Merge branch 'akpm-current/current'
[deliverable/linux.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/nodemask.h>
253 #include <linux/spinlock.h>
254 #include <linux/kthread.h>
255 #include <linux/percpu.h>
256 #include <linux/cryptohash.h>
257 #include <linux/fips.h>
258 #include <linux/ptrace.h>
259 #include <linux/kmemcheck.h>
260 #include <linux/workqueue.h>
261 #include <linux/irq.h>
262 #include <linux/syscalls.h>
263 #include <linux/completion.h>
264 #include <linux/uuid.h>
265 #include <crypto/chacha20.h>
266
267 #include <asm/processor.h>
268 #include <asm/uaccess.h>
269 #include <asm/irq.h>
270 #include <asm/irq_regs.h>
271 #include <asm/io.h>
272
273 #define CREATE_TRACE_POINTS
274 #include <trace/events/random.h>
275
276 /* #define ADD_INTERRUPT_BENCH */
277
278 /*
279 * Configuration information
280 */
281 #define INPUT_POOL_SHIFT 12
282 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
283 #define OUTPUT_POOL_SHIFT 10
284 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
285 #define SEC_XFER_SIZE 512
286 #define EXTRACT_SIZE 10
287
288 #define DEBUG_RANDOM_BOOT 0
289
290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291
292 /*
293 * To allow fractional bits to be tracked, the entropy_count field is
294 * denominated in units of 1/8th bits.
295 *
296 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297 * credit_entropy_bits() needs to be 64 bits wide.
298 */
299 #define ENTROPY_SHIFT 3
300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301
302 /*
303 * The minimum number of bits of entropy before we wake up a read on
304 * /dev/random. Should be enough to do a significant reseed.
305 */
306 static int random_read_wakeup_bits = 64;
307
308 /*
309 * If the entropy count falls under this number of bits, then we
310 * should wake up processes which are selecting or polling on write
311 * access to /dev/random.
312 */
313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
314
315 /*
316 * The minimum number of seconds between urandom pool reseeding. We
317 * do this to limit the amount of entropy that can be drained from the
318 * input pool even if there are heavy demands on /dev/urandom.
319 */
320 static int random_min_urandom_seed = 60;
321
322 /*
323 * Originally, we used a primitive polynomial of degree .poolwords
324 * over GF(2). The taps for various sizes are defined below. They
325 * were chosen to be evenly spaced except for the last tap, which is 1
326 * to get the twisting happening as fast as possible.
327 *
328 * For the purposes of better mixing, we use the CRC-32 polynomial as
329 * well to make a (modified) twisted Generalized Feedback Shift
330 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
331 * generators. ACM Transactions on Modeling and Computer Simulation
332 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
333 * GFSR generators II. ACM Transactions on Modeling and Computer
334 * Simulation 4:254-266)
335 *
336 * Thanks to Colin Plumb for suggesting this.
337 *
338 * The mixing operation is much less sensitive than the output hash,
339 * where we use SHA-1. All that we want of mixing operation is that
340 * it be a good non-cryptographic hash; i.e. it not produce collisions
341 * when fed "random" data of the sort we expect to see. As long as
342 * the pool state differs for different inputs, we have preserved the
343 * input entropy and done a good job. The fact that an intelligent
344 * attacker can construct inputs that will produce controlled
345 * alterations to the pool's state is not important because we don't
346 * consider such inputs to contribute any randomness. The only
347 * property we need with respect to them is that the attacker can't
348 * increase his/her knowledge of the pool's state. Since all
349 * additions are reversible (knowing the final state and the input,
350 * you can reconstruct the initial state), if an attacker has any
351 * uncertainty about the initial state, he/she can only shuffle that
352 * uncertainty about, but never cause any collisions (which would
353 * decrease the uncertainty).
354 *
355 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
356 * Videau in their paper, "The Linux Pseudorandom Number Generator
357 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
358 * paper, they point out that we are not using a true Twisted GFSR,
359 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
360 * is, with only three taps, instead of the six that we are using).
361 * As a result, the resulting polynomial is neither primitive nor
362 * irreducible, and hence does not have a maximal period over
363 * GF(2**32). They suggest a slight change to the generator
364 * polynomial which improves the resulting TGFSR polynomial to be
365 * irreducible, which we have made here.
366 */
367 static struct poolinfo {
368 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
369 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
370 int tap1, tap2, tap3, tap4, tap5;
371 } poolinfo_table[] = {
372 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
373 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
374 { S(128), 104, 76, 51, 25, 1 },
375 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
376 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
377 { S(32), 26, 19, 14, 7, 1 },
378 #if 0
379 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
380 { S(2048), 1638, 1231, 819, 411, 1 },
381
382 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
383 { S(1024), 817, 615, 412, 204, 1 },
384
385 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
386 { S(1024), 819, 616, 410, 207, 2 },
387
388 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
389 { S(512), 411, 308, 208, 104, 1 },
390
391 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
392 { S(512), 409, 307, 206, 102, 2 },
393 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
394 { S(512), 409, 309, 205, 103, 2 },
395
396 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
397 { S(256), 205, 155, 101, 52, 1 },
398
399 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
400 { S(128), 103, 78, 51, 27, 2 },
401
402 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
403 { S(64), 52, 39, 26, 14, 1 },
404 #endif
405 };
406
407 /*
408 * Static global variables
409 */
410 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
411 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
412 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
413 static struct fasync_struct *fasync;
414
415 static DEFINE_SPINLOCK(random_ready_list_lock);
416 static LIST_HEAD(random_ready_list);
417
418 struct crng_state {
419 __u32 state[16];
420 unsigned long init_time;
421 spinlock_t lock;
422 };
423
424 struct crng_state primary_crng = {
425 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
426 };
427
428 /*
429 * crng_init = 0 --> Uninitialized
430 * 1 --> Initialized
431 * 2 --> Initialized from input_pool
432 *
433 * crng_init is protected by primary_crng->lock, and only increases
434 * its value (from 0->1->2).
435 */
436 static int crng_init = 0;
437 #define crng_ready() (likely(crng_init > 0))
438 static int crng_init_cnt = 0;
439 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
440 static void _extract_crng(struct crng_state *crng,
441 __u8 out[CHACHA20_BLOCK_SIZE]);
442 static void _crng_backtrack_protect(struct crng_state *crng,
443 __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
444 static void process_random_ready_list(void);
445
446 /**********************************************************************
447 *
448 * OS independent entropy store. Here are the functions which handle
449 * storing entropy in an entropy pool.
450 *
451 **********************************************************************/
452
453 struct entropy_store;
454 struct entropy_store {
455 /* read-only data: */
456 const struct poolinfo *poolinfo;
457 __u32 *pool;
458 const char *name;
459 struct entropy_store *pull;
460 struct work_struct push_work;
461
462 /* read-write data: */
463 unsigned long last_pulled;
464 spinlock_t lock;
465 unsigned short add_ptr;
466 unsigned short input_rotate;
467 int entropy_count;
468 int entropy_total;
469 unsigned int initialized:1;
470 unsigned int limit:1;
471 unsigned int last_data_init:1;
472 __u8 last_data[EXTRACT_SIZE];
473 };
474
475 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
476 size_t nbytes, int min, int rsvd);
477 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
478 size_t nbytes, int fips);
479
480 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
481 static void push_to_pool(struct work_struct *work);
482 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
483 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
484
485 static struct entropy_store input_pool = {
486 .poolinfo = &poolinfo_table[0],
487 .name = "input",
488 .limit = 1,
489 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
490 .pool = input_pool_data
491 };
492
493 static struct entropy_store blocking_pool = {
494 .poolinfo = &poolinfo_table[1],
495 .name = "blocking",
496 .limit = 1,
497 .pull = &input_pool,
498 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
499 .pool = blocking_pool_data,
500 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
501 push_to_pool),
502 };
503
504 static __u32 const twist_table[8] = {
505 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
506 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
507
508 /*
509 * This function adds bytes into the entropy "pool". It does not
510 * update the entropy estimate. The caller should call
511 * credit_entropy_bits if this is appropriate.
