Merge remote-tracking branch 'driver-core/driver-core-next'
[deliverable/linux.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR 0x000
54 #define SDMA_H_INTR 0x004
55 #define SDMA_H_STATSTOP 0x008
56 #define SDMA_H_START 0x00c
57 #define SDMA_H_EVTOVR 0x010
58 #define SDMA_H_DSPOVR 0x014
59 #define SDMA_H_HOSTOVR 0x018
60 #define SDMA_H_EVTPEND 0x01c
61 #define SDMA_H_DSPENBL 0x020
62 #define SDMA_H_RESET 0x024
63 #define SDMA_H_EVTERR 0x028
64 #define SDMA_H_INTRMSK 0x02c
65 #define SDMA_H_PSW 0x030
66 #define SDMA_H_EVTERRDBG 0x034
67 #define SDMA_H_CONFIG 0x038
68 #define SDMA_ONCE_ENB 0x040
69 #define SDMA_ONCE_DATA 0x044
70 #define SDMA_ONCE_INSTR 0x048
71 #define SDMA_ONCE_STAT 0x04c
72 #define SDMA_ONCE_CMD 0x050
73 #define SDMA_EVT_MIRROR 0x054
74 #define SDMA_ILLINSTADDR 0x058
75 #define SDMA_CHN0ADDR 0x05c
76 #define SDMA_ONCE_RTB 0x060
77 #define SDMA_XTRIG_CONF1 0x070
78 #define SDMA_XTRIG_CONF2 0x074
79 #define SDMA_CHNENBL0_IMX35 0x200
80 #define SDMA_CHNENBL0_IMX31 0x080
81 #define SDMA_CHNPRI_0 0x100
82
83 /*
84 * Buffer descriptor status values.
85 */
86 #define BD_DONE 0x01
87 #define BD_WRAP 0x02
88 #define BD_CONT 0x04
89 #define BD_INTR 0x08
90 #define BD_RROR 0x10
91 #define BD_LAST 0x20
92 #define BD_EXTD 0x80
93
94 /*
95 * Data Node descriptor status values.
96 */
97 #define DND_END_OF_FRAME 0x80
98 #define DND_END_OF_XFER 0x40
99 #define DND_DONE 0x20
100 #define DND_UNUSED 0x01
101
102 /*
103 * IPCV2 descriptor status values.
104 */
105 #define BD_IPCV2_END_OF_FRAME 0x40
106
107 #define IPCV2_MAX_NODES 50
108 /*
109 * Error bit set in the CCB status field by the SDMA,
110 * in setbd routine, in case of a transfer error
111 */
112 #define DATA_ERROR 0x10000000
113
114 /*
115 * Buffer descriptor commands.
116 */
117 #define C0_ADDR 0x01
118 #define C0_LOAD 0x02
119 #define C0_DUMP 0x03
120 #define C0_SETCTX 0x07
121 #define C0_GETCTX 0x03
122 #define C0_SETDM 0x01
123 #define C0_SETPM 0x04
124 #define C0_GETDM 0x02
125 #define C0_GETPM 0x08
126 /*
127 * Change endianness indicator in the BD command field
128 */
129 #define CHANGE_ENDIANNESS 0x80
130
131 /*
132 * p_2_p watermark_level description
133 * Bits Name Description
134 * 0-7 Lower WML Lower watermark level
135 * 8 PS 1: Pad Swallowing
136 * 0: No Pad Swallowing
137 * 9 PA 1: Pad Adding
138 * 0: No Pad Adding
139 * 10 SPDIF If this bit is set both source
140 * and destination are on SPBA
141 * 11 Source Bit(SP) 1: Source on SPBA
142 * 0: Source on AIPS
143 * 12 Destination Bit(DP) 1: Destination on SPBA
144 * 0: Destination on AIPS
145 * 13-15 --------- MUST BE 0
146 * 16-23 Higher WML HWML
147 * 24-27 N Total number of samples after
148 * which Pad adding/Swallowing
149 * must be done. It must be odd.
150 * 28 Lower WML Event(LWE) SDMA events reg to check for
151 * LWML event mask
152 * 0: LWE in EVENTS register
153 * 1: LWE in EVENTS2 register
154 * 29 Higher WML Event(HWE) SDMA events reg to check for
155 * HWML event mask
156 * 0: HWE in EVENTS register
157 * 1: HWE in EVENTS2 register
158 * 30 --------- MUST BE 0
159 * 31 CONT 1: Amount of samples to be
160 * transferred is unknown and
161 * script will keep on
162 * transferring samples as long as
163 * both events are detected and
164 * script must be manually stopped
165 * by the application
166 * 0: The amount of samples to be
167 * transferred is equal to the
168 * count field of mode word
169 */
170 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
171 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
180
181 /*
182 * Mode/Count of data node descriptors - IPCv2
183 */
184 struct sdma_mode_count {
185 u32 count : 16; /* size of the buffer pointed by this BD */
186 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
187 u32 command : 8; /* command mostly used for channel 0 */
188 };
189
190 /*
191 * Buffer descriptor
192 */
193 struct sdma_buffer_descriptor {
194 struct sdma_mode_count mode;
195 u32 buffer_addr; /* address of the buffer described */
196 u32 ext_buffer_addr; /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200 * struct sdma_channel_control - Channel control Block
201 *
202 * @current_bd_ptr current buffer descriptor processed
203 * @base_bd_ptr first element of buffer descriptor array
204 * @unused padding. The SDMA engine expects an array of 128 byte
205 * control blocks
206 */
207 struct sdma_channel_control {
208 u32 current_bd_ptr;
209 u32 base_bd_ptr;
210 u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214 * struct sdma_state_registers - SDMA context for a channel
215 *
216 * @pc: program counter
217 * @t: test bit: status of arithmetic & test instruction
218 * @rpc: return program counter
219 * @sf: source fault while loading data
220 * @spc: loop start program counter
221 * @df: destination fault while storing data
222 * @epc: loop end program counter
223 * @lm: loop mode
224 */
225 struct sdma_state_registers {
226 u32 pc :14;
227 u32 unused1: 1;
228 u32 t : 1;
229 u32 rpc :14;
230 u32 unused0: 1;
231 u32 sf : 1;
232 u32 spc :14;
233 u32 unused2: 1;
234 u32 df : 1;
235 u32 epc :14;
236 u32 lm : 2;
237 } __attribute__ ((packed));
238
239 /**
240 * struct sdma_context_data - sdma context specific to a channel
241 *
242 * @channel_state: channel state bits
243 * @gReg: general registers
244 * @mda: burst dma destination address register
245 * @msa: burst dma source address register
246 * @ms: burst dma status register
247 * @md: burst dma data register
248 * @pda: peripheral dma destination address register
249 * @psa: peripheral dma source address register
250 * @ps: peripheral dma status register
251 * @pd: peripheral dma data register
252 * @ca: CRC polynomial register
253 * @cs: CRC accumulator register
254 * @dda: dedicated core destination address register
255 * @dsa: dedicated core source address register
256 * @ds: dedicated core status register
257 * @dd: dedicated core data register
258 */
259 struct sdma_context_data {
