66f7f0071cab97e64f014c9165c2c8f51308292d
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS 0x66a
38 #define ATOM_VIDS 0x66b
39 #define ATOM_TURBO_RATIOS 0x66c
40 #define ATOM_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65 }
66
67 /**
68 * struct sample - Store performance sample
69 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
70 * performance during last sample period
71 * @busy_scaled: Scaled busy value which is used to calculate next
72 * P state. This can be different than core_pct_busy
73 * to account for cpu idle period
74 * @aperf: Difference of actual performance frequency clock count
75 * read from APERF MSR between last and current sample
76 * @mperf: Difference of maximum performance frequency clock count
77 * read from MPERF MSR between last and current sample
78 * @tsc: Difference of time stamp counter between last and
79 * current sample
80 * @freq: Effective frequency calculated from APERF/MPERF
81 * @time: Current time from scheduler
82 *
83 * This structure is used in the cpudata structure to store performance sample
84 * data for choosing next P State.
85 */
86 struct sample {
87 int32_t core_pct_busy;
88 int32_t busy_scaled;
89 u64 aperf;
90 u64 mperf;
91 u64 tsc;
92 int freq;
93 u64 time;
94 };
95
96 /**
97 * struct pstate_data - Store P state data
98 * @current_pstate: Current requested P state
99 * @min_pstate: Min P state possible for this platform
100 * @max_pstate: Max P state possible for this platform
101 * @max_pstate_physical:This is physical Max P state for a processor
102 * This can be higher than the max_pstate which can
103 * be limited by platform thermal design power limits
104 * @scaling: Scaling factor to convert frequency to cpufreq
105 * frequency units
106 * @turbo_pstate: Max Turbo P state possible for this platform
107 *
108 * Stores the per cpu model P state limits and current P state.
109 */
110 struct pstate_data {
111 int current_pstate;
112 int min_pstate;
113 int max_pstate;
114 int max_pstate_physical;
115 int scaling;
116 int turbo_pstate;
117 };
118
119 /**
120 * struct vid_data - Stores voltage information data
121 * @min: VID data for this platform corresponding to
122 * the lowest P state
123 * @max: VID data corresponding to the highest P State.
124 * @turbo: VID data for turbo P state
125 * @ratio: Ratio of (vid max - vid min) /
126 * (max P state - Min P State)
127 *
128 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
129 * This data is used in Atom platforms, where in addition to target P state,
130 * the voltage data needs to be specified to select next P State.
131 */
132 struct vid_data {
133 int min;
134 int max;
135 int turbo;
136 int32_t ratio;
137 };
138
139 /**
140 * struct _pid - Stores PID data
141 * @setpoint: Target set point for busyness or performance
142 * @integral: Storage for accumulated error values
143 * @p_gain: PID proportional gain
144 * @i_gain: PID integral gain
145 * @d_gain: PID derivative gain
146 * @deadband: PID deadband
147 * @last_err: Last error storage for integral part of PID calculation
148 *
149 * Stores PID coefficients and last error for PID controller.
150 */
151 struct _pid {
152 int setpoint;
153 int32_t integral;
154 int32_t p_gain;
155 int32_t i_gain;
156 int32_t d_gain;
157 int deadband;
158 int32_t last_err;
159 };
160
161 /**
162 * struct cpudata - Per CPU instance data storage
163 * @cpu: CPU number for this instance data
164 * @update_util: CPUFreq utility callback information
165 * @pstate: Stores P state limits for this CPU
166 * @vid: Stores VID limits for this CPU
167 * @pid: Stores PID parameters for this CPU
168 * @last_sample_time: Last Sample time
169 * @prev_aperf: Last APERF value read from APERF MSR
170 * @prev_mperf: Last MPERF value read from MPERF MSR
171 * @prev_tsc: Last timestamp counter (TSC) value
172 * @prev_cummulative_iowait: IO Wait time difference from last and
173 * current sample
174 * @sample: Storage for storing last Sample data
175 *
176 * This structure stores per CPU instance data for all CPUs.
177 */
178 struct cpudata {
179 int cpu;
180
181 struct update_util_data update_util;
182
183 struct pstate_data pstate;
184 struct vid_data vid;
185 struct _pid pid;
186
187 u64 last_sample_time;
188 u64 prev_aperf;
189 u64 prev_mperf;
190 u64 prev_tsc;
191 u64 prev_cummulative_iowait;
192 struct sample sample;
193 };
194
195 static struct cpudata **all_cpu_data;
196
197 /**
198 * struct pid_adjust_policy - Stores static PID configuration data
199 * @sample_rate_ms: PID calculation sample rate in ms
200 * @sample_rate_ns: Sample rate calculation in ns
201 * @deadband: PID deadband
202 * @setpoint: PID Setpoint
203 * @p_gain_pct: PID proportional gain
204 * @i_gain_pct: PID integral gain
205 * @d_gain_pct: PID derivative gain
206 *
207 * Stores per CPU model static PID configuration data.
208 */
209 struct pstate_adjust_policy {
210 int sample_rate_ms;
211 s64 sample_rate_ns;
212 int deadband;
213 int setpoint;
214 int p_gain_pct;
215 int d_gain_pct;
216 int i_gain_pct;
217 };
218
219 /**
220 * struct pstate_funcs - Per CPU model specific callbacks
221 * @get_max: Callback to get maximum non turbo effective P state
222 * @get_max_physical: Callback to get maximum non turbo physical P state
223 * @get_min: Callback to get minimum P state
224 * @get_turbo: Callback to get turbo P state
225 * @get_scaling: Callback to get frequency scaling factor
226 * @get_val: Callback to convert P state to actual MSR write value
227 * @get_vid: Callback to get VID data for Atom platforms
228 * @get_target_pstate: Callback to a function to calculate next P state to use
229 *
230 * Core and Atom CPU models have different way to get P State limits. This
231 * structure is used to store those callbacks.