512 *
513 * The pool is stirred with a primitive polynomial of the appropriate
514 * degree, and then twisted. We twist by three bits at a time because
515 * it's cheap to do so and helps slightly in the expected case where
516 * the entropy is concentrated in the low-order bits.
517 */
518 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
519 int nbytes)
520 {
521 unsigned long i, tap1, tap2, tap3, tap4, tap5;
522 int input_rotate;
523 int wordmask = r->poolinfo->poolwords - 1;
524 const char *bytes = in;
525 __u32 w;
526
527 tap1 = r->poolinfo->tap1;
528 tap2 = r->poolinfo->tap2;
529 tap3 = r->poolinfo->tap3;
530 tap4 = r->poolinfo->tap4;
531 tap5 = r->poolinfo->tap5;
532
533 input_rotate = r->input_rotate;
534 i = r->add_ptr;
535
536 /* mix one byte at a time to simplify size handling and churn faster */
537 while (nbytes--) {
538 w = rol32(*bytes++, input_rotate);
539 i = (i - 1) & wordmask;
540
541 /* XOR in the various taps */
542 w ^= r->pool[i];
543 w ^= r->pool[(i + tap1) & wordmask];
544 w ^= r->pool[(i + tap2) & wordmask];
545 w ^= r->pool[(i + tap3) & wordmask];
546 w ^= r->pool[(i + tap4) & wordmask];
547 w ^= r->pool[(i + tap5) & wordmask];
548
549 /* Mix the result back in with a twist */
550 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
551
552 /*
553 * Normally, we add 7 bits of rotation to the pool.
554 * At the beginning of the pool, add an extra 7 bits
555 * rotation, so that successive passes spread the
556 * input bits across the pool evenly.
557 */
558 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
559 }
560
561 r->input_rotate = input_rotate;
562 r->add_ptr = i;
563 }
564
565 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
566 int nbytes)
567 {
568 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
569 _mix_pool_bytes(r, in, nbytes);
570 }
571
572 static void mix_pool_bytes(struct entropy_store *r, const void *in,
573 int nbytes)
574 {
575 unsigned long flags;
576
577 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
578 spin_lock_irqsave(&r->lock, flags);
579 _mix_pool_bytes(r, in, nbytes);
580 spin_unlock_irqrestore(&r->lock, flags);
581 }
582
583 struct fast_pool {
584 __u32 pool[4];
585 unsigned long last;
586 unsigned short reg_idx;
587 unsigned char count;
588 };
589
590 /*
591 * This is a fast mixing routine used by the interrupt randomness
592 * collector. It's hardcoded for an 128 bit pool and assumes that any
593 * locks that might be needed are taken by the caller.
594 */
595 static void fast_mix(struct fast_pool *f)
596 {
597 __u32 a = f->pool[0], b = f->pool[1];
598 __u32 c = f->pool[2], d = f->pool[3];
599
600 a += b; c += d;
601 b = rol32(b, 6); d = rol32(d, 27);
602 d ^= a; b ^= c;
603
604 a += b; c += d;
605 b = rol32(b, 16); d = rol32(d, 14);
606 d ^= a; b ^= c;
607
608 a += b; c += d;
609 b = rol32(b, 6); d = rol32(d, 27);
610 d ^= a; b ^= c;
611
612 a += b; c += d;
613 b = rol32(b, 16); d = rol32(d, 14);
614 d ^= a; b ^= c;
615
616 f->pool[0] = a; f->pool[1] = b;
617 f->pool[2] = c; f->pool[3] = d;
618 f->count++;
619 }
620
621 static void process_random_ready_list(void)
622 {
623 unsigned long flags;
624 struct random_ready_callback *rdy, *tmp;
625
626 spin_lock_irqsave(&random_ready_list_lock, flags);
627 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
628 struct module *owner = rdy->owner;
629
630 list_del_init(&rdy->list);
631 rdy->func(rdy);
632 module_put(owner);
633 }
634 spin_unlock_irqrestore(&random_ready_list_lock, flags);
635 }
636
637 /*
638 * Credit (or debit) the entropy store with n bits of entropy.
639 * Use credit_entropy_bits_safe() if the value comes from userspace
640 * or otherwise should be checked for extreme values.
641 */
642 static void credit_entropy_bits(struct entropy_store *r, int nbits)
643 {
644 int entropy_count, orig;
645 const int pool_size = r->poolinfo->poolfracbits;
646 int nfrac = nbits << ENTROPY_SHIFT;
647
648 if (!nbits)
649 return;
650
651 retry:
652 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
653 if (nfrac < 0) {
654 /* Debit */
655 entropy_count += nfrac;
656 } else {
657 /*
658 * Credit: we have to account for the possibility of
659 * overwriting already present entropy. Even in the
660 * ideal case of pure Shannon entropy, new contributions
661 * approach the full value asymptotically:
662 *
663 * entropy <- entropy + (pool_size - entropy) *
664 * (1 - exp(-add_entropy/pool_size))
665 *
666 * For add_entropy <= pool_size/2 then
667 * (1 - exp(-add_entropy/pool_size)) >=
668 * (add_entropy/pool_size)*0.7869...
669 * so we can approximate the exponential with
670 * 3/4*add_entropy/pool_size and still be on the
671 * safe side by adding at most pool_size/2 at a time.
672 *
673 * The use of pool_size-2 in the while statement is to
674 * prevent rounding artifacts from making the loop
675 * arbitrarily long; this limits the loop to log2(pool_size)*2
676 * turns no matter how large nbits is.
677 */
678 int pnfrac = nfrac;
679 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
680 /* The +2 corresponds to the /4 in the denominator */
681
682 do {
683 unsigned int anfrac = min(pnfrac, pool_size/2);
684 unsigned int add =
685 ((pool_size - entropy_count)*anfrac*3) >> s;
686
687 entropy_count += add;
688 pnfrac -= anfrac;
689 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
690 }
691
692 if (unlikely(entropy_count < 0)) {
693 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
694 r->name, entropy_count);
695 WARN_ON(1);
696 entropy_count = 0;
697 } else if (entropy_count > pool_size)
698 entropy_count = pool_size;
699 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
700 goto retry;
701
702 r->entropy_total += nbits;
703 if (!r->initialized && r->entropy_total > 128) {
704 r->initialized = 1;
705 r->entropy_total = 0;
706 }
707
708 trace_credit_entropy_bits(r->name, nbits,
709 entropy_count >> ENTROPY_SHIFT,
710 r->entropy_total, _RET_IP_);
711
712 if (r == &input_pool) {
713 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
714
715 if (crng_init < 2 && entropy_bits >= 128) {
716 crng_reseed(&primary_crng, r);
717 entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
718 }
719
720 /* should we wake readers? */
721 if (entropy_bits >= random_read_wakeup_bits) {
722 wake_up_interruptible(&random_read_wait);
723 kill_fasync(&fasync, SIGIO, POLL_IN);
724 }
725 /* If the input pool is getting full, send some
726 * entropy to the blocking pool until it is 75% full.