260 struct sdma_state_registers channel_state;
261 u32 gReg[8];
262 u32 mda;
263 u32 msa;
264 u32 ms;
265 u32 md;
266 u32 pda;
267 u32 psa;
268 u32 ps;
269 u32 pd;
270 u32 ca;
271 u32 cs;
272 u32 dda;
273 u32 dsa;
274 u32 ds;
275 u32 dd;
276 u32 scratch0;
277 u32 scratch1;
278 u32 scratch2;
279 u32 scratch3;
280 u32 scratch4;
281 u32 scratch5;
282 u32 scratch6;
283 u32 scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291 * struct sdma_channel - housekeeping for a SDMA channel
292 *
293 * @sdma pointer to the SDMA engine for this channel
294 * @channel the channel number, matches dmaengine chan_id + 1
295 * @direction transfer type. Needed for setting SDMA script
296 * @peripheral_type Peripheral type. Needed for setting SDMA script
297 * @event_id0 aka dma request line
298 * @event_id1 for channels that use 2 events
299 * @word_size peripheral access size
300 * @buf_tail ID of the buffer that was processed
301 * @num_bd max NUM_BD. number of descriptors currently handling
302 */
303 struct sdma_channel {
304 struct sdma_engine *sdma;
305 unsigned int channel;
306 enum dma_transfer_direction direction;
307 enum sdma_peripheral_type peripheral_type;
308 unsigned int event_id0;
309 unsigned int event_id1;
310 enum dma_slave_buswidth word_size;
311 unsigned int buf_tail;
312 unsigned int num_bd;
313 unsigned int period_len;
314 struct sdma_buffer_descriptor *bd;
315 dma_addr_t bd_phys;
316 unsigned int pc_from_device, pc_to_device;
317 unsigned int device_to_device;
318 unsigned long flags;
319 dma_addr_t per_address, per_address2;
320 unsigned long event_mask[2];
321 unsigned long watermark_level;
322 u32 shp_addr, per_addr;
323 struct dma_chan chan;
324 spinlock_t lock;
325 struct dma_async_tx_descriptor desc;
326 enum dma_status status;
327 unsigned int chn_count;
328 unsigned int chn_real_count;
329 struct tasklet_struct tasklet;
330 struct imx_dma_data data;
331 };
332
333 #define IMX_DMA_SG_LOOP BIT(0)
334
335 #define MAX_DMA_CHANNELS 32
336 #define MXC_SDMA_DEFAULT_PRIORITY 1
337 #define MXC_SDMA_MIN_PRIORITY 1
338 #define MXC_SDMA_MAX_PRIORITY 7
339
340 #define SDMA_FIRMWARE_MAGIC 0x414d4453
341
342 /**
343 * struct sdma_firmware_header - Layout of the firmware image
344 *
345 * @magic "SDMA"
346 * @version_major increased whenever layout of struct sdma_script_start_addrs
347 * changes.
348 * @version_minor firmware minor version (for binary compatible changes)
349 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
350 * @num_script_addrs Number of script addresses in this image
351 * @ram_code_start offset of SDMA ram image in this firmware image
352 * @ram_code_size size of SDMA ram image
353 * @script_addrs Stores the start address of the SDMA scripts
354 * (in SDMA memory space)
355 */
356 struct sdma_firmware_header {
357 u32 magic;
358 u32 version_major;
359 u32 version_minor;
360 u32 script_addrs_start;
361 u32 num_script_addrs;
362 u32 ram_code_start;
363 u32 ram_code_size;
364 };
365
366 struct sdma_driver_data {
367 int chnenbl0;
368 int num_events;
369 struct sdma_script_start_addrs *script_addrs;
370 };
371
372 struct sdma_engine {
373 struct device *dev;
374 struct device_dma_parameters dma_parms;
375 struct sdma_channel channel[MAX_DMA_CHANNELS];
376 struct sdma_channel_control *channel_control;
377 void __iomem *regs;
378 struct sdma_context_data *context;
379 dma_addr_t context_phys;
380 struct dma_device dma_device;
381 struct clk *clk_ipg;
382 struct clk *clk_ahb;
383 spinlock_t channel_0_lock;
384 u32 script_number;
385 struct sdma_script_start_addrs *script_addrs;
386 const struct sdma_driver_data *drvdata;
387 u32 spba_start_addr;
388 u32 spba_end_addr;
389 unsigned int irq;
390 };
391
392 static struct sdma_driver_data sdma_imx31 = {
393 .chnenbl0 = SDMA_CHNENBL0_IMX31,
394 .num_events = 32,
395 };
396
397 static struct sdma_script_start_addrs sdma_script_imx25 = {
398 .ap_2_ap_addr = 729,
399 .uart_2_mcu_addr = 904,
400 .per_2_app_addr = 1255,
401 .mcu_2_app_addr = 834,
402 .uartsh_2_mcu_addr = 1120,
403 .per_2_shp_addr = 1329,
404 .mcu_2_shp_addr = 1048,
405 .ata_2_mcu_addr = 1560,
406 .mcu_2_ata_addr = 1479,
407 .app_2_per_addr = 1189,
408 .app_2_mcu_addr = 770,
409 .shp_2_per_addr = 1407,
410 .shp_2_mcu_addr = 979,
411 };
412
413 static struct sdma_driver_data sdma_imx25 = {
414 .chnenbl0 = SDMA_CHNENBL0_IMX35,
415 .num_events = 48,
416 .script_addrs = &sdma_script_imx25,
417 };
418
419 static struct sdma_driver_data sdma_imx35 = {
420 .chnenbl0 = SDMA_CHNENBL0_IMX35,
421 .num_events = 48,
422 };
423
424 static struct sdma_script_start_addrs sdma_script_imx51 = {
425 .ap_2_ap_addr = 642,
426 .uart_2_mcu_addr = 817,
427 .mcu_2_app_addr = 747,
428 .mcu_2_shp_addr = 961,
429 .ata_2_mcu_addr = 1473,
430 .mcu_2_ata_addr = 1392,
431 .app_2_per_addr = 1033,
432 .app_2_mcu_addr = 683,
433 .shp_2_per_addr = 1251,
434 .shp_2_mcu_addr = 892,
435 };
436
437 static struct sdma_driver_data sdma_imx51 = {
438 .chnenbl0 = SDMA_CHNENBL0_IMX35,
439 .num_events = 48,
440 .script_addrs = &sdma_script_imx51,
441 };
442
443 static struct sdma_script_start_addrs sdma_script_imx53 = {
444 .ap_2_ap_addr = 642,
445 .app_2_mcu_addr = 683,
446 .mcu_2_app_addr = 747,
447 .uart_2_mcu_addr = 817,
448 .shp_2_mcu_addr = 891,
449 .mcu_2_shp_addr = 960,
450 .uartsh_2_mcu_addr = 1032,
451 .spdif_2_mcu_addr = 1100,
452 .mcu_2_spdif_addr = 1134,
453 .firi_2_mcu_addr = 1193,
454 .mcu_2_firi_addr = 1290,
455 };
456
457 static struct sdma_driver_data sdma_imx53 = {
458 .chnenbl0 = SDMA_CHNENBL0_IMX35,
459 .num_events = 48,
460 .script_addrs = &sdma_script_imx53,
461 };
462
463 static struct sdma_script_start_addrs sdma_script_imx6q = {
464 .ap_2_ap_addr = 642,
465 .uart_2_mcu_addr = 817,
466 .mcu_2_app_addr = 747,
467 .per_2_per_addr = 6331,
468 .uartsh_2_mcu_addr = 1032,
469 .mcu_2_shp_addr = 960,
470 .app_2_mcu_addr = 683,
471 .shp_2_mcu_addr = 891,
472 .spdif_2_mcu_addr = 1100,
473 .mcu_2_spdif_addr = 1134,