232 */
233 struct pstate_funcs {
234 int (*get_max)(void);
235 int (*get_max_physical)(void);
236 int (*get_min)(void);
237 int (*get_turbo)(void);
238 int (*get_scaling)(void);
239 u64 (*get_val)(struct cpudata*, int pstate);
240 void (*get_vid)(struct cpudata *);
241 int32_t (*get_target_pstate)(struct cpudata *);
242 };
243
244 /**
245 * struct cpu_defaults- Per CPU model default config data
246 * @pid_policy: PID config data
247 * @funcs: Callback function data
248 */
249 struct cpu_defaults {
250 struct pstate_adjust_policy pid_policy;
251 struct pstate_funcs funcs;
252 };
253
254 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
255 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
256
257 static struct pstate_adjust_policy pid_params;
258 static struct pstate_funcs pstate_funcs;
259 static int hwp_active;
260
261
262 /**
263 * struct perf_limits - Store user and policy limits
264 * @no_turbo: User requested turbo state from intel_pstate sysfs
265 * @turbo_disabled: Platform turbo status either from msr
266 * MSR_IA32_MISC_ENABLE or when maximum available pstate
267 * matches the maximum turbo pstate
268 * @max_perf_pct: Effective maximum performance limit in percentage, this
269 * is minimum of either limits enforced by cpufreq policy
270 * or limits from user set limits via intel_pstate sysfs
271 * @min_perf_pct: Effective minimum performance limit in percentage, this
272 * is maximum of either limits enforced by cpufreq policy
273 * or limits from user set limits via intel_pstate sysfs
274 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
275 * This value is used to limit max pstate
276 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
277 * This value is used to limit min pstate
278 * @max_policy_pct: The maximum performance in percentage enforced by
279 * cpufreq setpolicy interface
280 * @max_sysfs_pct: The maximum performance in percentage enforced by
281 * intel pstate sysfs interface
282 * @min_policy_pct: The minimum performance in percentage enforced by
283 * cpufreq setpolicy interface
284 * @min_sysfs_pct: The minimum performance in percentage enforced by
285 * intel pstate sysfs interface
286 *
287 * Storage for user and policy defined limits.
288 */
289 struct perf_limits {
290 int no_turbo;
291 int turbo_disabled;
292 int max_perf_pct;
293 int min_perf_pct;
294 int32_t max_perf;
295 int32_t min_perf;
296 int max_policy_pct;
297 int max_sysfs_pct;
298 int min_policy_pct;
299 int min_sysfs_pct;
300 };
301
302 static struct perf_limits performance_limits = {
303 .no_turbo = 0,
304 .turbo_disabled = 0,
305 .max_perf_pct = 100,
306 .max_perf = int_tofp(1),
307 .min_perf_pct = 100,
308 .min_perf = int_tofp(1),
309 .max_policy_pct = 100,
310 .max_sysfs_pct = 100,
311 .min_policy_pct = 0,
312 .min_sysfs_pct = 0,
313 };
314
315 static struct perf_limits powersave_limits = {
316 .no_turbo = 0,
317 .turbo_disabled = 0,
318 .max_perf_pct = 100,
319 .max_perf = int_tofp(1),
320 .min_perf_pct = 0,
321 .min_perf = 0,
322 .max_policy_pct = 100,
323 .max_sysfs_pct = 100,
324 .min_policy_pct = 0,
325 .min_sysfs_pct = 0,
326 };
327
328 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
329 static struct perf_limits *limits = &performance_limits;
330 #else
331 static struct perf_limits *limits = &powersave_limits;
332 #endif
333
334 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
335 int deadband, int integral) {
336 pid->setpoint = int_tofp(setpoint);
337 pid->deadband = int_tofp(deadband);
338 pid->integral = int_tofp(integral);
339 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
340 }
341
342 static inline void pid_p_gain_set(struct _pid *pid, int percent)
343 {
344 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
345 }
346
347 static inline void pid_i_gain_set(struct _pid *pid, int percent)
348 {
349 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
350 }
351
352 static inline void pid_d_gain_set(struct _pid *pid, int percent)
353 {
354 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
355 }
356
357 static signed int pid_calc(struct _pid *pid, int32_t busy)
358 {
359 signed int result;
360 int32_t pterm, dterm, fp_error;
361 int32_t integral_limit;
362
363 fp_error = pid->setpoint - busy;
364
365 if (abs(fp_error) <= pid->deadband)
366 return 0;
367
368 pterm = mul_fp(pid->p_gain, fp_error);
369
370 pid->integral += fp_error;
371
372 /*
373 * We limit the integral here so that it will never
374 * get higher than 30. This prevents it from becoming
375 * too large an input over long periods of time and allows
376 * it to get factored out sooner.
377 *
378 * The value of 30 was chosen through experimentation.
