Merge branch 'stable/for-linus-4.5' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define ATOM_RATIOS 0x66a
38 #define ATOM_VIDS 0x66b
39 #define ATOM_TURBO_RATIOS 0x66c
40 #define ATOM_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50
51 static inline int32_t div_fp(s64 x, s64 y)
52 {
53 return div64_s64((int64_t)x << FRAC_BITS, y);
54 }
55
56 static inline int ceiling_fp(int32_t x)
57 {
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65 }
66
67 struct sample {
68 int32_t core_pct_busy;
69 int32_t busy_scaled;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 ktime_t time;
75 };
76
77 struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int max_pstate_physical;
82 int scaling;
83 int turbo_pstate;
84 };
85
86 struct vid_data {
87 int min;
88 int max;
89 int turbo;
90 int32_t ratio;
91 };
92
93 struct _pid {
94 int setpoint;
95 int32_t integral;
96 int32_t p_gain;
97 int32_t i_gain;
98 int32_t d_gain;
99 int deadband;
100 int32_t last_err;
101 };
102
103 struct cpudata {
104 int cpu;
105
106 struct timer_list timer;
107
108 struct pstate_data pstate;
109 struct vid_data vid;
110 struct _pid pid;
111
112 ktime_t last_sample_time;
113 u64 prev_aperf;
114 u64 prev_mperf;
115 u64 prev_tsc;
116 u64 prev_cummulative_iowait;
117 struct sample sample;
118 };
119
120 static struct cpudata **all_cpu_data;
121 struct pstate_adjust_policy {
122 int sample_rate_ms;
123 int deadband;
124 int setpoint;
125 int p_gain_pct;
126 int d_gain_pct;
127 int i_gain_pct;
128 };
129
130 struct pstate_funcs {
131 int (*get_max)(void);
132 int (*get_max_physical)(void);
133 int (*get_min)(void);
134 int (*get_turbo)(void);
135 int (*get_scaling)(void);
136 void (*set)(struct cpudata*, int pstate);
137 void (*get_vid)(struct cpudata *);
138 int32_t (*get_target_pstate)(struct cpudata *);
139 };
140
141 struct cpu_defaults {
142 struct pstate_adjust_policy pid_policy;
143 struct pstate_funcs funcs;
144 };
145
146 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
147 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
148
149 static struct pstate_adjust_policy pid_params;
150 static struct pstate_funcs pstate_funcs;
151 static int hwp_active;
152
153 struct perf_limits {
154 int no_turbo;
155 int turbo_disabled;
156 int max_perf_pct;
157 int min_perf_pct;
158 int32_t max_perf;
159 int32_t min_perf;
160 int max_policy_pct;
161 int max_sysfs_pct;
162 int min_policy_pct;
163 int min_sysfs_pct;
164 };
165
166 static struct perf_limits performance_limits = {
167 .no_turbo = 0,
168 .turbo_disabled = 0,
169 .max_perf_pct = 100,
170 .max_perf = int_tofp(1),
171 .min_perf_pct = 100,
172 .min_perf = int_tofp(1),
173 .max_policy_pct = 100,
174 .max_sysfs_pct = 100,
175 .min_policy_pct = 0,
176 .min_sysfs_pct = 0,
177 };
178
179 static struct perf_limits powersave_limits = {
180 .no_turbo = 0,
181 .turbo_disabled = 0,
182 .max_perf_pct = 100,
183 .max_perf = int_tofp(1),
184 .min_perf_pct = 0,
185 .min_perf = 0,
186 .max_policy_pct = 100,
187 .max_sysfs_pct = 100,
188 .min_policy_pct = 0,
189 .min_sysfs_pct = 0,
190 };
191
192 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
193 static struct perf_limits *limits = &performance_limits;
194 #else
195 static struct perf_limits *limits = &powersave_limits;
196 #endif
197
198 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
199 int deadband, int integral) {
200 pid->setpoint = setpoint;
201 pid->deadband = deadband;
202 pid->integral = int_tofp(integral);
203 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
204 }
205
206 static inline void pid_p_gain_set(struct _pid *pid, int percent)
207 {
208 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
209 }
210
211 static inline void pid_i_gain_set(struct _pid *pid, int percent)
212 {
213 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
214 }
215
216 static inline void pid_d_gain_set(struct _pid *pid, int percent)
217 {
218 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
219 }
220
221 static signed int pid_calc(struct _pid *pid, int32_t busy)
222 {
223 signed int result;
224 int32_t pterm, dterm, fp_error;
225 int32_t integral_limit;
226
227 fp_error = int_tofp(pid->setpoint) - busy;
228
229 if (abs(fp_error) <= int_tofp(pid->deadband))
230 return 0;
231
232 pterm = mul_fp(pid->p_gain, fp_error);
233
234 pid->integral += fp_error;
235
236 /*
237 * We limit the integral here so that it will never
238 * get higher than 30. This prevents it from becoming
239 * too large an input over long periods of time and allows
240 * it to get factored out sooner.
241 *
242 * The value of 30 was chosen through experimentation.
