7b2721fb861fba8bef63a23f37b93acba2dee3ac
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS 0x66a
38 #define BYT_VIDS 0x66b
39 #define BYT_TURBO_RATIOS 0x66c
40 #define BYT_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54 return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59 int mask, ret;
60
61 ret = fp_toint(x);
62 mask = (1 << FRAC_BITS) - 1;
63 if (x & mask)
64 ret += 1;
65 return ret;
66 }
67
68 struct sample {
69 int32_t core_pct_busy;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 ktime_t time;
75 };
76
77 struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int scaling;
82 int turbo_pstate;
83 };
84
85 struct vid_data {
86 int min;
87 int max;
88 int turbo;
89 int32_t ratio;
90 };
91
92 struct _pid {
93 int setpoint;
94 int32_t integral;
95 int32_t p_gain;
96 int32_t i_gain;
97 int32_t d_gain;
98 int deadband;
99 int32_t last_err;
100 };
101
102 struct cpudata {
103 int cpu;
104
105 struct timer_list timer;
106
107 struct pstate_data pstate;
108 struct vid_data vid;
109 struct _pid pid;
110
111 ktime_t last_sample_time;
112 u64 prev_aperf;
113 u64 prev_mperf;
114 u64 prev_tsc;
115 struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120 int sample_rate_ms;
121 int deadband;
122 int setpoint;
123 int p_gain_pct;
124 int d_gain_pct;
125 int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129 int (*get_max)(void);
130 int (*get_min)(void);
131 int (*get_turbo)(void);
132 int (*get_scaling)(void);
133 void (*set)(struct cpudata*, int pstate);
134 void (*get_vid)(struct cpudata *);
135 };
136
137 struct cpu_defaults {
138 struct pstate_adjust_policy pid_policy;
139 struct pstate_funcs funcs;
140 };
141
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145
146 struct perf_limits {
147 int no_turbo;
148 int turbo_disabled;
149 int max_perf_pct;
150 int min_perf_pct;
151 int32_t max_perf;
152 int32_t min_perf;
153 int max_policy_pct;
154 int max_sysfs_pct;
155 int min_policy_pct;
156 int min_sysfs_pct;
157 };
158
159 static struct perf_limits limits = {
160 .no_turbo = 0,
161 .turbo_disabled = 0,
162 .max_perf_pct = 100,
163 .max_perf = int_tofp(1),
164 .min_perf_pct = 0,
165 .min_perf = 0,
166 .max_policy_pct = 100,
167 .max_sysfs_pct = 100,
168 .min_policy_pct = 0,
169 .min_sysfs_pct = 0,
170 };
171
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173 int deadband, int integral) {
174 pid->setpoint = setpoint;
175 pid->deadband = deadband;
176 pid->integral = int_tofp(integral);
177 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
178 }
179
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197 signed int result;
198 int32_t pterm, dterm, fp_error;
199 int32_t integral_limit;
200
201 fp_error = int_tofp(pid->setpoint) - busy;
202
203 if (abs(fp_error) <= int_tofp(pid->deadband))
204 return 0;
205
206 pterm = mul_fp(pid->p_gain, fp_error);
207
208 pid->integral += fp_error;
209
210 /*
211 * We limit the integral here so that it will never
212 * get higher than 30. This prevents it from becoming
213 * too large an input over long periods of time and allows
214 * it to get factored out sooner.
215 *
216 * The value of 30 was chosen through experimentation.