727 */
728 if (entropy_bits > random_write_wakeup_bits &&
729 r->initialized &&
730 r->entropy_total >= 2*random_read_wakeup_bits) {
731 struct entropy_store *other = &blocking_pool;
732
733 if (other->entropy_count <=
734 3 * other->poolinfo->poolfracbits / 4) {
735 schedule_work(&other->push_work);
736 r->entropy_total = 0;
737 }
738 }
739 }
740 }
741
742 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
743 {
744 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
745
746 if (nbits < 0)
747 return -EINVAL;
748
749 /* Cap the value to avoid overflows */
750 nbits = min(nbits, nbits_max);
751
752 credit_entropy_bits(r, nbits);
753 return 0;
754 }
755
756 /*********************************************************************
757 *
758 * CRNG using CHACHA20
759 *
760 *********************************************************************/
761
762 #define CRNG_RESEED_INTERVAL (300*HZ)
763
764 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
765
766 #ifdef CONFIG_NUMA
767 /*
768 * Hack to deal with crazy userspace progams when they are all trying
769 * to access /dev/urandom in parallel. The programs are almost
770 * certainly doing something terribly wrong, but we'll work around
771 * their brain damage.
772 */
773 static struct crng_state **crng_node_pool __read_mostly;
774 #endif
775
776 static void crng_initialize(struct crng_state *crng)
777 {
778 int i;
779 unsigned long rv;
780
781 memcpy(&crng->state[0], "expand 32-byte k", 16);
782 if (crng == &primary_crng)
783 _extract_entropy(&input_pool, &crng->state[4],
784 sizeof(__u32) * 12, 0);
785 else
786 get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
787 for (i = 4; i < 16; i++) {
788 if (!arch_get_random_seed_long(&rv) &&
789 !arch_get_random_long(&rv))
790 rv = random_get_entropy();
791 crng->state[i] ^= rv;
792 }
793 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
794 }
795
796 static int crng_fast_load(const char *cp, size_t len)
797 {
798 unsigned long flags;
799 char *p;
800
801 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
802 return 0;
803 if (crng_ready()) {
804 spin_unlock_irqrestore(&primary_crng.lock, flags);
805 return 0;
806 }
807 p = (unsigned char *) &primary_crng.state[4];
808 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
809 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
810 cp++; crng_init_cnt++; len--;
811 }
812 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
813 crng_init = 1;
814 wake_up_interruptible(&crng_init_wait);
815 pr_notice("random: fast init done\n");
816 }
817 spin_unlock_irqrestore(&primary_crng.lock, flags);
818 return 1;
819 }
820
821 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
822 {
823 unsigned long flags;
824 int i, num;
825 union {
826 __u8 block[CHACHA20_BLOCK_SIZE];
827 __u32 key[8];
828 } buf;
829
830 if (r) {
831 num = extract_entropy(r, &buf, 32, 16, 0);
832 if (num == 0)
833 return;
834 } else {
835 _extract_crng(&primary_crng, buf.block);
836 _crng_backtrack_protect(&primary_crng, buf.block,
837 CHACHA20_KEY_SIZE);
838 }
839 spin_lock_irqsave(&primary_crng.lock, flags);
840 for (i = 0; i < 8; i++) {
841 unsigned long rv;
842 if (!arch_get_random_seed_long(&rv) &&
843 !arch_get_random_long(&rv))
844 rv = random_get_entropy();
845 crng->state[i+4] ^= buf.key[i] ^ rv;
846 }
847 memzero_explicit(&buf, sizeof(buf));
848 crng->init_time = jiffies;
849 if (crng == &primary_crng && crng_init < 2) {
850 crng_init = 2;
851 process_random_ready_list();
852 wake_up_interruptible(&crng_init_wait);
853 pr_notice("random: crng init done\n");
854 }
855 spin_unlock_irqrestore(&primary_crng.lock, flags);
856 }
857
858 static inline void maybe_reseed_primary_crng(void)
859 {
860 if (crng_init > 2 &&
861 time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
862 crng_reseed(&primary_crng, &input_pool);
863 }
864
865 static inline void crng_wait_ready(void)
866 {
867 wait_event_interruptible(crng_init_wait, crng_ready());
868 }
869
870 static void _extract_crng(struct crng_state *crng,
871 __u8 out[CHACHA20_BLOCK_SIZE])
872 {
873 unsigned long v, flags;
874
875 if (crng_init > 1 &&
876 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
877 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
878 spin_lock_irqsave(&crng->lock, flags);
879 if (arch_get_random_long(&v))
880 crng->state[14] ^= v;
881 chacha20_block(&crng->state[0], out);
882 if (crng->state[12] == 0)
883 crng->state[13]++;
884 spin_unlock_irqrestore(&crng->lock, flags);
885 }
886
887 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
888 {
889 struct crng_state *crng = NULL;
890
891 #ifdef CONFIG_NUMA
892 if (crng_node_pool)
893 crng = crng_node_pool[numa_node_id()];
894 if (crng == NULL)
895 #endif
896 crng = &primary_crng;
897 _extract_crng(crng, out);
898 }
899
900 /*
901 * Use the leftover bytes from the CRNG block output (if there is
902 * enough) to mutate the CRNG key to provide backtracking protection.
903 */
904 static void _crng_backtrack_protect(struct crng_state *crng,
905 __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
906 {
907 unsigned long flags;
908 __u32 *s, *d;
909 int i;
910
911 used = round_up(used, sizeof(__u32));
912 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
913 extract_crng(tmp);
914 used = 0;
915 }
916 spin_lock_irqsave(&crng->lock, flags);
917 s = (__u32 *) &tmp[used];
918 d = &crng->state[4];
919 for (i=0; i < 8; i++)
920 *d++ ^= *s++;
921 spin_unlock_irqrestore(&crng->lock, flags);
922 }
923
924 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
925 {
926 struct crng_state *crng = NULL;
927
928 #ifdef CONFIG_NUMA
929 if (crng_node_pool)
930 crng = crng_node_pool[numa_node_id()];
931 if (crng == NULL)
932 #endif
933 crng = &primary_crng;
934 _crng_backtrack_protect(crng, tmp, used);
935 }
936
937 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
938 {
939 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
940 __u8 tmp[CHACHA20_BLOCK_SIZE];
941 int large_request = (nbytes > 256);
942
943 while (nbytes) {
944 if (large_request && need_resched()) {
945 if (signal_pending(current)) {
946 if (ret == 0)
947 ret = -ERESTARTSYS;
948 break;
949 }
950 schedule();
951 }
952
953 extract_crng(tmp);
954 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
955 if (copy_to_user(buf, tmp, i)) {
956 ret = -EFAULT;
957 break;
958 }
959
960 nbytes -= i;
961 buf += i;
962 ret += i;
963 }
964 crng_backtrack_protect(tmp, i);
965
966 /* Wipe data just written to memory */
967 memzero_explicit(tmp, sizeof(tmp));
968
969 return ret;
970 }
971
972
973 /*********************************************************************
974 *
975 * Entropy input management
976 *
977 *********************************************************************/
978
979 /* There is one of these per entropy source */
980 struct timer_rand_state {
981 cycles_t last_time;
982 long last_delta, last_delta2;
983 unsigned dont_count_entropy:1;
984 };
985
986 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
987
988 /*
989 * Add device- or boot-specific data to the input pool to help
990 * initialize it.