243 */
244 integral_limit = int_tofp(30);
245 if (pid->integral > integral_limit)
246 pid->integral = integral_limit;
247 if (pid->integral < -integral_limit)
248 pid->integral = -integral_limit;
249
250 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
251 pid->last_err = fp_error;
252
253 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
254 result = result + (1 << (FRAC_BITS-1));
255 return (signed int)fp_toint(result);
256 }
257
258 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
259 {
260 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
261 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
262 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
263
264 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
265 }
266
267 static inline void intel_pstate_reset_all_pid(void)
268 {
269 unsigned int cpu;
270
271 for_each_online_cpu(cpu) {
272 if (all_cpu_data[cpu])
273 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
274 }
275 }
276
277 static inline void update_turbo_state(void)
278 {
279 u64 misc_en;
280 struct cpudata *cpu;
281
282 cpu = all_cpu_data[0];
283 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
284 limits->turbo_disabled =
285 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
286 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
287 }
288
289 static void intel_pstate_hwp_set(void)
290 {
291 int min, hw_min, max, hw_max, cpu, range, adj_range;
292 u64 value, cap;
293
294 rdmsrl(MSR_HWP_CAPABILITIES, cap);
295 hw_min = HWP_LOWEST_PERF(cap);
296 hw_max = HWP_HIGHEST_PERF(cap);
297 range = hw_max - hw_min;
298
299 get_online_cpus();
300
301 for_each_online_cpu(cpu) {
302 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
303 adj_range = limits->min_perf_pct * range / 100;
304 min = hw_min + adj_range;
305 value &= ~HWP_MIN_PERF(~0L);
306 value |= HWP_MIN_PERF(min);
307
308 adj_range = limits->max_perf_pct * range / 100;
309 max = hw_min + adj_range;
310 if (limits->no_turbo) {
311 hw_max = HWP_GUARANTEED_PERF(cap);
312 if (hw_max < max)
313 max = hw_max;
314 }
315
316 value &= ~HWP_MAX_PERF(~0L);
317 value |= HWP_MAX_PERF(max);
318 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
319 }
320
321 put_online_cpus();
322 }
323
324 /************************** debugfs begin ************************/
325 static int pid_param_set(void *data, u64 val)
326 {
327 *(u32 *)data = val;
328 intel_pstate_reset_all_pid();
329 return 0;
330 }
331
332 static int pid_param_get(void *data, u64 *val)
333 {
334 *val = *(u32 *)data;
335 return 0;
336 }
337 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
338
339 struct pid_param {
340 char *name;
341 void *value;
342 };
343
344 static struct pid_param pid_files[] = {
345 {"sample_rate_ms", &pid_params.sample_rate_ms},
346 {"d_gain_pct", &pid_params.d_gain_pct},
347 {"i_gain_pct", &pid_params.i_gain_pct},
348 {"deadband", &pid_params.deadband},
349 {"setpoint", &pid_params.setpoint},
350 {"p_gain_pct", &pid_params.p_gain_pct},
351 {NULL, NULL}
352 };
353
354 static void __init intel_pstate_debug_expose_params(void)
355 {
356 struct dentry *debugfs_parent;
357 int i = 0;
358
359 if (hwp_active)
360 return;
361 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
362 if (IS_ERR_OR_NULL(debugfs_parent))
363 return;
364 while (pid_files[i].name) {
365 debugfs_create_file(pid_files[i].name, 0660,
366 debugfs_parent, pid_files[i].value,
367 &fops_pid_param);
368 i++;
369 }
370 }
371
372 /************************** debugfs end ************************/
373
374 /************************** sysfs begin ************************/
375 #define show_one(file_name, object) \
376 static ssize_t show_##file_name \
377 (struct kobject *kobj, struct attribute *attr, char *buf) \
378 { \
379 return sprintf(buf, "%u\n", limits->object); \
380 }
381
382 static ssize_t show_turbo_pct(struct kobject *kobj,
383 struct attribute *attr, char *buf)
384 {
385 struct cpudata *cpu;
386 int total, no_turbo, turbo_pct;
387 uint32_t turbo_fp;
388
389 cpu = all_cpu_data[0];
390
391 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
392 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
393 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
394 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
395 return sprintf(buf, "%u\n", turbo_pct);
396 }
397
398 static ssize_t show_num_pstates(struct kobject *kobj,
399 struct attribute *attr, char *buf)
400 {
401 struct cpudata *cpu;
402 int total;
403
404 cpu = all_cpu_data[0];
405 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
406 return sprintf(buf, "%u\n", total);
407 }
408
409 static ssize_t show_no_turbo(struct kobject *kobj,
410 struct attribute *attr, char *buf)
411 {
412 ssize_t ret;
413
414 update_turbo_state();
415 if (limits->turbo_disabled)
416 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
417 else
418 ret = sprintf(buf, "%u\n", limits->no_turbo);
419
420 return ret;
421 }
422