474 };
475
476 static struct sdma_driver_data sdma_imx6q = {
477 .chnenbl0 = SDMA_CHNENBL0_IMX35,
478 .num_events = 48,
479 .script_addrs = &sdma_script_imx6q,
480 };
481
482 static struct sdma_script_start_addrs sdma_script_imx7d = {
483 .ap_2_ap_addr = 644,
484 .uart_2_mcu_addr = 819,
485 .mcu_2_app_addr = 749,
486 .uartsh_2_mcu_addr = 1034,
487 .mcu_2_shp_addr = 962,
488 .app_2_mcu_addr = 685,
489 .shp_2_mcu_addr = 893,
490 .spdif_2_mcu_addr = 1102,
491 .mcu_2_spdif_addr = 1136,
492 };
493
494 static struct sdma_driver_data sdma_imx7d = {
495 .chnenbl0 = SDMA_CHNENBL0_IMX35,
496 .num_events = 48,
497 .script_addrs = &sdma_script_imx7d,
498 };
499
500 static const struct platform_device_id sdma_devtypes[] = {
501 {
502 .name = "imx25-sdma",
503 .driver_data = (unsigned long)&sdma_imx25,
504 }, {
505 .name = "imx31-sdma",
506 .driver_data = (unsigned long)&sdma_imx31,
507 }, {
508 .name = "imx35-sdma",
509 .driver_data = (unsigned long)&sdma_imx35,
510 }, {
511 .name = "imx51-sdma",
512 .driver_data = (unsigned long)&sdma_imx51,
513 }, {
514 .name = "imx53-sdma",
515 .driver_data = (unsigned long)&sdma_imx53,
516 }, {
517 .name = "imx6q-sdma",
518 .driver_data = (unsigned long)&sdma_imx6q,
519 }, {
520 .name = "imx7d-sdma",
521 .driver_data = (unsigned long)&sdma_imx7d,
522 }, {
523 /* sentinel */
524 }
525 };
526 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
527
528 static const struct of_device_id sdma_dt_ids[] = {
529 { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
530 { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
531 { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
532 { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
533 { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
534 { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
535 { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
536 { /* sentinel */ }
537 };
538 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
539
540 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
541 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
542 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
543 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
544
545 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
546 {
547 u32 chnenbl0 = sdma->drvdata->chnenbl0;
548 return chnenbl0 + event * 4;
549 }
550
551 static int sdma_config_ownership(struct sdma_channel *sdmac,
552 bool event_override, bool mcu_override, bool dsp_override)
553 {
554 struct sdma_engine *sdma = sdmac->sdma;
555 int channel = sdmac->channel;
556 unsigned long evt, mcu, dsp;
557
558 if (event_override && mcu_override && dsp_override)
559 return -EINVAL;
560
561 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
562 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
563 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
564
565 if (dsp_override)
566 __clear_bit(channel, &dsp);
567 else
568 __set_bit(channel, &dsp);
569
570 if (event_override)
571 __clear_bit(channel, &evt);
572 else
573 __set_bit(channel, &evt);
574
575 if (mcu_override)
576 __clear_bit(channel, &mcu);
577 else
578 __set_bit(channel, &mcu);
579
580 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
581 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
582 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
583
584 return 0;
585 }
586
587 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
588 {
589 writel(BIT(channel), sdma->regs + SDMA_H_START);
590 }
591
592 /*
593 * sdma_run_channel0 - run a channel and wait till it's done
594 */
595 static int sdma_run_channel0(struct sdma_engine *sdma)
596 {
597 int ret;
598 u32 reg;
599
600 sdma_enable_channel(sdma, 0);
601
602 ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
603 reg, !(reg & 1), 1, 500);
604 if (ret)
605 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
606
607 /* Set bits of CONFIG register with dynamic context switching */
608 if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
609 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
610
611 return ret;
612 }
613
614 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
615 u32 address)
616 {
617 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
618 void *buf_virt;
619 dma_addr_t buf_phys;
620 int ret;
621 unsigned long flags;
622
623 buf_virt = dma_alloc_coherent(NULL,
624 size,
625 &buf_phys, GFP_KERNEL);
626 if (!buf_virt) {
627 return -ENOMEM;
628 }
629
630 spin_lock_irqsave(&sdma->channel_0_lock, flags);
631
632 bd0->mode.command = C0_SETPM;
633 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
634 bd0->mode.count = size / 2;
635 bd0->buffer_addr = buf_phys;
636 bd0->ext_buffer_addr = address;
637
638 memcpy(buf_virt, buf, size);
639
640 ret = sdma_run_channel0(sdma);
641
642 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
643
644 dma_free_coherent(NULL, size, buf_virt, buf_phys);
645
646 return ret;
647 }
648
649 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
650 {
651 struct sdma_engine *sdma = sdmac->sdma;
652 int channel = sdmac->channel;
653 unsigned long val;
654 u32 chnenbl = chnenbl_ofs(sdma, event);
655
656 val = readl_relaxed(sdma->regs + chnenbl);
657 __set_bit(channel, &val);
658 writel_relaxed(val, sdma->regs + chnenbl);
659 }
660
661 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
662 {
663 struct sdma_engine *sdma = sdmac->sdma;
664 int channel = sdmac->channel;
665 u32 chnenbl = chnenbl_ofs(sdma, event);
666 unsigned long val;
667
668 val = readl_relaxed(sdma->regs + chnenbl);
669 __clear_bit(channel, &val);
670 writel_relaxed(val, sdma->regs + chnenbl);
671 }
672
673 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
674 {
675 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
676 }
677
678 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
679 {
680 struct sdma_buffer_descriptor *bd;
681
682 /*
683 * loop mode. Iterate over descriptors, re-setup them and
684 * call callback function.
