7d5f181e1679c047aec7da3df4c35c34ac36b278
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
20 #define DEF_FREQUENCY_STEP (5)
21 #define DEF_SAMPLING_DOWN_FACTOR (1)
22 #define MAX_SAMPLING_DOWN_FACTOR (10)
23
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27 struct cpufreq_policy *policy)
28 {
29 unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30
31 /* max freq cannot be less than 100. But who knows... */
32 if (unlikely(freq_target == 0))
33 freq_target = DEF_FREQUENCY_STEP;
34
35 return freq_target;
36 }
37
38 /*
39 * Every sampling_rate, we check, if current idle time is less than 20%
40 * (default), then we try to increase frequency. Every sampling_rate *
41 * sampling_down_factor, we check, if current idle time is more than 80%
42 * (default), then we try to decrease frequency
43 *
44 * Any frequency increase takes it to the maximum frequency. Frequency reduction
45 * happens at minimum steps of 5% (default) of maximum frequency
46 */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49 struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
51 struct dbs_data *dbs_data = policy->governor_data;
52 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53
54 /*
55 * break out if we 'cannot' reduce the speed as the user might
56 * want freq_step to be zero
57 */
58 if (cs_tuners->freq_step == 0)
59 return;
60
61 /* Check for frequency increase */
62 if (load > cs_tuners->up_threshold) {
63 dbs_info->down_skip = 0;
64
65 /* if we are already at full speed then break out early */
66 if (dbs_info->requested_freq == policy->max)
67 return;
68
69 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70
71 if (dbs_info->requested_freq > policy->max)
72 dbs_info->requested_freq = policy->max;
73
74 __cpufreq_driver_target(policy, dbs_info->requested_freq,
75 CPUFREQ_RELATION_H);
76 return;
77 }
78
79 /* if sampling_down_factor is active break out early */
80 if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
81 return;
82 dbs_info->down_skip = 0;
83
84 /* Check for frequency decrease */
85 if (load < cs_tuners->down_threshold) {
86 unsigned int freq_target;
87 /*
88 * if we cannot reduce the frequency anymore, break out early
89 */
90 if (policy->cur == policy->min)
91 return;
92
93 freq_target = get_freq_target(cs_tuners, policy);
94 if (dbs_info->requested_freq > freq_target)
95 dbs_info->requested_freq -= freq_target;
96 else
97 dbs_info->requested_freq = policy->min;
98
99 __cpufreq_driver_target(policy, dbs_info->requested_freq,
100 CPUFREQ_RELATION_L);
101 return;
102 }
103 }
104
105 static unsigned int cs_dbs_timer(struct cpufreq_policy *policy)
106 {
107 struct dbs_data *dbs_data = policy->governor_data;
108 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
109
110 dbs_check_cpu(policy, policy->cpu);
111 return delay_for_sampling_rate(cs_tuners->sampling_rate);
112 }
113
114 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
115 void *data);
116
117 static struct notifier_block cs_cpufreq_notifier_block = {
118 .notifier_call = dbs_cpufreq_notifier,
119 };
120
121 /************************** sysfs interface ************************/
122 static struct dbs_governor cs_dbs_gov;
123
124 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
125 const char *buf, size_t count)
126 {
127 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
128 unsigned int input;
129 int ret;
130 ret = sscanf(buf, "%u", &input);
131
132 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
133 return -EINVAL;
134
135 cs_tuners->sampling_down_factor = input;
136 return count;
137 }
138
139 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
140 size_t count)
141 {
142 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
143 unsigned int input;
144 int ret;
145 ret = sscanf(buf, "%u", &input);
146
147 if (ret != 1)
148 return -EINVAL;
149
150 cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
151 return count;
152 }
153
154 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
155 size_t count)
156 {
157 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
158 unsigned int input;
159 int ret;
160 ret = sscanf(buf, "%u", &input);
161
162 if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
163 return -EINVAL;
164
165 cs_tuners->up_threshold = input;
166 return count;
167 }
168
169 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
170 size_t count)
171 {
172 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
173 unsigned int input;
174 int ret;
175 ret = sscanf(buf, "%u", &input);
176
177 /* cannot be lower than 11 otherwise freq will not fall */
178 if (ret != 1 || input < 11 || input > 100 ||
179 input >= cs_tuners->up_threshold)
180 return -EINVAL;
181
182 cs_tuners->down_threshold = input;
183 return count;
184 }
185
186 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
187 const char *buf, size_t count)
188 {
189 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
190 unsigned int input, j;
191 int ret;
192
193 ret = sscanf(buf, "%u", &input);
194 if (ret != 1)
195 return -EINVAL;
196
197 if (input > 1)
198 input = 1;
199
200 if (input == cs_tuners->ignore_nice_load) /* nothing to do */
201 return count;
202
203 cs_tuners->ignore_nice_load = input;
204
205 /* we need to re-evaluate prev_cpu_idle */
206 for_each_online_cpu(j) {
207 struct cs_cpu_dbs_info_s *dbs_info;
208 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
209 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
210 &dbs_info->cdbs.prev_cpu_wall, 0);
211 if (cs_tuners->ignore_nice_load)