423 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
424 const char *buf, size_t count)
425 {
426 unsigned int input;
427 int ret;
428
429 ret = sscanf(buf, "%u", &input);
430 if (ret != 1)
431 return -EINVAL;
432
433 update_turbo_state();
434 if (limits->turbo_disabled) {
435 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
436 return -EPERM;
437 }
438
439 limits->no_turbo = clamp_t(int, input, 0, 1);
440
441 if (hwp_active)
442 intel_pstate_hwp_set();
443
444 return count;
445 }
446
447 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
448 const char *buf, size_t count)
449 {
450 unsigned int input;
451 int ret;
452
453 ret = sscanf(buf, "%u", &input);
454 if (ret != 1)
455 return -EINVAL;
456
457 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
458 limits->max_perf_pct = min(limits->max_policy_pct,
459 limits->max_sysfs_pct);
460 limits->max_perf_pct = max(limits->min_policy_pct,
461 limits->max_perf_pct);
462 limits->max_perf_pct = max(limits->min_perf_pct,
463 limits->max_perf_pct);
464 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
465 int_tofp(100));
466
467 if (hwp_active)
468 intel_pstate_hwp_set();
469 return count;
470 }
471
472 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
473 const char *buf, size_t count)
474 {
475 unsigned int input;
476 int ret;
477
478 ret = sscanf(buf, "%u", &input);
479 if (ret != 1)
480 return -EINVAL;
481
482 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
483 limits->min_perf_pct = max(limits->min_policy_pct,
484 limits->min_sysfs_pct);
485 limits->min_perf_pct = min(limits->max_policy_pct,
486 limits->min_perf_pct);
487 limits->min_perf_pct = min(limits->max_perf_pct,
488 limits->min_perf_pct);
489 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
490 int_tofp(100));
491
492 if (hwp_active)
493 intel_pstate_hwp_set();
494 return count;
495 }
496
497 show_one(max_perf_pct, max_perf_pct);
498 show_one(min_perf_pct, min_perf_pct);
499
500 define_one_global_rw(no_turbo);
501 define_one_global_rw(max_perf_pct);
502 define_one_global_rw(min_perf_pct);
503 define_one_global_ro(turbo_pct);
504 define_one_global_ro(num_pstates);
505
506 static struct attribute *intel_pstate_attributes[] = {
507 &no_turbo.attr,
508 &max_perf_pct.attr,
509 &min_perf_pct.attr,
510 &turbo_pct.attr,
511 &num_pstates.attr,
512 NULL
513 };
514
515 static struct attribute_group intel_pstate_attr_group = {
516 .attrs = intel_pstate_attributes,
517 };
518
519 static void __init intel_pstate_sysfs_expose_params(void)
520 {
521 struct kobject *intel_pstate_kobject;
522 int rc;
523
524 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
525 &cpu_subsys.dev_root->kobj);
526 BUG_ON(!intel_pstate_kobject);
527 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
528 BUG_ON(rc);
529 }
530 /************************** sysfs end ************************/
531
532 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
533 {
534 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
535 }
536
537 static int atom_get_min_pstate(void)
538 {
539 u64 value;
540
541 rdmsrl(ATOM_RATIOS, value);
542 return (value >> 8) & 0x7F;
543 }
544
545 static int atom_get_max_pstate(void)
546 {
547 u64 value;
548
549 rdmsrl(ATOM_RATIOS, value);
550 return (value >> 16) & 0x7F;
551 }
552
553 static int atom_get_turbo_pstate(void)
554 {
555 u64 value;
556
557 rdmsrl(ATOM_TURBO_RATIOS, value);
558 return value & 0x7F;
559 }
560
561 static void atom_set_pstate(struct cpudata *cpudata, int pstate)
562 {
563 u64 val;
564 int32_t vid_fp;
565 u32 vid;
566
567 val = (u64)pstate << 8;
568 if (limits->no_turbo && !limits->turbo_disabled)
569 val |= (u64)1 << 32;
570
571 vid_fp = cpudata->vid.min + mul_fp(
572 int_tofp(pstate - cpudata->pstate.min_pstate),
573 cpudata->vid.ratio);
574
575 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
576 vid = ceiling_fp(vid_fp);
577
578 if (pstate > cpudata->pstate.max_pstate)
579 vid = cpudata->vid.turbo;
580
581 val |= vid;
582
583 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
584 }
585
586 static int silvermont_get_scaling(void)
587 {
588 u64 value;
589 int i;
590 /* Defined in Table 35-6 from SDM (Sept 2015) */
591 static int silvermont_freq_table[] = {
592 83300, 100000, 133300, 116700, 80000};
593
594 rdmsrl(MSR_FSB_FREQ, value);
595 i = value & 0x7;
596 WARN_ON(i > 4);
597
598 return silvermont_freq_table[i];
599 }
600
601 static int airmont_get_scaling(void)
602 {
603 u64 value;
604 int i;
605 /* Defined in Table 35-10 from SDM (Sept 2015) */
606 static int airmont_freq_table[] = {
607 83300, 100000, 133300, 116700, 80000,
608 93300, 90000, 88900, 87500};
609
610 rdmsrl(MSR_FSB_FREQ, value);
611 i = value & 0xF;
612 WARN_ON(i > 8);
613
614 return airmont_freq_table[i];
615 }
616
617 static void atom_get_vid(struct cpudata *cpudata)
618 {
619 u64 value;
620
621 rdmsrl(ATOM_VIDS, value);
622 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
