cpufreq: governor: Add a ->start callback for governors
[deliverable/linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 DEFINE_MUTEX(dbs_data_mutex);
26 EXPORT_SYMBOL_GPL(dbs_data_mutex);
27
28 /* Common sysfs tunables */
29 /**
30 * store_sampling_rate - update sampling rate effective immediately if needed.
31 *
32 * If new rate is smaller than the old, simply updating
33 * dbs.sampling_rate might not be appropriate. For example, if the
34 * original sampling_rate was 1 second and the requested new sampling rate is 10
35 * ms because the user needs immediate reaction from ondemand governor, but not
36 * sure if higher frequency will be required or not, then, the governor may
37 * change the sampling rate too late; up to 1 second later. Thus, if we are
38 * reducing the sampling rate, we need to make the new value effective
39 * immediately.
40 *
41 * This must be called with dbs_data->mutex held, otherwise traversing
42 * policy_dbs_list isn't safe.
43 */
44 ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
45 size_t count)
46 {
47 struct policy_dbs_info *policy_dbs;
48 unsigned int rate;
49 int ret;
50 ret = sscanf(buf, "%u", &rate);
51 if (ret != 1)
52 return -EINVAL;
53
54 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
55
56 /*
57 * We are operating under dbs_data->mutex and so the list and its
58 * entries can't be freed concurrently.
59 */
60 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
61 mutex_lock(&policy_dbs->timer_mutex);
62 /*
63 * On 32-bit architectures this may race with the
64 * sample_delay_ns read in dbs_update_util_handler(), but that
65 * really doesn't matter. If the read returns a value that's
66 * too big, the sample will be skipped, but the next invocation
67 * of dbs_update_util_handler() (when the update has been
68 * completed) will take a sample.
69 *
70 * If this runs in parallel with dbs_work_handler(), we may end
71 * up overwriting the sample_delay_ns value that it has just
72 * written, but it will be corrected next time a sample is
73 * taken, so it shouldn't be significant.
74 */
75 gov_update_sample_delay(policy_dbs, 0);
76 mutex_unlock(&policy_dbs->timer_mutex);
77 }
78
79 return count;
80 }
81 EXPORT_SYMBOL_GPL(store_sampling_rate);
82
83 static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
84 {
85 return container_of(kobj, struct dbs_data, kobj);
86 }
87
88 static inline struct governor_attr *to_gov_attr(struct attribute *attr)
89 {
90 return container_of(attr, struct governor_attr, attr);
91 }
92
93 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
94 char *buf)
95 {
96 struct dbs_data *dbs_data = to_dbs_data(kobj);
97 struct governor_attr *gattr = to_gov_attr(attr);
98 int ret = -EIO;
99
100 if (gattr->show)
101 ret = gattr->show(dbs_data, buf);
102
103 return ret;
104 }
105
106 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
107 const char *buf, size_t count)
108 {
109 struct dbs_data *dbs_data = to_dbs_data(kobj);
110 struct governor_attr *gattr = to_gov_attr(attr);
111 int ret = -EIO;
112
113 mutex_lock(&dbs_data->mutex);
114
115 if (dbs_data->usage_count && gattr->store)
116 ret = gattr->store(dbs_data, buf, count);
117
118 mutex_unlock(&dbs_data->mutex);
119
120 return ret;
121 }
122
123 /*
124 * Sysfs Ops for accessing governor attributes.
125 *
126 * All show/store invocations for governor specific sysfs attributes, will first
127 * call the below show/store callbacks and the attribute specific callback will
128 * be called from within it.
129 */
130 static const struct sysfs_ops governor_sysfs_ops = {
131 .show = governor_show,
132 .store = governor_store,
133 };
134
135 unsigned int dbs_update(struct cpufreq_policy *policy)
136 {
137 struct dbs_governor *gov = dbs_governor_of(policy);
138 struct policy_dbs_info *policy_dbs = policy->governor_data;
139 struct dbs_data *dbs_data = policy_dbs->dbs_data;
140 unsigned int ignore_nice = dbs_data->ignore_nice_load;
141 unsigned int max_load = 0;
142 unsigned int sampling_rate, io_busy, j;
143
144 /*
145 * Sometimes governors may use an additional multiplier to increase
146 * sample delays temporarily. Apply that multiplier to sampling_rate
147 * so as to keep the wake-up-from-idle detection logic a bit
148 * conservative.
149 */
150 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
151 /*
152 * For the purpose of ondemand, waiting for disk IO is an indication
153 * that you're performance critical, and not that the system is actually
154 * idle, so do not add the iowait time to the CPU idle time then.