379 */
380 integral_limit = int_tofp(30);
381 if (pid->integral > integral_limit)
382 pid->integral = integral_limit;
383 if (pid->integral < -integral_limit)
384 pid->integral = -integral_limit;
385
386 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
387 pid->last_err = fp_error;
388
389 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
390 result = result + (1 << (FRAC_BITS-1));
391 return (signed int)fp_toint(result);
392 }
393
394 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
395 {
396 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
397 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
398 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
399
400 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
401 }
402
403 static inline void intel_pstate_reset_all_pid(void)
404 {
405 unsigned int cpu;
406
407 for_each_online_cpu(cpu) {
408 if (all_cpu_data[cpu])
409 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
410 }
411 }
412
413 static inline void update_turbo_state(void)
414 {
415 u64 misc_en;
416 struct cpudata *cpu;
417
418 cpu = all_cpu_data[0];
419 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
420 limits->turbo_disabled =
421 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
422 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
423 }
424
425 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
426 {
427 int min, hw_min, max, hw_max, cpu, range, adj_range;
428 u64 value, cap;
429
430 rdmsrl(MSR_HWP_CAPABILITIES, cap);
431 hw_min = HWP_LOWEST_PERF(cap);
432 hw_max = HWP_HIGHEST_PERF(cap);
433 range = hw_max - hw_min;
434
435 for_each_cpu(cpu, cpumask) {
436 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
437 adj_range = limits->min_perf_pct * range / 100;
438 min = hw_min + adj_range;
439 value &= ~HWP_MIN_PERF(~0L);
440 value |= HWP_MIN_PERF(min);
441
442 adj_range = limits->max_perf_pct * range / 100;
443 max = hw_min + adj_range;
444 if (limits->no_turbo) {
445 hw_max = HWP_GUARANTEED_PERF(cap);
446 if (hw_max < max)
447 max = hw_max;
448 }
449
450 value &= ~HWP_MAX_PERF(~0L);
451 value |= HWP_MAX_PERF(max);
452 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
453 }
454 }
455
456 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
457 {
458 if (hwp_active)
459 intel_pstate_hwp_set(policy->cpus);
460
461 return 0;
462 }
463
464 static void intel_pstate_hwp_set_online_cpus(void)
465 {
466 get_online_cpus();
467 intel_pstate_hwp_set(cpu_online_mask);
468 put_online_cpus();
469 }
470
471 /************************** debugfs begin ************************/
472 static int pid_param_set(void *data, u64 val)
473 {
474 *(u32 *)data = val;
475 intel_pstate_reset_all_pid();
476 return 0;
477 }
478
479 static int pid_param_get(void *data, u64 *val)
480 {
481 *val = *(u32 *)data;
482 return 0;
483 }
484 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
485
486 struct pid_param {
487 char *name;
488 void *value;
489 };
490
491 static struct pid_param pid_files[] = {
492 {"sample_rate_ms", &pid_params.sample_rate_ms},
493 {"d_gain_pct", &pid_params.d_gain_pct},
494 {"i_gain_pct", &pid_params.i_gain_pct},
495 {"deadband", &pid_params.deadband},
496 {"setpoint", &pid_params.setpoint},
497 {"p_gain_pct", &pid_params.p_gain_pct},
498 {NULL, NULL}
499 };
500
501 static void __init intel_pstate_debug_expose_params(void)
502 {
503 struct dentry *debugfs_parent;
504 int i = 0;
505
506 if (hwp_active)
507 return;
508 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
509 if (IS_ERR_OR_NULL(debugfs_parent))
510 return;
511 while (pid_files[i].name) {
512 debugfs_create_file(pid_files[i].name, 0660,
513 debugfs_parent, pid_files[i].value,
514 &fops_pid_param);
515 i++;
516 }
517 }
518
519 /************************** debugfs end ************************/
520
521 /************************** sysfs begin ************************/
522 #define show_one(file_name, object) \
523 static ssize_t show_##file_name \
524 (struct kobject *kobj, struct attribute *attr, char *buf) \
525 { \
526 return sprintf(buf, "%u\n", limits->object); \
527 }
528
529 static ssize_t show_turbo_pct(struct kobject *kobj,
530 struct attribute *attr, char *buf)
531 {
532 struct cpudata *cpu;
533 int total, no_turbo, turbo_pct;
534 uint32_t turbo_fp;
535
536 cpu = all_cpu_data[0];
537
538 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
539 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
540 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
541 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
542 return sprintf(buf, "%u\n", turbo_pct);
543 }
544
545 static ssize_t show_num_pstates(struct kobject *kobj,
546 struct attribute *attr, char *buf)
547 {
548 struct cpudata *cpu;
549 int total;
550
551 cpu = all_cpu_data[0];
552 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
553 return sprintf(buf, "%u\n", total);
554 }
555
556 static ssize_t show_no_turbo(struct kobject *kobj,
557 struct attribute *attr, char *buf)
558 {
559 ssize_t ret;
560
561 update_turbo_state();
562 if (limits->turbo_disabled)
563 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
564 else
565 ret = sprintf(buf, "%u\n", limits->no_turbo);
566
567 return ret;
568 }
569
570 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
571 const char *buf, size_t count)
572 {
573 unsigned int input;
574 int ret;
575
576 ret = sscanf(buf, "%u", &input);
577 if (ret != 1)
578 return -EINVAL;
579
580 update_turbo_state();
581 if (limits->turbo_disabled) {
582 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
583 return -EPERM;
584 }
585
586 limits->no_turbo = clamp_t(int, input, 0, 1);
587
588 if (hwp_active)
589 intel_pstate_hwp_set_online_cpus();
590
591 return count;
592 }
593
594 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
595 const char *buf, size_t count)
596 {
597 unsigned int input;
598 int ret;
599
600 ret = sscanf(buf, "%u", &input);
601 if (ret != 1)
602 return -EINVAL;
603
604 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
605 limits->max_perf_pct = min(limits->max_policy_pct,