217 */
218 integral_limit = int_tofp(30);
219 if (pid->integral > integral_limit)
220 pid->integral = integral_limit;
221 if (pid->integral < -integral_limit)
222 pid->integral = -integral_limit;
223
224 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225 pid->last_err = fp_error;
226
227 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228 result = result + (1 << (FRAC_BITS-1));
229 return (signed int)fp_toint(result);
230 }
231
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243 unsigned int cpu;
244
245 for_each_online_cpu(cpu) {
246 if (all_cpu_data[cpu])
247 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248 }
249 }
250
251 static inline void update_turbo_state(void)
252 {
253 u64 misc_en;
254 struct cpudata *cpu;
255
256 cpu = all_cpu_data[0];
257 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258 limits.turbo_disabled =
259 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266 int min, max, cpu;
267 u64 value, freq;
268
269 get_online_cpus();
270
271 for_each_online_cpu(cpu) {
272 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273 min = PCT_TO_HWP(limits.min_perf_pct);
274 value &= ~HWP_MIN_PERF(~0L);
275 value |= HWP_MIN_PERF(min);
276
277 max = PCT_TO_HWP(limits.max_perf_pct);
278 if (limits.no_turbo) {
279 rdmsrl( MSR_HWP_CAPABILITIES, freq);
280 max = HWP_GUARANTEED_PERF(freq);
281 }
282
283 value &= ~HWP_MAX_PERF(~0L);
284 value |= HWP_MAX_PERF(max);
285 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286 }
287
288 put_online_cpus();
289 }
290
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294 *(u32 *)data = val;
295 intel_pstate_reset_all_pid();
296 return 0;
297 }
298
299 static int pid_param_get(void *data, u64 *val)
300 {
301 *val = *(u32 *)data;
302 return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305
306 struct pid_param {
307 char *name;
308 void *value;
309 };
310
311 static struct pid_param pid_files[] = {
312 {"sample_rate_ms", &pid_params.sample_rate_ms},
313 {"d_gain_pct", &pid_params.d_gain_pct},
314 {"i_gain_pct", &pid_params.i_gain_pct},
315 {"deadband", &pid_params.deadband},
316 {"setpoint", &pid_params.setpoint},
317 {"p_gain_pct", &pid_params.p_gain_pct},
318 {NULL, NULL}
319 };
320
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323 struct dentry *debugfs_parent;
324 int i = 0;
325
326 if (hwp_active)
327 return;
328 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329 if (IS_ERR_OR_NULL(debugfs_parent))
330 return;
331 while (pid_files[i].name) {
332 debugfs_create_file(pid_files[i].name, 0660,
333 debugfs_parent, pid_files[i].value,
334 &fops_pid_param);
335 i++;
336 }
337 }
338
339 /************************** debugfs end ************************/
340
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object) \
343 static ssize_t show_##file_name \
344 (struct kobject *kobj, struct attribute *attr, char *buf) \
345 { \
346 return sprintf(buf, "%u\n", limits.object); \
347 }
348
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350 struct attribute *attr, char *buf)
351 {
352 struct cpudata *cpu;
353 int total, no_turbo, turbo_pct;
354 uint32_t turbo_fp;
355
356 cpu = all_cpu_data[0];
357
358 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362 return sprintf(buf, "%u\n", turbo_pct);
363 }
364
365 static ssize_t show_num_pstates(struct kobject *kobj,
366 struct attribute *attr, char *buf)
367 {
368 struct cpudata *cpu;
369 int total;
370
371 cpu = all_cpu_data[0];
372 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373 return sprintf(buf, "%u\n", total);
374 }
375
376 static ssize_t show_no_turbo(struct kobject *kobj,
377 struct attribute *attr, char *buf)
378 {
379 ssize_t ret;
380