155 */
156 io_busy = dbs_data->io_is_busy;
157
158 /* Get Absolute Load */
159 for_each_cpu(j, policy->cpus) {
160 struct cpu_dbs_info *j_cdbs;
161 u64 cur_wall_time, cur_idle_time;
162 unsigned int idle_time, wall_time;
163 unsigned int load;
164
165 j_cdbs = gov->get_cpu_cdbs(j);
166
167 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
168
169 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
170 j_cdbs->prev_cpu_wall = cur_wall_time;
171
172 if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
173 idle_time = 0;
174 } else {
175 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
176 j_cdbs->prev_cpu_idle = cur_idle_time;
177 }
178
179 if (ignore_nice) {
180 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
181
182 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
183 j_cdbs->prev_cpu_nice = cur_nice;
184 }
185
186 if (unlikely(!wall_time || wall_time < idle_time))
187 continue;
188
189 /*
190 * If the CPU had gone completely idle, and a task just woke up
191 * on this CPU now, it would be unfair to calculate 'load' the
192 * usual way for this elapsed time-window, because it will show
193 * near-zero load, irrespective of how CPU intensive that task
194 * actually is. This is undesirable for latency-sensitive bursty
195 * workloads.
196 *
197 * To avoid this, we reuse the 'load' from the previous
198 * time-window and give this task a chance to start with a
199 * reasonably high CPU frequency. (However, we shouldn't over-do
200 * this copy, lest we get stuck at a high load (high frequency)
201 * for too long, even when the current system load has actually
202 * dropped down. So we perform the copy only once, upon the
203 * first wake-up from idle.)
204 *
205 * Detecting this situation is easy: the governor's utilization
206 * update handler would not have run during CPU-idle periods.
207 * Hence, an unusually large 'wall_time' (as compared to the
208 * sampling rate) indicates this scenario.
209 *
210 * prev_load can be zero in two cases and we must recalculate it
211 * for both cases:
212 * - during long idle intervals
213 * - explicitly set to zero
214 */
215 if (unlikely(wall_time > (2 * sampling_rate) &&
216 j_cdbs->prev_load)) {
217 load = j_cdbs->prev_load;
218
219 /*
220 * Perform a destructive copy, to ensure that we copy
221 * the previous load only once, upon the first wake-up
222 * from idle.
223 */
224 j_cdbs->prev_load = 0;
225 } else {
226 load = 100 * (wall_time - idle_time) / wall_time;
227 j_cdbs->prev_load = load;
228 }
229
230 if (load > max_load)
231 max_load = load;
232 }
233 return max_load;
234 }
235 EXPORT_SYMBOL_GPL(dbs_update);
236
237 void gov_set_update_util(struct policy_dbs_info *policy_dbs,
238 unsigned int delay_us)
239 {
240 struct cpufreq_policy *policy = policy_dbs->policy;
241 struct dbs_governor *gov = dbs_governor_of(policy);
242 int cpu;
243
244 gov_update_sample_delay(policy_dbs, delay_us);
245 policy_dbs->last_sample_time = 0;
246
247 for_each_cpu(cpu, policy->cpus) {
248 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
249
250 cpufreq_set_update_util_data(cpu, &cdbs->update_util);
251 }
252 }
253 EXPORT_SYMBOL_GPL(gov_set_update_util);
254
255 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
256 {
257 int i;
258
259 for_each_cpu(i, policy->cpus)
260 cpufreq_set_update_util_data(i, NULL);
261
262 synchronize_rcu();
263 }
264
265 static void gov_cancel_work(struct cpufreq_policy *policy)
266 {
267 struct policy_dbs_info *policy_dbs = policy->governor_data;
268
269 gov_clear_update_util(policy_dbs->policy);
270 irq_work_sync(&policy_dbs->irq_work);
271 cancel_work_sync(&policy_dbs->work);
272 atomic_set(&policy_dbs->work_count, 0);
273 policy_dbs->work_in_progress = false;
274 }
275
276 static void dbs_work_handler(struct work_struct *work)
277 {
278 struct policy_dbs_info *policy_dbs;
279 struct cpufreq_policy *policy;
280 struct dbs_governor *gov;
281
282 policy_dbs = container_of(work, struct policy_dbs_info, work);
283 policy = policy_dbs->policy;
284 gov = dbs_governor_of(policy);
285
286 /*
287 * Make sure cpufreq_governor_limits() isn't evaluating load or the
288 * ondemand governor isn't updating the sampling rate in parallel.
