obj_operation_type op_type;
2286
2287 if (img_request_discard_test(img_request))
2288 op_type = OBJ_OP_DISCARD;
2289 else if (img_request_write_test(img_request))
2290 op_type = OBJ_OP_WRITE;
2291 else
2292 op_type = OBJ_OP_READ;
2293
2294 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2295 obj_op_name(op_type), obj_request->length,
2296 obj_request->img_offset, obj_request->offset);
2297 rbd_warn(rbd_dev, " result %d xferred %x",
2298 result, xferred);
2299 if (!img_request->result)
2300 img_request->result = result;
2301 /*
2302 * Need to end I/O on the entire obj_request worth of
2303 * bytes in case of error.
2304 */
2305 xferred = obj_request->length;
2306 }
2307
2308 /* Image object requests don't own their page array */
2309
2310 if (obj_request->type == OBJ_REQUEST_PAGES) {
2311 obj_request->pages = NULL;
2312 obj_request->page_count = 0;
2313 }
2314
2315 if (img_request_child_test(img_request)) {
2316 rbd_assert(img_request->obj_request != NULL);
2317 more = obj_request->which < img_request->obj_request_count - 1;
2318 } else {
2319 rbd_assert(img_request->rq != NULL);
2320
2321 more = blk_update_request(img_request->rq, result, xferred);
2322 if (!more)
2323 __blk_mq_end_request(img_request->rq, result);
2324 }
2325
2326 return more;
2327 }
2328
2329 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2330 {
2331 struct rbd_img_request *img_request;
2332 u32 which = obj_request->which;
2333 bool more = true;
2334
2335 rbd_assert(obj_request_img_data_test(obj_request));
2336 img_request = obj_request->img_request;
2337
2338 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2339 rbd_assert(img_request != NULL);
2340 rbd_assert(img_request->obj_request_count > 0);
2341 rbd_assert(which != BAD_WHICH);
2342 rbd_assert(which < img_request->obj_request_count);
2343
2344 spin_lock_irq(&img_request->completion_lock);
2345 if (which != img_request->next_completion)
2346 goto out;
2347
2348 for_each_obj_request_from(img_request, obj_request) {
2349 rbd_assert(more);
2350 rbd_assert(which < img_request->obj_request_count);
2351
2352 if (!obj_request_done_test(obj_request))
2353 break;
2354 more = rbd_img_obj_end_request(obj_request);
2355 which++;
2356 }
2357
2358 rbd_assert(more ^ (which == img_request->obj_request_count));
2359 img_request->next_completion = which;
2360 out:
2361 spin_unlock_irq(&img_request->completion_lock);
2362 rbd_img_request_put(img_request);
2363
2364 if (!more)
2365 rbd_img_request_complete(img_request);
2366 }
2367
2368 /*
2369 * Add individual osd ops to the given ceph_osd_request and prepare
2370 * them for submission. num_ops is the current number of
2371 * osd operations already to the object request.
2372 */
2373 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2374 struct ceph_osd_request *osd_request,
2375 enum obj_operation_type op_type,
2376 unsigned int num_ops)
2377 {
2378 struct rbd_img_request *img_request = obj_request->img_request;
2379 struct rbd_device *rbd_dev = img_request->rbd_dev;
2380 u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2381 u64 offset = obj_request->offset;
2382 u64 length = obj_request->length;
2383 u64 img_end;
2384 u16 opcode;
2385
2386 if (op_type == OBJ_OP_DISCARD) {
2387 if (!offset && length == object_size &&
2388 (!img_request_layered_test(img_request) ||
2389 !obj_request_overlaps_parent(obj_request))) {
2390 opcode = CEPH_OSD_OP_DELETE;
2391 } else if ((offset + length == object_size)) {
2392 opcode = CEPH_OSD_OP_TRUNCATE;
2393 } else {
2394 down_read(&rbd_dev->header_rwsem);
2395 img_end = rbd_dev->header.image_size;
2396 up_read(&rbd_dev->header_rwsem);
2397
2398 if (obj_request->img_offset + length == img_end)
2399 opcode = CEPH_OSD_OP_TRUNCATE;
2400 else
2401 opcode = CEPH_OSD_OP_ZERO;
2402 }
2403 } else if (op_type == OBJ_OP_WRITE) {
2404 if (!offset && length == object_size)
2405 opcode = CEPH_OSD_OP_WRITEFULL;
2406 else
2407 opcode = CEPH_OSD_OP_WRITE;
2408 osd_req_op_alloc_hint_init(osd_request, num_ops,
2409 object_size, object_size);
2410 num_ops++;
2411 } else {
2412 opcode = CEPH_OSD_OP_READ;
2413 }
2414
2415 if (opcode == CEPH_OSD_OP_DELETE)
2416 osd_req_op_init(osd_request, num_ops, opcode, 0);
2417 else
2418 osd_req_op_extent_init(osd_request, num_ops, opcode,
2419 offset, length, 0, 0);
2420
2421 if (obj_request->type == OBJ_REQUEST_BIO)
2422 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2423 obj_request->bio_list, length);
2424 else if (obj_request->type == OBJ_REQUEST_PAGES)
2425 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2426 obj_request->pages, length,
2427 offset & ~PAGE_MASK, false, false);
2428
2429 /* Discards are also writes */
2430 if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2431 rbd_osd_req_format_write(obj_request);
2432 else
2433 rbd_osd_req_format_read(obj_request);
2434 }
2435
2436 /*
2437 * Split up an image request into one or more object requests, each
2438 * to a different object. The "type" parameter indicates whether
2439 * "data_desc" is the pointer to the head of a list of bio
2440 * structures, or the base of a page array. In either case this
2441 * function assumes data_desc describes memory sufficient to hold
2442 * all data described by the image request.
2443 */
2444 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2445 enum obj_request_type type,
2446 void *data_desc)
2447 {
2448 struct rbd_device *rbd_dev = img_request->rbd_dev;
2449 struct rbd_obj_request *obj_request = NULL;
2450 struct rbd_obj_request *next_obj_request;
2451 struct bio *bio_list = NULL;
2452 unsigned int bio_offset = 0;
2453 struct page **pages = NULL;
2454 enum obj_operation_type op_type;
2455 u64 img_offset;
2456 u64 resid;
2457
2458 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2459 (int)type, data_desc);
2460
2461 img_offset = img_request->offset;
2462 resid = img_request->length;
2463 rbd_assert(resid > 0);
2464 op_type = rbd_img_request_op_type(img_request);
2465
2466 if (type == OBJ_REQUEST_BIO) {
2467 bio_list = data_desc;
2468 rbd_assert(img_offset ==
2469 bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2470 } else if (type == OBJ_REQUEST_PAGES) {
2471 pages = data_desc;
2472 }
2473
2474 while (resid) {
2475 struct ceph_osd_request *osd_req;
2476 const char *object_name;
2477 u64 offset;
2478 u64 length;
2479
2480 object_name = rbd_segment_name(rbd_dev, img_offset);
2481 if (!object_name)
2482 goto out_unwind;
2483 offset = rbd_segment_offset(rbd_dev, img_offset);
2484 length = rbd_segment_length(rbd_dev, img_offset, resid);
2485 obj_request = rbd_obj_request_create(object_name,
2486 offset, length, type);
2487 /* object request has its own copy of the object name */
2488 rbd_segment_name_free(object_name);
2489 if (!obj_request)
2490 goto out_unwind;
2491
2492 /*
2493 * set obj_request->img_request before creating the
2494 * osd_request so that it gets the right snapc
2495 */
2496 rbd_img_obj_request_add(img_request, obj_request);
2497
2498 if (type == OBJ_REQUEST_BIO) {
2499 unsigned int clone_size;
2500
2501 rbd_assert(length <= (u64)UINT_MAX);
2502 clone_size = (unsigned int)length;
2503 obj_request->bio_list =
2504 bio_chain_clone_range(&bio_list,
2505 &bio_offset,
2506 clone_size,
2507 GFP_NOIO);
2508 if (!obj_request->bio_list)
2509 goto out_unwind;
2510 } else if (type == OBJ_REQUEST_PAGES) {
2511 unsigned int page_count;
2512
2513 obj_request->pages = pages;
2514 page_count = (u32)calc_pages_for(offset, length);
2515 obj_request->page_count = page_count;
2516 if ((offset + length) & ~PAGE_MASK)
2517 page_count--; /* more on last page */
2518 pages += page_count;
2519 }
2520
2521 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2522 (op_type == OBJ_OP_WRITE) ? 2 : 1,
2523 obj_request);
2524 if (!osd_req)
2525 goto out_unwind;
2526
2527 obj_request->osd_req = osd_req;
2528 obj_request->callback = rbd_img_obj_callback;
2529 obj_request->img_offset = img_offset;
2530
2531 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2532
2533 rbd_img_request_get(img_request);
2534
2535 img_offset += length;
2536 resid -= length;
2537 }
2538
2539 return 0;
2540
2541 out_unwind:
2542 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2543 rbd_img_obj_request_del(img_request, obj_request);
2544
2545 return -ENOMEM;
2546 }
2547
2548 static void
2549 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2550 {
2551 struct rbd_img_request *img_request;
2552 struct rbd_device *rbd_dev;
2553 struct page **pages;
2554 u32 page_count;
2555
2556 dout("%s: obj %p\n", __func__, obj_request);
2557
2558 rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2559 obj_request->type == OBJ_REQUEST_NODATA);
2560 rbd_assert(obj_request_img_data_test(obj_request));
2561 img_request = obj_request->img_request;
2562 rbd_assert(img_request);
2563
2564 rbd_dev = img_request->rbd_dev;
2565 rbd_assert(rbd_dev);
2566
2567 pages = obj_request->copyup_pages;
2568 rbd_assert(pages != NULL);
2569 obj_request->copyup_pages = NULL;
2570 page_count = obj_request->copyup_page_count;
2571 rbd_assert(page_count);
2572 obj_request->copyup_page_count = 0;
2573 ceph_release_page_vector(pages, page_count);
2574
2575 /*
2576 * We want the transfer count to reflect the size of the
2577 * original write request. There is no such thing as a
2578 * successful short write, so if the request was successful
2579 * we can just set it to the originally-requested length.
2580 */
2581 if (!obj_request->result)
2582 obj_request->xferred = obj_request->length;
2583
2584 obj_request_done_set(obj_request);
2585 }
2586
2587 static void
2588 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2589 {
2590 struct rbd_obj_request *orig_request;
2591 struct ceph_osd_request *osd_req;
2592 struct ceph_osd_client *osdc;
2593 struct rbd_device *rbd_dev;
2594 struct page **pages;
2595 enum obj_operation_type op_type;
2596 u32 page_count;
2597 int img_result;
2598 u64 parent_length;
2599
2600 rbd_assert(img_request_child_test(img_request));
2601
2602 /* First get what we need from the image request */
2603
2604 pages = img_request->copyup_pages;
2605 rbd_assert(pages != NULL);
2606 img_request->copyup_pages = NULL;
2607 page_count = img_request->copyup_page_count;
2608 rbd_assert(page_count);
2609 img_request->copyup_page_count = 0;
2610
2611 orig_request = img_request->obj_request;
2612 rbd_assert(orig_request != NULL);
2613 rbd_assert(obj_request_type_valid(orig_request->type));
2614 img_result = img_request->result;
2615 parent_length = img_request->length;
2616 rbd_assert(parent_length == img_request->xferred);
2617 rbd_img_request_put(img_request);
2618
2619 rbd_assert(orig_request->img_request);
2620 rbd_dev = orig_request->img_request->rbd_dev;
2621 rbd_assert(rbd_dev);
2622
2623 /*
2624 * If the overlap has become 0 (most likely because the
2625 * image has been flattened) we need to free the pages
2626 * and re-submit the original write request.
2627 */
2628 if (!rbd_dev->parent_overlap) {
2629 struct ceph_osd_client *osdc;
2630
2631 ceph_release_page_vector(pages, page_count);
2632 osdc = &rbd_dev->rbd_client->client->osdc;
2633 img_result = rbd_obj_request_submit(osdc, orig_request);
2634 if (!img_result)
2635 return;
2636 }
2637
2638 if (img_result)
2639 goto out_err;
2640
2641 /*
2642 * The original osd request is of no use to use any more.
2643 * We need a new one that can hold the three ops in a copyup
2644 * request. Allocate the new copyup osd request for the
2645 * original request, and release the old one.