623 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
624 cpudata->vid.ratio = div_fp(
625 cpudata->vid.max - cpudata->vid.min,
626 int_tofp(cpudata->pstate.max_pstate -
627 cpudata->pstate.min_pstate));
628
629 rdmsrl(ATOM_TURBO_VIDS, value);
630 cpudata->vid.turbo = value & 0x7f;
631 }
632
633 static int core_get_min_pstate(void)
634 {
635 u64 value;
636
637 rdmsrl(MSR_PLATFORM_INFO, value);
638 return (value >> 40) & 0xFF;
639 }
640
641 static int core_get_max_pstate_physical(void)
642 {
643 u64 value;
644
645 rdmsrl(MSR_PLATFORM_INFO, value);
646 return (value >> 8) & 0xFF;
647 }
648
649 static int core_get_max_pstate(void)
650 {
651 u64 tar;
652 u64 plat_info;
653 int max_pstate;
654 int err;
655
656 rdmsrl(MSR_PLATFORM_INFO, plat_info);
657 max_pstate = (plat_info >> 8) & 0xFF;
658
659 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
660 if (!err) {
661 /* Do some sanity checking for safety */
662 if (plat_info & 0x600000000) {
663 u64 tdp_ctrl;
664 u64 tdp_ratio;
665 int tdp_msr;
666
667 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
668 if (err)
669 goto skip_tar;
670
671 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
672 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
673 if (err)
674 goto skip_tar;
675
676 if (tdp_ratio - 1 == tar) {
677 max_pstate = tar;
678 pr_debug("max_pstate=TAC %x\n", max_pstate);
679 } else {
680 goto skip_tar;
681 }
682 }
683 }
684
685 skip_tar:
686 return max_pstate;
687 }
688
689 static int core_get_turbo_pstate(void)
690 {
691 u64 value;
692 int nont, ret;
693
694 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
695 nont = core_get_max_pstate();
696 ret = (value) & 255;
697 if (ret <= nont)
698 ret = nont;
699 return ret;
700 }
701
702 static inline int core_get_scaling(void)
703 {
704 return 100000;
705 }
706
707 static void core_set_pstate(struct cpudata *cpudata, int pstate)
708 {
709 u64 val;
710
711 val = (u64)pstate << 8;
712 if (limits->no_turbo && !limits->turbo_disabled)
713 val |= (u64)1 << 32;
714
715 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
716 }
717
718 static int knl_get_turbo_pstate(void)
719 {
720 u64 value;
721 int nont, ret;
722
723 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
724 nont = core_get_max_pstate();
725 ret = (((value) >> 8) & 0xFF);
726 if (ret <= nont)
727 ret = nont;
728 return ret;
729 }
730
731 static struct cpu_defaults core_params = {
732 .pid_policy = {
733 .sample_rate_ms = 10,
734 .deadband = 0,
735 .setpoint = 97,
736 .p_gain_pct = 20,
737 .d_gain_pct = 0,
738 .i_gain_pct = 0,
739 },
740 .funcs = {
741 .get_max = core_get_max_pstate,
742 .get_max_physical = core_get_max_pstate_physical,
743 .get_min = core_get_min_pstate,
744 .get_turbo = core_get_turbo_pstate,
745 .get_scaling = core_get_scaling,
746 .set = core_set_pstate,
747 .get_target_pstate = get_target_pstate_use_performance,
748 },
749 };
750
751 static struct cpu_defaults silvermont_params = {
752 .pid_policy = {
753 .sample_rate_ms = 10,
754 .deadband = 0,
755 .setpoint = 60,
756 .p_gain_pct = 14,
757 .d_gain_pct = 0,
758 .i_gain_pct = 4,
759 },
760 .funcs = {
761 .get_max = atom_get_max_pstate,
762 .get_max_physical = atom_get_max_pstate,
763 .get_min = atom_get_min_pstate,
764 .get_turbo = atom_get_turbo_pstate,
765 .set = atom_set_pstate,
766 .get_scaling = silvermont_get_scaling,
767 .get_vid = atom_get_vid,
768 .get_target_pstate = get_target_pstate_use_cpu_load,
769 },
770 };
771
772 static struct cpu_defaults airmont_params = {
773 .pid_policy = {
774 .sample_rate_ms = 10,
775 .deadband = 0,
776 .setpoint = 60,
777 .p_gain_pct = 14,
778 .d_gain_pct = 0,
779 .i_gain_pct = 4,
780 },
781 .funcs = {
782 .get_max = atom_get_max_pstate,
783 .get_max_physical = atom_get_max_pstate,
784 .get_min = atom_get_min_pstate,
785 .get_turbo = atom_get_turbo_pstate,
786 .set = atom_set_pstate,
787 .get_scaling = airmont_get_scaling,
788 .get_vid = atom_get_vid,
789 .get_target_pstate = get_target_pstate_use_cpu_load,
790 },
791 };
792
793 static struct cpu_defaults knl_params = {
794 .pid_policy = {
795 .sample_rate_ms = 10,
796 .deadband = 0,
797 .setpoint = 97,
798 .p_gain_pct = 20,
799 .d_gain_pct = 0,
800 .i_gain_pct = 0,
801 },
802 .funcs = {
803 .get_max = core_get_max_pstate,
804 .get_max_physical = core_get_max_pstate_physical,
805 .get_min = core_get_min_pstate,
806 .get_turbo = knl_get_turbo_pstate,
807 .get_scaling = core_get_scaling,
808 .set = core_set_pstate,
809 .get_target_pstate = get_target_pstate_use_performance,
810 },
811 };
812
813 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
814 {
815 int max_perf = cpu->pstate.turbo_pstate;
816 int max_perf_adj;
817 int min_perf;
818
819 if (limits->no_turbo || limits->turbo_disabled)
820 max_perf = cpu->pstate.max_pstate;
821
822 /*
823 * performance can be limited by user through sysfs, by cpufreq
824 * policy, or by cpu specific default values determined through
825 * experimentation.