685 */
686 while (1) {
687 bd = &sdmac->bd[sdmac->buf_tail];
688
689 if (bd->mode.status & BD_DONE)
690 break;
691
692 if (bd->mode.status & BD_RROR)
693 sdmac->status = DMA_ERROR;
694
695 bd->mode.status |= BD_DONE;
696 sdmac->buf_tail++;
697 sdmac->buf_tail %= sdmac->num_bd;
698 }
699 }
700
701 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
702 {
703 struct sdma_buffer_descriptor *bd;
704 int i, error = 0;
705
706 sdmac->chn_real_count = 0;
707 /*
708 * non loop mode. Iterate over all descriptors, collect
709 * errors and call callback function
710 */
711 for (i = 0; i < sdmac->num_bd; i++) {
712 bd = &sdmac->bd[i];
713
714 if (bd->mode.status & (BD_DONE | BD_RROR))
715 error = -EIO;
716 sdmac->chn_real_count += bd->mode.count;
717 }
718
719 if (error)
720 sdmac->status = DMA_ERROR;
721 else
722 sdmac->status = DMA_COMPLETE;
723
724 dma_cookie_complete(&sdmac->desc);
725
726 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
727 }
728
729 static void sdma_tasklet(unsigned long data)
730 {
731 struct sdma_channel *sdmac = (struct sdma_channel *) data;
732
733 if (sdmac->flags & IMX_DMA_SG_LOOP)
734 sdma_handle_channel_loop(sdmac);
735 else
736 mxc_sdma_handle_channel_normal(sdmac);
737 }
738
739 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
740 {
741 struct sdma_engine *sdma = dev_id;
742 unsigned long stat;
743
744 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
745 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
746 /* channel 0 is special and not handled here, see run_channel0() */
747 stat &= ~1;
748
749 while (stat) {
750 int channel = fls(stat) - 1;
751 struct sdma_channel *sdmac = &sdma->channel[channel];
752
753 if (sdmac->flags & IMX_DMA_SG_LOOP)
754 sdma_update_channel_loop(sdmac);
755
756 tasklet_schedule(&sdmac->tasklet);
757
758 __clear_bit(channel, &stat);
759 }
760
761 return IRQ_HANDLED;
762 }
763
764 /*
765 * sets the pc of SDMA script according to the peripheral type
766 */
767 static void sdma_get_pc(struct sdma_channel *sdmac,
768 enum sdma_peripheral_type peripheral_type)
769 {
770 struct sdma_engine *sdma = sdmac->sdma;
771 int per_2_emi = 0, emi_2_per = 0;
772 /*
773 * These are needed once we start to support transfers between
774 * two peripherals or memory-to-memory transfers
775 */
776 int per_2_per = 0;
777
778 sdmac->pc_from_device = 0;
779 sdmac->pc_to_device = 0;
780 sdmac->device_to_device = 0;
781
782 switch (peripheral_type) {
783 case IMX_DMATYPE_MEMORY:
784 break;
785 case IMX_DMATYPE_DSP:
786 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
787 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
788 break;
789 case IMX_DMATYPE_FIRI:
790 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
791 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
792 break;
793 case IMX_DMATYPE_UART:
794 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
795 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
796 break;
797 case IMX_DMATYPE_UART_SP:
798 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
799 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
800 break;
801 case IMX_DMATYPE_ATA:
802 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
803 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
804 break;
805 case IMX_DMATYPE_CSPI:
806 case IMX_DMATYPE_EXT:
807 case IMX_DMATYPE_SSI:
808 case IMX_DMATYPE_SAI:
809 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
810 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
811 break;
812 case IMX_DMATYPE_SSI_DUAL:
813 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
814 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
815 break;
816 case IMX_DMATYPE_SSI_SP:
817 case IMX_DMATYPE_MMC:
818 case IMX_DMATYPE_SDHC:
819 case IMX_DMATYPE_CSPI_SP:
820 case IMX_DMATYPE_ESAI:
821 case IMX_DMATYPE_MSHC_SP:
822 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
823 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
824 break;
825 case IMX_DMATYPE_ASRC:
826 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
827 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
828 per_2_per = sdma->script_addrs->per_2_per_addr;
829 break;
830 case IMX_DMATYPE_ASRC_SP:
831 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
832 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
833 per_2_per = sdma->script_addrs->per_2_per_addr;
834 break;
835 case IMX_DMATYPE_MSHC:
836 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
837 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
838 break;
839 case IMX_DMATYPE_CCM:
840 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
841 break;
842 case IMX_DMATYPE_SPDIF:
843 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
844 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
845 break;
846 case IMX_DMATYPE_IPU_MEMORY:
847 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
848 break;
849 default:
850 break;
851 }
852
853 sdmac->pc_from_device = per_2_emi;
854 sdmac->pc_to_device = emi_2_per;
855 sdmac->device_to_device = per_2_per;
856 }
857
858 static int sdma_load_context(struct sdma_channel *sdmac)
859 {
860 struct sdma_engine *sdma = sdmac->sdma;
861 int channel = sdmac->channel;
862 int load_address;
863 struct sdma_context_data *context = sdma->context;
864 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
865 int ret;
866 unsigned long flags;
867
868 if (sdmac->direction == DMA_DEV_TO_MEM)
869 load_address = sdmac->pc_from_device;
870 else if (sdmac->direction == DMA_DEV_TO_DEV)
871 load_address = sdmac->device_to_device;
872 else
873 load_address = sdmac->pc_to_device;
874
875 if (load_address < 0)
876 return load_address;
877
878 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
879 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
880 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
881 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
882 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
883 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
884
885 spin_lock_irqsave(&sdma->channel_0_lock, flags);
886
887 memset(context, 0, sizeof(*context));
888 context->channel_state.pc = load_address;
889
890 /* Send by context the event mask,base address for peripheral
891 * and watermark level
892 */
893 context->gReg[0] = sdmac->event_mask[1];
894 context->gReg[1] = sdmac->event_mask[0];
895 context->gReg[2] = sdmac->per_addr;
896 context->gReg[6] = sdmac->shp_addr;
897 context->gReg[7] = sdmac->watermark_level;
898
899 bd0->mode.command = C0_SETDM;
900 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
901 bd0->mode.count = sizeof(*context) / 4;
902 bd0->buffer_addr = sdma->context_phys;
903 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
904 ret = sdma_run_channel0(sdma);
905
906 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
907
908 return ret;
909 }
910
911 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
912 {
913 return container_of(chan, struct sdma_channel, chan);
914 }
915
916 static int sdma_disable_channel(struct dma_chan *chan)
917 {
918 struct sdma_channel *sdmac = to_sdma_chan(chan);
919 struct sdma_engine *sdma = sdmac->sdma;
920 int channel = sdmac->channel;
921
922 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
923 sdmac->status = DMA_ERROR;
924
925 return 0;
926 }
927
928 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
929 {
930 struct sdma_engine *sdma = sdmac->sdma;
931
932 int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
933 int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
934
935 set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
936 set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
937
938 if (sdmac->event_id0 > 31)
939 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
940
941 if (sdmac->event_id1 > 31)
942 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
943
944 /*
945 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
946 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
947 * r0(event_mask[1]) and r1(event_mask[0]).