381 update_turbo_state();
382 if (limits.turbo_disabled)
383 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384 else
385 ret = sprintf(buf, "%u\n", limits.no_turbo);
386
387 return ret;
388 }
389
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391 const char *buf, size_t count)
392 {
393 unsigned int input;
394 int ret;
395
396 ret = sscanf(buf, "%u", &input);
397 if (ret != 1)
398 return -EINVAL;
399
400 update_turbo_state();
401 if (limits.turbo_disabled) {
402 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403 return -EPERM;
404 }
405
406 limits.no_turbo = clamp_t(int, input, 0, 1);
407
408 if (hwp_active)
409 intel_pstate_hwp_set();
410
411 return count;
412 }
413
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415 const char *buf, size_t count)
416 {
417 unsigned int input;
418 int ret;
419
420 ret = sscanf(buf, "%u", &input);
421 if (ret != 1)
422 return -EINVAL;
423
424 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
427
428 if (hwp_active)
429 intel_pstate_hwp_set();
430 return count;
431 }
432
433 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
434 const char *buf, size_t count)
435 {
436 unsigned int input;
437 int ret;
438
439 ret = sscanf(buf, "%u", &input);
440 if (ret != 1)
441 return -EINVAL;
442
443 limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
444 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
445 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
446
447 if (hwp_active)
448 intel_pstate_hwp_set();
449 return count;
450 }
451
452 show_one(max_perf_pct, max_perf_pct);
453 show_one(min_perf_pct, min_perf_pct);
454
455 define_one_global_rw(no_turbo);
456 define_one_global_rw(max_perf_pct);
457 define_one_global_rw(min_perf_pct);
458 define_one_global_ro(turbo_pct);
459 define_one_global_ro(num_pstates);
460
461 static struct attribute *intel_pstate_attributes[] = {
462 &no_turbo.attr,
463 &max_perf_pct.attr,
464 &min_perf_pct.attr,
465 &turbo_pct.attr,
466 &num_pstates.attr,
467 NULL
468 };
469
470 static struct attribute_group intel_pstate_attr_group = {
471 .attrs = intel_pstate_attributes,
472 };
473
474 static void __init intel_pstate_sysfs_expose_params(void)
475 {
476 struct kobject *intel_pstate_kobject;
477 int rc;
478
479 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
480 &cpu_subsys.dev_root->kobj);
481 BUG_ON(!intel_pstate_kobject);
482 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
483 BUG_ON(rc);
484 }
485 /************************** sysfs end ************************/
486
487 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
488 {
489 pr_info("intel_pstate: HWP enabled\n");
490
491 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
492 }
493
494 static int byt_get_min_pstate(void)
495 {
496 u64 value;
497
498 rdmsrl(BYT_RATIOS, value);
499 return (value >> 8) & 0x7F;
500 }
501
502 static int byt_get_max_pstate(void)
503 {
504 u64 value;
505
506 rdmsrl(BYT_RATIOS, value);
507 return (value >> 16) & 0x7F;
508 }
509
510 static int byt_get_turbo_pstate(void)
511 {
512 u64 value;
513
514 rdmsrl(BYT_TURBO_RATIOS, value);
515 return value & 0x7F;
516 }
517
518 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
519 {
520 u64 val;
521 int32_t vid_fp;
522 u32 vid;
523
524 val = pstate << 8;
525 if (limits.no_turbo && !limits.turbo_disabled)
526 val |= (u64)1 << 32;
527
528 vid_fp = cpudata->vid.min + mul_fp(
529 int_tofp(pstate - cpudata->pstate.min_pstate),
530 cpudata->vid.ratio);
531
532 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
533 vid = ceiling_fp(vid_fp);
534
535 if (pstate > cpudata->pstate.max_pstate)
536 vid = cpudata->vid.turbo;
537
538 val |= vid;
539