212 dbs_info->cdbs.prev_cpu_nice =
213 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
214 }
215 return count;
216 }
217
218 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
219 size_t count)
220 {
221 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
222 unsigned int input;
223 int ret;
224 ret = sscanf(buf, "%u", &input);
225
226 if (ret != 1)
227 return -EINVAL;
228
229 if (input > 100)
230 input = 100;
231
232 /*
233 * no need to test here if freq_step is zero as the user might actually
234 * want this, they would be crazy though :)
235 */
236 cs_tuners->freq_step = input;
237 return count;
238 }
239
240 show_store_one(cs, sampling_rate);
241 show_store_one(cs, sampling_down_factor);
242 show_store_one(cs, up_threshold);
243 show_store_one(cs, down_threshold);
244 show_store_one(cs, ignore_nice_load);
245 show_store_one(cs, freq_step);
246 declare_show_sampling_rate_min(cs);
247
248 gov_sys_pol_attr_rw(sampling_rate);
249 gov_sys_pol_attr_rw(sampling_down_factor);
250 gov_sys_pol_attr_rw(up_threshold);
251 gov_sys_pol_attr_rw(down_threshold);
252 gov_sys_pol_attr_rw(ignore_nice_load);
253 gov_sys_pol_attr_rw(freq_step);
254 gov_sys_pol_attr_ro(sampling_rate_min);
255
256 static struct attribute *dbs_attributes_gov_sys[] = {
257 &sampling_rate_min_gov_sys.attr,
258 &sampling_rate_gov_sys.attr,
259 &sampling_down_factor_gov_sys.attr,
260 &up_threshold_gov_sys.attr,
261 &down_threshold_gov_sys.attr,
262 &ignore_nice_load_gov_sys.attr,
263 &freq_step_gov_sys.attr,
264 NULL
265 };
266
267 static struct attribute_group cs_attr_group_gov_sys = {
268 .attrs = dbs_attributes_gov_sys,
269 .name = "conservative",
270 };
271
272 static struct attribute *dbs_attributes_gov_pol[] = {
273 &sampling_rate_min_gov_pol.attr,
274 &sampling_rate_gov_pol.attr,
275 &sampling_down_factor_gov_pol.attr,
276 &up_threshold_gov_pol.attr,
277 &down_threshold_gov_pol.attr,
278 &ignore_nice_load_gov_pol.attr,
279 &freq_step_gov_pol.attr,
280 NULL
281 };
282
283 static struct attribute_group cs_attr_group_gov_pol = {
284 .attrs = dbs_attributes_gov_pol,
285 .name = "conservative",
286 };
287
288 /************************** sysfs end ************************/
289
290 static int cs_init(struct dbs_data *dbs_data, bool notify)
291 {
292 struct cs_dbs_tuners *tuners;
293
294 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
295 if (!tuners) {
296 pr_err("%s: kzalloc failed\n", __func__);
297 return -ENOMEM;
298 }
299
300 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
301 tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
302 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
303 tuners->ignore_nice_load = 0;
304 tuners->freq_step = DEF_FREQUENCY_STEP;
305
306 dbs_data->tuners = tuners;
307 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
308 jiffies_to_usecs(10);
309
310 if (notify)
311 cpufreq_register_notifier(&cs_cpufreq_notifier_block,
312 CPUFREQ_TRANSITION_NOTIFIER);
313
314 return 0;
315 }
316
317 static void cs_exit(struct dbs_data *dbs_data, bool notify)
318 {
319 if (notify)
320 cpufreq_unregister_notifier(&cs_cpufreq_notifier_block,
321 CPUFREQ_TRANSITION_NOTIFIER);
322
323 kfree(dbs_data->tuners);
324 }
325
326 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
327
328 static struct dbs_governor cs_dbs_gov = {
329 .gov = {
330 .name = "conservative",
331 .governor = cpufreq_governor_dbs,
332 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
333 .owner = THIS_MODULE,
334 },
335 .governor = GOV_CONSERVATIVE,
336 .attr_group_gov_sys = &cs_attr_group_gov_sys,
337 .attr_group_gov_pol = &cs_attr_group_gov_pol,
338 .get_cpu_cdbs = get_cpu_cdbs,
339 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
340 .gov_dbs_timer = cs_dbs_timer,
341 .gov_check_cpu = cs_check_cpu,
342 .init = cs_init,
343 .exit = cs_exit,
344 };
345
346 #define CPU_FREQ_GOV_CONSERVATIVE (&cs_dbs_gov.gov)
347
348 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
349 void *data)
350 {
351 struct cpufreq_freqs *freq = data;
352 struct cs_cpu_dbs_info_s *dbs_info =
353 &per_cpu(cs_cpu_dbs_info, freq->cpu);
354 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(freq->cpu);
355
356 if (!policy)
357 return 0;
358
359 /* policy isn't governed by conservative governor */
360 if (policy->governor != CPU_FREQ_GOV_CONSERVATIVE)
361 return 0;
362
363 /*
364 * we only care if our internally tracked freq moves outside the 'valid'
365 * ranges of frequency available to us otherwise we do not change it
366 */
367 if (dbs_info->requested_freq > policy->max
368 || dbs_info->requested_freq < policy->min)
369 dbs_info->requested_freq = freq->new;
370
371 return 0;
372 }
373
374 static int __init cpufreq_gov_dbs_init(void)
375 {
376 return cpufreq_register_governor(CPU_FREQ_GOV_CONSERVATIVE);
377 }
378
379 static void __exit cpufreq_gov_dbs_exit(void)
380 {
381 cpufreq_unregister_governor(CPU_FREQ_GOV_CONSERVATIVE);
382 }
383
384 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
385 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
386 "Low Latency Frequency Transition capable processors "
387 "optimised for use in a battery environment");
388 MODULE_LICENSE("GPL");
389
390 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
391 struct cpufreq_governor *cpufreq_default_governor(void)
392 {
393 return CPU_FREQ_GOV_CONSERVATIVE;
394 }
395
396 fs_initcall(cpufreq_gov_dbs_init);
397 #else
398 module_init(cpufreq_gov_dbs_init);
399 #endif
400 module_exit(cpufreq_gov_dbs_exit);
This page took 0.037399 seconds and 4 git commands to generate.