606 limits->max_sysfs_pct);
607 limits->max_perf_pct = max(limits->min_policy_pct,
608 limits->max_perf_pct);
609 limits->max_perf_pct = max(limits->min_perf_pct,
610 limits->max_perf_pct);
611 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
612 int_tofp(100));
613
614 if (hwp_active)
615 intel_pstate_hwp_set_online_cpus();
616 return count;
617 }
618
619 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
620 const char *buf, size_t count)
621 {
622 unsigned int input;
623 int ret;
624
625 ret = sscanf(buf, "%u", &input);
626 if (ret != 1)
627 return -EINVAL;
628
629 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
630 limits->min_perf_pct = max(limits->min_policy_pct,
631 limits->min_sysfs_pct);
632 limits->min_perf_pct = min(limits->max_policy_pct,
633 limits->min_perf_pct);
634 limits->min_perf_pct = min(limits->max_perf_pct,
635 limits->min_perf_pct);
636 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
637 int_tofp(100));
638
639 if (hwp_active)
640 intel_pstate_hwp_set_online_cpus();
641 return count;
642 }
643
644 show_one(max_perf_pct, max_perf_pct);
645 show_one(min_perf_pct, min_perf_pct);
646
647 define_one_global_rw(no_turbo);
648 define_one_global_rw(max_perf_pct);
649 define_one_global_rw(min_perf_pct);
650 define_one_global_ro(turbo_pct);
651 define_one_global_ro(num_pstates);
652
653 static struct attribute *intel_pstate_attributes[] = {
654 &no_turbo.attr,
655 &max_perf_pct.attr,
656 &min_perf_pct.attr,
657 &turbo_pct.attr,
658 &num_pstates.attr,
659 NULL
660 };
661
662 static struct attribute_group intel_pstate_attr_group = {
663 .attrs = intel_pstate_attributes,
664 };
665
666 static void __init intel_pstate_sysfs_expose_params(void)
667 {
668 struct kobject *intel_pstate_kobject;
669 int rc;
670
671 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
672 &cpu_subsys.dev_root->kobj);
673 BUG_ON(!intel_pstate_kobject);
674 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
675 BUG_ON(rc);
676 }
677 /************************** sysfs end ************************/
678
679 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
680 {
681 /* First disable HWP notification interrupt as we don't process them */
682 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
683
684 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
685 }
686
687 static int atom_get_min_pstate(void)
688 {
689 u64 value;
690
691 rdmsrl(ATOM_RATIOS, value);
692 return (value >> 8) & 0x7F;
693 }
694
695 static int atom_get_max_pstate(void)
696 {
697 u64 value;
698
699 rdmsrl(ATOM_RATIOS, value);
700 return (value >> 16) & 0x7F;
701 }
702
703 static int atom_get_turbo_pstate(void)
704 {
705 u64 value;
706
707 rdmsrl(ATOM_TURBO_RATIOS, value);
708 return value & 0x7F;
709 }
710
711 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
712 {
713 u64 val;
714 int32_t vid_fp;
715 u32 vid;
716
717 val = (u64)pstate << 8;
718 if (limits->no_turbo && !limits->turbo_disabled)
719 val |= (u64)1 << 32;
720
721 vid_fp = cpudata->vid.min + mul_fp(
722 int_tofp(pstate - cpudata->pstate.min_pstate),
723 cpudata->vid.ratio);
724
725 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
726 vid = ceiling_fp(vid_fp);
727
728 if (pstate > cpudata->pstate.max_pstate)
729 vid = cpudata->vid.turbo;
730
731 return val | vid;
732 }
733
734 static int silvermont_get_scaling(void)
735 {
736 u64 value;
737 int i;
738 /* Defined in Table 35-6 from SDM (Sept 2015) */
739 static int silvermont_freq_table[] = {
740 83300, 100000, 133300, 116700, 80000};
741
742 rdmsrl(MSR_FSB_FREQ, value);
743 i = value & 0x7;
744 WARN_ON(i > 4);
745
746 return silvermont_freq_table[i];
747 }
748
749 static int airmont_get_scaling(void)
750 {
751 u64 value;
752 int i;
753 /* Defined in Table 35-10 from SDM (Sept 2015) */
754 static int airmont_freq_table[] = {
755 83300, 100000, 133300, 116700, 80000,
756 93300, 90000, 88900, 87500};
757
758 rdmsrl(MSR_FSB_FREQ, value);
759 i = value & 0xF;
760 WARN_ON(i > 8);
761
762 return airmont_freq_table[i];
763 }
764
765 static void atom_get_vid(struct cpudata *cpudata)
766 {
767 u64 value;
768
769 rdmsrl(ATOM_VIDS, value);
770 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
771 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
772 cpudata->vid.ratio = div_fp(
773 cpudata->vid.max - cpudata->vid.min,
774 int_tofp(cpudata->pstate.max_pstate -
775 cpudata->pstate.min_pstate));
776
777 rdmsrl(ATOM_TURBO_VIDS, value);
778 cpudata->vid.turbo = value & 0x7f;
779 }
780
781 static int core_get_min_pstate(void)
782 {
783 u64 value;
784
785 rdmsrl(MSR_PLATFORM_INFO, value);
786 return (value >> 40) & 0xFF;
787 }
788
789 static int core_get_max_pstate_physical(void)
790 {
791 u64 value;
792
793 rdmsrl(MSR_PLATFORM_INFO, value);
794 return (value >> 8) & 0xFF;
795 }
796
797 static int core_get_max_pstate(void)
798 {
799 u64 tar;
800 u64 plat_info;
801 int max_pstate;
802 int err;
803
804 rdmsrl(MSR_PLATFORM_INFO, plat_info);
805 max_pstate = (plat_info >> 8) & 0xFF;
806
807 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
808 if (!err) {
809 /* Do some sanity checking for safety */
810 if (plat_info & 0x600000000) {
811 u64 tdp_ctrl;
812 u64 tdp_ratio;
813 int tdp_msr;
814
815 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
816 if (err)
817 goto skip_tar;
818
819 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
820 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
821 if (err)
822 goto skip_tar;
823
824 /* For level 1 and 2, bits[23:16] contain the ratio */
825 if (tdp_ctrl)
826 tdp_ratio >>= 16;
827
828 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
829 if (tdp_ratio - 1 == tar) {
830 max_pstate = tar;
831 pr_debug("max_pstate=TAC %x\n", max_pstate);
832 } else {
833 goto skip_tar;
834 }
835 }
836 }
837
838 skip_tar:
839 return max_pstate;
840 }
841
842 static int core_get_turbo_pstate(void)
843 {
844 u64 value;
845 int nont, ret;
846
847 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
848 nont = core_get_max_pstate();
849 ret = (value) & 255;
850 if (ret <= nont)
851 ret = nont;