826 */
827 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits->max_perf));
828 *max = clamp_t(int, max_perf_adj,
829 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
830
831 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits->min_perf));
832 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
833 }
834
835 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
836 {
837 int max_perf, min_perf;
838
839 if (force) {
840 update_turbo_state();
841
842 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
843
844 pstate = clamp_t(int, pstate, min_perf, max_perf);
845
846 if (pstate == cpu->pstate.current_pstate)
847 return;
848 }
849 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
850
851 cpu->pstate.current_pstate = pstate;
852
853 pstate_funcs.set(cpu, pstate);
854 }
855
856 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
857 {
858 cpu->pstate.min_pstate = pstate_funcs.get_min();
859 cpu->pstate.max_pstate = pstate_funcs.get_max();
860 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
861 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
862 cpu->pstate.scaling = pstate_funcs.get_scaling();
863
864 if (pstate_funcs.get_vid)
865 pstate_funcs.get_vid(cpu);
866 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
867 }
868
869 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
870 {
871 struct sample *sample = &cpu->sample;
872 int64_t core_pct;
873
874 core_pct = int_tofp(sample->aperf) * int_tofp(100);
875 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
876
877 sample->freq = fp_toint(
878 mul_fp(int_tofp(
879 cpu->pstate.max_pstate_physical *
880 cpu->pstate.scaling / 100),
881 core_pct));
882
883 sample->core_pct_busy = (int32_t)core_pct;
884 }
885
886 static inline void intel_pstate_sample(struct cpudata *cpu)
887 {
888 u64 aperf, mperf;
889 unsigned long flags;
890 u64 tsc;
891
892 local_irq_save(flags);
893 rdmsrl(MSR_IA32_APERF, aperf);
894 rdmsrl(MSR_IA32_MPERF, mperf);
895 tsc = rdtsc();
896 if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
897 local_irq_restore(flags);
898 return;
899 }
900 local_irq_restore(flags);
901
902 cpu->last_sample_time = cpu->sample.time;
903 cpu->sample.time = ktime_get();
904 cpu->sample.aperf = aperf;
905 cpu->sample.mperf = mperf;
906 cpu->sample.tsc = tsc;
907 cpu->sample.aperf -= cpu->prev_aperf;
908 cpu->sample.mperf -= cpu->prev_mperf;
909 cpu->sample.tsc -= cpu->prev_tsc;
910
911 intel_pstate_calc_busy(cpu);
912
913 cpu->prev_aperf = aperf;
914 cpu->prev_mperf = mperf;
915 cpu->prev_tsc = tsc;
916 }
917
918 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
919 {
920 int delay;
921
922 delay = msecs_to_jiffies(50);
923 mod_timer_pinned(&cpu->timer, jiffies + delay);
924 }
925
926 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
927 {
928 int delay;
929
930 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
931 mod_timer_pinned(&cpu->timer, jiffies + delay);
932 }
933
934 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
935 {
936 struct sample *sample = &cpu->sample;
937 u64 cummulative_iowait, delta_iowait_us;
938 u64 delta_iowait_mperf;
939 u64 mperf, now;
940 int32_t cpu_load;
941
942 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
943
944 /*
945 * Convert iowait time into number of IO cycles spent at max_freq.
946 * IO is considered as busy only for the cpu_load algorithm. For
947 * performance this is not needed since we always try to reach the
948 * maximum P-State, so we are already boosting the IOs.
949 */
950 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
951 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
952 cpu->pstate.max_pstate, MSEC_PER_SEC);
953
954 mperf = cpu->sample.mperf + delta_iowait_mperf;
955 cpu->prev_cummulative_iowait = cummulative_iowait;
956
957
958 /*
959 * The load can be estimated as the ratio of the mperf counter
960 * running at a constant frequency during active periods
961 * (C0) and the time stamp counter running at the same frequency
962 * also during C-states.
963 */
964 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
965 cpu->sample.busy_scaled = cpu_load;
966
967 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
968 }
969
970 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
971 {
972 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
973 s64 duration_us;
974 u32 sample_time;
975
976 /*
977 * core_busy is the ratio of actual performance to max
978 * max_pstate is the max non turbo pstate available
979 * current_pstate was the pstate that was requested during
980 * the last sample period.
