929e193ac1c19d7601a207659ed788a72df0a3d4
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 static struct cpufreq_governor cpufreq_gov_ondemand;
35
36 static unsigned int default_powersave_bias;
37
38 static void ondemand_powersave_bias_init_cpu(int cpu)
39 {
40 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
41
42 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
43 dbs_info->freq_lo = 0;
44 }
45
46 /*
47 * Not all CPUs want IO time to be accounted as busy; this depends on how
48 * efficient idling at a higher frequency/voltage is.
49 * Pavel Machek says this is not so for various generations of AMD and old
50 * Intel systems.
51 * Mike Chan (android.com) claims this is also not true for ARM.
52 * Because of this, whitelist specific known (series) of CPUs by default, and
53 * leave all others up to the user.
54 */
55 static int should_io_be_busy(void)
56 {
57 #if defined(CONFIG_X86)
58 /*
59 * For Intel, Core 2 (model 15) and later have an efficient idle.
60 */
61 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
62 boot_cpu_data.x86 == 6 &&
63 boot_cpu_data.x86_model >= 15)
64 return 1;
65 #endif
66 return 0;
67 }
68
69 /*
70 * Find right freq to be set now with powersave_bias on.
71 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
72 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
73 */
74 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
75 unsigned int freq_next, unsigned int relation)
76 {
77 unsigned int freq_req, freq_reduc, freq_avg;
78 unsigned int freq_hi, freq_lo;
79 unsigned int index = 0;
80 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
81 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
82 policy->cpu);
83 struct dbs_data *dbs_data = policy->governor_data;
84 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
85
86 if (!dbs_info->freq_table) {
87 dbs_info->freq_lo = 0;
88 dbs_info->freq_lo_jiffies = 0;
89 return freq_next;
90 }
91
92 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
93 relation, &index);
94 freq_req = dbs_info->freq_table[index].frequency;
95 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
96 freq_avg = freq_req - freq_reduc;
97
98 /* Find freq bounds for freq_avg in freq_table */
99 index = 0;
100 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
101 CPUFREQ_RELATION_H, &index);
102 freq_lo = dbs_info->freq_table[index].frequency;
103 index = 0;
104 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
105 CPUFREQ_RELATION_L, &index);
106 freq_hi = dbs_info->freq_table[index].frequency;
107
108 /* Find out how long we have to be in hi and lo freqs */
109 if (freq_hi == freq_lo) {
110 dbs_info->freq_lo = 0;
111 dbs_info->freq_lo_jiffies = 0;
112 return freq_lo;
113 }
114 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
115 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
116 jiffies_hi += ((freq_hi - freq_lo) / 2);
117 jiffies_hi /= (freq_hi - freq_lo);
118 jiffies_lo = jiffies_total - jiffies_hi;
119 dbs_info->freq_lo = freq_lo;
120 dbs_info->freq_lo_jiffies = jiffies_lo;
121 dbs_info->freq_hi_jiffies = jiffies_hi;
122 return freq_hi;
123 }
124
125 static void ondemand_powersave_bias_init(void)
126 {
127 int i;
128 for_each_online_cpu(i) {
129 ondemand_powersave_bias_init_cpu(i);
130 }
131 }
132
133 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
134 {
135 struct dbs_data *dbs_data = policy->governor_data;
136 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
137
138 if (od_tuners->powersave_bias)
139 freq = od_ops.powersave_bias_target(policy, freq,
140 CPUFREQ_RELATION_H);
141 else if (policy->cur == policy->max)
142 return;
143
144 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
145 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
146 }
147
148 /*
149 * Every sampling_rate, we check, if current idle time is less than 20%
150 * (default), then we try to increase frequency. Else, we adjust the frequency
151 * proportional to load.
