cpufreq: governor: Use common mutex for dbs_data protection
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 static struct cpufreq_governor cpufreq_gov_ondemand;
35
36 static unsigned int default_powersave_bias;
37
38 static void ondemand_powersave_bias_init_cpu(int cpu)
39 {
40 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
41
42 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
43 dbs_info->freq_lo = 0;
44 }
45
46 /*
47 * Not all CPUs want IO time to be accounted as busy; this depends on how
48 * efficient idling at a higher frequency/voltage is.
49 * Pavel Machek says this is not so for various generations of AMD and old
50 * Intel systems.
51 * Mike Chan (android.com) claims this is also not true for ARM.
52 * Because of this, whitelist specific known (series) of CPUs by default, and
53 * leave all others up to the user.
54 */
55 static int should_io_be_busy(void)
56 {
57 #if defined(CONFIG_X86)
58 /*
59 * For Intel, Core 2 (model 15) and later have an efficient idle.
60 */
61 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
62 boot_cpu_data.x86 == 6 &&
63 boot_cpu_data.x86_model >= 15)
64 return 1;
65 #endif
66 return 0;
67 }
68
69 /*
70 * Find right freq to be set now with powersave_bias on.
71 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
72 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
73 */
74 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
75 unsigned int freq_next, unsigned int relation)
76 {
77 unsigned int freq_req, freq_reduc, freq_avg;
78 unsigned int freq_hi, freq_lo;
79 unsigned int index = 0;
80 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
81 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
82 policy->cpu);
83 struct dbs_data *dbs_data = policy->governor_data;
84 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
85
86 if (!dbs_info->freq_table) {
87 dbs_info->freq_lo = 0;
88 dbs_info->freq_lo_jiffies = 0;
89 return freq_next;
90 }
91
92 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
93 relation, &index);
94 freq_req = dbs_info->freq_table[index].frequency;
95 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
96 freq_avg = freq_req - freq_reduc;
97
98 /* Find freq bounds for freq_avg in freq_table */
99 index = 0;
100 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
101 CPUFREQ_RELATION_H, &index);
102 freq_lo = dbs_info->freq_table[index].frequency;
103 index = 0;
104 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
105 CPUFREQ_RELATION_L, &index);
106 freq_hi = dbs_info->freq_table[index].frequency;
107
108 /* Find out how long we have to be in hi and lo freqs */
109 if (freq_hi == freq_lo) {
110 dbs_info->freq_lo = 0;
111 dbs_info->freq_lo_jiffies = 0;
112 return freq_lo;
113 }
114 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
115 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
116 jiffies_hi += ((freq_hi - freq_lo) / 2);
117 jiffies_hi /= (freq_hi - freq_lo);
118 jiffies_lo = jiffies_total - jiffies_hi;
119 dbs_info->freq_lo = freq_lo;
120 dbs_info->freq_lo_jiffies = jiffies_lo;
121 dbs_info->freq_hi_jiffies = jiffies_hi;
122 return freq_hi;
123 }
124
125 static void ondemand_powersave_bias_init(void)
126 {
127 int i;
128 for_each_online_cpu(i) {
129 ondemand_powersave_bias_init_cpu(i);
130 }
131 }
132
133 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
134 {
135 struct dbs_data *dbs_data = policy->governor_data;
136 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
137
138 if (od_tuners->powersave_bias)
139 freq = od_ops.powersave_bias_target(policy, freq,
140 CPUFREQ_RELATION_H);
141 else if (policy->cur == policy->max)
142 return;
143
144 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
145 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
146 }
147
148 /*
149 * Every sampling_rate, we check, if current idle time is less than 20%
150 * (default), then we try to increase frequency. Else, we adjust the frequency
151 * proportional to load.