981 *
982 * We normalize core_busy, which was our actual percent
983 * performance to what we requested during the last sample
984 * period. The result will be a percentage of busy at a
985 * specified pstate.
986 */
987 core_busy = cpu->sample.core_pct_busy;
988 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
989 current_pstate = int_tofp(cpu->pstate.current_pstate);
990 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
991
992 /*
993 * Since we have a deferred timer, it will not fire unless
994 * we are in C0. So, determine if the actual elapsed time
995 * is significantly greater (3x) than our sample interval. If it
996 * is, then we were idle for a long enough period of time
997 * to adjust our busyness.
998 */
999 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
1000 duration_us = ktime_us_delta(cpu->sample.time,
1001 cpu->last_sample_time);
1002 if (duration_us > sample_time * 3) {
1003 sample_ratio = div_fp(int_tofp(sample_time),
1004 int_tofp(duration_us));
1005 core_busy = mul_fp(core_busy, sample_ratio);
1006 }
1007
1008 cpu->sample.busy_scaled = core_busy;
1009 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1010 }
1011
1012 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1013 {
1014 int from, target_pstate;
1015 struct sample *sample;
1016
1017 from = cpu->pstate.current_pstate;
1018
1019 target_pstate = pstate_funcs.get_target_pstate(cpu);
1020
1021 intel_pstate_set_pstate(cpu, target_pstate, true);
1022
1023 sample = &cpu->sample;
1024 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1025 fp_toint(sample->busy_scaled),
1026 from,
1027 cpu->pstate.current_pstate,
1028 sample->mperf,
1029 sample->aperf,
1030 sample->tsc,
1031 sample->freq);
1032 }
1033
1034 static void intel_hwp_timer_func(unsigned long __data)
1035 {
1036 struct cpudata *cpu = (struct cpudata *) __data;
1037
1038 intel_pstate_sample(cpu);
1039 intel_hwp_set_sample_time(cpu);
1040 }
1041
1042 static void intel_pstate_timer_func(unsigned long __data)
1043 {
1044 struct cpudata *cpu = (struct cpudata *) __data;
1045
1046 intel_pstate_sample(cpu);
1047
1048 intel_pstate_adjust_busy_pstate(cpu);
1049
1050 intel_pstate_set_sample_time(cpu);
1051 }
1052
1053 #define ICPU(model, policy) \
1054 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1055 (unsigned long)&policy }
1056
1057 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1058 ICPU(0x2a, core_params),
1059 ICPU(0x2d, core_params),
1060 ICPU(0x37, silvermont_params),
1061 ICPU(0x3a, core_params),
1062 ICPU(0x3c, core_params),
1063 ICPU(0x3d, core_params),
1064 ICPU(0x3e, core_params),
1065 ICPU(0x3f, core_params),
1066 ICPU(0x45, core_params),
1067 ICPU(0x46, core_params),
1068 ICPU(0x47, core_params),
1069 ICPU(0x4c, airmont_params),
1070 ICPU(0x4e, core_params),
1071 ICPU(0x4f, core_params),
1072 ICPU(0x5e, core_params),
1073 ICPU(0x56, core_params),
1074 ICPU(0x57, knl_params),
1075 {}
1076 };
1077 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1078
1079 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1080 ICPU(0x56, core_params),
1081 {}
1082 };
1083
1084 static int intel_pstate_init_cpu(unsigned int cpunum)
1085 {
1086 struct cpudata *cpu;
1087
1088 if (!all_cpu_data[cpunum])
1089 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1090 GFP_KERNEL);
1091 if (!all_cpu_data[cpunum])
1092 return -ENOMEM;
1093
1094 cpu = all_cpu_data[cpunum];
1095
1096 cpu->cpu = cpunum;
1097
1098 if (hwp_active)
1099 intel_pstate_hwp_enable(cpu);
1100
1101 intel_pstate_get_cpu_pstates(cpu);
1102
1103 init_timer_deferrable(&cpu->timer);
1104 cpu->timer.data = (unsigned long)cpu;
1105 cpu->timer.expires = jiffies + HZ/100;
1106
1107 if (!hwp_active)
1108 cpu->timer.function = intel_pstate_timer_func;
1109 else
1110 cpu->timer.function = intel_hwp_timer_func;
1111
1112 intel_pstate_busy_pid_reset(cpu);
1113 intel_pstate_sample(cpu);
1114
1115 add_timer_on(&cpu->timer, cpunum);
1116
1117 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
1118
1119 return 0;
1120 }
1121
1122 static unsigned int intel_pstate_get(unsigned int cpu_num)
1123 {
1124 struct sample *sample;
1125 struct cpudata *cpu;
1126
1127 cpu = all_cpu_data[cpu_num];
1128 if (!cpu)
1129 return 0;
1130 sample = &cpu->sample;
1131 return sample->freq;
1132 }
1133
1134 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1135 {
1136 if (!policy->cpuinfo.max_freq)
1137 return -ENODEV;
1138
1139 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1140 policy->max >= policy->cpuinfo.max_freq) {
1141 pr_debug("intel_pstate: set performance\n");
1142 limits = &performance_limits;
1143 if (hwp_active)
1144 intel_pstate_hwp_set();
1145 return 0;
1146 }
1147
1148 pr_debug("intel_pstate: set powersave\n");