948 */
949 if (lwml > hwml) {
950 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
951 SDMA_WATERMARK_LEVEL_HWML);
952 sdmac->watermark_level |= hwml;
953 sdmac->watermark_level |= lwml << 16;
954 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
955 }
956
957 if (sdmac->per_address2 >= sdma->spba_start_addr &&
958 sdmac->per_address2 <= sdma->spba_end_addr)
959 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
960
961 if (sdmac->per_address >= sdma->spba_start_addr &&
962 sdmac->per_address <= sdma->spba_end_addr)
963 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
964
965 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
966 }
967
968 static int sdma_config_channel(struct dma_chan *chan)
969 {
970 struct sdma_channel *sdmac = to_sdma_chan(chan);
971 int ret;
972
973 sdma_disable_channel(chan);
974
975 sdmac->event_mask[0] = 0;
976 sdmac->event_mask[1] = 0;
977 sdmac->shp_addr = 0;
978 sdmac->per_addr = 0;
979
980 if (sdmac->event_id0) {
981 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
982 return -EINVAL;
983 sdma_event_enable(sdmac, sdmac->event_id0);
984 }
985
986 if (sdmac->event_id1) {
987 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
988 return -EINVAL;
989 sdma_event_enable(sdmac, sdmac->event_id1);
990 }
991
992 switch (sdmac->peripheral_type) {
993 case IMX_DMATYPE_DSP:
994 sdma_config_ownership(sdmac, false, true, true);
995 break;
996 case IMX_DMATYPE_MEMORY:
997 sdma_config_ownership(sdmac, false, true, false);
998 break;
999 default:
1000 sdma_config_ownership(sdmac, true, true, false);
1001 break;
1002 }
1003
1004 sdma_get_pc(sdmac, sdmac->peripheral_type);
1005
1006 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1007 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1008 /* Handle multiple event channels differently */
1009 if (sdmac->event_id1) {
1010 if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1011 sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1012 sdma_set_watermarklevel_for_p2p(sdmac);
1013 } else
1014 __set_bit(sdmac->event_id0, sdmac->event_mask);
1015
1016 /* Address */
1017 sdmac->shp_addr = sdmac->per_address;
1018 sdmac->per_addr = sdmac->per_address2;
1019 } else {
1020 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1021 }
1022
1023 ret = sdma_load_context(sdmac);
1024
1025 return ret;
1026 }
1027
1028 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1029 unsigned int priority)
1030 {
1031 struct sdma_engine *sdma = sdmac->sdma;
1032 int channel = sdmac->channel;
1033
1034 if (priority < MXC_SDMA_MIN_PRIORITY
1035 || priority > MXC_SDMA_MAX_PRIORITY) {
1036 return -EINVAL;
1037 }
1038
1039 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1040
1041 return 0;
1042 }
1043
1044 static int sdma_request_channel(struct sdma_channel *sdmac)
1045 {
1046 struct sdma_engine *sdma = sdmac->sdma;
1047 int channel = sdmac->channel;
1048 int ret = -EBUSY;
1049
1050 sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1051 GFP_KERNEL);
1052 if (!sdmac->bd) {
1053 ret = -ENOMEM;
1054 goto out;
1055 }
1056
1057 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1058 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1059
1060 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1061 return 0;
1062 out:
1063
1064 return ret;
1065 }
1066
1067 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1068 {
1069 unsigned long flags;
1070 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1071 dma_cookie_t cookie;
1072
1073 spin_lock_irqsave(&sdmac->lock, flags);
1074
1075 cookie = dma_cookie_assign(tx);
1076
1077 spin_unlock_irqrestore(&sdmac->lock, flags);
1078
1079 return cookie;
1080 }
1081
1082 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1083 {
1084 struct sdma_channel *sdmac = to_sdma_chan(chan);
1085 struct imx_dma_data *data = chan->private;
1086 int prio, ret;
1087
1088 if (!data)
1089 return -EINVAL;
1090
1091 switch (data->priority) {
1092 case DMA_PRIO_HIGH:
1093 prio = 3;
1094 break;
1095 case DMA_PRIO_MEDIUM:
1096 prio = 2;
1097 break;
1098 case DMA_PRIO_LOW:
1099 default:
1100 prio = 1;
1101 break;
1102 }
1103
1104 sdmac->peripheral_type = data->peripheral_type;
1105 sdmac->event_id0 = data->dma_request;
1106 sdmac->event_id1 = data->dma_request2;
1107
1108 ret = clk_enable(sdmac->sdma->clk_ipg);
1109 if (ret)
1110 return ret;
1111 ret = clk_enable(sdmac->sdma->clk_ahb);
1112 if (ret)
1113 goto disable_clk_ipg;
1114
1115 ret = sdma_request_channel(sdmac);
1116 if (ret)
1117 goto disable_clk_ahb;
1118
1119 ret = sdma_set_channel_priority(sdmac, prio);
1120 if (ret)
1121 goto disable_clk_ahb;
1122
1123 dma_async_tx_descriptor_init(&sdmac->desc, chan);
1124 sdmac->desc.tx_submit = sdma_tx_submit;
1125 /* txd.flags will be overwritten in prep funcs */
1126 sdmac->desc.flags = DMA_CTRL_ACK;
1127
1128 return 0;
1129
1130 disable_clk_ahb:
1131 clk_disable(sdmac->sdma->clk_ahb);
1132 disable_clk_ipg:
1133 clk_disable(sdmac->sdma->clk_ipg);
1134 return ret;
1135 }
1136
1137 static void sdma_free_chan_resources(struct dma_chan *chan)
1138 {
1139 struct sdma_channel *sdmac = to_sdma_chan(chan);
1140 struct sdma_engine *sdma = sdmac->sdma;
1141
1142 sdma_disable_channel(chan);
1143
1144 if (sdmac->event_id0)
1145 sdma_event_disable(sdmac, sdmac->event_id0);
1146 if (sdmac->event_id1)
1147 sdma_event_disable(sdmac, sdmac->event_id1);
1148
1149 sdmac->event_id0 = 0;
1150 sdmac->event_id1 = 0;
1151
1152 sdma_set_channel_priority(sdmac, 0);
1153
1154 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1155
1156 clk_disable(sdma->clk_ipg);
1157 clk_disable(sdma->clk_ahb);
1158 }
1159
1160 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1161 struct dma_chan *chan, struct scatterlist *sgl,
1162 unsigned int sg_len, enum dma_transfer_direction direction,
1163 unsigned long flags, void *context)
1164 {
1165 struct sdma_channel *sdmac = to_sdma_chan(chan);
1166 struct sdma_engine *sdma = sdmac->sdma;
1167 int ret, i, count;
1168 int channel = sdmac->channel;
1169 struct scatterlist *sg;
1170
1171 if (sdmac->status == DMA_IN_PROGRESS)
1172 return NULL;
1173 sdmac->status = DMA_IN_PROGRESS;
1174
1175 sdmac->flags = 0;
1176
1177 sdmac->buf_tail = 0;
1178
1179 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1180 sg_len, channel);
1181
1182 sdmac->direction = direction;
1183 ret = sdma_load_context(sdmac);
1184 if (ret)
1185 goto err_out;
1186
1187 if (sg_len > NUM_BD) {
1188 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1189 channel, sg_len, NUM_BD);
1190 ret = -EINVAL;
1191 goto err_out;
1192 }
1193
1194 sdmac->chn_count = 0;
1195 for_each_sg(sgl, sg, sg_len, i) {
1196 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1197 int param;