152 */
153 static void od_check_cpu(int cpu, unsigned int load)
154 {
155 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
156 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
157 struct dbs_data *dbs_data = policy->governor_data;
158 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
159
160 dbs_info->freq_lo = 0;
161
162 /* Check for frequency increase */
163 if (load > od_tuners->up_threshold) {
164 /* If switching to max speed, apply sampling_down_factor */
165 if (policy->cur < policy->max)
166 dbs_info->rate_mult =
167 od_tuners->sampling_down_factor;
168 dbs_freq_increase(policy, policy->max);
169 } else {
170 /* Calculate the next frequency proportional to load */
171 unsigned int freq_next, min_f, max_f;
172
173 min_f = policy->cpuinfo.min_freq;
174 max_f = policy->cpuinfo.max_freq;
175 freq_next = min_f + load * (max_f - min_f) / 100;
176
177 /* No longer fully busy, reset rate_mult */
178 dbs_info->rate_mult = 1;
179
180 if (!od_tuners->powersave_bias) {
181 __cpufreq_driver_target(policy, freq_next,
182 CPUFREQ_RELATION_C);
183 return;
184 }
185
186 freq_next = od_ops.powersave_bias_target(policy, freq_next,
187 CPUFREQ_RELATION_L);
188 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
189 }
190 }
191
192 static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
193 {
194 struct dbs_data *dbs_data = policy->governor_data;
195 unsigned int cpu = policy->cpu;
196 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
197 cpu);
198 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
199 int delay = 0, sample_type = dbs_info->sample_type;
200
201 /* Common NORMAL_SAMPLE setup */
202 dbs_info->sample_type = OD_NORMAL_SAMPLE;
203 if (sample_type == OD_SUB_SAMPLE) {
204 delay = dbs_info->freq_lo_jiffies;
205 __cpufreq_driver_target(policy, dbs_info->freq_lo,
206 CPUFREQ_RELATION_H);
207 } else {
208 dbs_check_cpu(dbs_data, cpu);
209 if (dbs_info->freq_lo) {
210 /* Setup timer for SUB_SAMPLE */
211 dbs_info->sample_type = OD_SUB_SAMPLE;
212 delay = dbs_info->freq_hi_jiffies;
213 }
214 }
215
216 if (!delay)
217 delay = delay_for_sampling_rate(od_tuners->sampling_rate
218 * dbs_info->rate_mult);
219
220 return delay;
221 }
222
223 /************************** sysfs interface ************************/
224 static struct common_dbs_data od_dbs_cdata;
225
226 /**
227 * update_sampling_rate - update sampling rate effective immediately if needed.
228 * @new_rate: new sampling rate
229 *
230 * If new rate is smaller than the old, simply updating
231 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
232 * original sampling_rate was 1 second and the requested new sampling rate is 10
233 * ms because the user needs immediate reaction from ondemand governor, but not
234 * sure if higher frequency will be required or not, then, the governor may
235 * change the sampling rate too late; up to 1 second later. Thus, if we are
236 * reducing the sampling rate, we need to make the new value effective
237 * immediately.
238 */
239 static void update_sampling_rate(struct dbs_data *dbs_data,
240 unsigned int new_rate)
241 {
242 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
243 struct cpumask cpumask;
244 int cpu;
245
246 od_tuners->sampling_rate = new_rate = max(new_rate,
247 dbs_data->min_sampling_rate);
248
249 /*
250 * Lock governor so that governor start/stop can't execute in parallel.
251 */
252 mutex_lock(&dbs_data_mutex);
253
254 cpumask_copy(&cpumask, cpu_online_mask);
255
256 for_each_cpu(cpu, &cpumask) {
257 struct cpufreq_policy *policy;
258 struct od_cpu_dbs_info_s *dbs_info;
259 struct cpu_dbs_info *cdbs;
260 struct cpu_common_dbs_info *shared;
261
262 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
263 cdbs = &dbs_info->cdbs;
264 shared = cdbs->shared;
265
266 /*
267 * A valid shared and shared->policy means governor hasn't
268 * stopped or exited yet.
269 */
270 if (!shared || !shared->policy)
271 continue;
272
273 policy = shared->policy;
274
275 /* clear all CPUs of this policy */
276 cpumask_andnot(&cpumask, &cpumask, policy->cpus);
277
278 /*
279 * Update sampling rate for CPUs whose policy is governed by
280 * dbs_data. In case of governor_per_policy, only a single
281 * policy will be governed by dbs_data, otherwise there can be
282 * multiple policies that are governed by the same dbs_data.
283 */
284 if (dbs_data == policy->governor_data) {
285 mutex_lock(&shared->timer_mutex);
286 /*
287 * On 32-bit architectures this may race with the
288 * sample_delay_ns read in dbs_update_util_handler(),
289 * but that really doesn't matter. If the read returns
290 * a value that's too big, the sample will be skipped,
291 * but the next invocation of dbs_update_util_handler()
292 * (when the update has been completed) will take a
293 * sample. If the returned value is too small, the
294 * sample will be taken immediately, but that isn't a
295 * problem, as we want the new rate to take effect
296 * immediately anyway.
297 *
298 * If this runs in parallel with dbs_work_handler(), we
299 * may end up overwriting the sample_delay_ns value that
300 * it has just written, but the difference should not be
301 * too big and it will be corrected next time a sample
302 * is taken, so it shouldn't be significant.