2646 */
2647 img_result = -ENOMEM;
2648 osd_req = rbd_osd_req_create_copyup(orig_request);
2649 if (!osd_req)
2650 goto out_err;
2651 rbd_osd_req_destroy(orig_request->osd_req);
2652 orig_request->osd_req = osd_req;
2653 orig_request->copyup_pages = pages;
2654 orig_request->copyup_page_count = page_count;
2655
2656 /* Initialize the copyup op */
2657
2658 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2659 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2660 false, false);
2661
2662 /* Add the other op(s) */
2663
2664 op_type = rbd_img_request_op_type(orig_request->img_request);
2665 rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2666
2667 /* All set, send it off. */
2668
2669 osdc = &rbd_dev->rbd_client->client->osdc;
2670 img_result = rbd_obj_request_submit(osdc, orig_request);
2671 if (!img_result)
2672 return;
2673 out_err:
2674 /* Record the error code and complete the request */
2675
2676 orig_request->result = img_result;
2677 orig_request->xferred = 0;
2678 obj_request_done_set(orig_request);
2679 rbd_obj_request_complete(orig_request);
2680 }
2681
2682 /*
2683 * Read from the parent image the range of data that covers the
2684 * entire target of the given object request. This is used for
2685 * satisfying a layered image write request when the target of an
2686 * object request from the image request does not exist.
2687 *
2688 * A page array big enough to hold the returned data is allocated
2689 * and supplied to rbd_img_request_fill() as the "data descriptor."
2690 * When the read completes, this page array will be transferred to
2691 * the original object request for the copyup operation.
2692 *
2693 * If an error occurs, record it as the result of the original
2694 * object request and mark it done so it gets completed.
2695 */
2696 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2697 {
2698 struct rbd_img_request *img_request = NULL;
2699 struct rbd_img_request *parent_request = NULL;
2700 struct rbd_device *rbd_dev;
2701 u64 img_offset;
2702 u64 length;
2703 struct page **pages = NULL;
2704 u32 page_count;
2705 int result;
2706
2707 rbd_assert(obj_request_img_data_test(obj_request));
2708 rbd_assert(obj_request_type_valid(obj_request->type));
2709
2710 img_request = obj_request->img_request;
2711 rbd_assert(img_request != NULL);
2712 rbd_dev = img_request->rbd_dev;
2713 rbd_assert(rbd_dev->parent != NULL);
2714
2715 /*
2716 * Determine the byte range covered by the object in the
2717 * child image to which the original request was to be sent.
2718 */
2719 img_offset = obj_request->img_offset - obj_request->offset;
2720 length = (u64)1 << rbd_dev->header.obj_order;
2721
2722 /*
2723 * There is no defined parent data beyond the parent
2724 * overlap, so limit what we read at that boundary if
2725 * necessary.
2726 */
2727 if (img_offset + length > rbd_dev->parent_overlap) {
2728 rbd_assert(img_offset < rbd_dev->parent_overlap);
2729 length = rbd_dev->parent_overlap - img_offset;
2730 }
2731
2732 /*
2733 * Allocate a page array big enough to receive the data read
2734 * from the parent.
2735 */
2736 page_count = (u32)calc_pages_for(0, length);
2737 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2738 if (IS_ERR(pages)) {
2739 result = PTR_ERR(pages);
2740 pages = NULL;
2741 goto out_err;
2742 }
2743
2744 result = -ENOMEM;
2745 parent_request = rbd_parent_request_create(obj_request,
2746 img_offset, length);
2747 if (!parent_request)
2748 goto out_err;
2749
2750 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2751 if (result)
2752 goto out_err;
2753 parent_request->copyup_pages = pages;
2754 parent_request->copyup_page_count = page_count;
2755
2756 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2757 result = rbd_img_request_submit(parent_request);
2758 if (!result)
2759 return 0;
2760
2761 parent_request->copyup_pages = NULL;
2762 parent_request->copyup_page_count = 0;
2763 parent_request->obj_request = NULL;
2764 rbd_obj_request_put(obj_request);
2765 out_err:
2766 if (pages)
2767 ceph_release_page_vector(pages, page_count);
2768 if (parent_request)
2769 rbd_img_request_put(parent_request);
2770 obj_request->result = result;
2771 obj_request->xferred = 0;
2772 obj_request_done_set(obj_request);
2773
2774 return result;
2775 }
2776
2777 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2778 {
2779 struct rbd_obj_request *orig_request;
2780 struct rbd_device *rbd_dev;
2781 int result;
2782
2783 rbd_assert(!obj_request_img_data_test(obj_request));
2784
2785 /*
2786 * All we need from the object request is the original
2787 * request and the result of the STAT op. Grab those, then
2788 * we're done with the request.
2789 */
2790 orig_request = obj_request->obj_request;
2791 obj_request->obj_request = NULL;
2792 rbd_obj_request_put(orig_request);
2793 rbd_assert(orig_request);
2794 rbd_assert(orig_request->img_request);
2795
2796 result = obj_request->result;
2797 obj_request->result = 0;
2798
2799 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2800 obj_request, orig_request, result,
2801 obj_request->xferred, obj_request->length);
2802 rbd_obj_request_put(obj_request);
2803
2804 /*
2805 * If the overlap has become 0 (most likely because the
2806 * image has been flattened) we need to free the pages
2807 * and re-submit the original write request.
2808 */
2809 rbd_dev = orig_request->img_request->rbd_dev;
2810 if (!rbd_dev->parent_overlap) {
2811 struct ceph_osd_client *osdc;
2812
2813 osdc = &rbd_dev->rbd_client->client->osdc;
2814 result = rbd_obj_request_submit(osdc, orig_request);
2815 if (!result)
2816 return;
2817 }
2818
2819 /*
2820 * Our only purpose here is to determine whether the object
2821 * exists, and we don't want to treat the non-existence as
2822 * an error. If something else comes back, transfer the
2823 * error to the original request and complete it now.
2824 */
2825 if (!result) {
2826 obj_request_existence_set(orig_request, true);
2827 } else if (result == -ENOENT) {
2828 obj_request_existence_set(orig_request, false);
2829 } else if (result) {
2830 orig_request->result = result;
2831 goto out;
2832 }
2833
2834 /*
2835 * Resubmit the original request now that we have recorded
2836 * whether the target object exists.
2837 */
2838 orig_request->result = rbd_img_obj_request_submit(orig_request);
2839 out:
2840 if (orig_request->result)
2841 rbd_obj_request_complete(orig_request);
2842 }
2843
2844 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2845 {
2846 struct rbd_obj_request *stat_request;
2847 struct rbd_device *rbd_dev;
2848 struct ceph_osd_client *osdc;
2849 struct page **pages = NULL;
2850 u32 page_count;
2851 size_t size;
2852 int ret;
2853
2854 /*
2855 * The response data for a STAT call consists of:
2856 * le64 length;
2857 * struct {
2858 * le32 tv_sec;
2859 * le32 tv_nsec;
2860 * } mtime;
2861 */
2862 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2863 page_count = (u32)calc_pages_for(0, size);
2864 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2865 if (IS_ERR(pages))
2866 return PTR_ERR(pages);
2867
2868 ret = -ENOMEM;
2869 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2870 OBJ_REQUEST_PAGES);
2871 if (!stat_request)
2872 goto out;
2873
2874 rbd_obj_request_get(obj_request);
2875 stat_request->obj_request = obj_request;
2876 stat_request->pages = pages;
2877 stat_request->page_count = page_count;
2878
2879 rbd_assert(obj_request->img_request);
2880 rbd_dev = obj_request->img_request->rbd_dev;
2881 stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2882 stat_request);
2883 if (!stat_request->osd_req)
2884 goto out;
2885 stat_request->callback = rbd_img_obj_exists_callback;
2886
2887 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2888 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2889 false, false);
2890 rbd_osd_req_format_read(stat_request);
2891
2892 osdc = &rbd_dev->rbd_client->client->osdc;
2893 ret = rbd_obj_request_submit(osdc, stat_request);
2894 out:
2895 if (ret)
2896 rbd_obj_request_put(obj_request);
2897
2898 return ret;
2899 }
2900
2901 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2902 {
2903 struct rbd_img_request *img_request;
2904 struct rbd_device *rbd_dev;
2905
2906 rbd_assert(obj_request_img_data_test(obj_request));
2907
2908 img_request = obj_request->img_request;
2909 rbd_assert(img_request);
2910 rbd_dev = img_request->rbd_dev;
2911
2912 /* Reads */
2913 if (!img_request_write_test(img_request) &&
2914 !img_request_discard_test(img_request))
2915 return true;
2916
2917 /* Non-layered writes */
2918 if (!img_request_layered_test(img_request))
2919 return true;
2920
2921 /*
2922 * Layered writes outside of the parent overlap range don't
2923 * share any data with the parent.
2924 */
2925 if (!obj_request_overlaps_parent(obj_request))
2926 return true;
2927
2928 /*
2929 * Entire-object layered writes - we will overwrite whatever
2930 * parent data there is anyway.
2931 */
2932 if (!obj_request->offset &&
2933 obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2934 return true;
2935
2936 /*
2937 * If the object is known to already exist, its parent data has
2938 * already been copied.
2939 */
2940 if (obj_request_known_test(obj_request) &&
2941 obj_request_exists_test(obj_request))
2942 return true;
2943
2944 return false;
2945 }
2946
2947 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2948 {
2949 if (img_obj_request_simple(obj_request)) {
2950 struct rbd_device *rbd_dev;
2951 struct ceph_osd_client *osdc;
2952
2953 rbd_dev = obj_request->img_request->rbd_dev;
2954 osdc = &rbd_dev->rbd_client->client->osdc;
2955
2956 return rbd_obj_request_submit(osdc, obj_request);
2957 }
2958
2959 /*
2960 * It's a layered write. The target object might exist but
2961 * we may not know that yet. If we know it doesn't exist,
2962 * start by reading the data for the full target object from
2963 * the parent so we can use it for a copyup to the target.
2964 */
2965 if (obj_request_known_test(obj_request))
2966 return rbd_img_obj_parent_read_full(obj_request);
2967
2968 /* We don't know whether the target exists. Go find out. */
2969
2970 return rbd_img_obj_exists_submit(obj_request);
2971 }
2972
2973 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2974 {
2975 struct rbd_obj_request *obj_request;
2976 struct rbd_obj_request *next_obj_request;
2977
2978 dout("%s: img %p\n", __func__, img_request);
2979 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2980 int ret;
2981
2982 ret = rbd_img_obj_request_submit(obj_request);
2983 if (ret)
2984 return ret;
2985 }
2986
2987 return 0;
2988 }
2989
2990 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2991 {
2992 struct rbd_obj_request *obj_request;
2993 struct rbd_device *rbd_dev;
2994 u64 obj_end;
2995 u64 img_xferred;
2996 int img_result;
2997
2998 rbd_assert(img_request_child_test(img_request));
2999
3000 /* First get what we need from the image request and release it */
3001
3002 obj_request = img_request->obj_request;
3003 img_xferred = img_request->xferred;
3004 img_result = img_request->result;
3005 rbd_img_request_put(img_request);
3006
3007 /*
3008 * If the overlap has become 0 (most likely because the
3009 * image has been flattened) we need to re-submit the
3010 * original request.
3011 */
3012 rbd_assert(obj_request);
3013 rbd_assert(obj_request->img_request);
3014 rbd_dev = obj_request->img_request->rbd_dev;
3015 if (!rbd_dev->parent_overlap) {
3016 struct ceph_osd_client *osdc;
3017
3018 osdc = &rbd_dev->rbd_client->client->osdc;
3019 img_result = rbd_obj_request_submit(osdc, obj_request);
3020 if (!img_result)
3021 return;
3022 }
3023
3024 obj_request->result = img_result;
3025 if (obj_request->result)
3026 goto out;
3027
3028 /*
3029 * We need to zero anything beyond the parent overlap
3030 * boundary. Since rbd_img_obj_request_read_callback()
3031 * will zero anything beyond the end of a short read, an
3032 * easy way to do this is to pretend the data from the
3033 * parent came up short--ending at the overlap boundary.
