e863d7fc465a5c37a1a043c65ad87b12b695371f
[deliverable/linux.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/interrupt.h>
25 #include <linux/amba/bus.h>
26 #include <linux/amba/pl330.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN 8
33 #define PL330_MAX_IRQS 32
34 #define PL330_MAX_PERI 32
35
36 enum pl330_srccachectrl {
37 SCCTRL0, /* Noncacheable and nonbufferable */
38 SCCTRL1, /* Bufferable only */
39 SCCTRL2, /* Cacheable, but do not allocate */
40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */
41 SINVALID1,
42 SINVALID2,
43 SCCTRL6, /* Cacheable write-through, allocate on reads only */
44 SCCTRL7, /* Cacheable write-back, allocate on reads only */
45 };
46
47 enum pl330_dstcachectrl {
48 DCCTRL0, /* Noncacheable and nonbufferable */
49 DCCTRL1, /* Bufferable only */
50 DCCTRL2, /* Cacheable, but do not allocate */
51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */
52 DINVALID1 = 8,
53 DINVALID2,
54 DCCTRL6, /* Cacheable write-through, allocate on writes only */
55 DCCTRL7, /* Cacheable write-back, allocate on writes only */
56 };
57
58 enum pl330_byteswap {
59 SWAP_NO,
60 SWAP_2,
61 SWAP_4,
62 SWAP_8,
63 SWAP_16,
64 };
65
66 enum pl330_reqtype {
67 MEMTOMEM,
68 MEMTODEV,
69 DEVTOMEM,
70 DEVTODEV,
71 };
72
73 /* Register and Bit field Definitions */
74 #define DS 0x0
75 #define DS_ST_STOP 0x0
76 #define DS_ST_EXEC 0x1
77 #define DS_ST_CMISS 0x2
78 #define DS_ST_UPDTPC 0x3
79 #define DS_ST_WFE 0x4
80 #define DS_ST_ATBRR 0x5
81 #define DS_ST_QBUSY 0x6
82 #define DS_ST_WFP 0x7
83 #define DS_ST_KILL 0x8
84 #define DS_ST_CMPLT 0x9
85 #define DS_ST_FLTCMP 0xe
86 #define DS_ST_FAULT 0xf
87
88 #define DPC 0x4
89 #define INTEN 0x20
90 #define ES 0x24
91 #define INTSTATUS 0x28
92 #define INTCLR 0x2c
93 #define FSM 0x30
94 #define FSC 0x34
95 #define FTM 0x38
96
97 #define _FTC 0x40
98 #define FTC(n) (_FTC + (n)*0x4)
99
100 #define _CS 0x100
101 #define CS(n) (_CS + (n)*0x8)
102 #define CS_CNS (1 << 21)
103
104 #define _CPC 0x104
105 #define CPC(n) (_CPC + (n)*0x8)
106
107 #define _SA 0x400
108 #define SA(n) (_SA + (n)*0x20)
109
110 #define _DA 0x404
111 #define DA(n) (_DA + (n)*0x20)
112
113 #define _CC 0x408
114 #define CC(n) (_CC + (n)*0x20)
115
116 #define CC_SRCINC (1 << 0)
117 #define CC_DSTINC (1 << 14)
118 #define CC_SRCPRI (1 << 8)
119 #define CC_DSTPRI (1 << 22)
120 #define CC_SRCNS (1 << 9)
121 #define CC_DSTNS (1 << 23)
122 #define CC_SRCIA (1 << 10)
123 #define CC_DSTIA (1 << 24)
124 #define CC_SRCBRSTLEN_SHFT 4
125 #define CC_DSTBRSTLEN_SHFT 18
126 #define CC_SRCBRSTSIZE_SHFT 1
127 #define CC_DSTBRSTSIZE_SHFT 15
128 #define CC_SRCCCTRL_SHFT 11
129 #define CC_SRCCCTRL_MASK 0x7
130 #define CC_DSTCCTRL_SHFT 25
131 #define CC_DRCCCTRL_MASK 0x7
132 #define CC_SWAP_SHFT 28
133
134 #define _LC0 0x40c
135 #define LC0(n) (_LC0 + (n)*0x20)
136
137 #define _LC1 0x410
138 #define LC1(n) (_LC1 + (n)*0x20)
139
140 #define DBGSTATUS 0xd00
141 #define DBG_BUSY (1 << 0)
142
143 #define DBGCMD 0xd04
144 #define DBGINST0 0xd08
145 #define DBGINST1 0xd0c
146
147 #define CR0 0xe00
148 #define CR1 0xe04
149 #define CR2 0xe08
150 #define CR3 0xe0c
151 #define CR4 0xe10
152 #define CRD 0xe14
153
154 #define PERIPH_ID 0xfe0
155 #define PERIPH_REV_SHIFT 20
156 #define PERIPH_REV_MASK 0xf
157 #define PERIPH_REV_R0P0 0
158 #define PERIPH_REV_R1P0 1
159 #define PERIPH_REV_R1P1 2
160 #define PCELL_ID 0xff0
161
162 #define CR0_PERIPH_REQ_SET (1 << 0)
163 #define CR0_BOOT_EN_SET (1 << 1)
164 #define CR0_BOOT_MAN_NS (1 << 2)
165 #define CR0_NUM_CHANS_SHIFT 4
166 #define CR0_NUM_CHANS_MASK 0x7