303 */
304 gov_update_sample_delay(shared, new_rate);
305 mutex_unlock(&shared->timer_mutex);
306 }
307 }
308
309 mutex_unlock(&dbs_data_mutex);
310 }
311
312 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
313 size_t count)
314 {
315 unsigned int input;
316 int ret;
317 ret = sscanf(buf, "%u", &input);
318 if (ret != 1)
319 return -EINVAL;
320
321 update_sampling_rate(dbs_data, input);
322 return count;
323 }
324
325 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
326 size_t count)
327 {
328 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
329 unsigned int input;
330 int ret;
331 unsigned int j;
332
333 ret = sscanf(buf, "%u", &input);
334 if (ret != 1)
335 return -EINVAL;
336 od_tuners->io_is_busy = !!input;
337
338 /* we need to re-evaluate prev_cpu_idle */
339 for_each_online_cpu(j) {
340 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
341 j);
342 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
343 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
344 }
345 return count;
346 }
347
348 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
349 size_t count)
350 {
351 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
352 unsigned int input;
353 int ret;
354 ret = sscanf(buf, "%u", &input);
355
356 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
357 input < MIN_FREQUENCY_UP_THRESHOLD) {
358 return -EINVAL;
359 }
360
361 od_tuners->up_threshold = input;
362 return count;
363 }
364
365 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
366 const char *buf, size_t count)
367 {
368 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
369 unsigned int input, j;
370 int ret;
371 ret = sscanf(buf, "%u", &input);
372
373 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
374 return -EINVAL;
375 od_tuners->sampling_down_factor = input;
376
377 /* Reset down sampling multiplier in case it was active */
378 for_each_online_cpu(j) {
379 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
380 j);
381 dbs_info->rate_mult = 1;
382 }
383 return count;
384 }
385
386 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
387 const char *buf, size_t count)
388 {
389 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
390 unsigned int input;
391 int ret;
392
393 unsigned int j;
394
395 ret = sscanf(buf, "%u", &input);
396 if (ret != 1)
397 return -EINVAL;
398
399 if (input > 1)
400 input = 1;
401
402 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
403 return count;
404 }
405 od_tuners->ignore_nice_load = input;
406
407 /* we need to re-evaluate prev_cpu_idle */
408 for_each_online_cpu(j) {
409 struct od_cpu_dbs_info_s *dbs_info;
410 dbs_info = &per_cpu(od_cpu_dbs_info, j);
411 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
412 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
413 if (od_tuners->ignore_nice_load)
414 dbs_info->cdbs.prev_cpu_nice =
415 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
416
417 }
418 return count;
419 }
420
421 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
422 size_t count)
423 {
424 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
425 unsigned int input;
426 int ret;
427 ret = sscanf(buf, "%u", &input);
428
429 if (ret != 1)
430 return -EINVAL;
431
432 if (input > 1000)
433 input = 1000;
434
435 od_tuners->powersave_bias = input;
436 ondemand_powersave_bias_init();
437 return count;
438 }
439
440 show_store_one(od, sampling_rate);
441 show_store_one(od, io_is_busy);
442 show_store_one(od, up_threshold);
443 show_store_one(od, sampling_down_factor);
444 show_store_one(od, ignore_nice_load);
445 show_store_one(od, powersave_bias);
446 declare_show_sampling_rate_min(od);
447
448 gov_sys_pol_attr_rw(sampling_rate);
449 gov_sys_pol_attr_rw(io_is_busy);
450 gov_sys_pol_attr_rw(up_threshold);
451 gov_sys_pol_attr_rw(sampling_down_factor);
452 gov_sys_pol_attr_rw(ignore_nice_load);
453 gov_sys_pol_attr_rw(powersave_bias);
454 gov_sys_pol_attr_ro(sampling_rate_min);
455
456 static struct attribute *dbs_attributes_gov_sys[] = {
457 &sampling_rate_min_gov_sys.attr,
458 &sampling_rate_gov_sys.attr,
459 &up_threshold_gov_sys.attr,
460 &sampling_down_factor_gov_sys.attr,
461 &ignore_nice_load_gov_sys.attr,
462 &powersave_bias_gov_sys.attr,
463 &io_is_busy_gov_sys.attr,
464 NULL
465 };
466
467 static struct attribute_group od_attr_group_gov_sys = {
468 .attrs = dbs_attributes_gov_sys,
469 .name = "ondemand",
470 };
471
472 static struct attribute *dbs_attributes_gov_pol[] = {
473 &sampling_rate_min_gov_pol.attr,
474 &sampling_rate_gov_pol.attr,
475 &up_threshold_gov_pol.attr,
476 &sampling_down_factor_gov_pol.attr,
477 &ignore_nice_load_gov_pol.attr,
478 &powersave_bias_gov_pol.attr,
479 &io_is_busy_gov_pol.attr,
480 NULL
481 };
482
483 static struct attribute_group od_attr_group_gov_pol = {
484 .attrs = dbs_attributes_gov_pol,
485 .name = "ondemand",
486 };
487
488 /************************** sysfs end ************************/
489
490 static int od_init(struct dbs_data *dbs_data, bool notify)
491 {
492 struct od_dbs_tuners *tuners;
493 u64 idle_time;
494 int cpu;
495
496 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
497 if (!tuners) {
498 pr_err("%s: kzalloc failed\n", __func__);
499 return -ENOMEM;
500 }
501
502 cpu = get_cpu();
503 idle_time = get_cpu_idle_time_us(cpu, NULL);
504 put_cpu();
505 if (idle_time != -1ULL) {
506 /* Idle micro accounting is supported. Use finer thresholds */
507 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
508 /*
509 * In nohz/micro accounting case we set the minimum frequency
510 * not depending on HZ, but fixed (very low). The deferred
511 * timer might skip some samples if idle/sleeping as needed.