852 return ret;
853 }
854
855 static inline int core_get_scaling(void)
856 {
857 return 100000;
858 }
859
860 static u64 core_get_val(struct cpudata *cpudata, int pstate)
861 {
862 u64 val;
863
864 val = (u64)pstate << 8;
865 if (limits->no_turbo && !limits->turbo_disabled)
866 val |= (u64)1 << 32;
867
868 return val;
869 }
870
871 static int knl_get_turbo_pstate(void)
872 {
873 u64 value;
874 int nont, ret;
875
876 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
877 nont = core_get_max_pstate();
878 ret = (((value) >> 8) & 0xFF);
879 if (ret <= nont)
880 ret = nont;
881 return ret;
882 }
883
884 static struct cpu_defaults core_params = {
885 .pid_policy = {
886 .sample_rate_ms = 10,
887 .deadband = 0,
888 .setpoint = 97,
889 .p_gain_pct = 20,
890 .d_gain_pct = 0,
891 .i_gain_pct = 0,
892 },
893 .funcs = {
894 .get_max = core_get_max_pstate,
895 .get_max_physical = core_get_max_pstate_physical,
896 .get_min = core_get_min_pstate,
897 .get_turbo = core_get_turbo_pstate,
898 .get_scaling = core_get_scaling,
899 .get_val = core_get_val,
900 .get_target_pstate = get_target_pstate_use_performance,
901 },
902 };
903
904 static struct cpu_defaults silvermont_params = {
905 .pid_policy = {
906 .sample_rate_ms = 10,
907 .deadband = 0,
908 .setpoint = 60,
909 .p_gain_pct = 14,
910 .d_gain_pct = 0,
911 .i_gain_pct = 4,
912 },
913 .funcs = {
914 .get_max = atom_get_max_pstate,
915 .get_max_physical = atom_get_max_pstate,
916 .get_min = atom_get_min_pstate,
917 .get_turbo = atom_get_turbo_pstate,
918 .get_val = atom_get_val,
919 .get_scaling = silvermont_get_scaling,
920 .get_vid = atom_get_vid,
921 .get_target_pstate = get_target_pstate_use_cpu_load,
922 },
923 };
924
925 static struct cpu_defaults airmont_params = {
926 .pid_policy = {
927 .sample_rate_ms = 10,
928 .deadband = 0,
929 .setpoint = 60,
930 .p_gain_pct = 14,
931 .d_gain_pct = 0,
932 .i_gain_pct = 4,
933 },
934 .funcs = {
935 .get_max = atom_get_max_pstate,
936 .get_max_physical = atom_get_max_pstate,
937 .get_min = atom_get_min_pstate,
938 .get_turbo = atom_get_turbo_pstate,
939 .get_val = atom_get_val,
940 .get_scaling = airmont_get_scaling,
941 .get_vid = atom_get_vid,
942 .get_target_pstate = get_target_pstate_use_cpu_load,
943 },
944 };
945
946 static struct cpu_defaults knl_params = {
947 .pid_policy = {
948 .sample_rate_ms = 10,
949 .deadband = 0,
950 .setpoint = 97,
951 .p_gain_pct = 20,
952 .d_gain_pct = 0,
953 .i_gain_pct = 0,
954 },
955 .funcs = {
956 .get_max = core_get_max_pstate,
957 .get_max_physical = core_get_max_pstate_physical,
958 .get_min = core_get_min_pstate,
959 .get_turbo = knl_get_turbo_pstate,
960 .get_scaling = core_get_scaling,
961 .get_val = core_get_val,
962 .get_target_pstate = get_target_pstate_use_performance,
963 },
964 };
965
966 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
967 {
968 int max_perf = cpu->pstate.turbo_pstate;
969 int max_perf_adj;
970 int min_perf;
971
972 if (limits->no_turbo || limits->turbo_disabled)
973 max_perf = cpu->pstate.max_pstate;
974
975 /*
976 * performance can be limited by user through sysfs, by cpufreq
977 * policy, or by cpu specific default values determined through
978 * experimentation.
979 */
980 max_perf_adj = fp_toint(max_perf * limits->max_perf);
981 *max = clamp_t(int, max_perf_adj,
982 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
983
984 min_perf = fp_toint(max_perf * limits->min_perf);
985 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
986 }
987
988 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
989 {
990 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
991 cpu->pstate.current_pstate = pstate;
992 }
993
994 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
995 {
996 int pstate = cpu->pstate.min_pstate;
997
998 intel_pstate_record_pstate(cpu, pstate);
999 /*
1000 * Generally, there is no guarantee that this code will always run on
1001 * the CPU being updated, so force the register update to run on the
1002 * right CPU.
1003 */
1004 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1005 pstate_funcs.get_val(cpu, pstate));
1006 }
1007
1008 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1009 {
1010 cpu->pstate.min_pstate = pstate_funcs.get_min();
1011 cpu->pstate.max_pstate = pstate_funcs.get_max();
1012 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1013 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1014 cpu->pstate.scaling = pstate_funcs.get_scaling();
1015
1016 if (pstate_funcs.get_vid)
1017 pstate_funcs.get_vid(cpu);
1018
1019 intel_pstate_set_min_pstate(cpu);
1020 }
1021
1022 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1023 {
1024 struct sample *sample = &cpu->sample;
1025 int64_t core_pct;
1026
1027 core_pct = int_tofp(sample->aperf) * int_tofp(100);
1028 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
1029
1030 sample->core_pct_busy = (int32_t)core_pct;
1031 }
1032
1033 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1034 {
1035 u64 aperf, mperf;
1036 unsigned long flags;
1037 u64 tsc;
1038
1039 local_irq_save(flags);
1040 rdmsrl(MSR_IA32_APERF, aperf);
1041 rdmsrl(MSR_IA32_MPERF, mperf);
1042 tsc = rdtsc();
1043 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1044 local_irq_restore(flags);
1045 return false;
1046 }
1047 local_irq_restore(flags);
1048
1049 cpu->last_sample_time = cpu->sample.time;
1050 cpu->sample.time = time;
1051 cpu->sample.aperf = aperf;
1052 cpu->sample.mperf = mperf;
1053 cpu->sample.tsc = tsc;
1054 cpu->sample.aperf -= cpu->prev_aperf;
1055 cpu->sample.mperf -= cpu->prev_mperf;
1056 cpu->sample.tsc -= cpu->prev_tsc;
1057
1058 cpu->prev_aperf = aperf;
1059 cpu->prev_mperf = mperf;
1060 cpu->prev_tsc = tsc;
1061 /*
1062 * First time this function is invoked in a given cycle, all of the
1063 * previous sample data fields are equal to zero or stale and they must
1064 * be populated with meaningful numbers for things to work, so assume
1065 * that sample.time will always be reset before setting the utilization
1066 * update hook and make the caller skip the sample then.