3034 */
3035 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3036 obj_end = obj_request->img_offset + obj_request->length;
3037 if (obj_end > rbd_dev->parent_overlap) {
3038 u64 xferred = 0;
3039
3040 if (obj_request->img_offset < rbd_dev->parent_overlap)
3041 xferred = rbd_dev->parent_overlap -
3042 obj_request->img_offset;
3043
3044 obj_request->xferred = min(img_xferred, xferred);
3045 } else {
3046 obj_request->xferred = img_xferred;
3047 }
3048 out:
3049 rbd_img_obj_request_read_callback(obj_request);
3050 rbd_obj_request_complete(obj_request);
3051 }
3052
3053 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3054 {
3055 struct rbd_img_request *img_request;
3056 int result;
3057
3058 rbd_assert(obj_request_img_data_test(obj_request));
3059 rbd_assert(obj_request->img_request != NULL);
3060 rbd_assert(obj_request->result == (s32) -ENOENT);
3061 rbd_assert(obj_request_type_valid(obj_request->type));
3062
3063 /* rbd_read_finish(obj_request, obj_request->length); */
3064 img_request = rbd_parent_request_create(obj_request,
3065 obj_request->img_offset,
3066 obj_request->length);
3067 result = -ENOMEM;
3068 if (!img_request)
3069 goto out_err;
3070
3071 if (obj_request->type == OBJ_REQUEST_BIO)
3072 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3073 obj_request->bio_list);
3074 else
3075 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3076 obj_request->pages);
3077 if (result)
3078 goto out_err;
3079
3080 img_request->callback = rbd_img_parent_read_callback;
3081 result = rbd_img_request_submit(img_request);
3082 if (result)
3083 goto out_err;
3084
3085 return;
3086 out_err:
3087 if (img_request)
3088 rbd_img_request_put(img_request);
3089 obj_request->result = result;
3090 obj_request->xferred = 0;
3091 obj_request_done_set(obj_request);
3092 }
3093
3094 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3095 {
3096 struct rbd_obj_request *obj_request;
3097 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3098 int ret;
3099
3100 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3101 OBJ_REQUEST_NODATA);
3102 if (!obj_request)
3103 return -ENOMEM;
3104
3105 ret = -ENOMEM;
3106 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3107 obj_request);
3108 if (!obj_request->osd_req)
3109 goto out;
3110
3111 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3112 notify_id, 0, 0);
3113 rbd_osd_req_format_read(obj_request);
3114
3115 ret = rbd_obj_request_submit(osdc, obj_request);
3116 if (ret)
3117 goto out;
3118 ret = rbd_obj_request_wait(obj_request);
3119 out:
3120 rbd_obj_request_put(obj_request);
3121
3122 return ret;
3123 }
3124
3125 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3126 {
3127 struct rbd_device *rbd_dev = (struct rbd_device *)data;
3128 int ret;
3129
3130 if (!rbd_dev)
3131 return;
3132
3133 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3134 rbd_dev->header_name, (unsigned long long)notify_id,
3135 (unsigned int)opcode);
3136
3137 /*
3138 * Until adequate refresh error handling is in place, there is
3139 * not much we can do here, except warn.
3140 *
3141 * See http://tracker.ceph.com/issues/5040
3142 */
3143 ret = rbd_dev_refresh(rbd_dev);
3144 if (ret)
3145 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3146
3147 ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3148 if (ret)
3149 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3150 }
3151
3152 /*
3153 * Send a (un)watch request and wait for the ack. Return a request
3154 * with a ref held on success or error.
3155 */
3156 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3157 struct rbd_device *rbd_dev,
3158 bool watch)
3159 {
3160 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3161 struct ceph_options *opts = osdc->client->options;
3162 struct rbd_obj_request *obj_request;
3163 int ret;
3164
3165 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3166 OBJ_REQUEST_NODATA);
3167 if (!obj_request)
3168 return ERR_PTR(-ENOMEM);
3169
3170 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3171 obj_request);
3172 if (!obj_request->osd_req) {
3173 ret = -ENOMEM;
3174 goto out;
3175 }
3176
3177 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3178 rbd_dev->watch_event->cookie, 0, watch);
3179 rbd_osd_req_format_write(obj_request);
3180
3181 if (watch)
3182 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3183
3184 ret = rbd_obj_request_submit(osdc, obj_request);
3185 if (ret)
3186 goto out;
3187
3188 ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3189 if (ret)
3190 goto out;
3191
3192 ret = obj_request->result;
3193 if (ret) {
3194 if (watch)
3195 rbd_obj_request_end(obj_request);
3196 goto out;
3197 }
3198
3199 return obj_request;
3200
3201 out:
3202 rbd_obj_request_put(obj_request);
3203 return ERR_PTR(ret);
3204 }
3205
3206 /*
3207 * Initiate a watch request, synchronously.
3208 */
3209 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3210 {
3211 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3212 struct rbd_obj_request *obj_request;
3213 int ret;
3214
3215 rbd_assert(!rbd_dev->watch_event);
3216 rbd_assert(!rbd_dev->watch_request);
3217
3218 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3219 &rbd_dev->watch_event);
3220 if (ret < 0)
3221 return ret;
3222
3223 obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3224 if (IS_ERR(obj_request)) {
3225 ceph_osdc_cancel_event(rbd_dev->watch_event);
3226 rbd_dev->watch_event = NULL;
3227 return PTR_ERR(obj_request);
3228 }
3229
3230 /*
3231 * A watch request is set to linger, so the underlying osd
3232 * request won't go away until we unregister it. We retain
3233 * a pointer to the object request during that time (in
3234 * rbd_dev->watch_request), so we'll keep a reference to it.
3235 * We'll drop that reference after we've unregistered it in
3236 * rbd_dev_header_unwatch_sync().
3237 */
3238 rbd_dev->watch_request = obj_request;
3239
3240 return 0;
3241 }
3242
3243 /*
3244 * Tear down a watch request, synchronously.
3245 */
3246 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3247 {
3248 struct rbd_obj_request *obj_request;
3249
3250 rbd_assert(rbd_dev->watch_event);
3251 rbd_assert(rbd_dev->watch_request);
3252
3253 rbd_obj_request_end(rbd_dev->watch_request);
3254 rbd_obj_request_put(rbd_dev->watch_request);
3255 rbd_dev->watch_request = NULL;
3256
3257 obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3258 if (!IS_ERR(obj_request))
3259 rbd_obj_request_put(obj_request);
3260 else
3261 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3262 PTR_ERR(obj_request));
3263
3264 ceph_osdc_cancel_event(rbd_dev->watch_event);
3265 rbd_dev->watch_event = NULL;
3266 }
3267
3268 /*
3269 * Synchronous osd object method call. Returns the number of bytes
3270 * returned in the outbound buffer, or a negative error code.
3271 */
3272 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3273 const char *object_name,
3274 const char *class_name,
3275 const char *method_name,
3276 const void *outbound,
3277 size_t outbound_size,
3278 void *inbound,
3279 size_t inbound_size)
3280 {
3281 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3282 struct rbd_obj_request *obj_request;
3283 struct page **pages;
3284 u32 page_count;
3285 int ret;
3286
3287 /*
3288 * Method calls are ultimately read operations. The result
3289 * should placed into the inbound buffer provided. They
3290 * also supply outbound data--parameters for the object
3291 * method. Currently if this is present it will be a
3292 * snapshot id.
3293 */
3294 page_count = (u32)calc_pages_for(0, inbound_size);
3295 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3296 if (IS_ERR(pages))
3297 return PTR_ERR(pages);
3298
3299 ret = -ENOMEM;
3300 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3301 OBJ_REQUEST_PAGES);
3302 if (!obj_request)
3303 goto out;
3304
3305 obj_request->pages = pages;
3306 obj_request->page_count = page_count;
3307
3308 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3309 obj_request);
3310 if (!obj_request->osd_req)
3311 goto out;
3312
3313 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3314 class_name, method_name);
3315 if (outbound_size) {
3316 struct ceph_pagelist *pagelist;
3317
3318 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3319 if (!pagelist)
3320 goto out;
3321
3322 ceph_pagelist_init(pagelist);
3323 ceph_pagelist_append(pagelist, outbound, outbound_size);
3324 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3325 pagelist);
3326 }
3327 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3328 obj_request->pages, inbound_size,
3329 0, false, false);
3330 rbd_osd_req_format_read(obj_request);
3331
3332 ret = rbd_obj_request_submit(osdc, obj_request);
3333 if (ret)
3334 goto out;
3335 ret = rbd_obj_request_wait(obj_request);
3336 if (ret)
3337 goto out;
3338
3339 ret = obj_request->result;
3340 if (ret < 0)
3341 goto out;
3342
3343 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3344 ret = (int)obj_request->xferred;
3345 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3346 out:
3347 if (obj_request)
3348 rbd_obj_request_put(obj_request);
3349 else
3350 ceph_release_page_vector(pages, page_count);
3351
3352 return ret;
3353 }
3354
3355 static void rbd_queue_workfn(struct work_struct *work)
3356 {
3357 struct request *rq = blk_mq_rq_from_pdu(work);
3358 struct rbd_device *rbd_dev = rq->q->queuedata;
3359 struct rbd_img_request *img_request;
3360 struct ceph_snap_context *snapc = NULL;
3361 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3362 u64 length = blk_rq_bytes(rq);
3363 enum obj_operation_type op_type;
3364 u64 mapping_size;
3365 int result;
3366
3367 if (rq->cmd_type != REQ_TYPE_FS) {
3368 dout("%s: non-fs request type %d\n", __func__,
3369 (int) rq->cmd_type);
3370 result = -EIO;
3371 goto err;
3372 }
3373
3374 if (rq->cmd_flags & REQ_DISCARD)
3375 op_type = OBJ_OP_DISCARD;
3376 else if (rq->cmd_flags & REQ_WRITE)
3377 op_type = OBJ_OP_WRITE;
3378 else
3379 op_type = OBJ_OP_READ;
3380
3381 /* Ignore/skip any zero-length requests */
3382
3383 if (!length) {
3384 dout("%s: zero-length request\n", __func__);
3385 result = 0;
3386 goto err_rq;
3387 }
3388
3389 /* Only reads are allowed to a read-only device */
3390
3391 if (op_type != OBJ_OP_READ) {
3392 if (rbd_dev->mapping.read_only) {
3393 result = -EROFS;
3394 goto err_rq;
3395 }
3396 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3397 }
3398
3399 /*
3400 * Quit early if the mapped snapshot no longer exists. It's
3401 * still possible the snapshot will have disappeared by the
3402 * time our request arrives at the osd, but there's no sense in
3403 * sending it if we already know.
3404 */
3405 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3406 dout("request for non-existent snapshot");
3407 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3408 result = -ENXIO;
3409 goto err_rq;
3410 }
3411
3412 if (offset && length > U64_MAX - offset + 1) {
3413 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3414 length);
3415 result = -EINVAL;
3416 goto err_rq; /* Shouldn't happen */
3417 }
3418
3419 blk_mq_start_request(rq);
3420
3421 down_read(&rbd_dev->header_rwsem);
3422 mapping_size = rbd_dev->mapping.size;
3423 if (op_type != OBJ_OP_READ) {
3424 snapc = rbd_dev->header.snapc;
3425 ceph_get_snap_context(snapc);
3426 }
3427 up_read(&rbd_dev->header_rwsem);
3428
3429 if (offset + length > mapping_size) {
3430 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3431 length, mapping_size);
3432 result = -EIO;
3433 goto err_rq;
3434 }
3435
3436 img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3437 snapc);
3438 if (!img_request) {
3439 result = -ENOMEM;
3440 goto err_rq;
3441 }
3442 img_request->rq = rq;
3443 snapc = NULL; /* img_request consumes a ref */
3444
3445 if (op_type == OBJ_OP_DISCARD)
3446 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3447 NULL);
3448 else
3449 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3450 rq->bio);
3451 if (result)
3452 goto err_img_request;
3453
3454 result = rbd_img_request_submit(img_request);
3455 if (result)
3456 goto err_img_request;
3457
3458 return;
3459
3460 err_img_request:
3461 rbd_img_request_put(img_request);
3462 err_rq:
3463 if (result)
3464 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3465 obj_op_name(op_type), length, offset, result);
3466 ceph_put_snap_context(snapc);
3467 err:
3468 blk_mq_end_request(rq, result);
3469 }
3470
3471 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3472 const struct blk_mq_queue_data *bd)
3473 {
3474 struct request *rq = bd->rq;
3475 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3476
3477 queue_work(rbd_wq, work);
3478 return BLK_MQ_RQ_QUEUE_OK;
3479 }
3480
3481 static void rbd_free_disk(struct rbd_device *rbd_dev)
3482 {
3483 struct gendisk *disk = rbd_dev->disk;
3484
3485 if (!disk)
3486 return;
3487
3488 rbd_dev->disk = NULL;
3489 if (disk->flags & GENHD_FL_UP) {
3490 del_gendisk(disk);
3491 if (disk->queue)
3492 blk_cleanup_queue(disk->queue);
3493 blk_mq_free_tag_set(&rbd_dev->tag_set);
3494 }
3495 put_disk(disk);
3496 }
3497
3498 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3499 const char *object_name,
3500 u64 offset, u64 length, void *buf)
3501
3502 {
3503 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3504 struct rbd_obj_request *obj_request;
3505 struct page **pages = NULL;
3506 u32 page_count;
3507 size_t size;
3508 int ret;
3509
3510 page_count = (u32) calc_pages_for(offset, length);
3511 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3512 if (IS_ERR(pages))
3513 return PTR_ERR(pages);
3514
3515 ret = -ENOMEM;
3516 obj_request = rbd_obj_request_create(object_name, offset, length,
3517 OBJ_REQUEST_PAGES);
3518 if (!obj_request)
3519 goto out;
3520
3521 obj_request->pages = pages;
3522 obj_request->page_count = page_count;
3523
3524 obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3525 obj_request);
3526 if (!obj_request->osd_req)
3527 goto out;
3528
3529 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3530 offset, length, 0, 0);
3531 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3532 obj_request->pages,
3533 obj_request->length,
3534 obj_request->offset & ~PAGE_MASK,
3535 false, false);
3536 rbd_osd_req_format_read(obj_request);
3537
3538 ret = rbd_obj_request_submit(osdc, obj_request);
3539 if (ret)
3540 goto out;
3541 ret = rbd_obj_request_wait(obj_request);
3542 if (ret)
3543 goto out;
3544
3545 ret = obj_request->result;
3546 if (ret < 0)
3547 goto out;
3548
3549 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3550 size = (size_t) obj_request->xferred;
3551 ceph_copy_from_page_vector(pages, buf, 0, size);
3552 rbd_assert(size <= (size_t)INT_MAX);
3553 ret = (int)size;
3554 out:
3555 if (obj_request)
3556 rbd_obj_request_put(obj_request);
3557 else
3558 ceph_release_page_vector(pages, page_count);
3559
3560 return ret;
3561 }
3562
3563 /*
3564 * Read the complete header for the given rbd device. On successful
3565 * return, the rbd_dev->header field will contain up-to-date
3566 * information about the image.