991 *
992 * None of this adds any entropy; it is meant to avoid the problem of
993 * the entropy pool having similar initial state across largely
994 * identical devices.
995 */
996 void add_device_randomness(const void *buf, unsigned int size)
997 {
998 unsigned long time = random_get_entropy() ^ jiffies;
999 unsigned long flags;
1000
1001 trace_add_device_randomness(size, _RET_IP_);
1002 spin_lock_irqsave(&input_pool.lock, flags);
1003 _mix_pool_bytes(&input_pool, buf, size);
1004 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1005 spin_unlock_irqrestore(&input_pool.lock, flags);
1006 }
1007 EXPORT_SYMBOL(add_device_randomness);
1008
1009 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1010
1011 /*
1012 * This function adds entropy to the entropy "pool" by using timing
1013 * delays. It uses the timer_rand_state structure to make an estimate
1014 * of how many bits of entropy this call has added to the pool.
1015 *
1016 * The number "num" is also added to the pool - it should somehow describe
1017 * the type of event which just happened. This is currently 0-255 for
1018 * keyboard scan codes, and 256 upwards for interrupts.
1019 *
1020 */
1021 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1022 {
1023 struct entropy_store *r;
1024 struct {
1025 long jiffies;
1026 unsigned cycles;
1027 unsigned num;
1028 } sample;
1029 long delta, delta2, delta3;
1030
1031 preempt_disable();
1032
1033 sample.jiffies = jiffies;
1034 sample.cycles = random_get_entropy();
1035 sample.num = num;
1036 r = &input_pool;
1037 mix_pool_bytes(r, &sample, sizeof(sample));
1038
1039 /*
1040 * Calculate number of bits of randomness we probably added.
1041 * We take into account the first, second and third-order deltas
1042 * in order to make our estimate.
1043 */
1044
1045 if (!state->dont_count_entropy) {
1046 delta = sample.jiffies - state->last_time;
1047 state->last_time = sample.jiffies;
1048
1049 delta2 = delta - state->last_delta;
1050 state->last_delta = delta;
1051
1052 delta3 = delta2 - state->last_delta2;
1053 state->last_delta2 = delta2;
1054
1055 if (delta < 0)
1056 delta = -delta;
1057 if (delta2 < 0)
1058 delta2 = -delta2;
1059 if (delta3 < 0)
1060 delta3 = -delta3;
1061 if (delta > delta2)
1062 delta = delta2;
1063 if (delta > delta3)
1064 delta = delta3;
1065
1066 /*
1067 * delta is now minimum absolute delta.
1068 * Round down by 1 bit on general principles,
1069 * and limit entropy entimate to 12 bits.
1070 */
1071 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1072 }
1073 preempt_enable();
1074 }
1075
1076 void add_input_randomness(unsigned int type, unsigned int code,
1077 unsigned int value)
1078 {
1079 static unsigned char last_value;
1080
1081 /* ignore autorepeat and the like */
1082 if (value == last_value)
1083 return;
1084
1085 last_value = value;
1086 add_timer_randomness(&input_timer_state,
1087 (type << 4) ^ code ^ (code >> 4) ^ value);
1088 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1089 }
1090 EXPORT_SYMBOL_GPL(add_input_randomness);
1091
1092 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1093
1094 #ifdef ADD_INTERRUPT_BENCH
1095 static unsigned long avg_cycles, avg_deviation;
1096
1097 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1098 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1099
1100 static void add_interrupt_bench(cycles_t start)
1101 {
1102 long delta = random_get_entropy() - start;
1103
1104 /* Use a weighted moving average */
1105 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1106 avg_cycles += delta;
1107 /* And average deviation */
1108 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1109 avg_deviation += delta;
1110 }
1111 #else
1112 #define add_interrupt_bench(x)
1113 #endif
1114
1115 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1116 {
1117 __u32 *ptr = (__u32 *) regs;
1118
1119 if (regs == NULL)
1120 return 0;
1121 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1122 f->reg_idx = 0;
1123 return *(ptr + f->reg_idx++);
1124 }
1125
1126 void add_interrupt_randomness(int irq, int irq_flags)
1127 {
1128 struct entropy_store *r;
1129 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1130 struct pt_regs *regs = get_irq_regs();
1131 unsigned long now = jiffies;
1132 cycles_t cycles = random_get_entropy();
1133 __u32 c_high, j_high;
1134 __u64 ip;
1135 unsigned long seed;
1136 int credit = 0;
1137
1138 if (cycles == 0)
1139 cycles = get_reg(fast_pool, regs);
1140 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1141 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1142 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1143 fast_pool->pool[1] ^= now ^ c_high;
1144 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1145 fast_pool->pool[2] ^= ip;
1146 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1147 get_reg(fast_pool, regs);
1148
1149 fast_mix(fast_pool);
1150 add_interrupt_bench(cycles);
1151
1152 if (!crng_ready()) {
1153 if ((fast_pool->count >= 64) &&
1154 crng_fast_load((char *) fast_pool->pool,
1155 sizeof(fast_pool->pool))) {
1156 fast_pool->count = 0;
1157 fast_pool->last = now;
1158 }
1159 return;
1160 }
1161
1162 if ((fast_pool->count < 64) &&
1163 !time_after(now, fast_pool->last + HZ))
1164 return;
1165
1166 r = &input_pool;
1167 if (!spin_trylock(&r->lock))
1168 return;
1169
1170 fast_pool->last = now;
1171 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1172
1173 /*
1174 * If we have architectural seed generator, produce a seed and
1175 * add it to the pool. For the sake of paranoia don't let the
1176 * architectural seed generator dominate the input from the
1177 * interrupt noise.
1178 */
1179 if (arch_get_random_seed_long(&seed)) {
1180 __mix_pool_bytes(r, &seed, sizeof(seed));
1181 credit = 1;
1182 }
1183 spin_unlock(&r->lock);
1184
1185 fast_pool->count = 0;
1186
1187 /* award one bit for the contents of the fast pool */
1188 credit_entropy_bits(r, credit + 1);
1189 }
1190 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1191
1192 #ifdef CONFIG_BLOCK
1193 void add_disk_randomness(struct gendisk *disk)
1194 {
1195 if (!disk || !disk->random)
1196 return;
1197 /* first major is 1, so we get >= 0x200 here */
1198 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1199 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1200 }
1201 EXPORT_SYMBOL_GPL(add_disk_randomness);
1202 #endif
1203
1204 /*********************************************************************
1205 *
1206 * Entropy extraction routines
1207 *
1208 *********************************************************************/
1209
1210 /*
1211 * This utility inline function is responsible for transferring entropy
1212 * from the primary pool to the secondary extraction pool. We make
1213 * sure we pull enough for a 'catastrophic reseed'.