540 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
541 }
542
543 #define BYT_BCLK_FREQS 5
544 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
545
546 static int byt_get_scaling(void)
547 {
548 u64 value;
549 int i;
550
551 rdmsrl(MSR_FSB_FREQ, value);
552 i = value & 0x3;
553
554 BUG_ON(i > BYT_BCLK_FREQS);
555
556 return byt_freq_table[i] * 100;
557 }
558
559 static void byt_get_vid(struct cpudata *cpudata)
560 {
561 u64 value;
562
563 rdmsrl(BYT_VIDS, value);
564 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
565 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
566 cpudata->vid.ratio = div_fp(
567 cpudata->vid.max - cpudata->vid.min,
568 int_tofp(cpudata->pstate.max_pstate -
569 cpudata->pstate.min_pstate));
570
571 rdmsrl(BYT_TURBO_VIDS, value);
572 cpudata->vid.turbo = value & 0x7f;
573 }
574
575 static int core_get_min_pstate(void)
576 {
577 u64 value;
578
579 rdmsrl(MSR_PLATFORM_INFO, value);
580 return (value >> 40) & 0xFF;
581 }
582
583 static int core_get_max_pstate(void)
584 {
585 u64 value;
586
587 rdmsrl(MSR_PLATFORM_INFO, value);
588 return (value >> 8) & 0xFF;
589 }
590
591 static int core_get_turbo_pstate(void)
592 {
593 u64 value;
594 int nont, ret;
595
596 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
597 nont = core_get_max_pstate();
598 ret = (value) & 255;
599 if (ret <= nont)
600 ret = nont;
601 return ret;
602 }
603
604 static inline int core_get_scaling(void)
605 {
606 return 100000;
607 }
608
609 static void core_set_pstate(struct cpudata *cpudata, int pstate)
610 {
611 u64 val;
612
613 val = pstate << 8;
614 if (limits.no_turbo && !limits.turbo_disabled)
615 val |= (u64)1 << 32;
616
617 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
618 }
619
620 static int knl_get_turbo_pstate(void)
621 {
622 u64 value;
623 int nont, ret;
624
625 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
626 nont = core_get_max_pstate();
627 ret = (((value) >> 8) & 0xFF);
628 if (ret <= nont)
629 ret = nont;
630 return ret;
631 }
632
633 static struct cpu_defaults core_params = {
634 .pid_policy = {
635 .sample_rate_ms = 10,
636 .deadband = 0,
637 .setpoint = 97,
638 .p_gain_pct = 20,
639 .d_gain_pct = 0,
640 .i_gain_pct = 0,
641 },
642 .funcs = {
643 .get_max = core_get_max_pstate,
644 .get_min = core_get_min_pstate,
645 .get_turbo = core_get_turbo_pstate,
646 .get_scaling = core_get_scaling,
647 .set = core_set_pstate,
648 },
649 };
650
651 static struct cpu_defaults byt_params = {
652 .pid_policy = {
653 .sample_rate_ms = 10,
654 .deadband = 0,
655 .setpoint = 60,
656 .p_gain_pct = 14,
657 .d_gain_pct = 0,
658 .i_gain_pct = 4,
659 },
660 .funcs = {
661 .get_max = byt_get_max_pstate,
662 .get_min = byt_get_min_pstate,
663 .get_turbo = byt_get_turbo_pstate,
664 .set = byt_set_pstate,
665 .get_scaling = byt_get_scaling,
666 .get_vid = byt_get_vid,
667 },
668 };
669
670 static struct cpu_defaults knl_params = {
671 .pid_policy = {
672 .sample_rate_ms = 10,
673 .deadband = 0,
674 .setpoint = 97,
675 .p_gain_pct = 20,
676 .d_gain_pct = 0,
677 .i_gain_pct = 0,
678 },
679 .funcs = {
680 .get_max = core_get_max_pstate,
681 .get_min = core_get_min_pstate,
682 .get_turbo = knl_get_turbo_pstate,
683 .get_scaling = core_get_scaling,
684 .set = core_set_pstate,
685 },
686 };
687
688 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
689 {
690 int max_perf = cpu->pstate.turbo_pstate;
691 int max_perf_adj;
692 int min_perf;
693
694 if (limits.no_turbo || limits.turbo_disabled)
695 max_perf = cpu->pstate.max_pstate;
696
697 /*
698 * performance can be limited by user through sysfs, by cpufreq
699 * policy, or by cpu specific default values determined through
700 * experimentation.