152 */
153 static void od_check_cpu(int cpu, unsigned int load)
154 {
155 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
156 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
157 struct dbs_data *dbs_data = policy->governor_data;
158 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
159
160 dbs_info->freq_lo = 0;
161
162 /* Check for frequency increase */
163 if (load > od_tuners->up_threshold) {
164 /* If switching to max speed, apply sampling_down_factor */
165 if (policy->cur < policy->max)
166 dbs_info->rate_mult =
167 od_tuners->sampling_down_factor;
168 dbs_freq_increase(policy, policy->max);
169 } else {
170 /* Calculate the next frequency proportional to load */
171 unsigned int freq_next, min_f, max_f;
172
173 min_f = policy->cpuinfo.min_freq;
174 max_f = policy->cpuinfo.max_freq;
175 freq_next = min_f + load * (max_f - min_f) / 100;
176
177 /* No longer fully busy, reset rate_mult */
178 dbs_info->rate_mult = 1;
179
180 if (!od_tuners->powersave_bias) {
181 __cpufreq_driver_target(policy, freq_next,
182 CPUFREQ_RELATION_C);
183 return;
184 }
185
186 freq_next = od_ops.powersave_bias_target(policy, freq_next,
187 CPUFREQ_RELATION_L);
188 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
189 }
190 }
191
192 static unsigned int od_dbs_timer(struct cpufreq_policy *policy, bool modify_all)
193 {
194 struct dbs_data *dbs_data = policy->governor_data;
195 unsigned int cpu = policy->cpu;
196 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
197 cpu);
198 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
199 int delay = 0, sample_type = dbs_info->sample_type;
200
201 if (!modify_all)
202 goto max_delay;
203
204 /* Common NORMAL_SAMPLE setup */
205 dbs_info->sample_type = OD_NORMAL_SAMPLE;
206 if (sample_type == OD_SUB_SAMPLE) {
207 delay = dbs_info->freq_lo_jiffies;
208 __cpufreq_driver_target(policy, dbs_info->freq_lo,
209 CPUFREQ_RELATION_H);
210 } else {
211 dbs_check_cpu(dbs_data, cpu);
212 if (dbs_info->freq_lo) {
213 /* Setup timer for SUB_SAMPLE */
214 dbs_info->sample_type = OD_SUB_SAMPLE;
215 delay = dbs_info->freq_hi_jiffies;
216 }
217 }
218
219 max_delay:
220 if (!delay)
221 delay = delay_for_sampling_rate(od_tuners->sampling_rate
222 * dbs_info->rate_mult);
223
224 return delay;
225 }
226
227 /************************** sysfs interface ************************/
228 static struct common_dbs_data od_dbs_cdata;
229
230 /**
231 * update_sampling_rate - update sampling rate effective immediately if needed.
232 * @new_rate: new sampling rate
233 *
234 * If new rate is smaller than the old, simply updating
235 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
236 * original sampling_rate was 1 second and the requested new sampling rate is 10
237 * ms because the user needs immediate reaction from ondemand governor, but not
238 * sure if higher frequency will be required or not, then, the governor may
239 * change the sampling rate too late; up to 1 second later. Thus, if we are
240 * reducing the sampling rate, we need to make the new value effective
241 * immediately.
242 */
243 static void update_sampling_rate(struct dbs_data *dbs_data,
244 unsigned int new_rate)
245 {
246 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
247 struct cpumask cpumask;
248 int cpu;
249
250 od_tuners->sampling_rate = new_rate = max(new_rate,
251 dbs_data->min_sampling_rate);
252
253 /*
254 * Lock governor so that governor start/stop can't execute in parallel.
255 */
256 mutex_lock(&od_dbs_cdata.mutex);
257
258 cpumask_copy(&cpumask, cpu_online_mask);
259
260 for_each_cpu(cpu, &cpumask) {
261 struct cpufreq_policy *policy;
262 struct od_cpu_dbs_info_s *dbs_info;
263 struct cpu_dbs_info *cdbs;
264 struct cpu_common_dbs_info *shared;
265 unsigned long next_sampling, appointed_at;
266
267 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
268 cdbs = &dbs_info->cdbs;
269 shared = cdbs->shared;
270
271 /*
272 * A valid shared and shared->policy means governor hasn't
273 * stopped or exited yet.
274 */
275 if (!shared || !shared->policy)
276 continue;
277
278 policy = shared->policy;
279
280 /* clear all CPUs of this policy */
281 cpumask_andnot(&cpumask, &cpumask, policy->cpus);
282
283 /*
284 * Update sampling rate for CPUs whose policy is governed by
285 * dbs_data. In case of governor_per_policy, only a single
286 * policy will be governed by dbs_data, otherwise there can be
287 * multiple policies that are governed by the same dbs_data.
288 */
289 if (dbs_data != policy->governor_data)
290 continue;
291
292 /*
293 * Checking this for any CPU should be fine, timers for all of
294 * them are scheduled together.