1198
1199 bd->buffer_addr = sg->dma_address;
1200
1201 count = sg_dma_len(sg);
1202
1203 if (count > 0xffff) {
1204 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1205 channel, count, 0xffff);
1206 ret = -EINVAL;
1207 goto err_out;
1208 }
1209
1210 bd->mode.count = count;
1211 sdmac->chn_count += count;
1212
1213 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1214 ret = -EINVAL;
1215 goto err_out;
1216 }
1217
1218 switch (sdmac->word_size) {
1219 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1220 bd->mode.command = 0;
1221 if (count & 3 || sg->dma_address & 3)
1222 return NULL;
1223 break;
1224 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1225 bd->mode.command = 2;
1226 if (count & 1 || sg->dma_address & 1)
1227 return NULL;
1228 break;
1229 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1230 bd->mode.command = 1;
1231 break;
1232 default:
1233 return NULL;
1234 }
1235
1236 param = BD_DONE | BD_EXTD | BD_CONT;
1237
1238 if (i + 1 == sg_len) {
1239 param |= BD_INTR;
1240 param |= BD_LAST;
1241 param &= ~BD_CONT;
1242 }
1243
1244 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1245 i, count, (u64)sg->dma_address,
1246 param & BD_WRAP ? "wrap" : "",
1247 param & BD_INTR ? " intr" : "");
1248
1249 bd->mode.status = param;
1250 }
1251
1252 sdmac->num_bd = sg_len;
1253 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1254
1255 return &sdmac->desc;
1256 err_out:
1257 sdmac->status = DMA_ERROR;
1258 return NULL;
1259 }
1260
1261 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1262 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1263 size_t period_len, enum dma_transfer_direction direction,
1264 unsigned long flags)
1265 {
1266 struct sdma_channel *sdmac = to_sdma_chan(chan);
1267 struct sdma_engine *sdma = sdmac->sdma;
1268 int num_periods = buf_len / period_len;
1269 int channel = sdmac->channel;
1270 int ret, i = 0, buf = 0;
1271
1272 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1273
1274 if (sdmac->status == DMA_IN_PROGRESS)
1275 return NULL;
1276
1277 sdmac->status = DMA_IN_PROGRESS;
1278
1279 sdmac->buf_tail = 0;
1280 sdmac->period_len = period_len;
1281
1282 sdmac->flags |= IMX_DMA_SG_LOOP;
1283 sdmac->direction = direction;
1284 ret = sdma_load_context(sdmac);
1285 if (ret)
1286 goto err_out;
1287
1288 if (num_periods > NUM_BD) {
1289 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1290 channel, num_periods, NUM_BD);
1291 goto err_out;
1292 }
1293
1294 if (period_len > 0xffff) {
1295 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1296 channel, period_len, 0xffff);
1297 goto err_out;
1298 }
1299
1300 while (buf < buf_len) {
1301 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1302 int param;
1303
1304 bd->buffer_addr = dma_addr;
1305
1306 bd->mode.count = period_len;
1307
1308 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1309 goto err_out;
1310 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1311 bd->mode.command = 0;
1312 else
1313 bd->mode.command = sdmac->word_size;
1314
1315 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1316 if (i + 1 == num_periods)
1317 param |= BD_WRAP;
1318
1319 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1320 i, period_len, (u64)dma_addr,
1321 param & BD_WRAP ? "wrap" : "",
1322 param & BD_INTR ? " intr" : "");
1323
1324 bd->mode.status = param;
1325
1326 dma_addr += period_len;
1327 buf += period_len;
1328
1329 i++;
1330 }
1331
1332 sdmac->num_bd = num_periods;
1333 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1334
1335 return &sdmac->desc;
1336 err_out:
1337 sdmac->status = DMA_ERROR;
1338 return NULL;
1339 }
1340
1341 static int sdma_config(struct dma_chan *chan,
1342 struct dma_slave_config *dmaengine_cfg)
1343 {
1344 struct sdma_channel *sdmac = to_sdma_chan(chan);
1345
1346 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1347 sdmac->per_address = dmaengine_cfg->src_addr;
1348 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1349 dmaengine_cfg->src_addr_width;
1350 sdmac->word_size = dmaengine_cfg->src_addr_width;
1351 } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1352 sdmac->per_address2 = dmaengine_cfg->src_addr;
1353 sdmac->per_address = dmaengine_cfg->dst_addr;
1354 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1355 SDMA_WATERMARK_LEVEL_LWML;
1356 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1357 SDMA_WATERMARK_LEVEL_HWML;
1358 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1359 } else {
1360 sdmac->per_address = dmaengine_cfg->dst_addr;
1361 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1362 dmaengine_cfg->dst_addr_width;
1363 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1364 }
1365 sdmac->direction = dmaengine_cfg->direction;
1366 return sdma_config_channel(chan);
1367 }
1368
1369 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1370 dma_cookie_t cookie,
1371 struct dma_tx_state *txstate)
1372 {
1373 struct sdma_channel *sdmac = to_sdma_chan(chan);
1374 u32 residue;
1375
1376 if (sdmac->flags & IMX_DMA_SG_LOOP)
1377 residue = (sdmac->num_bd - sdmac->buf_tail) * sdmac->period_len;
1378 else
1379 residue = sdmac->chn_count - sdmac->chn_real_count;
1380
1381 dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1382 residue);
1383
1384 return sdmac->status;
1385 }
1386
1387 static void sdma_issue_pending(struct dma_chan *chan)
1388 {
1389 struct sdma_channel *sdmac = to_sdma_chan(chan);
1390 struct sdma_engine *sdma = sdmac->sdma;
1391
1392 if (sdmac->status == DMA_IN_PROGRESS)
1393 sdma_enable_channel(sdma, sdmac->channel);
1394 }
1395
1396 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1397 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1398 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1399 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1400
1401 static void sdma_add_scripts(struct sdma_engine *sdma,
1402 const struct sdma_script_start_addrs *addr)
1403 {
1404 s32 *addr_arr = (u32 *)addr;
1405 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1406 int i;
1407
1408 /* use the default firmware in ROM if missing external firmware */
1409 if (!sdma->script_number)
1410 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1411
1412 for (i = 0; i < sdma->script_number; i++)
1413 if (addr_arr[i] > 0)
1414 saddr_arr[i] = addr_arr[i];
1415 }
1416
1417 static void sdma_load_firmware(const struct firmware *fw, void *context)
1418 {
1419 struct sdma_engine *sdma = context;
1420 const struct sdma_firmware_header *header;
1421 const struct sdma_script_start_addrs *addr;
1422 unsigned short *ram_code;
1423
1424 if (!fw) {
1425 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1426 /* In this case we just use the ROM firmware. */