701 */
702 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
703 *max = clamp_t(int, max_perf_adj,
704 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
705
706 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
707 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
708 }
709
710 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
711 {
712 int max_perf, min_perf;
713
714 if (force) {
715 update_turbo_state();
716
717 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
718
719 pstate = clamp_t(int, pstate, min_perf, max_perf);
720
721 if (pstate == cpu->pstate.current_pstate)
722 return;
723 }
724 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
725
726 cpu->pstate.current_pstate = pstate;
727
728 pstate_funcs.set(cpu, pstate);
729 }
730
731 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
732 {
733 cpu->pstate.min_pstate = pstate_funcs.get_min();
734 cpu->pstate.max_pstate = pstate_funcs.get_max();
735 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
736 cpu->pstate.scaling = pstate_funcs.get_scaling();
737
738 if (pstate_funcs.get_vid)
739 pstate_funcs.get_vid(cpu);
740 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
741 }
742
743 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
744 {
745 struct sample *sample = &cpu->sample;
746 int64_t core_pct;
747
748 core_pct = int_tofp(sample->aperf) * int_tofp(100);
749 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
750
751 sample->freq = fp_toint(
752 mul_fp(int_tofp(
753 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
754 core_pct));
755
756 sample->core_pct_busy = (int32_t)core_pct;
757 }
758
759 static inline void intel_pstate_sample(struct cpudata *cpu)
760 {
761 u64 aperf, mperf;
762 unsigned long flags;
763 u64 tsc;
764
765 local_irq_save(flags);
766 rdmsrl(MSR_IA32_APERF, aperf);
767 rdmsrl(MSR_IA32_MPERF, mperf);
768 tsc = native_read_tsc();
769 local_irq_restore(flags);
770
771 cpu->last_sample_time = cpu->sample.time;
772 cpu->sample.time = ktime_get();
773 cpu->sample.aperf = aperf;
774 cpu->sample.mperf = mperf;
775 cpu->sample.tsc = tsc;
776 cpu->sample.aperf -= cpu->prev_aperf;
777 cpu->sample.mperf -= cpu->prev_mperf;
778 cpu->sample.tsc -= cpu->prev_tsc;
779
780 intel_pstate_calc_busy(cpu);
781
782 cpu->prev_aperf = aperf;
783 cpu->prev_mperf = mperf;
784 cpu->prev_tsc = tsc;
785 }
786
787 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
788 {
789 int delay;
790
791 delay = msecs_to_jiffies(50);
792 mod_timer_pinned(&cpu->timer, jiffies + delay);
793 }
794
795 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
796 {
797 int delay;
798
799 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
800 mod_timer_pinned(&cpu->timer, jiffies + delay);
801 }
802
803 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
804 {
805 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
806 s64 duration_us;
807 u32 sample_time;
808
809 /*
810 * core_busy is the ratio of actual performance to max
811 * max_pstate is the max non turbo pstate available
812 * current_pstate was the pstate that was requested during
813 * the last sample period.
814 *
815 * We normalize core_busy, which was our actual percent
816 * performance to what we requested during the last sample
817 * period. The result will be a percentage of busy at a
818 * specified pstate.
819 */
820 core_busy = cpu->sample.core_pct_busy;
821 max_pstate = int_tofp(cpu->pstate.max_pstate);
822 current_pstate = int_tofp(cpu->pstate.current_pstate);
823 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
824
825 /*
826 * Since we have a deferred timer, it will not fire unless
827 * we are in C0. So, determine if the actual elapsed time
828 * is significantly greater (3x) than our sample interval. If it
829 * is, then we were idle for a long enough period of time
830 * to adjust our busyness.
831 */
832 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
833 duration_us = ktime_us_delta(cpu->sample.time,
834 cpu->last_sample_time);
835 if (duration_us > sample_time * 3) {
836 sample_ratio = div_fp(int_tofp(sample_time),