289 */
290 mutex_lock(&policy_dbs->timer_mutex);
291 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
292 mutex_unlock(&policy_dbs->timer_mutex);
293
294 /* Allow the utilization update handler to queue up more work. */
295 atomic_set(&policy_dbs->work_count, 0);
296 /*
297 * If the update below is reordered with respect to the sample delay
298 * modification, the utilization update handler may end up using a stale
299 * sample delay value.
300 */
301 smp_wmb();
302 policy_dbs->work_in_progress = false;
303 }
304
305 static void dbs_irq_work(struct irq_work *irq_work)
306 {
307 struct policy_dbs_info *policy_dbs;
308
309 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
310 schedule_work(&policy_dbs->work);
311 }
312
313 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
314 unsigned long util, unsigned long max)
315 {
316 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
317 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
318 u64 delta_ns;
319
320 /*
321 * The work may not be allowed to be queued up right now.
322 * Possible reasons:
323 * - Work has already been queued up or is in progress.
324 * - It is too early (too little time from the previous sample).
325 */
326 if (policy_dbs->work_in_progress)
327 return;
328
329 /*
330 * If the reads below are reordered before the check above, the value
331 * of sample_delay_ns used in the computation may be stale.
332 */
333 smp_rmb();
334 delta_ns = time - policy_dbs->last_sample_time;
335 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
336 return;
337
338 /*
339 * If the policy is not shared, the irq_work may be queued up right away
340 * at this point. Otherwise, we need to ensure that only one of the
341 * CPUs sharing the policy will do that.
342 */
343 if (policy_dbs->is_shared &&
344 !atomic_add_unless(&policy_dbs->work_count, 1, 1))
345 return;
346
347 policy_dbs->last_sample_time = time;
348 policy_dbs->work_in_progress = true;
349 irq_work_queue(&policy_dbs->irq_work);
350 }
351
352 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
353 struct dbs_governor *gov)
354 {
355 struct policy_dbs_info *policy_dbs;
356 int j;
357
358 /* Allocate memory for the common information for policy->cpus */
359 policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
360 if (!policy_dbs)
361 return NULL;
362
363 policy_dbs->policy = policy;
364 mutex_init(&policy_dbs->timer_mutex);
365 atomic_set(&policy_dbs->work_count, 0);
366 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
367 INIT_WORK(&policy_dbs->work, dbs_work_handler);
368
369 /* Set policy_dbs for all CPUs, online+offline */
370 for_each_cpu(j, policy->related_cpus) {
371 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
372
373 j_cdbs->policy_dbs = policy_dbs;
374 j_cdbs->update_util.func = dbs_update_util_handler;
375 }
376 return policy_dbs;
377 }
378
379 static void free_policy_dbs_info(struct cpufreq_policy *policy,
380 struct dbs_governor *gov)
381 {
382 struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
383 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
384 int j;
385
386 mutex_destroy(&policy_dbs->timer_mutex);
387
388 for_each_cpu(j, policy->related_cpus) {
389 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
390
391 j_cdbs->policy_dbs = NULL;
392 j_cdbs->update_util.func = NULL;
393 }
394 kfree(policy_dbs);
395 }
396
397 static int cpufreq_governor_init(struct cpufreq_policy *policy)
398 {
399 struct dbs_governor *gov = dbs_governor_of(policy);
400 struct dbs_data *dbs_data = gov->gdbs_data;
401 struct policy_dbs_info *policy_dbs;
402 unsigned int latency;
403 int ret;
404
405 /* State should be equivalent to EXIT */
406 if (policy->governor_data)
407 return -EBUSY;
408
409 policy_dbs = alloc_policy_dbs_info(policy, gov);
410 if (!policy_dbs)
411 return -ENOMEM;
412
413 if (dbs_data) {
414 if (WARN_ON(have_governor_per_policy())) {
415 ret = -EINVAL;
416 goto free_policy_dbs_info;
417 }
418 policy_dbs->dbs_data = dbs_data;
419 policy->governor_data = policy_dbs;
420
421 mutex_lock(&dbs_data->mutex);
422 dbs_data->usage_count++;
423 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
424 mutex_unlock(&dbs_data->mutex);
425
426 return 0;
427 }
428
429 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
430 if (!dbs_data) {
431 ret = -ENOMEM;
432 goto free_policy_dbs_info;
433 }
434
435 INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
436 mutex_init(&dbs_data->mutex);
437
438 ret = gov->init(dbs_data, !policy->governor->initialized);
439 if (ret)
440 goto free_policy_dbs_info;
441
