cpufreq: governor: Rework cpufreq_governor_dbs()
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 static unsigned int default_powersave_bias;
35
36 static void ondemand_powersave_bias_init_cpu(int cpu)
37 {
38 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
39
40 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
41 dbs_info->freq_lo = 0;
42 }
43
44 /*
45 * Not all CPUs want IO time to be accounted as busy; this depends on how
46 * efficient idling at a higher frequency/voltage is.
47 * Pavel Machek says this is not so for various generations of AMD and old
48 * Intel systems.
49 * Mike Chan (android.com) claims this is also not true for ARM.
50 * Because of this, whitelist specific known (series) of CPUs by default, and
51 * leave all others up to the user.
52 */
53 static int should_io_be_busy(void)
54 {
55 #if defined(CONFIG_X86)
56 /*
57 * For Intel, Core 2 (model 15) and later have an efficient idle.
58 */
59 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
60 boot_cpu_data.x86 == 6 &&
61 boot_cpu_data.x86_model >= 15)
62 return 1;
63 #endif
64 return 0;
65 }
66
67 /*
68 * Find right freq to be set now with powersave_bias on.
69 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
70 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
71 */
72 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
73 unsigned int freq_next, unsigned int relation)
74 {
75 unsigned int freq_req, freq_reduc, freq_avg;
76 unsigned int freq_hi, freq_lo;
77 unsigned int index = 0;
78 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
79 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
80 policy->cpu);
81 struct dbs_data *dbs_data = policy->governor_data;
82 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
83
84 if (!dbs_info->freq_table) {
85 dbs_info->freq_lo = 0;
86 dbs_info->freq_lo_jiffies = 0;
87 return freq_next;
88 }
89
90 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
91 relation, &index);
92 freq_req = dbs_info->freq_table[index].frequency;
93 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
94 freq_avg = freq_req - freq_reduc;
95
96 /* Find freq bounds for freq_avg in freq_table */
97 index = 0;
98 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
99 CPUFREQ_RELATION_H, &index);
100 freq_lo = dbs_info->freq_table[index].frequency;
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_L, &index);
104 freq_hi = dbs_info->freq_table[index].frequency;
105
106 /* Find out how long we have to be in hi and lo freqs */
107 if (freq_hi == freq_lo) {
108 dbs_info->freq_lo = 0;
109 dbs_info->freq_lo_jiffies = 0;
110 return freq_lo;
111 }
112 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
113 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
114 jiffies_hi += ((freq_hi - freq_lo) / 2);
115 jiffies_hi /= (freq_hi - freq_lo);
116 jiffies_lo = jiffies_total - jiffies_hi;
117 dbs_info->freq_lo = freq_lo;
118 dbs_info->freq_lo_jiffies = jiffies_lo;
119 dbs_info->freq_hi_jiffies = jiffies_hi;
120 return freq_hi;
121 }
122
123 static void ondemand_powersave_bias_init(void)
124 {
125 int i;
126 for_each_online_cpu(i) {
127 ondemand_powersave_bias_init_cpu(i);
128 }
129 }
130
131 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
132 {
133 struct dbs_data *dbs_data = policy->governor_data;
134 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
135
136 if (od_tuners->powersave_bias)
137 freq = od_ops.powersave_bias_target(policy, freq,
138 CPUFREQ_RELATION_H);
139 else if (policy->cur == policy->max)
140 return;
141
142 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
143 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
144 }
145
146 /*
147 * Every sampling_rate, we check, if current idle time is less than 20%
148 * (default), then we try to increase frequency. Else, we adjust the frequency
149 * proportional to load.