1214 */
1215 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1216 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1217 {
1218 if (!r->pull ||
1219 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1220 r->entropy_count > r->poolinfo->poolfracbits)
1221 return;
1222
1223 if (r->limit == 0 && random_min_urandom_seed) {
1224 unsigned long now = jiffies;
1225
1226 if (time_before(now,
1227 r->last_pulled + random_min_urandom_seed * HZ))
1228 return;
1229 r->last_pulled = now;
1230 }
1231
1232 _xfer_secondary_pool(r, nbytes);
1233 }
1234
1235 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1236 {
1237 __u32 tmp[OUTPUT_POOL_WORDS];
1238
1239 /* For /dev/random's pool, always leave two wakeups' worth */
1240 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1241 int bytes = nbytes;
1242
1243 /* pull at least as much as a wakeup */
1244 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1245 /* but never more than the buffer size */
1246 bytes = min_t(int, bytes, sizeof(tmp));
1247
1248 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1249 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1250 bytes = extract_entropy(r->pull, tmp, bytes,
1251 random_read_wakeup_bits / 8, rsvd_bytes);
1252 mix_pool_bytes(r, tmp, bytes);
1253 credit_entropy_bits(r, bytes*8);
1254 }
1255
1256 /*
1257 * Used as a workqueue function so that when the input pool is getting
1258 * full, we can "spill over" some entropy to the output pools. That
1259 * way the output pools can store some of the excess entropy instead
1260 * of letting it go to waste.
1261 */
1262 static void push_to_pool(struct work_struct *work)
1263 {
1264 struct entropy_store *r = container_of(work, struct entropy_store,
1265 push_work);
1266 BUG_ON(!r);
1267 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1268 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1269 r->pull->entropy_count >> ENTROPY_SHIFT);
1270 }
1271
1272 /*
1273 * This function decides how many bytes to actually take from the
1274 * given pool, and also debits the entropy count accordingly.
1275 */
1276 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1277 int reserved)
1278 {
1279 int entropy_count, orig;
1280 size_t ibytes, nfrac;
1281
1282 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1283
1284 /* Can we pull enough? */
1285 retry:
1286 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1287 ibytes = nbytes;
1288 /* If limited, never pull more than available */
1289 if (r->limit) {
1290 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1291
1292 if ((have_bytes -= reserved) < 0)
1293 have_bytes = 0;
1294 ibytes = min_t(size_t, ibytes, have_bytes);
1295 }
1296 if (ibytes < min)
1297 ibytes = 0;
1298
1299 if (unlikely(entropy_count < 0)) {
1300 pr_warn("random: negative entropy count: pool %s count %d\n",
1301 r->name, entropy_count);
1302 WARN_ON(1);
1303 entropy_count = 0;
1304 }
1305 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1306 if ((size_t) entropy_count > nfrac)
1307 entropy_count -= nfrac;
1308 else
1309 entropy_count = 0;
1310
1311 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1312 goto retry;
1313
1314 trace_debit_entropy(r->name, 8 * ibytes);
1315 if (ibytes &&
1316 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1317 wake_up_interruptible(&random_write_wait);
1318 kill_fasync(&fasync, SIGIO, POLL_OUT);
1319 }
1320
1321 return ibytes;
1322 }
1323
1324 /*
1325 * This function does the actual extraction for extract_entropy and
1326 * extract_entropy_user.
1327 *
1328 * Note: we assume that .poolwords is a multiple of 16 words.
1329 */
1330 static void extract_buf(struct entropy_store *r, __u8 *out)
1331 {
1332 int i;
1333 union {
1334 __u32 w[5];
1335 unsigned long l[LONGS(20)];
1336 } hash;
1337 __u32 workspace[SHA_WORKSPACE_WORDS];
1338 unsigned long flags;
1339
1340 /*
1341 * If we have an architectural hardware random number
1342 * generator, use it for SHA's initial vector
1343 */
1344 sha_init(hash.w);
1345 for (i = 0; i < LONGS(20); i++) {
1346 unsigned long v;
1347 if (!arch_get_random_long(&v))
1348 break;
1349 hash.l[i] = v;
1350 }
1351
1352 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1353 spin_lock_irqsave(&r->lock, flags);
1354 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1355 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1356
1357 /*
1358 * We mix the hash back into the pool to prevent backtracking
1359 * attacks (where the attacker knows the state of the pool
1360 * plus the current outputs, and attempts to find previous
1361 * ouputs), unless the hash function can be inverted. By
1362 * mixing at least a SHA1 worth of hash data back, we make
1363 * brute-forcing the feedback as hard as brute-forcing the
1364 * hash.
1365 */
1366 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1367 spin_unlock_irqrestore(&r->lock, flags);
1368
1369 memzero_explicit(workspace, sizeof(workspace));
1370
1371 /*
1372 * In case the hash function has some recognizable output
1373 * pattern, we fold it in half. Thus, we always feed back
1374 * twice as much data as we output.
1375 */
1376 hash.w[0] ^= hash.w[3];
1377 hash.w[1] ^= hash.w[4];
1378 hash.w[2] ^= rol32(hash.w[2], 16);
1379
1380 memcpy(out, &hash, EXTRACT_SIZE);
1381 memzero_explicit(&hash, sizeof(hash));
1382 }
1383
1384 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1385 size_t nbytes, int fips)
1386 {
1387 ssize_t ret = 0, i;
1388 __u8 tmp[EXTRACT_SIZE];
1389 unsigned long flags;
1390
1391 while (nbytes) {
1392 extract_buf(r, tmp);
1393
1394 if (fips) {
1395 spin_lock_irqsave(&r->lock, flags);
1396 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1397 panic("Hardware RNG duplicated output!\n");
1398 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1399 spin_unlock_irqrestore(&r->lock, flags);
1400 }
1401 i = min_t(int, nbytes, EXTRACT_SIZE);
1402 memcpy(buf, tmp, i);
1403 nbytes -= i;
1404 buf += i;
1405 ret += i;
1406 }
1407
1408 /* Wipe data just returned from memory */
1409 memzero_explicit(tmp, sizeof(tmp));
1410
1411 return ret;
1412 }
1413
1414 /*
1415 * This function extracts randomness from the "entropy pool", and
1416 * returns it in a buffer.
1417 *
1418 * The min parameter specifies the minimum amount we can pull before
1419 * failing to avoid races that defeat catastrophic reseeding while the
1420 * reserved parameter indicates how much entropy we must leave in the
1421 * pool after each pull to avoid starving other readers.
1422 */
1423 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1424 size_t nbytes, int min, int reserved)
1425 {
1426 __u8 tmp[EXTRACT_SIZE];
1427 unsigned long flags;
1428
1429 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1430 if (fips_enabled) {
1431 spin_lock_irqsave(&r->lock, flags);
1432 if (!r->last_data_init) {
1433 r->last_data_init = 1;
1434 spin_unlock_irqrestore(&r->lock, flags);
1435 trace_extract_entropy(r->name, EXTRACT_SIZE,
1436 ENTROPY_BITS(r), _RET_IP_);
1437 xfer_secondary_pool(r, EXTRACT_SIZE);
1438 extract_buf(r, tmp);
1439 spin_lock_irqsave(&r->lock, flags);
1440 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1441 }
1442 spin_unlock_irqrestore(&r->lock, flags);
1443 }
1444
1445 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1446 xfer_secondary_pool(r, nbytes);
1447 nbytes = account(r, nbytes, min, reserved);
1448
1449 return _extract_entropy(r, buf, nbytes, fips_enabled);
1450 }
1451
1452 /*
1453 * This function extracts randomness from the "entropy pool", and
1454 * returns it in a userspace buffer.