1149 limits = &powersave_limits;
1150 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1151 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1152 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1153 policy->cpuinfo.max_freq);
1154 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1155
1156 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1157 limits->min_perf_pct = max(limits->min_policy_pct,
1158 limits->min_sysfs_pct);
1159 limits->min_perf_pct = min(limits->max_policy_pct,
1160 limits->min_perf_pct);
1161 limits->max_perf_pct = min(limits->max_policy_pct,
1162 limits->max_sysfs_pct);
1163 limits->max_perf_pct = max(limits->min_policy_pct,
1164 limits->max_perf_pct);
1165 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1166
1167 /* Make sure min_perf_pct <= max_perf_pct */
1168 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1169
1170 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1171 int_tofp(100));
1172 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1173 int_tofp(100));
1174
1175 if (hwp_active)
1176 intel_pstate_hwp_set();
1177
1178 return 0;
1179 }
1180
1181 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1182 {
1183 cpufreq_verify_within_cpu_limits(policy);
1184
1185 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1186 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1187 return -EINVAL;
1188
1189 return 0;
1190 }
1191
1192 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1193 {
1194 int cpu_num = policy->cpu;
1195 struct cpudata *cpu = all_cpu_data[cpu_num];
1196
1197 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1198
1199 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1200 if (hwp_active)
1201 return;
1202
1203 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1204 }
1205
1206 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1207 {
1208 struct cpudata *cpu;
1209 int rc;
1210
1211 rc = intel_pstate_init_cpu(policy->cpu);
1212 if (rc)
1213 return rc;
1214
1215 cpu = all_cpu_data[policy->cpu];
1216
1217 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1218 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1219 else
1220 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1221
1222 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1223 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1224
1225 /* cpuinfo and default policy values */
1226 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1227 policy->cpuinfo.max_freq =
1228 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1229 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1230 cpumask_set_cpu(policy->cpu, policy->cpus);
1231
1232 return 0;
1233 }
1234
1235 static struct cpufreq_driver intel_pstate_driver = {
1236 .flags = CPUFREQ_CONST_LOOPS,
1237 .verify = intel_pstate_verify_policy,
1238 .setpolicy = intel_pstate_set_policy,
1239 .get = intel_pstate_get,
1240 .init = intel_pstate_cpu_init,
1241 .stop_cpu = intel_pstate_stop_cpu,
1242 .name = "intel_pstate",
1243 };
1244
1245 static int __initdata no_load;
1246 static int __initdata no_hwp;
1247 static int __initdata hwp_only;
1248 static unsigned int force_load;
1249
1250 static int intel_pstate_msrs_not_valid(void)
1251 {
1252 if (!pstate_funcs.get_max() ||
1253 !pstate_funcs.get_min() ||
1254 !pstate_funcs.get_turbo())
1255 return -ENODEV;
1256
1257 return 0;
1258 }
1259
1260 static void copy_pid_params(struct pstate_adjust_policy *policy)
1261 {
1262 pid_params.sample_rate_ms = policy->sample_rate_ms;
1263 pid_params.p_gain_pct = policy->p_gain_pct;
1264 pid_params.i_gain_pct = policy->i_gain_pct;
1265 pid_params.d_gain_pct = policy->d_gain_pct;
1266 pid_params.deadband = policy->deadband;
1267 pid_params.setpoint = policy->setpoint;
1268 }
1269
1270 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1271 {
1272 pstate_funcs.get_max = funcs->get_max;
1273 pstate_funcs.get_max_physical = funcs->get_max_physical;
1274 pstate_funcs.get_min = funcs->get_min;
1275 pstate_funcs.get_turbo = funcs->get_turbo;
1276 pstate_funcs.get_scaling = funcs->get_scaling;
1277 pstate_funcs.set = funcs->set;
1278 pstate_funcs.get_vid = funcs->get_vid;
1279 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1280
1281 }
1282
1283 #if IS_ENABLED(CONFIG_ACPI)
1284 #include <acpi/processor.h>
1285
1286 static bool intel_pstate_no_acpi_pss(void)
1287 {
1288 int i;
1289
1290 for_each_possible_cpu(i) {
1291 acpi_status status;
1292 union acpi_object *pss;
1293 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1294 struct acpi_processor *pr = per_cpu(processors, i);
1295
1296 if (!pr)
1297 continue;
1298
1299 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1300 if (ACPI_FAILURE(status))
1301 continue;
1302
1303 pss = buffer.pointer;