150 */
151 static void od_check_cpu(int cpu, unsigned int load)
152 {
153 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
154 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
155 struct dbs_data *dbs_data = policy->governor_data;
156 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
157
158 dbs_info->freq_lo = 0;
159
160 /* Check for frequency increase */
161 if (load > od_tuners->up_threshold) {
162 /* If switching to max speed, apply sampling_down_factor */
163 if (policy->cur < policy->max)
164 dbs_info->rate_mult =
165 od_tuners->sampling_down_factor;
166 dbs_freq_increase(policy, policy->max);
167 } else {
168 /* Calculate the next frequency proportional to load */
169 unsigned int freq_next, min_f, max_f;
170
171 min_f = policy->cpuinfo.min_freq;
172 max_f = policy->cpuinfo.max_freq;
173 freq_next = min_f + load * (max_f - min_f) / 100;
174
175 /* No longer fully busy, reset rate_mult */
176 dbs_info->rate_mult = 1;
177
178 if (!od_tuners->powersave_bias) {
179 __cpufreq_driver_target(policy, freq_next,
180 CPUFREQ_RELATION_C);
181 return;
182 }
183
184 freq_next = od_ops.powersave_bias_target(policy, freq_next,
185 CPUFREQ_RELATION_L);
186 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
187 }
188 }
189
190 static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
191 {
192 struct dbs_data *dbs_data = policy->governor_data;
193 unsigned int cpu = policy->cpu;
194 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
195 cpu);
196 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
197 int delay = 0, sample_type = dbs_info->sample_type;
198
199 /* Common NORMAL_SAMPLE setup */
200 dbs_info->sample_type = OD_NORMAL_SAMPLE;
201 if (sample_type == OD_SUB_SAMPLE) {
202 delay = dbs_info->freq_lo_jiffies;
203 __cpufreq_driver_target(policy, dbs_info->freq_lo,
204 CPUFREQ_RELATION_H);
205 } else {
206 dbs_check_cpu(dbs_data, cpu);
207 if (dbs_info->freq_lo) {
208 /* Setup timer for SUB_SAMPLE */
209 dbs_info->sample_type = OD_SUB_SAMPLE;
210 delay = dbs_info->freq_hi_jiffies;
211 }
212 }
213
214 if (!delay)
215 delay = delay_for_sampling_rate(od_tuners->sampling_rate
216 * dbs_info->rate_mult);
217
218 return delay;
219 }
220
221 /************************** sysfs interface ************************/
222 static struct dbs_governor od_dbs_gov;
223
224 /**
225 * update_sampling_rate - update sampling rate effective immediately if needed.
226 * @new_rate: new sampling rate
227 *
228 * If new rate is smaller than the old, simply updating
229 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
230 * original sampling_rate was 1 second and the requested new sampling rate is 10
231 * ms because the user needs immediate reaction from ondemand governor, but not
232 * sure if higher frequency will be required or not, then, the governor may
233 * change the sampling rate too late; up to 1 second later. Thus, if we are
234 * reducing the sampling rate, we need to make the new value effective
235 * immediately.
236 */
237 static void update_sampling_rate(struct dbs_data *dbs_data,
238 unsigned int new_rate)
239 {
240 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
241 struct cpumask cpumask;
242 int cpu;
243
244 od_tuners->sampling_rate = new_rate = max(new_rate,
245 dbs_data->min_sampling_rate);
246
247 /*
248 * Lock governor so that governor start/stop can't execute in parallel.
249 */
250 mutex_lock(&dbs_data_mutex);
251
252 cpumask_copy(&cpumask, cpu_online_mask);
253
254 for_each_cpu(cpu, &cpumask) {
255 struct cpufreq_policy *policy;
256 struct od_cpu_dbs_info_s *dbs_info;
257 struct cpu_dbs_info *cdbs;
258 struct cpu_common_dbs_info *shared;
259
260 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
261 cdbs = &dbs_info->cdbs;
262 shared = cdbs->shared;
263
264 /*
265 * A valid shared and shared->policy means governor hasn't
266 * stopped or exited yet.
267 */
268 if (!shared || !shared->policy)
269 continue;
270
271 policy = shared->policy;
272
273 /* clear all CPUs of this policy */
274 cpumask_andnot(&cpumask, &cpumask, policy->cpus);
275
276 /*
277 * Update sampling rate for CPUs whose policy is governed by
278 * dbs_data. In case of governor_per_policy, only a single
279 * policy will be governed by dbs_data, otherwise there can be
280 * multiple policies that are governed by the same dbs_data.
281 */
282 if (dbs_data == policy->governor_data) {
283 mutex_lock(&shared->timer_mutex);
284 /*
285 * On 32-bit architectures this may race with the
286 * sample_delay_ns read in dbs_update_util_handler(),
287 * but that really doesn't matter. If the read returns
288 * a value that's too big, the sample will be skipped,
289 * but the next invocation of dbs_update_util_handler()
290 * (when the update has been completed) will take a
291 * sample. If the returned value is too small, the
292 * sample will be taken immediately, but that isn't a
293 * problem, as we want the new rate to take effect
294 * immediately anyway.
295 *
296 * If this runs in parallel with dbs_work_handler(), we
297 * may end up overwriting the sample_delay_ns value that
298 * it has just written, but the difference should not be
299 * too big and it will be corrected next time a sample
300 * is taken, so it shouldn't be significant.