837 int_tofp(duration_us));
838 core_busy = mul_fp(core_busy, sample_ratio);
839 }
840
841 return core_busy;
842 }
843
844 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
845 {
846 int32_t busy_scaled;
847 struct _pid *pid;
848 signed int ctl;
849 int from;
850 struct sample *sample;
851
852 from = cpu->pstate.current_pstate;
853
854 pid = &cpu->pid;
855 busy_scaled = intel_pstate_get_scaled_busy(cpu);
856
857 ctl = pid_calc(pid, busy_scaled);
858
859 /* Negative values of ctl increase the pstate and vice versa */
860 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
861
862 sample = &cpu->sample;
863 trace_pstate_sample(fp_toint(sample->core_pct_busy),
864 fp_toint(busy_scaled),
865 from,
866 cpu->pstate.current_pstate,
867 sample->mperf,
868 sample->aperf,
869 sample->tsc,
870 sample->freq);
871 }
872
873 static void intel_hwp_timer_func(unsigned long __data)
874 {
875 struct cpudata *cpu = (struct cpudata *) __data;
876
877 intel_pstate_sample(cpu);
878 intel_hwp_set_sample_time(cpu);
879 }
880
881 static void intel_pstate_timer_func(unsigned long __data)
882 {
883 struct cpudata *cpu = (struct cpudata *) __data;
884
885 intel_pstate_sample(cpu);
886
887 intel_pstate_adjust_busy_pstate(cpu);
888
889 intel_pstate_set_sample_time(cpu);
890 }
891
892 #define ICPU(model, policy) \
893 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
894 (unsigned long)&policy }
895
896 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
897 ICPU(0x2a, core_params),
898 ICPU(0x2d, core_params),
899 ICPU(0x37, byt_params),
900 ICPU(0x3a, core_params),
901 ICPU(0x3c, core_params),
902 ICPU(0x3d, core_params),
903 ICPU(0x3e, core_params),
904 ICPU(0x3f, core_params),
905 ICPU(0x45, core_params),
906 ICPU(0x46, core_params),
907 ICPU(0x47, core_params),
908 ICPU(0x4c, byt_params),
909 ICPU(0x4e, core_params),
910 ICPU(0x4f, core_params),
911 ICPU(0x56, core_params),
912 ICPU(0x57, knl_params),
913 {}
914 };
915 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
916
917 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
918 ICPU(0x56, core_params),
919 {}
920 };
921
922 static int intel_pstate_init_cpu(unsigned int cpunum)
923 {
924 struct cpudata *cpu;
925
926 if (!all_cpu_data[cpunum])
927 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
928 GFP_KERNEL);
929 if (!all_cpu_data[cpunum])
930 return -ENOMEM;
931
932 cpu = all_cpu_data[cpunum];
933
934 cpu->cpu = cpunum;
935
936 if (hwp_active)
937 intel_pstate_hwp_enable(cpu);
938
939 intel_pstate_get_cpu_pstates(cpu);
940
941 init_timer_deferrable(&cpu->timer);
942 cpu->timer.data = (unsigned long)cpu;
943 cpu->timer.expires = jiffies + HZ/100;
944
945 if (!hwp_active)
946 cpu->timer.function = intel_pstate_timer_func;
947 else
948 cpu->timer.function = intel_hwp_timer_func;
949
950 intel_pstate_busy_pid_reset(cpu);
951 intel_pstate_sample(cpu);
952
953 add_timer_on(&cpu->timer, cpunum);
954
955 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
956
957 return 0;
958 }
959
960 static unsigned int intel_pstate_get(unsigned int cpu_num)
961 {
962 struct sample *sample;
963 struct cpudata *cpu;
964
965 cpu = all_cpu_data[cpu_num];
966 if (!cpu)
967 return 0;
968 sample = &cpu->sample;
969 return sample->freq;
970 }
971
972 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
973 {
974 if (!policy->cpuinfo.max_freq)
975 return -ENODEV;
976
977 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
978 policy->max >= policy->cpuinfo.max_freq) {
979 limits.min_policy_pct = 100;
980 limits.min_perf_pct = 100;
981 limits.min_perf = int_tofp(1);
982 limits.max_policy_pct = 100;
983 limits.max_perf_pct = 100;
984 limits.max_perf = int_tofp(1);
985 limits.no_turbo = 0;
986 return 0;
987 }
988
989 limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
990 limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
991 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
992 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
993
994 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
995 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