1067 */
1068 return !!cpu->last_sample_time;
1069 }
1070
1071 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1072 {
1073 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1074 cpu->pstate.scaling, cpu->sample.mperf);
1075 }
1076
1077 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1078 {
1079 struct sample *sample = &cpu->sample;
1080 u64 cummulative_iowait, delta_iowait_us;
1081 u64 delta_iowait_mperf;
1082 u64 mperf, now;
1083 int32_t cpu_load;
1084
1085 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1086
1087 /*
1088 * Convert iowait time into number of IO cycles spent at max_freq.
1089 * IO is considered as busy only for the cpu_load algorithm. For
1090 * performance this is not needed since we always try to reach the
1091 * maximum P-State, so we are already boosting the IOs.
1092 */
1093 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1094 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1095 cpu->pstate.max_pstate, MSEC_PER_SEC);
1096
1097 mperf = cpu->sample.mperf + delta_iowait_mperf;
1098 cpu->prev_cummulative_iowait = cummulative_iowait;
1099
1100 /*
1101 * The load can be estimated as the ratio of the mperf counter
1102 * running at a constant frequency during active periods
1103 * (C0) and the time stamp counter running at the same frequency
1104 * also during C-states.
1105 */
1106 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1107 cpu->sample.busy_scaled = cpu_load;
1108
1109 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1110 }
1111
1112 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1113 {
1114 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1115 u64 duration_ns;
1116
1117 intel_pstate_calc_busy(cpu);
1118
1119 /*
1120 * core_busy is the ratio of actual performance to max
1121 * max_pstate is the max non turbo pstate available
1122 * current_pstate was the pstate that was requested during
1123 * the last sample period.
1124 *
1125 * We normalize core_busy, which was our actual percent
1126 * performance to what we requested during the last sample
1127 * period. The result will be a percentage of busy at a
1128 * specified pstate.
1129 */
1130 core_busy = cpu->sample.core_pct_busy;
1131 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
1132 current_pstate = int_tofp(cpu->pstate.current_pstate);
1133 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1134
1135 /*
1136 * Since our utilization update callback will not run unless we are
1137 * in C0, check if the actual elapsed time is significantly greater (3x)
1138 * than our sample interval. If it is, then we were idle for a long
1139 * enough period of time to adjust our busyness.
1140 */
1141 duration_ns = cpu->sample.time - cpu->last_sample_time;
1142 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1143 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
1144 int_tofp(duration_ns));
1145 core_busy = mul_fp(core_busy, sample_ratio);
1146 } else {
1147 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1148 if (sample_ratio < int_tofp(1))
1149 core_busy = 0;
1150 }
1151
1152 cpu->sample.busy_scaled = core_busy;
1153 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1154 }
1155
1156 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1157 {
1158 int max_perf, min_perf;
1159
1160 update_turbo_state();
1161
1162 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1163 pstate = clamp_t(int, pstate, min_perf, max_perf);
1164 if (pstate == cpu->pstate.current_pstate)
1165 return;
1166
1167 intel_pstate_record_pstate(cpu, pstate);
1168 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1169 }
1170
1171 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1172 {
1173 int from, target_pstate;
1174 struct sample *sample;
1175
1176 from = cpu->pstate.current_pstate;
1177
1178 target_pstate = pstate_funcs.get_target_pstate(cpu);
1179
1180 intel_pstate_update_pstate(cpu, target_pstate);
1181
1182 sample = &cpu->sample;
1183 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1184 fp_toint(sample->busy_scaled),
1185 from,
1186 cpu->pstate.current_pstate,
1187 sample->mperf,
1188 sample->aperf,
1189 sample->tsc,
1190 get_avg_frequency(cpu));
1191 }
1192
1193 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1194 unsigned long util, unsigned long max)
1195 {
1196 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1197 u64 delta_ns = time - cpu->sample.time;
1198
1199 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1200 bool sample_taken = intel_pstate_sample(cpu, time);
1201
1202 if (sample_taken && !hwp_active)
1203 intel_pstate_adjust_busy_pstate(cpu);
1204 }
1205 }
1206
1207 #define ICPU(model, policy) \
1208 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1209 (unsigned long)&policy }
1210
1211 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1212 ICPU(0x2a, core_params),
1213 ICPU(0x2d, core_params),
1214 ICPU(0x37, silvermont_params),
1215 ICPU(0x3a, core_params),
1216 ICPU(0x3c, core_params),
1217 ICPU(0x3d, core_params),
1218 ICPU(0x3e, core_params),
1219 ICPU(0x3f, core_params),
1220 ICPU(0x45, core_params),
1221 ICPU(0x46, core_params),
1222 ICPU(0x47, core_params),
1223 ICPU(0x4c, airmont_params),
1224 ICPU(0x4e, core_params),
1225 ICPU(0x4f, core_params),
1226 ICPU(0x5e, core_params),
1227 ICPU(0x56, core_params),
1228 ICPU(0x57, knl_params),
1229 {}
1230 };
1231 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1232
1233 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1234 ICPU(0x56, core_params),
1235 {}
1236 };
1237
1238 static int intel_pstate_init_cpu(unsigned int cpunum)
1239 {
1240 struct cpudata *cpu;
1241
1242 if (!all_cpu_data[cpunum])
1243 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1244 GFP_KERNEL);
1245 if (!all_cpu_data[cpunum])
1246 return -ENOMEM;
1247
1248 cpu = all_cpu_data[cpunum];
1249
1250 cpu->cpu = cpunum;
1251
1252 if (hwp_active) {
1253 intel_pstate_hwp_enable(cpu);
1254 pid_params.sample_rate_ms = 50;