301 */
302 gov_update_sample_delay(shared, new_rate);
303 mutex_unlock(&shared->timer_mutex);
304 }
305 }
306
307 mutex_unlock(&dbs_data_mutex);
308 }
309
310 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
311 size_t count)
312 {
313 unsigned int input;
314 int ret;
315 ret = sscanf(buf, "%u", &input);
316 if (ret != 1)
317 return -EINVAL;
318
319 update_sampling_rate(dbs_data, input);
320 return count;
321 }
322
323 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
324 size_t count)
325 {
326 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
327 unsigned int input;
328 int ret;
329 unsigned int j;
330
331 ret = sscanf(buf, "%u", &input);
332 if (ret != 1)
333 return -EINVAL;
334 od_tuners->io_is_busy = !!input;
335
336 /* we need to re-evaluate prev_cpu_idle */
337 for_each_online_cpu(j) {
338 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
339 j);
340 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
341 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
342 }
343 return count;
344 }
345
346 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
347 size_t count)
348 {
349 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
350 unsigned int input;
351 int ret;
352 ret = sscanf(buf, "%u", &input);
353
354 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
355 input < MIN_FREQUENCY_UP_THRESHOLD) {
356 return -EINVAL;
357 }
358
359 od_tuners->up_threshold = input;
360 return count;
361 }
362
363 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
364 const char *buf, size_t count)
365 {
366 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
367 unsigned int input, j;
368 int ret;
369 ret = sscanf(buf, "%u", &input);
370
371 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
372 return -EINVAL;
373 od_tuners->sampling_down_factor = input;
374
375 /* Reset down sampling multiplier in case it was active */
376 for_each_online_cpu(j) {
377 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
378 j);
379 dbs_info->rate_mult = 1;
380 }
381 return count;
382 }
383
384 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
385 const char *buf, size_t count)
386 {
387 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
388 unsigned int input;
389 int ret;
390
391 unsigned int j;
392
393 ret = sscanf(buf, "%u", &input);
394 if (ret != 1)
395 return -EINVAL;
396
397 if (input > 1)
398 input = 1;
399
400 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
401 return count;
402 }
403 od_tuners->ignore_nice_load = input;
404
405 /* we need to re-evaluate prev_cpu_idle */
406 for_each_online_cpu(j) {
407 struct od_cpu_dbs_info_s *dbs_info;
408 dbs_info = &per_cpu(od_cpu_dbs_info, j);
409 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
410 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
411 if (od_tuners->ignore_nice_load)
412 dbs_info->cdbs.prev_cpu_nice =
413 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
414
415 }
416 return count;
417 }
418
419 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
420 size_t count)
421 {
422 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
423 unsigned int input;
424 int ret;
425 ret = sscanf(buf, "%u", &input);
426
427 if (ret != 1)
428 return -EINVAL;
429
430 if (input > 1000)
431 input = 1000;
432
433 od_tuners->powersave_bias = input;
434 ondemand_powersave_bias_init();
435 return count;
436 }
437
438 show_store_one(od, sampling_rate);
439 show_store_one(od, io_is_busy);
440 show_store_one(od, up_threshold);
441 show_store_one(od, sampling_down_factor);
442 show_store_one(od, ignore_nice_load);
443 show_store_one(od, powersave_bias);
444 declare_show_sampling_rate_min(od);
445
446 gov_sys_pol_attr_rw(sampling_rate);
447 gov_sys_pol_attr_rw(io_is_busy);
448 gov_sys_pol_attr_rw(up_threshold);
449 gov_sys_pol_attr_rw(sampling_down_factor);
450 gov_sys_pol_attr_rw(ignore_nice_load);
451 gov_sys_pol_attr_rw(powersave_bias);
452 gov_sys_pol_attr_ro(sampling_rate_min);
453
454 static struct attribute *dbs_attributes_gov_sys[] = {
455 &sampling_rate_min_gov_sys.attr,
456 &sampling_rate_gov_sys.attr,
457 &up_threshold_gov_sys.attr,
458 &sampling_down_factor_gov_sys.attr,
459 &ignore_nice_load_gov_sys.attr,
460 &powersave_bias_gov_sys.attr,
461 &io_is_busy_gov_sys.attr,
462 NULL
463 };
464
465 static struct attribute_group od_attr_group_gov_sys = {
466 .attrs = dbs_attributes_gov_sys,
467 .name = "ondemand",
468 };
469
470 static struct attribute *dbs_attributes_gov_pol[] = {
471 &sampling_rate_min_gov_pol.attr,
472 &sampling_rate_gov_pol.attr,
473 &up_threshold_gov_pol.attr,
474 &sampling_down_factor_gov_pol.attr,
475 &ignore_nice_load_gov_pol.attr,
476 &powersave_bias_gov_pol.attr,
477 &io_is_busy_gov_pol.attr,
478 NULL
479 };
480
481 static struct attribute_group od_attr_group_gov_pol = {
482 .attrs = dbs_attributes_gov_pol,
483 .name = "ondemand",
484 };
485
486 /************************** sysfs end ************************/
487
488 static int od_init(struct dbs_data *dbs_data, bool notify)
489 {
490 struct od_dbs_tuners *tuners;
491 u64 idle_time;
492 int cpu;
493
494 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
495 if (!tuners) {
496 pr_err("%s: kzalloc failed\n", __func__);
497 return -ENOMEM;
498 }
499
500 cpu = get_cpu();
501 idle_time = get_cpu_idle_time_us(cpu, NULL);
502 put_cpu();
503 if (idle_time != -1ULL) {
504 /* Idle micro accounting is supported. Use finer thresholds */
505 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
506 /*
507 * In nohz/micro accounting case we set the minimum frequency
508 * not depending on HZ, but fixed (very low). The deferred
509 * timer might skip some samples if idle/sleeping as needed.