3567 */
3568 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3569 {
3570 struct rbd_image_header_ondisk *ondisk = NULL;
3571 u32 snap_count = 0;
3572 u64 names_size = 0;
3573 u32 want_count;
3574 int ret;
3575
3576 /*
3577 * The complete header will include an array of its 64-bit
3578 * snapshot ids, followed by the names of those snapshots as
3579 * a contiguous block of NUL-terminated strings. Note that
3580 * the number of snapshots could change by the time we read
3581 * it in, in which case we re-read it.
3582 */
3583 do {
3584 size_t size;
3585
3586 kfree(ondisk);
3587
3588 size = sizeof (*ondisk);
3589 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3590 size += names_size;
3591 ondisk = kmalloc(size, GFP_KERNEL);
3592 if (!ondisk)
3593 return -ENOMEM;
3594
3595 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3596 0, size, ondisk);
3597 if (ret < 0)
3598 goto out;
3599 if ((size_t)ret < size) {
3600 ret = -ENXIO;
3601 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3602 size, ret);
3603 goto out;
3604 }
3605 if (!rbd_dev_ondisk_valid(ondisk)) {
3606 ret = -ENXIO;
3607 rbd_warn(rbd_dev, "invalid header");
3608 goto out;
3609 }
3610
3611 names_size = le64_to_cpu(ondisk->snap_names_len);
3612 want_count = snap_count;
3613 snap_count = le32_to_cpu(ondisk->snap_count);
3614 } while (snap_count != want_count);
3615
3616 ret = rbd_header_from_disk(rbd_dev, ondisk);
3617 out:
3618 kfree(ondisk);
3619
3620 return ret;
3621 }
3622
3623 /*
3624 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3625 * has disappeared from the (just updated) snapshot context.
3626 */
3627 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3628 {
3629 u64 snap_id;
3630
3631 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3632 return;
3633
3634 snap_id = rbd_dev->spec->snap_id;
3635 if (snap_id == CEPH_NOSNAP)
3636 return;
3637
3638 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3639 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3640 }
3641
3642 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3643 {
3644 sector_t size;
3645 bool removing;
3646
3647 /*
3648 * Don't hold the lock while doing disk operations,
3649 * or lock ordering will conflict with the bdev mutex via:
3650 * rbd_add() -> blkdev_get() -> rbd_open()
3651 */
3652 spin_lock_irq(&rbd_dev->lock);
3653 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3654 spin_unlock_irq(&rbd_dev->lock);
3655 /*
3656 * If the device is being removed, rbd_dev->disk has
3657 * been destroyed, so don't try to update its size
3658 */
3659 if (!removing) {
3660 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3661 dout("setting size to %llu sectors", (unsigned long long)size);
3662 set_capacity(rbd_dev->disk, size);
3663 revalidate_disk(rbd_dev->disk);
3664 }
3665 }
3666
3667 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3668 {
3669 u64 mapping_size;
3670 int ret;
3671
3672 down_write(&rbd_dev->header_rwsem);
3673 mapping_size = rbd_dev->mapping.size;
3674
3675 ret = rbd_dev_header_info(rbd_dev);
3676 if (ret)
3677 goto out;
3678
3679 /*
3680 * If there is a parent, see if it has disappeared due to the
3681 * mapped image getting flattened.
3682 */
3683 if (rbd_dev->parent) {
3684 ret = rbd_dev_v2_parent_info(rbd_dev);
3685 if (ret)
3686 goto out;
3687 }
3688
3689 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3690 rbd_dev->mapping.size = rbd_dev->header.image_size;
3691 } else {
3692 /* validate mapped snapshot's EXISTS flag */
3693 rbd_exists_validate(rbd_dev);
3694 }
3695
3696 out:
3697 up_write(&rbd_dev->header_rwsem);
3698 if (!ret && mapping_size != rbd_dev->mapping.size)
3699 rbd_dev_update_size(rbd_dev);
3700
3701 return ret;
3702 }
3703
3704 static int rbd_init_request(void *data, struct request *rq,
3705 unsigned int hctx_idx, unsigned int request_idx,
3706 unsigned int numa_node)
3707 {
3708 struct work_struct *work = blk_mq_rq_to_pdu(rq);
3709
3710 INIT_WORK(work, rbd_queue_workfn);
3711 return 0;
3712 }
3713
3714 static struct blk_mq_ops rbd_mq_ops = {
3715 .queue_rq = rbd_queue_rq,
3716 .map_queue = blk_mq_map_queue,
3717 .init_request = rbd_init_request,
3718 };
3719
3720 static int rbd_init_disk(struct rbd_device *rbd_dev)
3721 {
3722 struct gendisk *disk;
3723 struct request_queue *q;
3724 u64 segment_size;
3725 int err;
3726
3727 /* create gendisk info */
3728 disk = alloc_disk(single_major ?
3729 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3730 RBD_MINORS_PER_MAJOR);
3731 if (!disk)
3732 return -ENOMEM;
3733
3734 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3735 rbd_dev->dev_id);
3736 disk->major = rbd_dev->major;
3737 disk->first_minor = rbd_dev->minor;
3738 if (single_major)
3739 disk->flags |= GENHD_FL_EXT_DEVT;
3740 disk->fops = &rbd_bd_ops;
3741 disk->private_data = rbd_dev;
3742
3743 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3744 rbd_dev->tag_set.ops = &rbd_mq_ops;
3745 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3746 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3747 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3748 rbd_dev->tag_set.nr_hw_queues = 1;
3749 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3750
3751 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3752 if (err)
3753 goto out_disk;
3754
3755 q = blk_mq_init_queue(&rbd_dev->tag_set);
3756 if (IS_ERR(q)) {
3757 err = PTR_ERR(q);
3758 goto out_tag_set;
3759 }
3760
3761 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3762 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3763
3764 /* set io sizes to object size */
3765 segment_size = rbd_obj_bytes(&rbd_dev->header);
3766 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3767 q->limits.max_sectors = queue_max_hw_sectors(q);
3768 blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3769 blk_queue_max_segment_size(q, segment_size);
3770 blk_queue_io_min(q, segment_size);
3771 blk_queue_io_opt(q, segment_size);
3772
3773 /* enable the discard support */
3774 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3775 q->limits.discard_granularity = segment_size;
3776 q->limits.discard_alignment = segment_size;
3777 blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3778 q->limits.discard_zeroes_data = 1;
3779
3780 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3781 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3782
3783 disk->queue = q;
3784
3785 q->queuedata = rbd_dev;
3786
3787 rbd_dev->disk = disk;
3788
3789 return 0;
3790 out_tag_set:
3791 blk_mq_free_tag_set(&rbd_dev->tag_set);
3792 out_disk:
3793 put_disk(disk);
3794 return err;
3795 }
3796
3797 /*
3798 sysfs
3799 */
3800
3801 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3802 {
3803 return container_of(dev, struct rbd_device, dev);
3804 }
3805
3806 static ssize_t rbd_size_show(struct device *dev,
3807 struct device_attribute *attr, char *buf)
3808 {
3809 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3810
3811 return sprintf(buf, "%llu\n",
3812 (unsigned long long)rbd_dev->mapping.size);
3813 }
3814
3815 /*
3816 * Note this shows the features for whatever's mapped, which is not
3817 * necessarily the base image.
3818 */
3819 static ssize_t rbd_features_show(struct device *dev,
3820 struct device_attribute *attr, char *buf)
3821 {
3822 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3823
3824 return sprintf(buf, "0x%016llx\n",
3825 (unsigned long long)rbd_dev->mapping.features);
3826 }
3827
3828 static ssize_t rbd_major_show(struct device *dev,
3829 struct device_attribute *attr, char *buf)
3830 {
3831 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3832
3833 if (rbd_dev->major)
3834 return sprintf(buf, "%d\n", rbd_dev->major);
3835
3836 return sprintf(buf, "(none)\n");
3837 }
3838
3839 static ssize_t rbd_minor_show(struct device *dev,
3840 struct device_attribute *attr, char *buf)
3841 {
3842 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843
3844 return sprintf(buf, "%d\n", rbd_dev->minor);
3845 }
3846
3847 static ssize_t rbd_client_id_show(struct device *dev,
3848 struct device_attribute *attr, char *buf)
3849 {
3850 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3851
3852 return sprintf(buf, "client%lld\n",
3853 ceph_client_id(rbd_dev->rbd_client->client));
3854 }
3855
3856 static ssize_t rbd_pool_show(struct device *dev,
3857 struct device_attribute *attr, char *buf)
3858 {
3859 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3862 }
3863
3864 static ssize_t rbd_pool_id_show(struct device *dev,
3865 struct device_attribute *attr, char *buf)
3866 {
3867 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3868
3869 return sprintf(buf, "%llu\n",
3870 (unsigned long long) rbd_dev->spec->pool_id);
3871 }
3872
3873 static ssize_t rbd_name_show(struct device *dev,
3874 struct device_attribute *attr, char *buf)
3875 {
3876 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3877
3878 if (rbd_dev->spec->image_name)
3879 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3880
3881 return sprintf(buf, "(unknown)\n");
3882 }
3883
3884 static ssize_t rbd_image_id_show(struct device *dev,
3885 struct device_attribute *attr, char *buf)
3886 {
3887 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3888
3889 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3890 }
3891
3892 /*
3893 * Shows the name of the currently-mapped snapshot (or
3894 * RBD_SNAP_HEAD_NAME for the base image).
3895 */
3896 static ssize_t rbd_snap_show(struct device *dev,
3897 struct device_attribute *attr,
3898 char *buf)
3899 {
3900 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3901
3902 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3903 }
3904
3905 /*
3906 * For a v2 image, shows the chain of parent images, separated by empty
3907 * lines. For v1 images or if there is no parent, shows "(no parent
3908 * image)".
3909 */
3910 static ssize_t rbd_parent_show(struct device *dev,
3911 struct device_attribute *attr,
3912 char *buf)
3913 {
3914 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3915 ssize_t count = 0;
3916
3917 if (!rbd_dev->parent)
3918 return sprintf(buf, "(no parent image)\n");
3919
3920 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3921 struct rbd_spec *spec = rbd_dev->parent_spec;
3922
3923 count += sprintf(&buf[count], "%s"
3924 "pool_id %llu\npool_name %s\n"
3925 "image_id %s\nimage_name %s\n"
3926 "snap_id %llu\nsnap_name %s\n"
3927 "overlap %llu\n",
3928 !count ? "" : "\n", /* first? */
3929 spec->pool_id, spec->pool_name,
3930 spec->image_id, spec->image_name ?: "(unknown)",
3931 spec->snap_id, spec->snap_name,
3932 rbd_dev->parent_overlap);
3933 }
3934
3935 return count;
3936 }
3937
3938 static ssize_t rbd_image_refresh(struct device *dev,
3939 struct device_attribute *attr,
3940 const char *buf,
3941 size_t size)
3942 {
3943 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3944 int ret;
3945
3946 ret = rbd_dev_refresh(rbd_dev);
3947 if (ret)
3948 return ret;
3949
3950 return size;
3951 }
3952
3953 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3954 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3955 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3956 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3957 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3958 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3959 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3960 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3961 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3962 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3963 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3964 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3965
3966 static struct attribute *rbd_attrs[] = {
3967 &dev_attr_size.attr,
3968 &dev_attr_features.attr,
3969 &dev_attr_major.attr,
3970 &dev_attr_minor.attr,
3971 &dev_attr_client_id.attr,
3972 &dev_attr_pool.attr,
3973 &dev_attr_pool_id.attr,
3974 &dev_attr_name.attr,
3975 &dev_attr_image_id.attr,
3976 &dev_attr_current_snap.attr,
3977 &dev_attr_parent.attr,
3978 &dev_attr_refresh.attr,
3979 NULL
3980 };
3981
3982 static struct attribute_group rbd_attr_group = {
3983 .attrs = rbd_attrs,
3984 };
3985
3986 static const struct attribute_group *rbd_attr_groups[] = {
3987 &rbd_attr_group,
3988 NULL
3989 };
3990
3991 static void rbd_dev_release(struct device *dev);
3992
3993 static struct device_type rbd_device_type = {
3994 .name = "rbd",
3995 .groups = rbd_attr_groups,
3996 .release = rbd_dev_release,
3997 };
3998
3999 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4000 {
4001 kref_get(&spec->kref);
4002
4003 return spec;
4004 }
4005
4006 static void rbd_spec_free(struct kref *kref);
4007 static void rbd_spec_put(struct rbd_spec *spec)
4008 {
4009 if (spec)
4010 kref_put(&spec->kref, rbd_spec_free);
4011 }
4012
4013 static struct rbd_spec *rbd_spec_alloc(void)
4014 {
4015 struct rbd_spec *spec;
4016
4017 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4018 if (!spec)
4019 return NULL;
4020
4021 spec->pool_id = CEPH_NOPOOL;
4022 spec->snap_id = CEPH_NOSNAP;
4023 kref_init(&spec->kref);
4024
4025 return spec;
4026 }
4027
4028 static void rbd_spec_free(struct kref *kref)
4029 {
4030 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4031
4032 kfree(spec->pool_name);
4033 kfree(spec->image_id);
4034 kfree(spec->image_name);
4035 kfree(spec->snap_name);
4036 kfree(spec);
4037 }
4038
4039 static void rbd_dev_release(struct device *dev)
4040 {
4041 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4042 bool need_put = !!rbd_dev->opts;
4043
4044 rbd_put_client(rbd_dev->rbd_client);
4045 rbd_spec_put(rbd_dev->spec);
4046 kfree(rbd_dev->opts);
4047 kfree(rbd_dev);
4048
4049 /*
4050 * This is racy, but way better than putting module outside of
4051 * the release callback. The race window is pretty small, so
4052 * doing something similar to dm (dm-builtin.c) is overkill.