1255 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1256 }
1257
1258 intel_pstate_get_cpu_pstates(cpu);
1259
1260 intel_pstate_busy_pid_reset(cpu);
1261
1262 cpu->update_util.func = intel_pstate_update_util;
1263
1264 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1265
1266 return 0;
1267 }
1268
1269 static unsigned int intel_pstate_get(unsigned int cpu_num)
1270 {
1271 struct sample *sample;
1272 struct cpudata *cpu;
1273
1274 cpu = all_cpu_data[cpu_num];
1275 if (!cpu)
1276 return 0;
1277 sample = &cpu->sample;
1278 return get_avg_frequency(cpu);
1279 }
1280
1281 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1282 {
1283 struct cpudata *cpu = all_cpu_data[cpu_num];
1284
1285 /* Prevent intel_pstate_update_util() from using stale data. */
1286 cpu->sample.time = 0;
1287 cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
1288 }
1289
1290 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1291 {
1292 cpufreq_set_update_util_data(cpu, NULL);
1293 synchronize_sched();
1294 }
1295
1296 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1297 {
1298 limits->no_turbo = 0;
1299 limits->turbo_disabled = 0;
1300 limits->max_perf_pct = 100;
1301 limits->max_perf = int_tofp(1);
1302 limits->min_perf_pct = 100;
1303 limits->min_perf = int_tofp(1);
1304 limits->max_policy_pct = 100;
1305 limits->max_sysfs_pct = 100;
1306 limits->min_policy_pct = 0;
1307 limits->min_sysfs_pct = 0;
1308 }
1309
1310 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1311 {
1312 if (!policy->cpuinfo.max_freq)
1313 return -ENODEV;
1314
1315 intel_pstate_clear_update_util_hook(policy->cpu);
1316
1317 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1318 limits = &performance_limits;
1319 if (policy->max >= policy->cpuinfo.max_freq) {
1320 pr_debug("intel_pstate: set performance\n");
1321 intel_pstate_set_performance_limits(limits);
1322 goto out;
1323 }
1324 } else {
1325 pr_debug("intel_pstate: set powersave\n");
1326 limits = &powersave_limits;
1327 }
1328
1329 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1330 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1331 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1332 policy->cpuinfo.max_freq);
1333 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1334
1335 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1336 limits->min_perf_pct = max(limits->min_policy_pct,
1337 limits->min_sysfs_pct);
1338 limits->min_perf_pct = min(limits->max_policy_pct,
1339 limits->min_perf_pct);
1340 limits->max_perf_pct = min(limits->max_policy_pct,
1341 limits->max_sysfs_pct);
1342 limits->max_perf_pct = max(limits->min_policy_pct,
1343 limits->max_perf_pct);
1344 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1345
1346 /* Make sure min_perf_pct <= max_perf_pct */
1347 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1348
1349 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1350 int_tofp(100));
1351 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1352 int_tofp(100));
1353
1354 out:
1355 intel_pstate_set_update_util_hook(policy->cpu);
1356
1357 intel_pstate_hwp_set_policy(policy);
1358
1359 return 0;
1360 }
1361
1362 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1363 {
1364 cpufreq_verify_within_cpu_limits(policy);
1365
1366 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1367 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1368 return -EINVAL;
1369
1370 return 0;
1371 }
1372
1373 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1374 {
1375 int cpu_num = policy->cpu;
1376 struct cpudata *cpu = all_cpu_data[cpu_num];
1377
1378 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1379
1380 intel_pstate_clear_update_util_hook(cpu_num);
1381
1382 if (hwp_active)
1383 return;
1384
1385 intel_pstate_set_min_pstate(cpu);
1386 }
1387
1388 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1389 {
1390 struct cpudata *cpu;
1391 int rc;
1392
1393 rc = intel_pstate_init_cpu(policy->cpu);
1394 if (rc)
1395 return rc;
1396
1397 cpu = all_cpu_data[policy->cpu];
1398
1399 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1400 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1401 else
1402 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1403
1404 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1405 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1406
1407 /* cpuinfo and default policy values */
1408 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1409 policy->cpuinfo.max_freq =
1410 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1411 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1412 cpumask_set_cpu(policy->cpu, policy->cpus);
1413
1414 return 0;
1415 }
1416
1417 static struct cpufreq_driver intel_pstate_driver = {
1418 .flags = CPUFREQ_CONST_LOOPS,
1419 .verify = intel_pstate_verify_policy,
1420 .setpolicy = intel_pstate_set_policy,
1421 .resume = intel_pstate_hwp_set_policy,
1422 .get = intel_pstate_get,
1423 .init = intel_pstate_cpu_init,
1424 .stop_cpu = intel_pstate_stop_cpu,
1425 .name = "intel_pstate",
1426 };
1427
1428 static int __initdata no_load;
1429 static int __initdata no_hwp;
1430 static int __initdata hwp_only;
1431 static unsigned int force_load;
1432
1433 static int intel_pstate_msrs_not_valid(void)
1434 {
1435 if (!pstate_funcs.get_max() ||
1436 !pstate_funcs.get_min() ||
1437 !pstate_funcs.get_turbo())
1438 return -ENODEV;
1439
1440 return 0;
1441 }
1442
1443 static void copy_pid_params(struct pstate_adjust_policy *policy)
1444 {
1445 pid_params.sample_rate_ms = policy->sample_rate_ms;
1446 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1447 pid_params.p_gain_pct = policy->p_gain_pct;
1448 pid_params.i_gain_pct = policy->i_gain_pct;
1449 pid_params.d_gain_pct = policy->d_gain_pct;
1450 pid_params.deadband = policy->deadband;
1451 pid_params.setpoint = policy->setpoint;
1452 }
1453
1454 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1455 {