510 */
511 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
512 } else {
513 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
514
515 /* For correct statistics, we need 10 ticks for each measure */
516 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
517 jiffies_to_usecs(10);
518 }
519
520 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
521 tuners->ignore_nice_load = 0;
522 tuners->powersave_bias = default_powersave_bias;
523 tuners->io_is_busy = should_io_be_busy();
524
525 dbs_data->tuners = tuners;
526 return 0;
527 }
528
529 static void od_exit(struct dbs_data *dbs_data, bool notify)
530 {
531 kfree(dbs_data->tuners);
532 }
533
534 define_get_cpu_dbs_routines(od_cpu_dbs_info);
535
536 static struct od_ops od_ops = {
537 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
538 .powersave_bias_target = generic_powersave_bias_target,
539 .freq_increase = dbs_freq_increase,
540 };
541
542 static struct dbs_governor od_dbs_gov = {
543 .gov = {
544 .name = "ondemand",
545 .governor = cpufreq_governor_dbs,
546 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
547 .owner = THIS_MODULE,
548 },
549 .governor = GOV_ONDEMAND,
550 .attr_group_gov_sys = &od_attr_group_gov_sys,
551 .attr_group_gov_pol = &od_attr_group_gov_pol,
552 .get_cpu_cdbs = get_cpu_cdbs,
553 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
554 .gov_dbs_timer = od_dbs_timer,
555 .gov_check_cpu = od_check_cpu,
556 .gov_ops = &od_ops,
557 .init = od_init,
558 .exit = od_exit,
559 };
560
561 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
562
563 static void od_set_powersave_bias(unsigned int powersave_bias)
564 {
565 struct cpufreq_policy *policy;
566 struct dbs_data *dbs_data;
567 struct od_dbs_tuners *od_tuners;
568 unsigned int cpu;
569 cpumask_t done;
570
571 default_powersave_bias = powersave_bias;
572 cpumask_clear(&done);
573
574 get_online_cpus();
575 for_each_online_cpu(cpu) {
576 struct cpu_common_dbs_info *shared;
577
578 if (cpumask_test_cpu(cpu, &done))
579 continue;
580
581 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
582 if (!shared)
583 continue;
584
585 policy = shared->policy;
586 cpumask_or(&done, &done, policy->cpus);
587
588 if (policy->governor != CPU_FREQ_GOV_ONDEMAND)
589 continue;
590
591 dbs_data = policy->governor_data;
592 od_tuners = dbs_data->tuners;
593 od_tuners->powersave_bias = default_powersave_bias;
594 }
595 put_online_cpus();
596 }
597
598 void od_register_powersave_bias_handler(unsigned int (*f)
599 (struct cpufreq_policy *, unsigned int, unsigned int),
600 unsigned int powersave_bias)
601 {
602 od_ops.powersave_bias_target = f;
603 od_set_powersave_bias(powersave_bias);
604 }
605 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
606
607 void od_unregister_powersave_bias_handler(void)
608 {
609 od_ops.powersave_bias_target = generic_powersave_bias_target;
610 od_set_powersave_bias(0);
611 }
612 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
613
614 static int __init cpufreq_gov_dbs_init(void)
615 {
616 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
617 }
618
619 static void __exit cpufreq_gov_dbs_exit(void)
620 {
621 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
622 }
623
624 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
625 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
626 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
627 "Low Latency Frequency Transition capable processors");
628 MODULE_LICENSE("GPL");
629
630 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
631 struct cpufreq_governor *cpufreq_default_governor(void)
632 {
633 return CPU_FREQ_GOV_ONDEMAND;
634 }
635
636 fs_initcall(cpufreq_gov_dbs_init);
637 #else
638 module_init(cpufreq_gov_dbs_init);
639 #endif
640 module_exit(cpufreq_gov_dbs_exit);
This page took 0.043079 seconds and 5 git commands to generate.