4053 */
4054 if (need_put)
4055 module_put(THIS_MODULE);
4056 }
4057
4058 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4059 struct rbd_spec *spec,
4060 struct rbd_options *opts)
4061 {
4062 struct rbd_device *rbd_dev;
4063
4064 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4065 if (!rbd_dev)
4066 return NULL;
4067
4068 spin_lock_init(&rbd_dev->lock);
4069 rbd_dev->flags = 0;
4070 atomic_set(&rbd_dev->parent_ref, 0);
4071 INIT_LIST_HEAD(&rbd_dev->node);
4072 init_rwsem(&rbd_dev->header_rwsem);
4073
4074 rbd_dev->dev.bus = &rbd_bus_type;
4075 rbd_dev->dev.type = &rbd_device_type;
4076 rbd_dev->dev.parent = &rbd_root_dev;
4077 device_initialize(&rbd_dev->dev);
4078
4079 rbd_dev->rbd_client = rbdc;
4080 rbd_dev->spec = spec;
4081 rbd_dev->opts = opts;
4082
4083 /* Initialize the layout used for all rbd requests */
4084
4085 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4086 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4087 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4088 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4089
4090 /*
4091 * If this is a mapping rbd_dev (as opposed to a parent one),
4092 * pin our module. We have a ref from do_rbd_add(), so use
4093 * __module_get().
4094 */
4095 if (rbd_dev->opts)
4096 __module_get(THIS_MODULE);
4097
4098 return rbd_dev;
4099 }
4100
4101 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4102 {
4103 if (rbd_dev)
4104 put_device(&rbd_dev->dev);
4105 }
4106
4107 /*
4108 * Get the size and object order for an image snapshot, or if
4109 * snap_id is CEPH_NOSNAP, gets this information for the base
4110 * image.
4111 */
4112 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4113 u8 *order, u64 *snap_size)
4114 {
4115 __le64 snapid = cpu_to_le64(snap_id);
4116 int ret;
4117 struct {
4118 u8 order;
4119 __le64 size;
4120 } __attribute__ ((packed)) size_buf = { 0 };
4121
4122 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4123 "rbd", "get_size",
4124 &snapid, sizeof (snapid),
4125 &size_buf, sizeof (size_buf));
4126 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4127 if (ret < 0)
4128 return ret;
4129 if (ret < sizeof (size_buf))
4130 return -ERANGE;
4131
4132 if (order) {
4133 *order = size_buf.order;
4134 dout(" order %u", (unsigned int)*order);
4135 }
4136 *snap_size = le64_to_cpu(size_buf.size);
4137
4138 dout(" snap_id 0x%016llx snap_size = %llu\n",
4139 (unsigned long long)snap_id,
4140 (unsigned long long)*snap_size);
4141
4142 return 0;
4143 }
4144
4145 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4146 {
4147 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4148 &rbd_dev->header.obj_order,
4149 &rbd_dev->header.image_size);
4150 }
4151
4152 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4153 {
4154 void *reply_buf;
4155 int ret;
4156 void *p;
4157
4158 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4159 if (!reply_buf)
4160 return -ENOMEM;
4161
4162 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4163 "rbd", "get_object_prefix", NULL, 0,
4164 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4165 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4166 if (ret < 0)
4167 goto out;
4168
4169 p = reply_buf;
4170 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4171 p + ret, NULL, GFP_NOIO);
4172 ret = 0;
4173
4174 if (IS_ERR(rbd_dev->header.object_prefix)) {
4175 ret = PTR_ERR(rbd_dev->header.object_prefix);
4176 rbd_dev->header.object_prefix = NULL;
4177 } else {
4178 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
4179 }
4180 out:
4181 kfree(reply_buf);
4182
4183 return ret;
4184 }
4185
4186 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4187 u64 *snap_features)
4188 {
4189 __le64 snapid = cpu_to_le64(snap_id);
4190 struct {
4191 __le64 features;
4192 __le64 incompat;
4193 } __attribute__ ((packed)) features_buf = { 0 };
4194 u64 incompat;
4195 int ret;
4196
4197 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4198 "rbd", "get_features",
4199 &snapid, sizeof (snapid),
4200 &features_buf, sizeof (features_buf));
4201 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4202 if (ret < 0)
4203 return ret;
4204 if (ret < sizeof (features_buf))
4205 return -ERANGE;
4206
4207 incompat = le64_to_cpu(features_buf.incompat);
4208 if (incompat & ~RBD_FEATURES_SUPPORTED)
4209 return -ENXIO;
4210
4211 *snap_features = le64_to_cpu(features_buf.features);
4212
4213 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4214 (unsigned long long)snap_id,
4215 (unsigned long long)*snap_features,
4216 (unsigned long long)le64_to_cpu(features_buf.incompat));
4217
4218 return 0;
4219 }
4220
4221 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4222 {
4223 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4224 &rbd_dev->header.features);
4225 }
4226
4227 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4228 {
4229 struct rbd_spec *parent_spec;
4230 size_t size;
4231 void *reply_buf = NULL;
4232 __le64 snapid;
4233 void *p;
4234 void *end;
4235 u64 pool_id;
4236 char *image_id;
4237 u64 snap_id;
4238 u64 overlap;
4239 int ret;
4240
4241 parent_spec = rbd_spec_alloc();
4242 if (!parent_spec)
4243 return -ENOMEM;
4244
4245 size = sizeof (__le64) + /* pool_id */
4246 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
4247 sizeof (__le64) + /* snap_id */
4248 sizeof (__le64); /* overlap */
4249 reply_buf = kmalloc(size, GFP_KERNEL);
4250 if (!reply_buf) {
4251 ret = -ENOMEM;
4252 goto out_err;
4253 }
4254
4255 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4256 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4257 "rbd", "get_parent",
4258 &snapid, sizeof (snapid),
4259 reply_buf, size);
4260 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4261 if (ret < 0)
4262 goto out_err;
4263
4264 p = reply_buf;
4265 end = reply_buf + ret;
4266 ret = -ERANGE;
4267 ceph_decode_64_safe(&p, end, pool_id, out_err);
4268 if (pool_id == CEPH_NOPOOL) {
4269 /*
4270 * Either the parent never existed, or we have
4271 * record of it but the image got flattened so it no
4272 * longer has a parent. When the parent of a
4273 * layered image disappears we immediately set the
4274 * overlap to 0. The effect of this is that all new
4275 * requests will be treated as if the image had no
4276 * parent.
4277 */
4278 if (rbd_dev->parent_overlap) {
4279 rbd_dev->parent_overlap = 0;
4280 rbd_dev_parent_put(rbd_dev);
4281 pr_info("%s: clone image has been flattened\n",
4282 rbd_dev->disk->disk_name);
4283 }
4284
4285 goto out; /* No parent? No problem. */
4286 }
4287
4288 /* The ceph file layout needs to fit pool id in 32 bits */
4289
4290 ret = -EIO;
4291 if (pool_id > (u64)U32_MAX) {
4292 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4293 (unsigned long long)pool_id, U32_MAX);
4294 goto out_err;
4295 }
4296
4297 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4298 if (IS_ERR(image_id)) {
4299 ret = PTR_ERR(image_id);
4300 goto out_err;
4301 }
4302 ceph_decode_64_safe(&p, end, snap_id, out_err);
4303 ceph_decode_64_safe(&p, end, overlap, out_err);
4304
4305 /*
4306 * The parent won't change (except when the clone is
4307 * flattened, already handled that). So we only need to
4308 * record the parent spec we have not already done so.
4309 */
4310 if (!rbd_dev->parent_spec) {
4311 parent_spec->pool_id = pool_id;
4312 parent_spec->image_id = image_id;
4313 parent_spec->snap_id = snap_id;
4314 rbd_dev->parent_spec = parent_spec;
4315 parent_spec = NULL; /* rbd_dev now owns this */
4316 } else {
4317 kfree(image_id);
4318 }
4319
4320 /*
4321 * We always update the parent overlap. If it's zero we issue
4322 * a warning, as we will proceed as if there was no parent.
4323 */
4324 if (!overlap) {
4325 if (parent_spec) {
4326 /* refresh, careful to warn just once */
4327 if (rbd_dev->parent_overlap)
4328 rbd_warn(rbd_dev,
4329 "clone now standalone (overlap became 0)");
4330 } else {
4331 /* initial probe */
4332 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4333 }
4334 }
4335 rbd_dev->parent_overlap = overlap;
4336
4337 out:
4338 ret = 0;
4339 out_err:
4340 kfree(reply_buf);
4341 rbd_spec_put(parent_spec);
4342
4343 return ret;
4344 }
4345
4346 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4347 {
4348 struct {
4349 __le64 stripe_unit;
4350 __le64 stripe_count;
4351 } __attribute__ ((packed)) striping_info_buf = { 0 };
4352 size_t size = sizeof (striping_info_buf);
4353 void *p;
4354 u64 obj_size;
4355 u64 stripe_unit;
4356 u64 stripe_count;
4357 int ret;
4358
4359 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4360 "rbd", "get_stripe_unit_count", NULL, 0,
4361 (char *)&striping_info_buf, size);
4362 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4363 if (ret < 0)
4364 return ret;
4365 if (ret < size)
4366 return -ERANGE;
4367
4368 /*
4369 * We don't actually support the "fancy striping" feature
4370 * (STRIPINGV2) yet, but if the striping sizes are the
4371 * defaults the behavior is the same as before. So find
4372 * out, and only fail if the image has non-default values.
4373 */
4374 ret = -EINVAL;
4375 obj_size = (u64)1 << rbd_dev->header.obj_order;
4376 p = &striping_info_buf;
4377 stripe_unit = ceph_decode_64(&p);
4378 if (stripe_unit != obj_size) {
4379 rbd_warn(rbd_dev, "unsupported stripe unit "
4380 "(got %llu want %llu)",
4381 stripe_unit, obj_size);
4382 return -EINVAL;
4383 }
4384 stripe_count = ceph_decode_64(&p);
4385 if (stripe_count != 1) {
4386 rbd_warn(rbd_dev, "unsupported stripe count "
4387 "(got %llu want 1)", stripe_count);
4388 return -EINVAL;
4389 }
4390 rbd_dev->header.stripe_unit = stripe_unit;
4391 rbd_dev->header.stripe_count = stripe_count;
4392
4393 return 0;
4394 }
4395
4396 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4397 {
4398 size_t image_id_size;
4399 char *image_id;
4400 void *p;
4401 void *end;
4402 size_t size;
4403 void *reply_buf = NULL;
4404 size_t len = 0;
4405 char *image_name = NULL;
4406 int ret;
4407
4408 rbd_assert(!rbd_dev->spec->image_name);
4409
4410 len = strlen(rbd_dev->spec->image_id);
4411 image_id_size = sizeof (__le32) + len;
4412 image_id = kmalloc(image_id_size, GFP_KERNEL);
4413 if (!image_id)
4414 return NULL;
4415
4416 p = image_id;
4417 end = image_id + image_id_size;
4418 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4419
4420 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4421 reply_buf = kmalloc(size, GFP_KERNEL);
4422 if (!reply_buf)
4423 goto out;
4424
4425 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4426 "rbd", "dir_get_name",
4427 image_id, image_id_size,
4428 reply_buf, size);
4429 if (ret < 0)
4430 goto out;
4431 p = reply_buf;
4432 end = reply_buf + ret;
4433
4434 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4435 if (IS_ERR(image_name))
4436 image_name = NULL;
4437 else
4438 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4439 out:
4440 kfree(reply_buf);
4441 kfree(image_id);
4442
4443 return image_name;
4444 }
4445
4446 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4447 {
4448 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4449 const char *snap_name;
4450 u32 which = 0;
4451
4452 /* Skip over names until we find the one we are looking for */
4453
4454 snap_name = rbd_dev->header.snap_names;
4455 while (which < snapc->num_snaps) {
4456 if (!strcmp(name, snap_name))
4457 return snapc->snaps[which];
4458 snap_name += strlen(snap_name) + 1;
4459 which++;
4460 }
4461 return CEPH_NOSNAP;
4462 }
4463
4464 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4465 {
4466 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4467 u32 which;
4468 bool found = false;
4469 u64 snap_id;
4470
4471 for (which = 0; !found && which < snapc->num_snaps; which++) {
4472 const char *snap_name;
4473
4474 snap_id = snapc->snaps[which];
4475 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4476 if (IS_ERR(snap_name)) {
4477 /* ignore no-longer existing snapshots */
4478 if (PTR_ERR(snap_name) == -ENOENT)
4479 continue;
4480 else
4481 break;
4482 }
4483 found = !strcmp(name, snap_name);
4484 kfree(snap_name);
4485 }
4486 return found ? snap_id : CEPH_NOSNAP;
4487 }
4488
4489 /*
4490 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4491 * no snapshot by that name is found, or if an error occurs.