996 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
997 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
998
999 if (hwp_active)
1000 intel_pstate_hwp_set();
1001
1002 return 0;
1003 }
1004
1005 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1006 {
1007 cpufreq_verify_within_cpu_limits(policy);
1008
1009 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1010 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1011 return -EINVAL;
1012
1013 return 0;
1014 }
1015
1016 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1017 {
1018 int cpu_num = policy->cpu;
1019 struct cpudata *cpu = all_cpu_data[cpu_num];
1020
1021 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1022
1023 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1024 if (hwp_active)
1025 return;
1026
1027 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1028 }
1029
1030 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1031 {
1032 struct cpudata *cpu;
1033 int rc;
1034
1035 rc = intel_pstate_init_cpu(policy->cpu);
1036 if (rc)
1037 return rc;
1038
1039 cpu = all_cpu_data[policy->cpu];
1040
1041 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1042 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1043 else
1044 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1045
1046 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1047 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1048
1049 /* cpuinfo and default policy values */
1050 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1051 policy->cpuinfo.max_freq =
1052 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1053 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1054 cpumask_set_cpu(policy->cpu, policy->cpus);
1055
1056 return 0;
1057 }
1058
1059 static struct cpufreq_driver intel_pstate_driver = {
1060 .flags = CPUFREQ_CONST_LOOPS,
1061 .verify = intel_pstate_verify_policy,
1062 .setpolicy = intel_pstate_set_policy,
1063 .get = intel_pstate_get,
1064 .init = intel_pstate_cpu_init,
1065 .stop_cpu = intel_pstate_stop_cpu,
1066 .name = "intel_pstate",
1067 };
1068
1069 static int __initdata no_load;
1070 static int __initdata no_hwp;
1071 static int __initdata hwp_only;
1072 static unsigned int force_load;
1073
1074 static int intel_pstate_msrs_not_valid(void)
1075 {
1076 if (!pstate_funcs.get_max() ||
1077 !pstate_funcs.get_min() ||
1078 !pstate_funcs.get_turbo())
1079 return -ENODEV;
1080
1081 return 0;
1082 }
1083
1084 static void copy_pid_params(struct pstate_adjust_policy *policy)
1085 {
1086 pid_params.sample_rate_ms = policy->sample_rate_ms;
1087 pid_params.p_gain_pct = policy->p_gain_pct;
1088 pid_params.i_gain_pct = policy->i_gain_pct;
1089 pid_params.d_gain_pct = policy->d_gain_pct;
1090 pid_params.deadband = policy->deadband;
1091 pid_params.setpoint = policy->setpoint;
1092 }
1093
1094 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1095 {
1096 pstate_funcs.get_max = funcs->get_max;
1097 pstate_funcs.get_min = funcs->get_min;
1098 pstate_funcs.get_turbo = funcs->get_turbo;
1099 pstate_funcs.get_scaling = funcs->get_scaling;
1100 pstate_funcs.set = funcs->set;
1101 pstate_funcs.get_vid = funcs->get_vid;
1102 }
1103
1104 #if IS_ENABLED(CONFIG_ACPI)
1105 #include <acpi/processor.h>
1106
1107 static bool intel_pstate_no_acpi_pss(void)
1108 {
1109 int i;
1110
1111 for_each_possible_cpu(i) {
1112 acpi_status status;
1113 union acpi_object *pss;
1114 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1115 struct acpi_processor *pr = per_cpu(processors, i);
1116
1117 if (!pr)
1118 continue;
1119
1120 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1121 if (ACPI_FAILURE(status))
1122 continue;
1123
1124 pss = buffer.pointer;
1125 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1126 kfree(pss);
1127 return false;
1128 }
1129
1130 kfree(pss);
1131 }
1132
1133 return true;
1134 }
1135
1136 static bool intel_pstate_has_acpi_ppc(void)
1137 {
1138 int i;
1139
1140 for_each_possible_cpu(i) {
1141 struct acpi_processor *pr = per_cpu(processors, i);
1142
1143 if (!pr)
1144 continue;
1145 if (acpi_has_method(pr->handle, "_PPC"))