1455 */
1456 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1457 size_t nbytes)
1458 {
1459 ssize_t ret = 0, i;
1460 __u8 tmp[EXTRACT_SIZE];
1461 int large_request = (nbytes > 256);
1462
1463 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1464 xfer_secondary_pool(r, nbytes);
1465 nbytes = account(r, nbytes, 0, 0);
1466
1467 while (nbytes) {
1468 if (large_request && need_resched()) {
1469 if (signal_pending(current)) {
1470 if (ret == 0)
1471 ret = -ERESTARTSYS;
1472 break;
1473 }
1474 schedule();
1475 }
1476
1477 extract_buf(r, tmp);
1478 i = min_t(int, nbytes, EXTRACT_SIZE);
1479 if (copy_to_user(buf, tmp, i)) {
1480 ret = -EFAULT;
1481 break;
1482 }
1483
1484 nbytes -= i;
1485 buf += i;
1486 ret += i;
1487 }
1488
1489 /* Wipe data just returned from memory */
1490 memzero_explicit(tmp, sizeof(tmp));
1491
1492 return ret;
1493 }
1494
1495 /*
1496 * This function is the exported kernel interface. It returns some
1497 * number of good random numbers, suitable for key generation, seeding
1498 * TCP sequence numbers, etc. It does not rely on the hardware random
1499 * number generator. For random bytes direct from the hardware RNG
1500 * (when available), use get_random_bytes_arch().
1501 */
1502 void get_random_bytes(void *buf, int nbytes)
1503 {
1504 __u8 tmp[CHACHA20_BLOCK_SIZE];
1505
1506 #if DEBUG_RANDOM_BOOT > 0
1507 if (!crng_ready())
1508 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1509 "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1510 #endif
1511 trace_get_random_bytes(nbytes, _RET_IP_);
1512
1513 while (nbytes >= CHACHA20_BLOCK_SIZE) {
1514 extract_crng(buf);
1515 buf += CHACHA20_BLOCK_SIZE;
1516 nbytes -= CHACHA20_BLOCK_SIZE;
1517 }
1518
1519 if (nbytes > 0) {
1520 extract_crng(tmp);
1521 memcpy(buf, tmp, nbytes);
1522 crng_backtrack_protect(tmp, nbytes);
1523 } else
1524 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1525 memzero_explicit(tmp, sizeof(tmp));
1526 }
1527 EXPORT_SYMBOL(get_random_bytes);
1528
1529 /*
1530 * Add a callback function that will be invoked when the nonblocking
1531 * pool is initialised.
1532 *
1533 * returns: 0 if callback is successfully added
1534 * -EALREADY if pool is already initialised (callback not called)
1535 * -ENOENT if module for callback is not alive
1536 */
1537 int add_random_ready_callback(struct random_ready_callback *rdy)
1538 {
1539 struct module *owner;
1540 unsigned long flags;
1541 int err = -EALREADY;
1542
1543 if (crng_ready())
1544 return err;
1545
1546 owner = rdy->owner;
1547 if (!try_module_get(owner))
1548 return -ENOENT;
1549
1550 spin_lock_irqsave(&random_ready_list_lock, flags);
1551 if (crng_ready())
1552 goto out;
1553
1554 owner = NULL;
1555
1556 list_add(&rdy->list, &random_ready_list);
1557 err = 0;
1558
1559 out:
1560 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1561
1562 module_put(owner);
1563
1564 return err;
1565 }
1566 EXPORT_SYMBOL(add_random_ready_callback);
1567
1568 /*
1569 * Delete a previously registered readiness callback function.
1570 */
1571 void del_random_ready_callback(struct random_ready_callback *rdy)
1572 {
1573 unsigned long flags;
1574 struct module *owner = NULL;
1575
1576 spin_lock_irqsave(&random_ready_list_lock, flags);
1577 if (!list_empty(&rdy->list)) {
1578 list_del_init(&rdy->list);
1579 owner = rdy->owner;
1580 }
1581 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1582
1583 module_put(owner);
1584 }
1585 EXPORT_SYMBOL(del_random_ready_callback);
1586
1587 /*
1588 * This function will use the architecture-specific hardware random
1589 * number generator if it is available. The arch-specific hw RNG will
1590 * almost certainly be faster than what we can do in software, but it
1591 * is impossible to verify that it is implemented securely (as
1592 * opposed, to, say, the AES encryption of a sequence number using a
1593 * key known by the NSA). So it's useful if we need the speed, but
1594 * only if we're willing to trust the hardware manufacturer not to
1595 * have put in a back door.
1596 */
1597 void get_random_bytes_arch(void *buf, int nbytes)
1598 {
1599 char *p = buf;
1600
1601 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1602 while (nbytes) {
1603 unsigned long v;
1604 int chunk = min(nbytes, (int)sizeof(unsigned long));
1605
1606 if (!arch_get_random_long(&v))
1607 break;
1608
1609 memcpy(p, &v, chunk);
1610 p += chunk;
1611 nbytes -= chunk;
1612 }
1613
1614 if (nbytes)
1615 get_random_bytes(p, nbytes);
1616 }
1617 EXPORT_SYMBOL(get_random_bytes_arch);
1618
1619
1620 /*
1621 * init_std_data - initialize pool with system data
1622 *
1623 * @r: pool to initialize
1624 *
1625 * This function clears the pool's entropy count and mixes some system
1626 * data into the pool to prepare it for use. The pool is not cleared
1627 * as that can only decrease the entropy in the pool.
1628 */
1629 static void init_std_data(struct entropy_store *r)
1630 {
1631 int i;
1632 ktime_t now = ktime_get_real();
1633 unsigned long rv;
1634
1635 r->last_pulled = jiffies;
1636 mix_pool_bytes(r, &now, sizeof(now));
1637 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1638 if (!arch_get_random_seed_long(&rv) &&
1639 !arch_get_random_long(&rv))
1640 rv = random_get_entropy();
1641 mix_pool_bytes(r, &rv, sizeof(rv));
1642 }
1643 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1644 }
1645
1646 /*
1647 * Note that setup_arch() may call add_device_randomness()
1648 * long before we get here. This allows seeding of the pools
1649 * with some platform dependent data very early in the boot
1650 * process. But it limits our options here. We must use
1651 * statically allocated structures that already have all
1652 * initializations complete at compile time. We should also
1653 * take care not to overwrite the precious per platform data
1654 * we were given.
1655 */
1656 static int rand_initialize(void)
1657 {
1658 #ifdef CONFIG_NUMA
1659 int i;
1660 struct crng_state *crng;
1661 struct crng_state **pool;
1662 #endif
1663
1664 init_std_data(&input_pool);
1665 init_std_data(&blocking_pool);
1666 crng_initialize(&primary_crng);
1667
1668 #ifdef CONFIG_NUMA
1669 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1670 for_each_online_node(i) {
1671 crng = kmalloc_node(sizeof(struct crng_state),
1672 GFP_KERNEL | __GFP_NOFAIL, i);
1673 spin_lock_init(&crng->lock);
1674 crng_initialize(crng);
1675 pool[i] = crng;
1676 }
1677 mb();
1678 crng_node_pool = pool;
1679 #endif
1680 return 0;
1681 }
1682 early_initcall(rand_initialize);
1683
1684 #ifdef CONFIG_BLOCK
1685 void rand_initialize_disk(struct gendisk *disk)
1686 {
1687 struct timer_rand_state *state;
1688
1689 /*
1690 * If kzalloc returns null, we just won't use that entropy
1691 * source.