4492 */
4493 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4494 {
4495 if (rbd_dev->image_format == 1)
4496 return rbd_v1_snap_id_by_name(rbd_dev, name);
4497
4498 return rbd_v2_snap_id_by_name(rbd_dev, name);
4499 }
4500
4501 /*
4502 * An image being mapped will have everything but the snap id.
4503 */
4504 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4505 {
4506 struct rbd_spec *spec = rbd_dev->spec;
4507
4508 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4509 rbd_assert(spec->image_id && spec->image_name);
4510 rbd_assert(spec->snap_name);
4511
4512 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4513 u64 snap_id;
4514
4515 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4516 if (snap_id == CEPH_NOSNAP)
4517 return -ENOENT;
4518
4519 spec->snap_id = snap_id;
4520 } else {
4521 spec->snap_id = CEPH_NOSNAP;
4522 }
4523
4524 return 0;
4525 }
4526
4527 /*
4528 * A parent image will have all ids but none of the names.
4529 *
4530 * All names in an rbd spec are dynamically allocated. It's OK if we
4531 * can't figure out the name for an image id.
4532 */
4533 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4534 {
4535 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4536 struct rbd_spec *spec = rbd_dev->spec;
4537 const char *pool_name;
4538 const char *image_name;
4539 const char *snap_name;
4540 int ret;
4541
4542 rbd_assert(spec->pool_id != CEPH_NOPOOL);
4543 rbd_assert(spec->image_id);
4544 rbd_assert(spec->snap_id != CEPH_NOSNAP);
4545
4546 /* Get the pool name; we have to make our own copy of this */
4547
4548 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4549 if (!pool_name) {
4550 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4551 return -EIO;
4552 }
4553 pool_name = kstrdup(pool_name, GFP_KERNEL);
4554 if (!pool_name)
4555 return -ENOMEM;
4556
4557 /* Fetch the image name; tolerate failure here */
4558
4559 image_name = rbd_dev_image_name(rbd_dev);
4560 if (!image_name)
4561 rbd_warn(rbd_dev, "unable to get image name");
4562
4563 /* Fetch the snapshot name */
4564
4565 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4566 if (IS_ERR(snap_name)) {
4567 ret = PTR_ERR(snap_name);
4568 goto out_err;
4569 }
4570
4571 spec->pool_name = pool_name;
4572 spec->image_name = image_name;
4573 spec->snap_name = snap_name;
4574
4575 return 0;
4576
4577 out_err:
4578 kfree(image_name);
4579 kfree(pool_name);
4580 return ret;
4581 }
4582
4583 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4584 {
4585 size_t size;
4586 int ret;
4587 void *reply_buf;
4588 void *p;
4589 void *end;
4590 u64 seq;
4591 u32 snap_count;
4592 struct ceph_snap_context *snapc;
4593 u32 i;
4594
4595 /*
4596 * We'll need room for the seq value (maximum snapshot id),
4597 * snapshot count, and array of that many snapshot ids.
4598 * For now we have a fixed upper limit on the number we're
4599 * prepared to receive.
4600 */
4601 size = sizeof (__le64) + sizeof (__le32) +
4602 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4603 reply_buf = kzalloc(size, GFP_KERNEL);
4604 if (!reply_buf)
4605 return -ENOMEM;
4606
4607 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4608 "rbd", "get_snapcontext", NULL, 0,
4609 reply_buf, size);
4610 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4611 if (ret < 0)
4612 goto out;
4613
4614 p = reply_buf;
4615 end = reply_buf + ret;
4616 ret = -ERANGE;
4617 ceph_decode_64_safe(&p, end, seq, out);
4618 ceph_decode_32_safe(&p, end, snap_count, out);
4619
4620 /*
4621 * Make sure the reported number of snapshot ids wouldn't go
4622 * beyond the end of our buffer. But before checking that,
4623 * make sure the computed size of the snapshot context we
4624 * allocate is representable in a size_t.
4625 */
4626 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4627 / sizeof (u64)) {
4628 ret = -EINVAL;
4629 goto out;
4630 }
4631 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4632 goto out;
4633 ret = 0;
4634
4635 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4636 if (!snapc) {
4637 ret = -ENOMEM;
4638 goto out;
4639 }
4640 snapc->seq = seq;
4641 for (i = 0; i < snap_count; i++)
4642 snapc->snaps[i] = ceph_decode_64(&p);
4643
4644 ceph_put_snap_context(rbd_dev->header.snapc);
4645 rbd_dev->header.snapc = snapc;
4646
4647 dout(" snap context seq = %llu, snap_count = %u\n",
4648 (unsigned long long)seq, (unsigned int)snap_count);
4649 out:
4650 kfree(reply_buf);
4651
4652 return ret;
4653 }
4654
4655 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4656 u64 snap_id)
4657 {
4658 size_t size;
4659 void *reply_buf;
4660 __le64 snapid;
4661 int ret;
4662 void *p;
4663 void *end;
4664 char *snap_name;
4665
4666 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4667 reply_buf = kmalloc(size, GFP_KERNEL);
4668 if (!reply_buf)
4669 return ERR_PTR(-ENOMEM);
4670
4671 snapid = cpu_to_le64(snap_id);
4672 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4673 "rbd", "get_snapshot_name",
4674 &snapid, sizeof (snapid),
4675 reply_buf, size);
4676 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4677 if (ret < 0) {
4678 snap_name = ERR_PTR(ret);
4679 goto out;
4680 }
4681
4682 p = reply_buf;
4683 end = reply_buf + ret;
4684 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4685 if (IS_ERR(snap_name))
4686 goto out;
4687
4688 dout(" snap_id 0x%016llx snap_name = %s\n",
4689 (unsigned long long)snap_id, snap_name);
4690 out:
4691 kfree(reply_buf);
4692
4693 return snap_name;
4694 }
4695
4696 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4697 {
4698 bool first_time = rbd_dev->header.object_prefix == NULL;
4699 int ret;
4700
4701 ret = rbd_dev_v2_image_size(rbd_dev);
4702 if (ret)
4703 return ret;
4704
4705 if (first_time) {
4706 ret = rbd_dev_v2_header_onetime(rbd_dev);
4707 if (ret)
4708 return ret;
4709 }
4710
4711 ret = rbd_dev_v2_snap_context(rbd_dev);
4712 if (ret && first_time) {
4713 kfree(rbd_dev->header.object_prefix);
4714 rbd_dev->header.object_prefix = NULL;
4715 }
4716
4717 return ret;
4718 }
4719
4720 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4721 {
4722 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4723
4724 if (rbd_dev->image_format == 1)
4725 return rbd_dev_v1_header_info(rbd_dev);
4726
4727 return rbd_dev_v2_header_info(rbd_dev);
4728 }
4729
4730 /*
4731 * Get a unique rbd identifier for the given new rbd_dev, and add
4732 * the rbd_dev to the global list.
4733 */
4734 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4735 {
4736 int new_dev_id;
4737
4738 new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4739 0, minor_to_rbd_dev_id(1 << MINORBITS),
4740 GFP_KERNEL);
4741 if (new_dev_id < 0)
4742 return new_dev_id;
4743
4744 rbd_dev->dev_id = new_dev_id;
4745
4746 spin_lock(&rbd_dev_list_lock);
4747 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4748 spin_unlock(&rbd_dev_list_lock);
4749
4750 dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4751
4752 return 0;
4753 }
4754
4755 /*
4756 * Remove an rbd_dev from the global list, and record that its
4757 * identifier is no longer in use.
4758 */
4759 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4760 {
4761 spin_lock(&rbd_dev_list_lock);
4762 list_del_init(&rbd_dev->node);
4763 spin_unlock(&rbd_dev_list_lock);
4764
4765 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4766
4767 dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4768 }
4769
4770 /*
4771 * Skips over white space at *buf, and updates *buf to point to the
4772 * first found non-space character (if any). Returns the length of
4773 * the token (string of non-white space characters) found. Note
4774 * that *buf must be terminated with '\0'.
4775 */
4776 static inline size_t next_token(const char **buf)
4777 {
4778 /*
4779 * These are the characters that produce nonzero for
4780 * isspace() in the "C" and "POSIX" locales.
4781 */
4782 const char *spaces = " \f\n\r\t\v";
4783
4784 *buf += strspn(*buf, spaces); /* Find start of token */
4785
4786 return strcspn(*buf, spaces); /* Return token length */
4787 }
4788
4789 /*
4790 * Finds the next token in *buf, dynamically allocates a buffer big
4791 * enough to hold a copy of it, and copies the token into the new
4792 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4793 * that a duplicate buffer is created even for a zero-length token.
4794 *
4795 * Returns a pointer to the newly-allocated duplicate, or a null
4796 * pointer if memory for the duplicate was not available. If
4797 * the lenp argument is a non-null pointer, the length of the token
4798 * (not including the '\0') is returned in *lenp.
4799 *
4800 * If successful, the *buf pointer will be updated to point beyond
4801 * the end of the found token.
4802 *
4803 * Note: uses GFP_KERNEL for allocation.
4804 */
4805 static inline char *dup_token(const char **buf, size_t *lenp)
4806 {
4807 char *dup;
4808 size_t len;
4809
4810 len = next_token(buf);
4811 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4812 if (!dup)
4813 return NULL;
4814 *(dup + len) = '\0';
4815 *buf += len;
4816
4817 if (lenp)
4818 *lenp = len;
4819
4820 return dup;
4821 }
4822
4823 /*
4824 * Parse the options provided for an "rbd add" (i.e., rbd image
4825 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4826 * and the data written is passed here via a NUL-terminated buffer.
4827 * Returns 0 if successful or an error code otherwise.
4828 *
4829 * The information extracted from these options is recorded in
4830 * the other parameters which return dynamically-allocated
4831 * structures:
4832 * ceph_opts
4833 * The address of a pointer that will refer to a ceph options
4834 * structure. Caller must release the returned pointer using
4835 * ceph_destroy_options() when it is no longer needed.
4836 * rbd_opts
4837 * Address of an rbd options pointer. Fully initialized by
4838 * this function; caller must release with kfree().
4839 * spec
4840 * Address of an rbd image specification pointer. Fully
4841 * initialized by this function based on parsed options.
4842 * Caller must release with rbd_spec_put().
4843 *
4844 * The options passed take this form:
4845 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4846 * where:
4847 * <mon_addrs>
4848 * A comma-separated list of one or more monitor addresses.
4849 * A monitor address is an ip address, optionally followed
4850 * by a port number (separated by a colon).
4851 * I.e.: ip1[:port1][,ip2[:port2]...]
4852 * <options>
4853 * A comma-separated list of ceph and/or rbd options.
4854 * <pool_name>
4855 * The name of the rados pool containing the rbd image.
4856 * <image_name>
4857 * The name of the image in that pool to map.
4858 * <snap_id>
4859 * An optional snapshot id. If provided, the mapping will
4860 * present data from the image at the time that snapshot was
4861 * created. The image head is used if no snapshot id is
4862 * provided. Snapshot mappings are always read-only.