1427 return;
1428 }
1429
1430 if (fw->size < sizeof(*header))
1431 goto err_firmware;
1432
1433 header = (struct sdma_firmware_header *)fw->data;
1434
1435 if (header->magic != SDMA_FIRMWARE_MAGIC)
1436 goto err_firmware;
1437 if (header->ram_code_start + header->ram_code_size > fw->size)
1438 goto err_firmware;
1439 switch (header->version_major) {
1440 case 1:
1441 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1442 break;
1443 case 2:
1444 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1445 break;
1446 case 3:
1447 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1448 break;
1449 case 4:
1450 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1451 break;
1452 default:
1453 dev_err(sdma->dev, "unknown firmware version\n");
1454 goto err_firmware;
1455 }
1456
1457 addr = (void *)header + header->script_addrs_start;
1458 ram_code = (void *)header + header->ram_code_start;
1459
1460 clk_enable(sdma->clk_ipg);
1461 clk_enable(sdma->clk_ahb);
1462 /* download the RAM image for SDMA */
1463 sdma_load_script(sdma, ram_code,
1464 header->ram_code_size,
1465 addr->ram_code_start_addr);
1466 clk_disable(sdma->clk_ipg);
1467 clk_disable(sdma->clk_ahb);
1468
1469 sdma_add_scripts(sdma, addr);
1470
1471 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1472 header->version_major,
1473 header->version_minor);
1474
1475 err_firmware:
1476 release_firmware(fw);
1477 }
1478
1479 #define EVENT_REMAP_CELLS 3
1480
1481 static int sdma_event_remap(struct sdma_engine *sdma)
1482 {
1483 struct device_node *np = sdma->dev->of_node;
1484 struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1485 struct property *event_remap;
1486 struct regmap *gpr;
1487 char propname[] = "fsl,sdma-event-remap";
1488 u32 reg, val, shift, num_map, i;
1489 int ret = 0;
1490
1491 if (IS_ERR(np) || IS_ERR(gpr_np))
1492 goto out;
1493
1494 event_remap = of_find_property(np, propname, NULL);
1495 num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1496 if (!num_map) {
1497 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1498 goto out;
1499 } else if (num_map % EVENT_REMAP_CELLS) {
1500 dev_err(sdma->dev, "the property %s must modulo %d\n",
1501 propname, EVENT_REMAP_CELLS);
1502 ret = -EINVAL;
1503 goto out;
1504 }
1505
1506 gpr = syscon_node_to_regmap(gpr_np);
1507 if (IS_ERR(gpr)) {
1508 dev_err(sdma->dev, "failed to get gpr regmap\n");
1509 ret = PTR_ERR(gpr);
1510 goto out;
1511 }
1512
1513 for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1514 ret = of_property_read_u32_index(np, propname, i, &reg);
1515 if (ret) {
1516 dev_err(sdma->dev, "failed to read property %s index %d\n",
1517 propname, i);
1518 goto out;
1519 }
1520
1521 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1522 if (ret) {
1523 dev_err(sdma->dev, "failed to read property %s index %d\n",
1524 propname, i + 1);
1525 goto out;
1526 }
1527
1528 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1529 if (ret) {
1530 dev_err(sdma->dev, "failed to read property %s index %d\n",
1531 propname, i + 2);
1532 goto out;
1533 }
1534
1535 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1536 }
1537
1538 out:
1539 if (!IS_ERR(gpr_np))
1540 of_node_put(gpr_np);
1541
1542 return ret;
1543 }
1544
1545 static int sdma_get_firmware(struct sdma_engine *sdma,
1546 const char *fw_name)
1547 {
1548 int ret;
1549
1550 ret = request_firmware_nowait(THIS_MODULE,
1551 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1552 GFP_KERNEL, sdma, sdma_load_firmware);
1553
1554 return ret;
1555 }
1556
1557 static int sdma_init(struct sdma_engine *sdma)
1558 {
1559 int i, ret;
1560 dma_addr_t ccb_phys;
1561
1562 ret = clk_enable(sdma->clk_ipg);
1563 if (ret)
1564 return ret;
1565 ret = clk_enable(sdma->clk_ahb);
1566 if (ret)
1567 goto disable_clk_ipg;
1568
1569 /* Be sure SDMA has not started yet */
1570 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1571
1572 sdma->channel_control = dma_alloc_coherent(NULL,
1573 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1574 sizeof(struct sdma_context_data),
1575 &ccb_phys, GFP_KERNEL);
1576
1577 if (!sdma->channel_control) {
1578 ret = -ENOMEM;
1579 goto err_dma_alloc;
1580 }
1581
1582 sdma->context = (void *)sdma->channel_control +
1583 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1584 sdma->context_phys = ccb_phys +
1585 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1586
1587 /* Zero-out the CCB structures array just allocated */
1588 memset(sdma->channel_control, 0,
1589 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1590
1591 /* disable all channels */
1592 for (i = 0; i < sdma->drvdata->num_events; i++)
1593 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1594
1595 /* All channels have priority 0 */
1596 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1597 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1598
1599 ret = sdma_request_channel(&sdma->channel[0]);
1600 if (ret)
1601 goto err_dma_alloc;
1602
1603 sdma_config_ownership(&sdma->channel[0], false, true, false);
1604
1605 /* Set Command Channel (Channel Zero) */
1606 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1607
1608 /* Set bits of CONFIG register but with static context switching */
1609 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1610 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1611
1612 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1613
1614 /* Initializes channel's priorities */
1615 sdma_set_channel_priority(&sdma->channel[0], 7);
1616
1617 clk_disable(sdma->clk_ipg);
1618 clk_disable(sdma->clk_ahb);
1619
1620 return 0;
1621
1622 err_dma_alloc:
1623 clk_disable(sdma->clk_ahb);
1624 disable_clk_ipg:
1625 clk_disable(sdma->clk_ipg);
1626 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1627 return ret;
1628 }
1629
1630 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1631 {
1632 struct sdma_channel *sdmac = to_sdma_chan(chan);
1633 struct imx_dma_data *data = fn_param;
1634
1635 if (!imx_dma_is_general_purpose(chan))
1636 return false;
1637
1638 sdmac->data = *data;
1639 chan->private = &sdmac->data;
1640
1641 return true;
1642 }
1643
1644 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1645 struct of_dma *ofdma)
1646 {
1647 struct sdma_engine *sdma = ofdma->of_dma_data;
1648 dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1649 struct imx_dma_data data;
1650
1651 if (dma_spec->args_count != 3)
1652 return NULL;
1653
1654 data.dma_request = dma_spec->args[0];
1655 data.peripheral_type = dma_spec->args[1];
1656 data.priority = dma_spec->args[2];
1657 /*
1658 * init dma_request2 to zero, which is not used by the dts.