1692 */
1693 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1694 if (state) {
1695 state->last_time = INITIAL_JIFFIES;
1696 disk->random = state;
1697 }
1698 }
1699 #endif
1700
1701 static ssize_t
1702 _random_read(int nonblock, char __user *buf, size_t nbytes)
1703 {
1704 ssize_t n;
1705
1706 if (nbytes == 0)
1707 return 0;
1708
1709 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1710 while (1) {
1711 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1712 if (n < 0)
1713 return n;
1714 trace_random_read(n*8, (nbytes-n)*8,
1715 ENTROPY_BITS(&blocking_pool),
1716 ENTROPY_BITS(&input_pool));
1717 if (n > 0)
1718 return n;
1719
1720 /* Pool is (near) empty. Maybe wait and retry. */
1721 if (nonblock)
1722 return -EAGAIN;
1723
1724 wait_event_interruptible(random_read_wait,
1725 ENTROPY_BITS(&input_pool) >=
1726 random_read_wakeup_bits);
1727 if (signal_pending(current))
1728 return -ERESTARTSYS;
1729 }
1730 }
1731
1732 static ssize_t
1733 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1734 {
1735 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1736 }
1737
1738 static ssize_t
1739 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1740 {
1741 unsigned long flags;
1742 static int maxwarn = 10;
1743 int ret;
1744
1745 if (!crng_ready() && maxwarn > 0) {
1746 maxwarn--;
1747 printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1748 "(%zd bytes read)\n",
1749 current->comm, nbytes);
1750 spin_lock_irqsave(&primary_crng.lock, flags);
1751 crng_init_cnt = 0;
1752 spin_unlock_irqrestore(&primary_crng.lock, flags);
1753 }
1754 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1755 ret = extract_crng_user(buf, nbytes);
1756 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1757 return ret;
1758 }
1759
1760 static unsigned int
1761 random_poll(struct file *file, poll_table * wait)
1762 {
1763 unsigned int mask;
1764
1765 poll_wait(file, &random_read_wait, wait);
1766 poll_wait(file, &random_write_wait, wait);
1767 mask = 0;
1768 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1769 mask |= POLLIN | POLLRDNORM;
1770 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1771 mask |= POLLOUT | POLLWRNORM;
1772 return mask;
1773 }
1774
1775 static int
1776 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1777 {
1778 size_t bytes;
1779 __u32 buf[16];
1780 const char __user *p = buffer;
1781
1782 while (count > 0) {
1783 bytes = min(count, sizeof(buf));
1784 if (copy_from_user(&buf, p, bytes))
1785 return -EFAULT;
1786
1787 count -= bytes;
1788 p += bytes;
1789
1790 mix_pool_bytes(r, buf, bytes);
1791 cond_resched();
1792 }
1793
1794 return 0;
1795 }
1796
1797 static ssize_t random_write(struct file *file, const char __user *buffer,
1798 size_t count, loff_t *ppos)
1799 {
1800 size_t ret;
1801
1802 ret = write_pool(&input_pool, buffer, count);
1803 if (ret)
1804 return ret;
1805
1806 return (ssize_t)count;
1807 }
1808
1809 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1810 {
1811 int size, ent_count;
1812 int __user *p = (int __user *)arg;
1813 int retval;
1814
1815 switch (cmd) {
1816 case RNDGETENTCNT:
1817 /* inherently racy, no point locking */
1818 ent_count = ENTROPY_BITS(&input_pool);
1819 if (put_user(ent_count, p))
1820 return -EFAULT;
1821 return 0;
1822 case RNDADDTOENTCNT:
1823 if (!capable(CAP_SYS_ADMIN))
1824 return -EPERM;
1825 if (get_user(ent_count, p))
1826 return -EFAULT;
1827 return credit_entropy_bits_safe(&input_pool, ent_count);
1828 case RNDADDENTROPY:
1829 if (!capable(CAP_SYS_ADMIN))
1830 return -EPERM;
1831 if (get_user(ent_count, p++))
1832 return -EFAULT;
1833 if (ent_count < 0)
1834 return -EINVAL;
1835 if (get_user(size, p++))
1836 return -EFAULT;
1837 retval = write_pool(&input_pool, (const char __user *)p,
1838 size);
1839 if (retval < 0)
1840 return retval;
1841 return credit_entropy_bits_safe(&input_pool, ent_count);
1842 case RNDZAPENTCNT:
1843 case RNDCLEARPOOL:
1844 /*
1845 * Clear the entropy pool counters. We no longer clear
1846 * the entropy pool, as that's silly.
1847 */
1848 if (!capable(CAP_SYS_ADMIN))
1849 return -EPERM;
1850 input_pool.entropy_count = 0;
1851 blocking_pool.entropy_count = 0;
1852 return 0;
1853 default:
1854 return -EINVAL;
1855 }
1856 }
1857
1858 static int random_fasync(int fd, struct file *filp, int on)
1859 {
1860 return fasync_helper(fd, filp, on, &fasync);
1861 }
1862
1863 const struct file_operations random_fops = {
1864 .read = random_read,
1865 .write = random_write,
1866 .poll = random_poll,
1867 .unlocked_ioctl = random_ioctl,
1868 .fasync = random_fasync,
1869 .llseek = noop_llseek,
1870 };
1871
1872 const struct file_operations urandom_fops = {
1873 .read = urandom_read,
1874 .write = random_write,
1875 .unlocked_ioctl = random_ioctl,
1876 .fasync = random_fasync,
1877 .llseek = noop_llseek,
1878 };
1879
1880 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1881 unsigned int, flags)
1882 {
1883 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1884 return -EINVAL;
1885
1886 if (count > INT_MAX)
1887 count = INT_MAX;
1888
1889 if (flags & GRND_RANDOM)
1890 return _random_read(flags & GRND_NONBLOCK, buf, count);
1891
1892 if (!crng_ready()) {
1893 if (flags & GRND_NONBLOCK)
1894 return -EAGAIN;
1895 crng_wait_ready();
1896 if (signal_pending(current))
1897 return -ERESTARTSYS;
1898 }
1899 return urandom_read(NULL, buf, count, NULL);
1900 }
1901
1902 /********************************************************************
1903 *
1904 * Sysctl interface
1905 *
1906 ********************************************************************/
1907
1908 #ifdef CONFIG_SYSCTL
1909
1910 #include <linux/sysctl.h>
1911
1912 static int min_read_thresh = 8, min_write_thresh;
1913 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1914 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1915 static char sysctl_bootid[16];
1916
1917 /*
1918 * This function is used to return both the bootid UUID, and random
1919 * UUID. The difference is in whether table->data is NULL; if it is,
1920 * then a new UUID is generated and returned to the user.
1921 *
1922 * If the user accesses this via the proc interface, the UUID will be
1923 * returned as an ASCII string in the standard UUID format; if via the
1924 * sysctl system call, as 16 bytes of binary data.