4863 */
4864 static int rbd_add_parse_args(const char *buf,
4865 struct ceph_options **ceph_opts,
4866 struct rbd_options **opts,
4867 struct rbd_spec **rbd_spec)
4868 {
4869 size_t len;
4870 char *options;
4871 const char *mon_addrs;
4872 char *snap_name;
4873 size_t mon_addrs_size;
4874 struct rbd_spec *spec = NULL;
4875 struct rbd_options *rbd_opts = NULL;
4876 struct ceph_options *copts;
4877 int ret;
4878
4879 /* The first four tokens are required */
4880
4881 len = next_token(&buf);
4882 if (!len) {
4883 rbd_warn(NULL, "no monitor address(es) provided");
4884 return -EINVAL;
4885 }
4886 mon_addrs = buf;
4887 mon_addrs_size = len + 1;
4888 buf += len;
4889
4890 ret = -EINVAL;
4891 options = dup_token(&buf, NULL);
4892 if (!options)
4893 return -ENOMEM;
4894 if (!*options) {
4895 rbd_warn(NULL, "no options provided");
4896 goto out_err;
4897 }
4898
4899 spec = rbd_spec_alloc();
4900 if (!spec)
4901 goto out_mem;
4902
4903 spec->pool_name = dup_token(&buf, NULL);
4904 if (!spec->pool_name)
4905 goto out_mem;
4906 if (!*spec->pool_name) {
4907 rbd_warn(NULL, "no pool name provided");
4908 goto out_err;
4909 }
4910
4911 spec->image_name = dup_token(&buf, NULL);
4912 if (!spec->image_name)
4913 goto out_mem;
4914 if (!*spec->image_name) {
4915 rbd_warn(NULL, "no image name provided");
4916 goto out_err;
4917 }
4918
4919 /*
4920 * Snapshot name is optional; default is to use "-"
4921 * (indicating the head/no snapshot).
4922 */
4923 len = next_token(&buf);
4924 if (!len) {
4925 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4926 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4927 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4928 ret = -ENAMETOOLONG;
4929 goto out_err;
4930 }
4931 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4932 if (!snap_name)
4933 goto out_mem;
4934 *(snap_name + len) = '\0';
4935 spec->snap_name = snap_name;
4936
4937 /* Initialize all rbd options to the defaults */
4938
4939 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4940 if (!rbd_opts)
4941 goto out_mem;
4942
4943 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4944 rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4945
4946 copts = ceph_parse_options(options, mon_addrs,
4947 mon_addrs + mon_addrs_size - 1,
4948 parse_rbd_opts_token, rbd_opts);
4949 if (IS_ERR(copts)) {
4950 ret = PTR_ERR(copts);
4951 goto out_err;
4952 }
4953 kfree(options);
4954
4955 *ceph_opts = copts;
4956 *opts = rbd_opts;
4957 *rbd_spec = spec;
4958
4959 return 0;
4960 out_mem:
4961 ret = -ENOMEM;
4962 out_err:
4963 kfree(rbd_opts);
4964 rbd_spec_put(spec);
4965 kfree(options);
4966
4967 return ret;
4968 }
4969
4970 /*
4971 * Return pool id (>= 0) or a negative error code.
4972 */
4973 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4974 {
4975 struct ceph_options *opts = rbdc->client->options;
4976 u64 newest_epoch;
4977 int tries = 0;
4978 int ret;
4979
4980 again:
4981 ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4982 if (ret == -ENOENT && tries++ < 1) {
4983 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4984 &newest_epoch);
4985 if (ret < 0)
4986 return ret;
4987
4988 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4989 ceph_monc_request_next_osdmap(&rbdc->client->monc);
4990 (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4991 newest_epoch,
4992 opts->mount_timeout);
4993 goto again;
4994 } else {
4995 /* the osdmap we have is new enough */
4996 return -ENOENT;
4997 }
4998 }
4999
5000 return ret;
5001 }
5002
5003 /*
5004 * An rbd format 2 image has a unique identifier, distinct from the
5005 * name given to it by the user. Internally, that identifier is
5006 * what's used to specify the names of objects related to the image.
5007 *
5008 * A special "rbd id" object is used to map an rbd image name to its
5009 * id. If that object doesn't exist, then there is no v2 rbd image
5010 * with the supplied name.
5011 *
5012 * This function will record the given rbd_dev's image_id field if
5013 * it can be determined, and in that case will return 0. If any
5014 * errors occur a negative errno will be returned and the rbd_dev's
5015 * image_id field will be unchanged (and should be NULL).
5016 */
5017 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5018 {
5019 int ret;
5020 size_t size;
5021 char *object_name;
5022 void *response;
5023 char *image_id;
5024
5025 /*
5026 * When probing a parent image, the image id is already
5027 * known (and the image name likely is not). There's no
5028 * need to fetch the image id again in this case. We
5029 * do still need to set the image format though.
5030 */
5031 if (rbd_dev->spec->image_id) {
5032 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5033
5034 return 0;
5035 }
5036
5037 /*
5038 * First, see if the format 2 image id file exists, and if
5039 * so, get the image's persistent id from it.
5040 */
5041 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5042 object_name = kmalloc(size, GFP_NOIO);
5043 if (!object_name)
5044 return -ENOMEM;
5045 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5046 dout("rbd id object name is %s\n", object_name);
5047
5048 /* Response will be an encoded string, which includes a length */
5049
5050 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5051 response = kzalloc(size, GFP_NOIO);
5052 if (!response) {
5053 ret = -ENOMEM;
5054 goto out;
5055 }
5056
5057 /* If it doesn't exist we'll assume it's a format 1 image */
5058
5059 ret = rbd_obj_method_sync(rbd_dev, object_name,
5060 "rbd", "get_id", NULL, 0,
5061 response, RBD_IMAGE_ID_LEN_MAX);
5062 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5063 if (ret == -ENOENT) {
5064 image_id = kstrdup("", GFP_KERNEL);
5065 ret = image_id ? 0 : -ENOMEM;
5066 if (!ret)
5067 rbd_dev->image_format = 1;
5068 } else if (ret >= 0) {
5069 void *p = response;
5070
5071 image_id = ceph_extract_encoded_string(&p, p + ret,
5072 NULL, GFP_NOIO);
5073 ret = PTR_ERR_OR_ZERO(image_id);
5074 if (!ret)
5075 rbd_dev->image_format = 2;
5076 }
5077
5078 if (!ret) {
5079 rbd_dev->spec->image_id = image_id;
5080 dout("image_id is %s\n", image_id);
5081 }
5082 out:
5083 kfree(response);
5084 kfree(object_name);
5085
5086 return ret;
5087 }
5088
5089 /*
5090 * Undo whatever state changes are made by v1 or v2 header info
5091 * call.
5092 */
5093 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5094 {
5095 struct rbd_image_header *header;
5096
5097 rbd_dev_parent_put(rbd_dev);
5098
5099 /* Free dynamic fields from the header, then zero it out */
5100
5101 header = &rbd_dev->header;
5102 ceph_put_snap_context(header->snapc);
5103 kfree(header->snap_sizes);
5104 kfree(header->snap_names);
5105 kfree(header->object_prefix);
5106 memset(header, 0, sizeof (*header));
5107 }
5108
5109 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5110 {
5111 int ret;
5112
5113 ret = rbd_dev_v2_object_prefix(rbd_dev);
5114 if (ret)
5115 goto out_err;
5116
5117 /*
5118 * Get the and check features for the image. Currently the
5119 * features are assumed to never change.
5120 */
5121 ret = rbd_dev_v2_features(rbd_dev);
5122 if (ret)
5123 goto out_err;
5124
5125 /* If the image supports fancy striping, get its parameters */
5126
5127 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5128 ret = rbd_dev_v2_striping_info(rbd_dev);
5129 if (ret < 0)
5130 goto out_err;
5131 }
5132 /* No support for crypto and compression type format 2 images */
5133
5134 return 0;
5135 out_err:
5136 rbd_dev->header.features = 0;
5137 kfree(rbd_dev->header.object_prefix);
5138 rbd_dev->header.object_prefix = NULL;
5139
5140 return ret;
5141 }
5142
5143 /*
5144 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5145 * rbd_dev_image_probe() recursion depth, which means it's also the
5146 * length of the already discovered part of the parent chain.
5147 */
5148 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5149 {
5150 struct rbd_device *parent = NULL;
5151 int ret;
5152
5153 if (!rbd_dev->parent_spec)
5154 return 0;
5155
5156 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5157 pr_info("parent chain is too long (%d)\n", depth);
5158 ret = -EINVAL;
5159 goto out_err;
5160 }
5161
5162 parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5163 NULL);
5164 if (!parent) {
5165 ret = -ENOMEM;
5166 goto out_err;
5167 }
5168
5169 /*
5170 * Images related by parent/child relationships always share
5171 * rbd_client and spec/parent_spec, so bump their refcounts.
5172 */
5173 __rbd_get_client(rbd_dev->rbd_client);
5174 rbd_spec_get(rbd_dev->parent_spec);
5175
5176 ret = rbd_dev_image_probe(parent, depth);
5177 if (ret < 0)
5178 goto out_err;
5179
5180 rbd_dev->parent = parent;
5181 atomic_set(&rbd_dev->parent_ref, 1);
5182 return 0;
5183
5184 out_err:
5185 rbd_dev_unparent(rbd_dev);
5186 rbd_dev_destroy(parent);
5187 return ret;
5188 }
5189
5190 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5191 {
5192 int ret;
5193
5194 /* Get an id and fill in device name. */
5195
5196 ret = rbd_dev_id_get(rbd_dev);
5197 if (ret)
5198 return ret;
5199
5200 BUILD_BUG_ON(DEV_NAME_LEN
5201 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5202 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5203
5204 /* Record our major and minor device numbers. */
5205
5206 if (!single_major) {
5207 ret = register_blkdev(0, rbd_dev->name);
5208 if (ret < 0)
5209 goto err_out_id;
5210
5211 rbd_dev->major = ret;
5212 rbd_dev->minor = 0;
5213 } else {
5214 rbd_dev->major = rbd_major;
5215 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5216 }
5217
5218 /* Set up the blkdev mapping. */
5219
5220 ret = rbd_init_disk(rbd_dev);
5221 if (ret)
5222 goto err_out_blkdev;
5223
5224 ret = rbd_dev_mapping_set(rbd_dev);
5225 if (ret)
5226 goto err_out_disk;
5227
5228 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5229 set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5230
5231 dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5232 ret = device_add(&rbd_dev->dev);
5233 if (ret)
5234 goto err_out_mapping;
5235
5236 /* Everything's ready. Announce the disk to the world. */
5237
5238 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5239 add_disk(rbd_dev->disk);
5240
5241 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5242 (unsigned long long) rbd_dev->mapping.size);
5243
5244 return ret;
5245
5246 err_out_mapping:
5247 rbd_dev_mapping_clear(rbd_dev);
5248 err_out_disk:
5249 rbd_free_disk(rbd_dev);
5250 err_out_blkdev:
5251 if (!single_major)
5252 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5253 err_out_id:
5254 rbd_dev_id_put(rbd_dev);
5255 return ret;
5256 }
5257
5258 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5259 {
5260 struct rbd_spec *spec = rbd_dev->spec;
5261 size_t size;
5262
5263 /* Record the header object name for this rbd image. */
5264
5265 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5266
5267 if (rbd_dev->image_format == 1)
5268 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5269 else
5270 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5271
5272 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5273 if (!rbd_dev->header_name)
5274 return -ENOMEM;
5275
5276 if (rbd_dev->image_format == 1)
5277 sprintf(rbd_dev->header_name, "%s%s",
5278 spec->image_name, RBD_SUFFIX);
5279 else
5280 sprintf(rbd_dev->header_name, "%s%s",
5281 RBD_HEADER_PREFIX, spec->image_id);
5282 return 0;
5283 }
5284
5285 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5286 {
5287 rbd_dev_unprobe(rbd_dev);
5288 kfree(rbd_dev->header_name);
5289 rbd_dev->header_name = NULL;
5290 rbd_dev->image_format = 0;
5291 kfree(rbd_dev->spec->image_id);
5292 rbd_dev->spec->image_id = NULL;
5293
5294 rbd_dev_destroy(rbd_dev);
5295 }
5296
5297 /*
5298 * Probe for the existence of the header object for the given rbd
5299 * device. If this image is the one being mapped (i.e., not a
5300 * parent), initiate a watch on its header object before using that
5301 * object to get detailed information about the rbd image.
5302 */
5303 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5304 {
5305 int ret;
5306
5307 /*
5308 * Get the id from the image id object. Unless there's an
5309 * error, rbd_dev->spec->image_id will be filled in with
5310 * a dynamically-allocated string, and rbd_dev->image_format
5311 * will be set to either 1 or 2.
5312 */
5313 ret = rbd_dev_image_id(rbd_dev);
5314 if (ret)
5315 return ret;
5316
5317 ret = rbd_dev_header_name(rbd_dev);
5318 if (ret)
5319 goto err_out_format;
5320
5321 if (!depth) {
5322 ret = rbd_dev_header_watch_sync(rbd_dev);
5323 if (ret) {
5324 if (ret == -ENOENT)
5325 pr_info("image %s/%s does not exist\n",
5326 rbd_dev->spec->pool_name,
5327 rbd_dev->spec->image_name);
5328 goto out_header_name;
5329 }
5330 }
5331
5332 ret = rbd_dev_header_info(rbd_dev);
5333 if (ret)
5334 goto err_out_watch;
5335
5336 /*
5337 * If this image is the one being mapped, we have pool name and
5338 * id, image name and id, and snap name - need to fill snap id.