295 */
296 next_sampling = jiffies + usecs_to_jiffies(new_rate);
297 appointed_at = dbs_info->cdbs.timer.expires;
298
299 if (time_before(next_sampling, appointed_at)) {
300 gov_cancel_work(shared);
301 gov_add_timers(policy, usecs_to_jiffies(new_rate));
302
303 }
304 }
305
306 mutex_unlock(&od_dbs_cdata.mutex);
307 }
308
309 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
310 size_t count)
311 {
312 unsigned int input;
313 int ret;
314 ret = sscanf(buf, "%u", &input);
315 if (ret != 1)
316 return -EINVAL;
317
318 update_sampling_rate(dbs_data, input);
319 return count;
320 }
321
322 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
323 size_t count)
324 {
325 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
326 unsigned int input;
327 int ret;
328 unsigned int j;
329
330 ret = sscanf(buf, "%u", &input);
331 if (ret != 1)
332 return -EINVAL;
333 od_tuners->io_is_busy = !!input;
334
335 /* we need to re-evaluate prev_cpu_idle */
336 for_each_online_cpu(j) {
337 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
338 j);
339 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
340 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
341 }
342 return count;
343 }
344
345 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
346 size_t count)
347 {
348 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
349 unsigned int input;
350 int ret;
351 ret = sscanf(buf, "%u", &input);
352
353 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
354 input < MIN_FREQUENCY_UP_THRESHOLD) {
355 return -EINVAL;
356 }
357
358 od_tuners->up_threshold = input;
359 return count;
360 }
361
362 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
363 const char *buf, size_t count)
364 {
365 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
366 unsigned int input, j;
367 int ret;
368 ret = sscanf(buf, "%u", &input);
369
370 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
371 return -EINVAL;
372 od_tuners->sampling_down_factor = input;
373
374 /* Reset down sampling multiplier in case it was active */
375 for_each_online_cpu(j) {
376 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
377 j);
378 dbs_info->rate_mult = 1;
379 }
380 return count;
381 }
382
383 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
384 const char *buf, size_t count)
385 {
386 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
387 unsigned int input;
388 int ret;
389
390 unsigned int j;
391
392 ret = sscanf(buf, "%u", &input);
393 if (ret != 1)
394 return -EINVAL;
395
396 if (input > 1)
397 input = 1;
398
399 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
400 return count;
401 }
402 od_tuners->ignore_nice_load = input;
403
404 /* we need to re-evaluate prev_cpu_idle */
405 for_each_online_cpu(j) {
406 struct od_cpu_dbs_info_s *dbs_info;
407 dbs_info = &per_cpu(od_cpu_dbs_info, j);
408 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
409 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
410 if (od_tuners->ignore_nice_load)
411 dbs_info->cdbs.prev_cpu_nice =
412 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
413
414 }
415 return count;
416 }
417
418 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
419 size_t count)
420 {
421 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
422 unsigned int input;
423 int ret;
424 ret = sscanf(buf, "%u", &input);
425
426 if (ret != 1)
427 return -EINVAL;
428
429 if (input > 1000)
430 input = 1000;
431
432 od_tuners->powersave_bias = input;
433 ondemand_powersave_bias_init();
434 return count;
435 }
436
437 show_store_one(od, sampling_rate);
438 show_store_one(od, io_is_busy);
439 show_store_one(od, up_threshold);
440 show_store_one(od, sampling_down_factor);
441 show_store_one(od, ignore_nice_load);
442 show_store_one(od, powersave_bias);
443 declare_show_sampling_rate_min(od);
444
445 gov_sys_pol_attr_rw(sampling_rate);
446 gov_sys_pol_attr_rw(io_is_busy);
447 gov_sys_pol_attr_rw(up_threshold);
448 gov_sys_pol_attr_rw(sampling_down_factor);
449 gov_sys_pol_attr_rw(ignore_nice_load);
450 gov_sys_pol_attr_rw(powersave_bias);
451 gov_sys_pol_attr_ro(sampling_rate_min);
452
453 static struct attribute *dbs_attributes_gov_sys[] = {
454 &sampling_rate_min_gov_sys.attr,
455 &sampling_rate_gov_sys.attr,
456 &up_threshold_gov_sys.attr,
457 &sampling_down_factor_gov_sys.attr,
458 &ignore_nice_load_gov_sys.attr,
459 &powersave_bias_gov_sys.attr,
460 &io_is_busy_gov_sys.attr,
461 NULL
462 };
463
464 static struct attribute_group od_attr_group_gov_sys = {
465 .attrs = dbs_attributes_gov_sys,
466 .name = "ondemand",
467 };
468
469 static struct attribute *dbs_attributes_gov_pol[] = {
470 &sampling_rate_min_gov_pol.attr,
471 &sampling_rate_gov_pol.attr,
472 &up_threshold_gov_pol.attr,
473 &sampling_down_factor_gov_pol.attr,
474 &ignore_nice_load_gov_pol.attr,
475 &powersave_bias_gov_pol.attr,
476 &io_is_busy_gov_pol.attr,
477 NULL
478 };
479
480 static struct attribute_group od_attr_group_gov_pol = {
481 .attrs = dbs_attributes_gov_pol,
482 .name = "ondemand",
483 };
484
485 /************************** sysfs end ************************/
486
487 static int od_init(struct dbs_data *dbs_data, bool notify)
488 {
489 struct od_dbs_tuners *tuners;
490 u64 idle_time;
491 int cpu;
492
493 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
494 if (!tuners) {
495 pr_err("%s: kzalloc failed\n", __func__);
496 return -ENOMEM;
497 }
498
499 cpu = get_cpu();
500 idle_time = get_cpu_idle_time_us(cpu, NULL);
501 put_cpu();
502 if (idle_time != -1ULL) {
503 /* Idle micro accounting is supported. Use finer thresholds */
504 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
505 /*
506 * In nohz/micro accounting case we set the minimum frequency
507 * not depending on HZ, but fixed (very low). The deferred
508 * timer might skip some samples if idle/sleeping as needed.