1925 */
1926 static int proc_do_uuid(struct ctl_table *table, int write,
1927 void __user *buffer, size_t *lenp, loff_t *ppos)
1928 {
1929 struct ctl_table fake_table;
1930 unsigned char buf[64], tmp_uuid[16], *uuid;
1931
1932 uuid = table->data;
1933 if (!uuid) {
1934 uuid = tmp_uuid;
1935 generate_random_uuid(uuid);
1936 } else {
1937 static DEFINE_SPINLOCK(bootid_spinlock);
1938
1939 spin_lock(&bootid_spinlock);
1940 if (!uuid[8])
1941 generate_random_uuid(uuid);
1942 spin_unlock(&bootid_spinlock);
1943 }
1944
1945 sprintf(buf, "%pU", uuid);
1946
1947 fake_table.data = buf;
1948 fake_table.maxlen = sizeof(buf);
1949
1950 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1951 }
1952
1953 /*
1954 * Return entropy available scaled to integral bits
1955 */
1956 static int proc_do_entropy(struct ctl_table *table, int write,
1957 void __user *buffer, size_t *lenp, loff_t *ppos)
1958 {
1959 struct ctl_table fake_table;
1960 int entropy_count;
1961
1962 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1963
1964 fake_table.data = &entropy_count;
1965 fake_table.maxlen = sizeof(entropy_count);
1966
1967 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1968 }
1969
1970 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1971 extern struct ctl_table random_table[];
1972 struct ctl_table random_table[] = {
1973 {
1974 .procname = "poolsize",
1975 .data = &sysctl_poolsize,
1976 .maxlen = sizeof(int),
1977 .mode = 0444,
1978 .proc_handler = proc_dointvec,
1979 },
1980 {
1981 .procname = "entropy_avail",
1982 .maxlen = sizeof(int),
1983 .mode = 0444,
1984 .proc_handler = proc_do_entropy,
1985 .data = &input_pool.entropy_count,
1986 },
1987 {
1988 .procname = "read_wakeup_threshold",
1989 .data = &random_read_wakeup_bits,
1990 .maxlen = sizeof(int),
1991 .mode = 0644,
1992 .proc_handler = proc_dointvec_minmax,
1993 .extra1 = &min_read_thresh,
1994 .extra2 = &max_read_thresh,
1995 },
1996 {
1997 .procname = "write_wakeup_threshold",
1998 .data = &random_write_wakeup_bits,
1999 .maxlen = sizeof(int),
2000 .mode = 0644,
2001 .proc_handler = proc_dointvec_minmax,
2002 .extra1 = &min_write_thresh,
2003 .extra2 = &max_write_thresh,
2004 },
2005 {
2006 .procname = "urandom_min_reseed_secs",
2007 .data = &random_min_urandom_seed,
2008 .maxlen = sizeof(int),
2009 .mode = 0644,
2010 .proc_handler = proc_dointvec,
2011 },
2012 {
2013 .procname = "boot_id",
2014 .data = &sysctl_bootid,
2015 .maxlen = 16,
2016 .mode = 0444,
2017 .proc_handler = proc_do_uuid,
2018 },
2019 {
2020 .procname = "uuid",
2021 .maxlen = 16,
2022 .mode = 0444,
2023 .proc_handler = proc_do_uuid,
2024 },
2025 #ifdef ADD_INTERRUPT_BENCH
2026 {
2027 .procname = "add_interrupt_avg_cycles",
2028 .data = &avg_cycles,
2029 .maxlen = sizeof(avg_cycles),
2030 .mode = 0444,
2031 .proc_handler = proc_doulongvec_minmax,
2032 },
2033 {
2034 .procname = "add_interrupt_avg_deviation",
2035 .data = &avg_deviation,
2036 .maxlen = sizeof(avg_deviation),
2037 .mode = 0444,
2038 .proc_handler = proc_doulongvec_minmax,
2039 },
2040 #endif
2041 { }
2042 };
2043 #endif /* CONFIG_SYSCTL */
2044
2045 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
2046
2047 int random_int_secret_init(void)
2048 {
2049 get_random_bytes(random_int_secret, sizeof(random_int_secret));
2050 return 0;
2051 }
2052
2053 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2054 __aligned(sizeof(unsigned long));
2055
2056 /*
2057 * Get a random word for internal kernel use only. Similar to urandom but
2058 * with the goal of minimal entropy pool depletion. As a result, the random
2059 * value is not cryptographically secure but for several uses the cost of
2060 * depleting entropy is too high
2061 */
2062 unsigned int get_random_int(void)
2063 {
2064 __u32 *hash;
2065 unsigned int ret;
2066
2067 if (arch_get_random_int(&ret))
2068 return ret;
2069
2070 hash = get_cpu_var(get_random_int_hash);
2071
2072 hash[0] += current->pid + jiffies + random_get_entropy();
2073 md5_transform(hash, random_int_secret);
2074 ret = hash[0];
2075 put_cpu_var(get_random_int_hash);
2076
2077 return ret;
2078 }
2079 EXPORT_SYMBOL(get_random_int);
2080
2081 /*
2082 * Same as get_random_int(), but returns unsigned long.
2083 */
2084 unsigned long get_random_long(void)
2085 {
2086 __u32 *hash;
2087 unsigned long ret;
2088
2089 if (arch_get_random_long(&ret))
2090 return ret;
2091
2092 hash = get_cpu_var(get_random_int_hash);
2093
2094 hash[0] += current->pid + jiffies + random_get_entropy();
2095 md5_transform(hash, random_int_secret);
2096 ret = *(unsigned long *)hash;
2097 put_cpu_var(get_random_int_hash);
2098
2099 return ret;
2100 }
2101 EXPORT_SYMBOL(get_random_long);
2102
2103 /**
2104 * randomize_page - Generate a random, page aligned address
2105 * @start: The smallest acceptable address the caller will take.
2106 * @range: The size of the area, starting at @start, within which the
2107 * random address must fall.
2108 *
2109 * If @start + @range would overflow, @range is capped.
2110 *
2111 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2112 * @start was already page aligned. We now align it regardless.
2113 *
2114 * Return: A page aligned address within [start, start + range). On error,
2115 * @start is returned.
2116 */
2117 unsigned long
2118 randomize_page(unsigned long start, unsigned long range)
2119 {
2120 if (!PAGE_ALIGNED(start)) {
2121 range -= PAGE_ALIGN(start) - start;
2122 start = PAGE_ALIGN(start);
2123 }
2124
2125 if (start > ULONG_MAX - range)
2126 range = ULONG_MAX - start;
2127
2128 range >>= PAGE_SHIFT;
2129
2130 if (range == 0)
2131 return start;
2132
2133 return start + (get_random_long() % range << PAGE_SHIFT);
2134 }
2135
2136 /* Interface for in-kernel drivers of true hardware RNGs.
2137 * Those devices may produce endless random bits and will be throttled
2138 * when our pool is full.
2139 */
2140 void add_hwgenerator_randomness(const char *buffer, size_t count,
2141 size_t entropy)
2142 {
2143 struct entropy_store *poolp = &input_pool;
2144
2145 if (!crng_ready()) {
2146 crng_fast_load(buffer, count);
2147 return;
2148 }
2149
2150 /* Suspend writing if we're above the trickle threshold.
2151 * We'll be woken up again once below random_write_wakeup_thresh,
2152 * or when the calling thread is about to terminate.
2153 */
2154 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2155 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2156 mix_pool_bytes(poolp, buffer, count);
2157 credit_entropy_bits(poolp, entropy);
2158 }
2159 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
This page took 0.0786 seconds and 5 git commands to generate.