1456 pstate_funcs.get_max = funcs->get_max;
1457 pstate_funcs.get_max_physical = funcs->get_max_physical;
1458 pstate_funcs.get_min = funcs->get_min;
1459 pstate_funcs.get_turbo = funcs->get_turbo;
1460 pstate_funcs.get_scaling = funcs->get_scaling;
1461 pstate_funcs.get_val = funcs->get_val;
1462 pstate_funcs.get_vid = funcs->get_vid;
1463 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1464
1465 }
1466
1467 #if IS_ENABLED(CONFIG_ACPI)
1468 #include <acpi/processor.h>
1469
1470 static bool intel_pstate_no_acpi_pss(void)
1471 {
1472 int i;
1473
1474 for_each_possible_cpu(i) {
1475 acpi_status status;
1476 union acpi_object *pss;
1477 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1478 struct acpi_processor *pr = per_cpu(processors, i);
1479
1480 if (!pr)
1481 continue;
1482
1483 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1484 if (ACPI_FAILURE(status))
1485 continue;
1486
1487 pss = buffer.pointer;
1488 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1489 kfree(pss);
1490 return false;
1491 }
1492
1493 kfree(pss);
1494 }
1495
1496 return true;
1497 }
1498
1499 static bool intel_pstate_has_acpi_ppc(void)
1500 {
1501 int i;
1502
1503 for_each_possible_cpu(i) {
1504 struct acpi_processor *pr = per_cpu(processors, i);
1505
1506 if (!pr)
1507 continue;
1508 if (acpi_has_method(pr->handle, "_PPC"))
1509 return true;
1510 }
1511 return false;
1512 }
1513
1514 enum {
1515 PSS,
1516 PPC,
1517 };
1518
1519 struct hw_vendor_info {
1520 u16 valid;
1521 char oem_id[ACPI_OEM_ID_SIZE];
1522 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1523 int oem_pwr_table;
1524 };
1525
1526 /* Hardware vendor-specific info that has its own power management modes */
1527 static struct hw_vendor_info vendor_info[] = {
1528 {1, "HP ", "ProLiant", PSS},
1529 {1, "ORACLE", "X4-2 ", PPC},
1530 {1, "ORACLE", "X4-2L ", PPC},
1531 {1, "ORACLE", "X4-2B ", PPC},
1532 {1, "ORACLE", "X3-2 ", PPC},
1533 {1, "ORACLE", "X3-2L ", PPC},
1534 {1, "ORACLE", "X3-2B ", PPC},
1535 {1, "ORACLE", "X4470M2 ", PPC},
1536 {1, "ORACLE", "X4270M3 ", PPC},
1537 {1, "ORACLE", "X4270M2 ", PPC},
1538 {1, "ORACLE", "X4170M2 ", PPC},
1539 {1, "ORACLE", "X4170 M3", PPC},
1540 {1, "ORACLE", "X4275 M3", PPC},
1541 {1, "ORACLE", "X6-2 ", PPC},
1542 {1, "ORACLE", "Sudbury ", PPC},
1543 {0, "", ""},
1544 };
1545
1546 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1547 {
1548 struct acpi_table_header hdr;
1549 struct hw_vendor_info *v_info;
1550 const struct x86_cpu_id *id;
1551 u64 misc_pwr;
1552
1553 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1554 if (id) {
1555 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1556 if ( misc_pwr & (1 << 8))
1557 return true;
1558 }
1559
1560 if (acpi_disabled ||
1561 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1562 return false;
1563
1564 for (v_info = vendor_info; v_info->valid; v_info++) {
1565 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1566 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1567 ACPI_OEM_TABLE_ID_SIZE))
1568 switch (v_info->oem_pwr_table) {
1569 case PSS:
1570 return intel_pstate_no_acpi_pss();
1571 case PPC:
1572 return intel_pstate_has_acpi_ppc() &&
1573 (!force_load);
1574 }
1575 }
1576
1577 return false;
1578 }
1579 #else /* CONFIG_ACPI not enabled */
1580 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1581 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1582 #endif /* CONFIG_ACPI */
1583
1584 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1585 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1586 {}
1587 };
1588
1589 static int __init intel_pstate_init(void)
1590 {
1591 int cpu, rc = 0;
1592 const struct x86_cpu_id *id;
1593 struct cpu_defaults *cpu_def;
1594
1595 if (no_load)
1596 return -ENODEV;
1597
1598 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1599 copy_cpu_funcs(&core_params.funcs);
1600 hwp_active++;
1601 goto hwp_cpu_matched;
1602 }
1603
1604 id = x86_match_cpu(intel_pstate_cpu_ids);
1605 if (!id)
1606 return -ENODEV;
1607
1608 cpu_def = (struct cpu_defaults *)id->driver_data;
1609
1610 copy_pid_params(&cpu_def->pid_policy);
1611 copy_cpu_funcs(&cpu_def->funcs);
1612
1613 if (intel_pstate_msrs_not_valid())
1614 return -ENODEV;
1615
1616 hwp_cpu_matched:
1617 /*
1618 * The Intel pstate driver will be ignored if the platform
1619 * firmware has its own power management modes.
1620 */
1621 if (intel_pstate_platform_pwr_mgmt_exists())
1622 return -ENODEV;
1623
1624 pr_info("Intel P-state driver initializing.\n");
1625
1626 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1627 if (!all_cpu_data)
1628 return -ENOMEM;
1629
1630 if (!hwp_active && hwp_only)
1631 goto out;
1632
1633 rc = cpufreq_register_driver(&intel_pstate_driver);
1634 if (rc)
1635 goto out;
1636
1637 intel_pstate_debug_expose_params();
1638 intel_pstate_sysfs_expose_params();
1639
1640 if (hwp_active)
1641 pr_info("intel_pstate: HWP enabled\n");
1642
1643 return rc;
1644 out:
1645 get_online_cpus();
1646 for_each_online_cpu(cpu) {
1647 if (all_cpu_data[cpu]) {
1648 intel_pstate_clear_update_util_hook(cpu);
1649 kfree(all_cpu_data[cpu]);
1650 }
1651 }
1652
1653 put_online_cpus();
1654 vfree(all_cpu_data);
1655 return -ENODEV;
1656 }
1657 device_initcall(intel_pstate_init);
1658
1659 static int __init intel_pstate_setup(char *str)
1660 {
1661 if (!str)
1662 return -EINVAL;
1663
1664 if (!strcmp(str, "disable"))
1665 no_load = 1;
1666 if (!strcmp(str, "no_hwp")) {
1667 pr_info("intel_pstate: HWP disabled\n");
1668 no_hwp = 1;
1669 }
1670 if (!strcmp(str, "force"))
1671 force_load = 1;
1672 if (!strcmp(str, "hwp_only"))
1673 hwp_only = 1;
1674 return 0;
1675 }
1676 early_param("intel_pstate", intel_pstate_setup);
1677
1678 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1679 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1680 MODULE_LICENSE("GPL");
This page took 0.063047 seconds and 4 git commands to generate.