1659 * For P2P, dma_request2 is init from dma_request_channel(),
1660 * chan->private will point to the imx_dma_data, and in
1661 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1662 * be set to sdmac->event_id1.
1663 */
1664 data.dma_request2 = 0;
1665
1666 return dma_request_channel(mask, sdma_filter_fn, &data);
1667 }
1668
1669 static int sdma_probe(struct platform_device *pdev)
1670 {
1671 const struct of_device_id *of_id =
1672 of_match_device(sdma_dt_ids, &pdev->dev);
1673 struct device_node *np = pdev->dev.of_node;
1674 struct device_node *spba_bus;
1675 const char *fw_name;
1676 int ret;
1677 int irq;
1678 struct resource *iores;
1679 struct resource spba_res;
1680 struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1681 int i;
1682 struct sdma_engine *sdma;
1683 s32 *saddr_arr;
1684 const struct sdma_driver_data *drvdata = NULL;
1685
1686 if (of_id)
1687 drvdata = of_id->data;
1688 else if (pdev->id_entry)
1689 drvdata = (void *)pdev->id_entry->driver_data;
1690
1691 if (!drvdata) {
1692 dev_err(&pdev->dev, "unable to find driver data\n");
1693 return -EINVAL;
1694 }
1695
1696 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1697 if (ret)
1698 return ret;
1699
1700 sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1701 if (!sdma)
1702 return -ENOMEM;
1703
1704 spin_lock_init(&sdma->channel_0_lock);
1705
1706 sdma->dev = &pdev->dev;
1707 sdma->drvdata = drvdata;
1708
1709 irq = platform_get_irq(pdev, 0);
1710 if (irq < 0)
1711 return irq;
1712
1713 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1714 sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1715 if (IS_ERR(sdma->regs))
1716 return PTR_ERR(sdma->regs);
1717
1718 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1719 if (IS_ERR(sdma->clk_ipg))
1720 return PTR_ERR(sdma->clk_ipg);
1721
1722 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1723 if (IS_ERR(sdma->clk_ahb))
1724 return PTR_ERR(sdma->clk_ahb);
1725
1726 clk_prepare(sdma->clk_ipg);
1727 clk_prepare(sdma->clk_ahb);
1728
1729 ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1730 sdma);
1731 if (ret)
1732 return ret;
1733
1734 sdma->irq = irq;
1735
1736 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1737 if (!sdma->script_addrs)
1738 return -ENOMEM;
1739
1740 /* initially no scripts available */
1741 saddr_arr = (s32 *)sdma->script_addrs;
1742 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1743 saddr_arr[i] = -EINVAL;
1744
1745 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1746 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1747
1748 INIT_LIST_HEAD(&sdma->dma_device.channels);
1749 /* Initialize channel parameters */
1750 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1751 struct sdma_channel *sdmac = &sdma->channel[i];
1752
1753 sdmac->sdma = sdma;
1754 spin_lock_init(&sdmac->lock);
1755
1756 sdmac->chan.device = &sdma->dma_device;
1757 dma_cookie_init(&sdmac->chan);
1758 sdmac->channel = i;
1759
1760 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1761 (unsigned long) sdmac);
1762 /*
1763 * Add the channel to the DMAC list. Do not add channel 0 though
1764 * because we need it internally in the SDMA driver. This also means
1765 * that channel 0 in dmaengine counting matches sdma channel 1.
1766 */
1767 if (i)
1768 list_add_tail(&sdmac->chan.device_node,
1769 &sdma->dma_device.channels);
1770 }
1771
1772 ret = sdma_init(sdma);
1773 if (ret)
1774 goto err_init;
1775
1776 ret = sdma_event_remap(sdma);
1777 if (ret)
1778 goto err_init;
1779
1780 if (sdma->drvdata->script_addrs)
1781 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1782 if (pdata && pdata->script_addrs)
1783 sdma_add_scripts(sdma, pdata->script_addrs);
1784
1785 if (pdata) {
1786 ret = sdma_get_firmware(sdma, pdata->fw_name);
1787 if (ret)
1788 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1789 } else {
1790 /*
1791 * Because that device tree does not encode ROM script address,
1792 * the RAM script in firmware is mandatory for device tree
1793 * probe, otherwise it fails.
1794 */
1795 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1796 &fw_name);
1797 if (ret)
1798 dev_warn(&pdev->dev, "failed to get firmware name\n");
1799 else {
1800 ret = sdma_get_firmware(sdma, fw_name);
1801 if (ret)
1802 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1803 }
1804 }
1805
1806 sdma->dma_device.dev = &pdev->dev;
1807
1808 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1809 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1810 sdma->dma_device.device_tx_status = sdma_tx_status;
1811 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1812 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1813 sdma->dma_device.device_config = sdma_config;
1814 sdma->dma_device.device_terminate_all = sdma_disable_channel;
1815 sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1816 sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1817 sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1818 sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1819 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1820 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1821 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1822
1823 platform_set_drvdata(pdev, sdma);
1824
1825 ret = dma_async_device_register(&sdma->dma_device);
1826 if (ret) {
1827 dev_err(&pdev->dev, "unable to register\n");
1828 goto err_init;
1829 }
1830
1831 if (np) {
1832 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1833 if (ret) {
1834 dev_err(&pdev->dev, "failed to register controller\n");
1835 goto err_register;
1836 }
1837
1838 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1839 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1840 if (!ret) {
1841 sdma->spba_start_addr = spba_res.start;
1842 sdma->spba_end_addr = spba_res.end;
1843 }
1844 of_node_put(spba_bus);
1845 }
1846
1847 return 0;
1848
1849 err_register:
1850 dma_async_device_unregister(&sdma->dma_device);
1851 err_init:
1852 kfree(sdma->script_addrs);
1853 return ret;
1854 }
1855
1856 static int sdma_remove(struct platform_device *pdev)
1857 {
1858 struct sdma_engine *sdma = platform_get_drvdata(pdev);
1859 int i;
1860
1861 devm_free_irq(&pdev->dev, sdma->irq, sdma);
1862 dma_async_device_unregister(&sdma->dma_device);
1863 kfree(sdma->script_addrs);
1864 /* Kill the tasklet */
1865 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1866 struct sdma_channel *sdmac = &sdma->channel[i];
1867
1868 tasklet_kill(&sdmac->tasklet);
1869 }
1870
1871 platform_set_drvdata(pdev, NULL);
1872 return 0;
1873 }
1874
1875 static struct platform_driver sdma_driver = {
1876 .driver = {
1877 .name = "imx-sdma",
1878 .of_match_table = sdma_dt_ids,
1879 },
1880 .id_table = sdma_devtypes,
1881 .remove = sdma_remove,
1882 .probe = sdma_probe,
1883 };
1884
1885 module_platform_driver(sdma_driver);
1886
1887 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1888 MODULE_DESCRIPTION("i.MX SDMA driver");
1889 MODULE_LICENSE("GPL");
This page took 0.085861 seconds and 5 git commands to generate.