512 */
513 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
514 } else {
515 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
516
517 /* For correct statistics, we need 10 ticks for each measure */
518 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
519 jiffies_to_usecs(10);
520 }
521
522 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
523 tuners->ignore_nice_load = 0;
524 tuners->powersave_bias = default_powersave_bias;
525 tuners->io_is_busy = should_io_be_busy();
526
527 dbs_data->tuners = tuners;
528 return 0;
529 }
530
531 static void od_exit(struct dbs_data *dbs_data, bool notify)
532 {
533 kfree(dbs_data->tuners);
534 }
535
536 define_get_cpu_dbs_routines(od_cpu_dbs_info);
537
538 static struct od_ops od_ops = {
539 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
540 .powersave_bias_target = generic_powersave_bias_target,
541 .freq_increase = dbs_freq_increase,
542 };
543
544 static struct common_dbs_data od_dbs_cdata = {
545 .governor = GOV_ONDEMAND,
546 .attr_group_gov_sys = &od_attr_group_gov_sys,
547 .attr_group_gov_pol = &od_attr_group_gov_pol,
548 .get_cpu_cdbs = get_cpu_cdbs,
549 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
550 .gov_dbs_timer = od_dbs_timer,
551 .gov_check_cpu = od_check_cpu,
552 .gov_ops = &od_ops,
553 .init = od_init,
554 .exit = od_exit,
555 };
556
557 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
558 unsigned int event)
559 {
560 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
561 }
562
563 static struct cpufreq_governor cpufreq_gov_ondemand = {
564 .name = "ondemand",
565 .governor = od_cpufreq_governor_dbs,
566 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
567 .owner = THIS_MODULE,
568 };
569
570 static void od_set_powersave_bias(unsigned int powersave_bias)
571 {
572 struct cpufreq_policy *policy;
573 struct dbs_data *dbs_data;
574 struct od_dbs_tuners *od_tuners;
575 unsigned int cpu;
576 cpumask_t done;
577
578 default_powersave_bias = powersave_bias;
579 cpumask_clear(&done);
580
581 get_online_cpus();
582 for_each_online_cpu(cpu) {
583 struct cpu_common_dbs_info *shared;
584
585 if (cpumask_test_cpu(cpu, &done))
586 continue;
587
588 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
589 if (!shared)
590 continue;
591
592 policy = shared->policy;
593 cpumask_or(&done, &done, policy->cpus);
594
595 if (policy->governor != &cpufreq_gov_ondemand)
596 continue;
597
598 dbs_data = policy->governor_data;
599 od_tuners = dbs_data->tuners;
600 od_tuners->powersave_bias = default_powersave_bias;
601 }
602 put_online_cpus();
603 }
604
605 void od_register_powersave_bias_handler(unsigned int (*f)
606 (struct cpufreq_policy *, unsigned int, unsigned int),
607 unsigned int powersave_bias)
608 {
609 od_ops.powersave_bias_target = f;
610 od_set_powersave_bias(powersave_bias);
611 }
612 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
613
614 void od_unregister_powersave_bias_handler(void)
615 {
616 od_ops.powersave_bias_target = generic_powersave_bias_target;
617 od_set_powersave_bias(0);
618 }
619 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
620
621 static int __init cpufreq_gov_dbs_init(void)
622 {
623 return cpufreq_register_governor(&cpufreq_gov_ondemand);
624 }
625
626 static void __exit cpufreq_gov_dbs_exit(void)
627 {
628 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
629 }
630
631 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
632 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
633 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
634 "Low Latency Frequency Transition capable processors");
635 MODULE_LICENSE("GPL");
636
637 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
638 struct cpufreq_governor *cpufreq_default_governor(void)
639 {
640 return &cpufreq_gov_ondemand;
641 }
642
643 fs_initcall(cpufreq_gov_dbs_init);
644 #else
645 module_init(cpufreq_gov_dbs_init);
646 #endif
647 module_exit(cpufreq_gov_dbs_exit);
This page took 0.043668 seconds and 5 git commands to generate.