5339 * Otherwise this is a parent image, identified by pool, image
5340 * and snap ids - need to fill in names for those ids.
5341 */
5342 if (!depth)
5343 ret = rbd_spec_fill_snap_id(rbd_dev);
5344 else
5345 ret = rbd_spec_fill_names(rbd_dev);
5346 if (ret) {
5347 if (ret == -ENOENT)
5348 pr_info("snap %s/%s@%s does not exist\n",
5349 rbd_dev->spec->pool_name,
5350 rbd_dev->spec->image_name,
5351 rbd_dev->spec->snap_name);
5352 goto err_out_probe;
5353 }
5354
5355 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5356 ret = rbd_dev_v2_parent_info(rbd_dev);
5357 if (ret)
5358 goto err_out_probe;
5359
5360 /*
5361 * Need to warn users if this image is the one being
5362 * mapped and has a parent.
5363 */
5364 if (!depth && rbd_dev->parent_spec)
5365 rbd_warn(rbd_dev,
5366 "WARNING: kernel layering is EXPERIMENTAL!");
5367 }
5368
5369 ret = rbd_dev_probe_parent(rbd_dev, depth);
5370 if (ret)
5371 goto err_out_probe;
5372
5373 dout("discovered format %u image, header name is %s\n",
5374 rbd_dev->image_format, rbd_dev->header_name);
5375 return 0;
5376
5377 err_out_probe:
5378 rbd_dev_unprobe(rbd_dev);
5379 err_out_watch:
5380 if (!depth)
5381 rbd_dev_header_unwatch_sync(rbd_dev);
5382 out_header_name:
5383 kfree(rbd_dev->header_name);
5384 rbd_dev->header_name = NULL;
5385 err_out_format:
5386 rbd_dev->image_format = 0;
5387 kfree(rbd_dev->spec->image_id);
5388 rbd_dev->spec->image_id = NULL;
5389 return ret;
5390 }
5391
5392 static ssize_t do_rbd_add(struct bus_type *bus,
5393 const char *buf,
5394 size_t count)
5395 {
5396 struct rbd_device *rbd_dev = NULL;
5397 struct ceph_options *ceph_opts = NULL;
5398 struct rbd_options *rbd_opts = NULL;
5399 struct rbd_spec *spec = NULL;
5400 struct rbd_client *rbdc;
5401 bool read_only;
5402 int rc;
5403
5404 if (!try_module_get(THIS_MODULE))
5405 return -ENODEV;
5406
5407 /* parse add command */
5408 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5409 if (rc < 0)
5410 goto out;
5411
5412 rbdc = rbd_get_client(ceph_opts);
5413 if (IS_ERR(rbdc)) {
5414 rc = PTR_ERR(rbdc);
5415 goto err_out_args;
5416 }
5417
5418 /* pick the pool */
5419 rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5420 if (rc < 0) {
5421 if (rc == -ENOENT)
5422 pr_info("pool %s does not exist\n", spec->pool_name);
5423 goto err_out_client;
5424 }
5425 spec->pool_id = (u64)rc;
5426
5427 /* The ceph file layout needs to fit pool id in 32 bits */
5428
5429 if (spec->pool_id > (u64)U32_MAX) {
5430 rbd_warn(NULL, "pool id too large (%llu > %u)",
5431 (unsigned long long)spec->pool_id, U32_MAX);
5432 rc = -EIO;
5433 goto err_out_client;
5434 }
5435
5436 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5437 if (!rbd_dev) {
5438 rc = -ENOMEM;
5439 goto err_out_client;
5440 }
5441 rbdc = NULL; /* rbd_dev now owns this */
5442 spec = NULL; /* rbd_dev now owns this */
5443 rbd_opts = NULL; /* rbd_dev now owns this */
5444
5445 rc = rbd_dev_image_probe(rbd_dev, 0);
5446 if (rc < 0)
5447 goto err_out_rbd_dev;
5448
5449 /* If we are mapping a snapshot it must be marked read-only */
5450
5451 read_only = rbd_dev->opts->read_only;
5452 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5453 read_only = true;
5454 rbd_dev->mapping.read_only = read_only;
5455
5456 rc = rbd_dev_device_setup(rbd_dev);
5457 if (rc) {
5458 /*
5459 * rbd_dev_header_unwatch_sync() can't be moved into
5460 * rbd_dev_image_release() without refactoring, see
5461 * commit 1f3ef78861ac.
5462 */
5463 rbd_dev_header_unwatch_sync(rbd_dev);
5464 rbd_dev_image_release(rbd_dev);
5465 goto out;
5466 }
5467
5468 rc = count;
5469 out:
5470 module_put(THIS_MODULE);
5471 return rc;
5472
5473 err_out_rbd_dev:
5474 rbd_dev_destroy(rbd_dev);
5475 err_out_client:
5476 rbd_put_client(rbdc);
5477 err_out_args:
5478 rbd_spec_put(spec);
5479 kfree(rbd_opts);
5480 goto out;
5481 }
5482
5483 static ssize_t rbd_add(struct bus_type *bus,
5484 const char *buf,
5485 size_t count)
5486 {
5487 if (single_major)
5488 return -EINVAL;
5489
5490 return do_rbd_add(bus, buf, count);
5491 }
5492
5493 static ssize_t rbd_add_single_major(struct bus_type *bus,
5494 const char *buf,
5495 size_t count)
5496 {
5497 return do_rbd_add(bus, buf, count);
5498 }
5499
5500 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5501 {
5502 rbd_free_disk(rbd_dev);
5503 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5504 device_del(&rbd_dev->dev);
5505 rbd_dev_mapping_clear(rbd_dev);
5506 if (!single_major)
5507 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5508 rbd_dev_id_put(rbd_dev);
5509 }
5510
5511 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5512 {
5513 while (rbd_dev->parent) {
5514 struct rbd_device *first = rbd_dev;
5515 struct rbd_device *second = first->parent;
5516 struct rbd_device *third;
5517
5518 /*
5519 * Follow to the parent with no grandparent and
5520 * remove it.
5521 */
5522 while (second && (third = second->parent)) {
5523 first = second;
5524 second = third;
5525 }
5526 rbd_assert(second);
5527 rbd_dev_image_release(second);
5528 first->parent = NULL;
5529 first->parent_overlap = 0;
5530
5531 rbd_assert(first->parent_spec);
5532 rbd_spec_put(first->parent_spec);
5533 first->parent_spec = NULL;
5534 }
5535 }
5536
5537 static ssize_t do_rbd_remove(struct bus_type *bus,
5538 const char *buf,
5539 size_t count)
5540 {
5541 struct rbd_device *rbd_dev = NULL;
5542 struct list_head *tmp;
5543 int dev_id;
5544 unsigned long ul;
5545 bool already = false;
5546 int ret;
5547
5548 ret = kstrtoul(buf, 10, &ul);
5549 if (ret)
5550 return ret;
5551
5552 /* convert to int; abort if we lost anything in the conversion */
5553 dev_id = (int)ul;
5554 if (dev_id != ul)
5555 return -EINVAL;
5556
5557 ret = -ENOENT;
5558 spin_lock(&rbd_dev_list_lock);
5559 list_for_each(tmp, &rbd_dev_list) {
5560 rbd_dev = list_entry(tmp, struct rbd_device, node);
5561 if (rbd_dev->dev_id == dev_id) {
5562 ret = 0;
5563 break;
5564 }
5565 }
5566 if (!ret) {
5567 spin_lock_irq(&rbd_dev->lock);
5568 if (rbd_dev->open_count)
5569 ret = -EBUSY;
5570 else
5571 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5572 &rbd_dev->flags);
5573 spin_unlock_irq(&rbd_dev->lock);
5574 }
5575 spin_unlock(&rbd_dev_list_lock);
5576 if (ret < 0 || already)
5577 return ret;
5578
5579 rbd_dev_header_unwatch_sync(rbd_dev);
5580 /*
5581 * flush remaining watch callbacks - these must be complete
5582 * before the osd_client is shutdown
5583 */
5584 dout("%s: flushing notifies", __func__);
5585 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5586
5587 /*
5588 * Don't free anything from rbd_dev->disk until after all
5589 * notifies are completely processed. Otherwise
5590 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5591 * in a potential use after free of rbd_dev->disk or rbd_dev.
5592 */
5593 rbd_dev_device_release(rbd_dev);
5594 rbd_dev_image_release(rbd_dev);
5595
5596 return count;
5597 }
5598
5599 static ssize_t rbd_remove(struct bus_type *bus,
5600 const char *buf,
5601 size_t count)
5602 {
5603 if (single_major)
5604 return -EINVAL;
5605
5606 return do_rbd_remove(bus, buf, count);
5607 }
5608
5609 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5610 const char *buf,
5611 size_t count)
5612 {
5613 return do_rbd_remove(bus, buf, count);
5614 }
5615
5616 /*
5617 * create control files in sysfs
5618 * /sys/bus/rbd/...
5619 */
5620 static int rbd_sysfs_init(void)
5621 {
5622 int ret;
5623
5624 ret = device_register(&rbd_root_dev);
5625 if (ret < 0)
5626 return ret;
5627
5628 ret = bus_register(&rbd_bus_type);
5629 if (ret < 0)
5630 device_unregister(&rbd_root_dev);
5631
5632 return ret;
5633 }
5634
5635 static void rbd_sysfs_cleanup(void)
5636 {
5637 bus_unregister(&rbd_bus_type);
5638 device_unregister(&rbd_root_dev);
5639 }
5640
5641 static int rbd_slab_init(void)
5642 {
5643 rbd_assert(!rbd_img_request_cache);
5644 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5645 if (!rbd_img_request_cache)
5646 return -ENOMEM;
5647
5648 rbd_assert(!rbd_obj_request_cache);
5649 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5650 if (!rbd_obj_request_cache)
5651 goto out_err;
5652
5653 rbd_assert(!rbd_segment_name_cache);
5654 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5655 CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5656 if (rbd_segment_name_cache)
5657 return 0;
5658 out_err:
5659 kmem_cache_destroy(rbd_obj_request_cache);
5660 rbd_obj_request_cache = NULL;
5661
5662 kmem_cache_destroy(rbd_img_request_cache);
5663 rbd_img_request_cache = NULL;
5664
5665 return -ENOMEM;
5666 }
5667
5668 static void rbd_slab_exit(void)
5669 {
5670 rbd_assert(rbd_segment_name_cache);
5671 kmem_cache_destroy(rbd_segment_name_cache);
5672 rbd_segment_name_cache = NULL;
5673
5674 rbd_assert(rbd_obj_request_cache);
5675 kmem_cache_destroy(rbd_obj_request_cache);
5676 rbd_obj_request_cache = NULL;
5677
5678 rbd_assert(rbd_img_request_cache);
5679 kmem_cache_destroy(rbd_img_request_cache);
5680 rbd_img_request_cache = NULL;
5681 }
5682
5683 static int __init rbd_init(void)
5684 {
5685 int rc;
5686
5687 if (!libceph_compatible(NULL)) {
5688 rbd_warn(NULL, "libceph incompatibility (quitting)");
5689 return -EINVAL;
5690 }
5691
5692 rc = rbd_slab_init();
5693 if (rc)
5694 return rc;
5695
5696 /*
5697 * The number of active work items is limited by the number of
5698 * rbd devices * queue depth, so leave @max_active at default.
5699 */
5700 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5701 if (!rbd_wq) {
5702 rc = -ENOMEM;
5703 goto err_out_slab;
5704 }
5705
5706 if (single_major) {
5707 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5708 if (rbd_major < 0) {
5709 rc = rbd_major;
5710 goto err_out_wq;
5711 }
5712 }
5713
5714 rc = rbd_sysfs_init();
5715 if (rc)
5716 goto err_out_blkdev;
5717
5718 if (single_major)
5719 pr_info("loaded (major %d)\n", rbd_major);
5720 else
5721 pr_info("loaded\n");
5722
5723 return 0;
5724
5725 err_out_blkdev:
5726 if (single_major)
5727 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5728 err_out_wq:
5729 destroy_workqueue(rbd_wq);
5730 err_out_slab:
5731 rbd_slab_exit();
5732 return rc;
5733 }
5734
5735 static void __exit rbd_exit(void)
5736 {
5737 ida_destroy(&rbd_dev_id_ida);
5738 rbd_sysfs_cleanup();
5739 if (single_major)
5740 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5741 destroy_workqueue(rbd_wq);
5742 rbd_slab_exit();
5743 }
5744
5745 module_init(rbd_init);
5746 module_exit(rbd_exit);
5747
5748 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5749 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5750 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5751 /* following authorship retained from original osdblk.c */
5752 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5753
5754 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5755 MODULE_LICENSE("GPL");
This page took 0.145293 seconds and 5 git commands to generate.