1146 return true;
1147 }
1148 return false;
1149 }
1150
1151 enum {
1152 PSS,
1153 PPC,
1154 };
1155
1156 struct hw_vendor_info {
1157 u16 valid;
1158 char oem_id[ACPI_OEM_ID_SIZE];
1159 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1160 int oem_pwr_table;
1161 };
1162
1163 /* Hardware vendor-specific info that has its own power management modes */
1164 static struct hw_vendor_info vendor_info[] = {
1165 {1, "HP ", "ProLiant", PSS},
1166 {1, "ORACLE", "X4-2 ", PPC},
1167 {1, "ORACLE", "X4-2L ", PPC},
1168 {1, "ORACLE", "X4-2B ", PPC},
1169 {1, "ORACLE", "X3-2 ", PPC},
1170 {1, "ORACLE", "X3-2L ", PPC},
1171 {1, "ORACLE", "X3-2B ", PPC},
1172 {1, "ORACLE", "X4470M2 ", PPC},
1173 {1, "ORACLE", "X4270M3 ", PPC},
1174 {1, "ORACLE", "X4270M2 ", PPC},
1175 {1, "ORACLE", "X4170M2 ", PPC},
1176 {0, "", ""},
1177 };
1178
1179 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1180 {
1181 struct acpi_table_header hdr;
1182 struct hw_vendor_info *v_info;
1183 const struct x86_cpu_id *id;
1184 u64 misc_pwr;
1185
1186 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1187 if (id) {
1188 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1189 if ( misc_pwr & (1 << 8))
1190 return true;
1191 }
1192
1193 if (acpi_disabled ||
1194 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1195 return false;
1196
1197 for (v_info = vendor_info; v_info->valid; v_info++) {
1198 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1199 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1200 ACPI_OEM_TABLE_ID_SIZE))
1201 switch (v_info->oem_pwr_table) {
1202 case PSS:
1203 return intel_pstate_no_acpi_pss();
1204 case PPC:
1205 return intel_pstate_has_acpi_ppc() &&
1206 (!force_load);
1207 }
1208 }
1209
1210 return false;
1211 }
1212 #else /* CONFIG_ACPI not enabled */
1213 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1214 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1215 #endif /* CONFIG_ACPI */
1216
1217 static int __init intel_pstate_init(void)
1218 {
1219 int cpu, rc = 0;
1220 const struct x86_cpu_id *id;
1221 struct cpu_defaults *cpu_def;
1222
1223 if (no_load)
1224 return -ENODEV;
1225
1226 id = x86_match_cpu(intel_pstate_cpu_ids);
1227 if (!id)
1228 return -ENODEV;
1229
1230 /*
1231 * The Intel pstate driver will be ignored if the platform
1232 * firmware has its own power management modes.
1233 */
1234 if (intel_pstate_platform_pwr_mgmt_exists())
1235 return -ENODEV;
1236
1237 cpu_def = (struct cpu_defaults *)id->driver_data;
1238
1239 copy_pid_params(&cpu_def->pid_policy);
1240 copy_cpu_funcs(&cpu_def->funcs);
1241
1242 if (intel_pstate_msrs_not_valid())
1243 return -ENODEV;
1244
1245 pr_info("Intel P-state driver initializing.\n");
1246
1247 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1248 if (!all_cpu_data)
1249 return -ENOMEM;
1250
1251 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1252 hwp_active++;
1253
1254 if (!hwp_active && hwp_only)
1255 goto out;
1256
1257 rc = cpufreq_register_driver(&intel_pstate_driver);
1258 if (rc)
1259 goto out;
1260
1261 intel_pstate_debug_expose_params();
1262 intel_pstate_sysfs_expose_params();
1263
1264 return rc;
1265 out:
1266 get_online_cpus();
1267 for_each_online_cpu(cpu) {
1268 if (all_cpu_data[cpu]) {
1269 del_timer_sync(&all_cpu_data[cpu]->timer);
1270 kfree(all_cpu_data[cpu]);
1271 }
1272 }
1273
1274 put_online_cpus();
1275 vfree(all_cpu_data);
1276 return -ENODEV;
1277 }
1278 device_initcall(intel_pstate_init);
1279
1280 static int __init intel_pstate_setup(char *str)
1281 {
1282 if (!str)
1283 return -EINVAL;
1284
1285 if (!strcmp(str, "disable"))
1286 no_load = 1;
1287 if (!strcmp(str, "no_hwp"))
1288 no_hwp = 1;
1289 if (!strcmp(str, "force"))
1290 force_load = 1;
1291 if (!strcmp(str, "hwp_only"))
1292 hwp_only = 1;
1293 return 0;
1294 }
1295 early_param("intel_pstate", intel_pstate_setup);
1296
1297 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1298 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1299 MODULE_LICENSE("GPL");
This page took 0.055403 seconds and 4 git commands to generate.