509 */
510 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
511 } else {
512 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
513
514 /* For correct statistics, we need 10 ticks for each measure */
515 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
516 jiffies_to_usecs(10);
517 }
518
519 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
520 tuners->ignore_nice_load = 0;
521 tuners->powersave_bias = default_powersave_bias;
522 tuners->io_is_busy = should_io_be_busy();
523
524 dbs_data->tuners = tuners;
525 return 0;
526 }
527
528 static void od_exit(struct dbs_data *dbs_data, bool notify)
529 {
530 kfree(dbs_data->tuners);
531 }
532
533 define_get_cpu_dbs_routines(od_cpu_dbs_info);
534
535 static struct od_ops od_ops = {
536 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
537 .powersave_bias_target = generic_powersave_bias_target,
538 .freq_increase = dbs_freq_increase,
539 };
540
541 static struct common_dbs_data od_dbs_cdata = {
542 .governor = GOV_ONDEMAND,
543 .attr_group_gov_sys = &od_attr_group_gov_sys,
544 .attr_group_gov_pol = &od_attr_group_gov_pol,
545 .get_cpu_cdbs = get_cpu_cdbs,
546 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
547 .gov_dbs_timer = od_dbs_timer,
548 .gov_check_cpu = od_check_cpu,
549 .gov_ops = &od_ops,
550 .init = od_init,
551 .exit = od_exit,
552 .mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
553 };
554
555 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
556 unsigned int event)
557 {
558 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
559 }
560
561 static struct cpufreq_governor cpufreq_gov_ondemand = {
562 .name = "ondemand",
563 .governor = od_cpufreq_governor_dbs,
564 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
565 .owner = THIS_MODULE,
566 };
567
568 static void od_set_powersave_bias(unsigned int powersave_bias)
569 {
570 struct cpufreq_policy *policy;
571 struct dbs_data *dbs_data;
572 struct od_dbs_tuners *od_tuners;
573 unsigned int cpu;
574 cpumask_t done;
575
576 default_powersave_bias = powersave_bias;
577 cpumask_clear(&done);
578
579 get_online_cpus();
580 for_each_online_cpu(cpu) {
581 struct cpu_common_dbs_info *shared;
582
583 if (cpumask_test_cpu(cpu, &done))
584 continue;
585
586 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
587 if (!shared)
588 continue;
589
590 policy = shared->policy;
591 cpumask_or(&done, &done, policy->cpus);
592
593 if (policy->governor != &cpufreq_gov_ondemand)
594 continue;
595
596 dbs_data = policy->governor_data;
597 od_tuners = dbs_data->tuners;
598 od_tuners->powersave_bias = default_powersave_bias;
599 }
600 put_online_cpus();
601 }
602
603 void od_register_powersave_bias_handler(unsigned int (*f)
604 (struct cpufreq_policy *, unsigned int, unsigned int),
605 unsigned int powersave_bias)
606 {
607 od_ops.powersave_bias_target = f;
608 od_set_powersave_bias(powersave_bias);
609 }
610 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
611
612 void od_unregister_powersave_bias_handler(void)
613 {
614 od_ops.powersave_bias_target = generic_powersave_bias_target;
615 od_set_powersave_bias(0);
616 }
617 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
618
619 static int __init cpufreq_gov_dbs_init(void)
620 {
621 return cpufreq_register_governor(&cpufreq_gov_ondemand);
622 }
623
624 static void __exit cpufreq_gov_dbs_exit(void)
625 {
626 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
627 }
628
629 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
630 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
631 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
632 "Low Latency Frequency Transition capable processors");
633 MODULE_LICENSE("GPL");
634
635 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
636 struct cpufreq_governor *cpufreq_default_governor(void)
637 {
638 return &cpufreq_gov_ondemand;
639 }
640
641 fs_initcall(cpufreq_gov_dbs_init);
642 #else
643 module_init(cpufreq_gov_dbs_init);
644 #endif
645 module_exit(cpufreq_gov_dbs_exit);
This page took 0.041743 seconds and 4 git commands to generate.