1304 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1305 kfree(pss);
1306 return false;
1307 }
1308
1309 kfree(pss);
1310 }
1311
1312 return true;
1313 }
1314
1315 static bool intel_pstate_has_acpi_ppc(void)
1316 {
1317 int i;
1318
1319 for_each_possible_cpu(i) {
1320 struct acpi_processor *pr = per_cpu(processors, i);
1321
1322 if (!pr)
1323 continue;
1324 if (acpi_has_method(pr->handle, "_PPC"))
1325 return true;
1326 }
1327 return false;
1328 }
1329
1330 enum {
1331 PSS,
1332 PPC,
1333 };
1334
1335 struct hw_vendor_info {
1336 u16 valid;
1337 char oem_id[ACPI_OEM_ID_SIZE];
1338 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1339 int oem_pwr_table;
1340 };
1341
1342 /* Hardware vendor-specific info that has its own power management modes */
1343 static struct hw_vendor_info vendor_info[] = {
1344 {1, "HP ", "ProLiant", PSS},
1345 {1, "ORACLE", "X4-2 ", PPC},
1346 {1, "ORACLE", "X4-2L ", PPC},
1347 {1, "ORACLE", "X4-2B ", PPC},
1348 {1, "ORACLE", "X3-2 ", PPC},
1349 {1, "ORACLE", "X3-2L ", PPC},
1350 {1, "ORACLE", "X3-2B ", PPC},
1351 {1, "ORACLE", "X4470M2 ", PPC},
1352 {1, "ORACLE", "X4270M3 ", PPC},
1353 {1, "ORACLE", "X4270M2 ", PPC},
1354 {1, "ORACLE", "X4170M2 ", PPC},
1355 {1, "ORACLE", "X4170 M3", PPC},
1356 {1, "ORACLE", "X4275 M3", PPC},
1357 {1, "ORACLE", "X6-2 ", PPC},
1358 {1, "ORACLE", "Sudbury ", PPC},
1359 {0, "", ""},
1360 };
1361
1362 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1363 {
1364 struct acpi_table_header hdr;
1365 struct hw_vendor_info *v_info;
1366 const struct x86_cpu_id *id;
1367 u64 misc_pwr;
1368
1369 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1370 if (id) {
1371 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1372 if ( misc_pwr & (1 << 8))
1373 return true;
1374 }
1375
1376 if (acpi_disabled ||
1377 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1378 return false;
1379
1380 for (v_info = vendor_info; v_info->valid; v_info++) {
1381 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1382 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1383 ACPI_OEM_TABLE_ID_SIZE))
1384 switch (v_info->oem_pwr_table) {
1385 case PSS:
1386 return intel_pstate_no_acpi_pss();
1387 case PPC:
1388 return intel_pstate_has_acpi_ppc() &&
1389 (!force_load);
1390 }
1391 }
1392
1393 return false;
1394 }
1395 #else /* CONFIG_ACPI not enabled */
1396 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1397 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1398 #endif /* CONFIG_ACPI */
1399
1400 static int __init intel_pstate_init(void)
1401 {
1402 int cpu, rc = 0;
1403 const struct x86_cpu_id *id;
1404 struct cpu_defaults *cpu_def;
1405
1406 if (no_load)
1407 return -ENODEV;
1408
1409 id = x86_match_cpu(intel_pstate_cpu_ids);
1410 if (!id)
1411 return -ENODEV;
1412
1413 /*
1414 * The Intel pstate driver will be ignored if the platform
1415 * firmware has its own power management modes.
1416 */
1417 if (intel_pstate_platform_pwr_mgmt_exists())
1418 return -ENODEV;
1419
1420 cpu_def = (struct cpu_defaults *)id->driver_data;
1421
1422 copy_pid_params(&cpu_def->pid_policy);
1423 copy_cpu_funcs(&cpu_def->funcs);
1424
1425 if (intel_pstate_msrs_not_valid())
1426 return -ENODEV;
1427
1428 pr_info("Intel P-state driver initializing.\n");
1429
1430 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1431 if (!all_cpu_data)
1432 return -ENOMEM;
1433
1434 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) {
1435 pr_info("intel_pstate: HWP enabled\n");
1436 hwp_active++;
1437 }
1438
1439 if (!hwp_active && hwp_only)
1440 goto out;
1441
1442 rc = cpufreq_register_driver(&intel_pstate_driver);
1443 if (rc)
1444 goto out;
1445
1446 intel_pstate_debug_expose_params();
1447 intel_pstate_sysfs_expose_params();
1448
1449 return rc;
1450 out:
1451 get_online_cpus();
1452 for_each_online_cpu(cpu) {
1453 if (all_cpu_data[cpu]) {
1454 del_timer_sync(&all_cpu_data[cpu]->timer);
1455 kfree(all_cpu_data[cpu]);
1456 }
1457 }
1458
1459 put_online_cpus();
1460 vfree(all_cpu_data);
1461 return -ENODEV;
1462 }
1463 device_initcall(intel_pstate_init);
1464
1465 static int __init intel_pstate_setup(char *str)
1466 {
1467 if (!str)
1468 return -EINVAL;
1469
1470 if (!strcmp(str, "disable"))
1471 no_load = 1;
1472 if (!strcmp(str, "no_hwp")) {
1473 pr_info("intel_pstate: HWP disabled\n");
1474 no_hwp = 1;
1475 }
1476 if (!strcmp(str, "force"))
1477 force_load = 1;
1478 if (!strcmp(str, "hwp_only"))
1479 hwp_only = 1;
1480 return 0;
1481 }
1482 early_param("intel_pstate", intel_pstate_setup);
1483
1484 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1485 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1486 MODULE_LICENSE("GPL");
This page took 0.060763 seconds and 6 git commands to generate.