442 /* policy latency is in ns. Convert it to us first */
443 latency = policy->cpuinfo.transition_latency / 1000;
444 if (latency == 0)
445 latency = 1;
446
447 /* Bring kernel and HW constraints together */
448 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
449 MIN_LATENCY_MULTIPLIER * latency);
450 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
451 LATENCY_MULTIPLIER * latency);
452
453 if (!have_governor_per_policy())
454 gov->gdbs_data = dbs_data;
455
456 policy->governor_data = policy_dbs;
457
458 policy_dbs->dbs_data = dbs_data;
459 dbs_data->usage_count = 1;
460 list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
461
462 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
463 ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
464 get_governor_parent_kobj(policy),
465 "%s", gov->gov.name);
466 if (!ret)
467 return 0;
468
469 /* Failure, so roll back. */
470 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
471
472 policy->governor_data = NULL;
473
474 if (!have_governor_per_policy())
475 gov->gdbs_data = NULL;
476 gov->exit(dbs_data, !policy->governor->initialized);
477 kfree(dbs_data);
478
479 free_policy_dbs_info:
480 free_policy_dbs_info(policy, gov);
481 return ret;
482 }
483
484 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
485 {
486 struct dbs_governor *gov = dbs_governor_of(policy);
487 struct policy_dbs_info *policy_dbs = policy->governor_data;
488 struct dbs_data *dbs_data = policy_dbs->dbs_data;
489 int count;
490
491 mutex_lock(&dbs_data->mutex);
492 list_del(&policy_dbs->list);
493 count = --dbs_data->usage_count;
494 mutex_unlock(&dbs_data->mutex);
495
496 if (!count) {
497 kobject_put(&dbs_data->kobj);
498
499 policy->governor_data = NULL;
500
501 if (!have_governor_per_policy())
502 gov->gdbs_data = NULL;
503
504 gov->exit(dbs_data, policy->governor->initialized == 1);
505 mutex_destroy(&dbs_data->mutex);
506 kfree(dbs_data);
507 } else {
508 policy->governor_data = NULL;
509 }
510
511 free_policy_dbs_info(policy, gov);
512 return 0;
513 }
514
515 static int cpufreq_governor_start(struct cpufreq_policy *policy)
516 {
517 struct dbs_governor *gov = dbs_governor_of(policy);
518 struct policy_dbs_info *policy_dbs = policy->governor_data;
519 struct dbs_data *dbs_data = policy_dbs->dbs_data;
520 unsigned int sampling_rate, ignore_nice, j;
521 unsigned int io_busy;
522
523 if (!policy->cur)
524 return -EINVAL;
525
526 policy_dbs->is_shared = policy_is_shared(policy);
527 policy_dbs->rate_mult = 1;
528
529 sampling_rate = dbs_data->sampling_rate;
530 ignore_nice = dbs_data->ignore_nice_load;
531 io_busy = dbs_data->io_is_busy;
532
533 for_each_cpu(j, policy->cpus) {
534 struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
535 unsigned int prev_load;
536
537 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
538
539 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
540 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
541
542 if (ignore_nice)
543 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
544 }
545
546 gov->start(policy);
547
548 gov_set_update_util(policy_dbs, sampling_rate);
549 return 0;
550 }
551
552 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
553 {
554 gov_cancel_work(policy);
555
556 return 0;
557 }
558
559 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
560 {
561 struct policy_dbs_info *policy_dbs = policy->governor_data;
562
563 mutex_lock(&policy_dbs->timer_mutex);
564
565 if (policy->max < policy->cur)
566 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
567 else if (policy->min > policy->cur)
568 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
569
570 gov_update_sample_delay(policy_dbs, 0);
571
572 mutex_unlock(&policy_dbs->timer_mutex);
573
574 return 0;
575 }
576
577 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
578 {
579 int ret = -EINVAL;
580
581 /* Lock governor to block concurrent initialization of governor */
582 mutex_lock(&dbs_data_mutex);
583
584 if (event == CPUFREQ_GOV_POLICY_INIT) {
585 ret = cpufreq_governor_init(policy);
586 } else if (policy->governor_data) {
587 switch (event) {
588 case CPUFREQ_GOV_POLICY_EXIT:
589 ret = cpufreq_governor_exit(policy);
590 break;
591 case CPUFREQ_GOV_START:
592 ret = cpufreq_governor_start(policy);
593 break;
594 case CPUFREQ_GOV_STOP:
595 ret = cpufreq_governor_stop(policy);
596 break;
597 case CPUFREQ_GOV_LIMITS:
598 ret = cpufreq_governor_limits(policy);
599 break;
600 }
601 }
602
603 mutex_unlock(&dbs_data_mutex);
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
This page took 0.042306 seconds and 5 git commands to generate.