167 #define CR0_NUM_PERIPH_SHIFT 12
168 #define CR0_NUM_PERIPH_MASK 0x1f
169 #define CR0_NUM_EVENTS_SHIFT 17
170 #define CR0_NUM_EVENTS_MASK 0x1f
171
172 #define CR1_ICACHE_LEN_SHIFT 0
173 #define CR1_ICACHE_LEN_MASK 0x7
174 #define CR1_NUM_ICACHELINES_SHIFT 4
175 #define CR1_NUM_ICACHELINES_MASK 0xf
176
177 #define CRD_DATA_WIDTH_SHIFT 0
178 #define CRD_DATA_WIDTH_MASK 0x7
179 #define CRD_WR_CAP_SHIFT 4
180 #define CRD_WR_CAP_MASK 0x7
181 #define CRD_WR_Q_DEP_SHIFT 8
182 #define CRD_WR_Q_DEP_MASK 0xf
183 #define CRD_RD_CAP_SHIFT 12
184 #define CRD_RD_CAP_MASK 0x7
185 #define CRD_RD_Q_DEP_SHIFT 16
186 #define CRD_RD_Q_DEP_MASK 0xf
187 #define CRD_DATA_BUFF_SHIFT 20
188 #define CRD_DATA_BUFF_MASK 0x3ff
189
190 #define PART 0x330
191 #define DESIGNER 0x41
192 #define REVISION 0x0
193 #define INTEG_CFG 0x0
194 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
195
196 #define PCELL_ID_VAL 0xb105f00d
197
198 #define PL330_STATE_STOPPED (1 << 0)
199 #define PL330_STATE_EXECUTING (1 << 1)
200 #define PL330_STATE_WFE (1 << 2)
201 #define PL330_STATE_FAULTING (1 << 3)
202 #define PL330_STATE_COMPLETING (1 << 4)
203 #define PL330_STATE_WFP (1 << 5)
204 #define PL330_STATE_KILLING (1 << 6)
205 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
206 #define PL330_STATE_CACHEMISS (1 << 8)
207 #define PL330_STATE_UPDTPC (1 << 9)
208 #define PL330_STATE_ATBARRIER (1 << 10)
209 #define PL330_STATE_QUEUEBUSY (1 << 11)
210 #define PL330_STATE_INVALID (1 << 15)
211
212 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
213 | PL330_STATE_WFE | PL330_STATE_FAULTING)
214
215 #define CMD_DMAADDH 0x54
216 #define CMD_DMAEND 0x00
217 #define CMD_DMAFLUSHP 0x35
218 #define CMD_DMAGO 0xa0
219 #define CMD_DMALD 0x04
220 #define CMD_DMALDP 0x25
221 #define CMD_DMALP 0x20
222 #define CMD_DMALPEND 0x28
223 #define CMD_DMAKILL 0x01
224 #define CMD_DMAMOV 0xbc
225 #define CMD_DMANOP 0x18
226 #define CMD_DMARMB 0x12
227 #define CMD_DMASEV 0x34
228 #define CMD_DMAST 0x08
229 #define CMD_DMASTP 0x29
230 #define CMD_DMASTZ 0x0c
231 #define CMD_DMAWFE 0x36
232 #define CMD_DMAWFP 0x30
233 #define CMD_DMAWMB 0x13
234
235 #define SZ_DMAADDH 3
236 #define SZ_DMAEND 1
237 #define SZ_DMAFLUSHP 2
238 #define SZ_DMALD 1
239 #define SZ_DMALDP 2
240 #define SZ_DMALP 2
241 #define SZ_DMALPEND 2
242 #define SZ_DMAKILL 1
243 #define SZ_DMAMOV 6
244 #define SZ_DMANOP 1
245 #define SZ_DMARMB 1
246 #define SZ_DMASEV 2
247 #define SZ_DMAST 1
248 #define SZ_DMASTP 2
249 #define SZ_DMASTZ 1
250 #define SZ_DMAWFE 2
251 #define SZ_DMAWFP 2
252 #define SZ_DMAWMB 1
253 #define SZ_DMAGO 6
254
255 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
256 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
257
258 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
259 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
260
261 /*
262 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
263 * at 1byte/burst for P<->M and M<->M respectively.
264 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
265 * should be enough for P<->M and M<->M respectively.
266 */
267 #define MCODE_BUFF_PER_REQ 256
268
269 /* If the _pl330_req is available to the client */
270 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
271
272 /* Use this _only_ to wait on transient states */
273 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
274
275 #ifdef PL330_DEBUG_MCGEN
276 static unsigned cmd_line;
277 #define PL330_DBGCMD_DUMP(off, x...) do { \
278 printk("%x:", cmd_line); \
279 printk(x); \
280 cmd_line += off; \
281 } while (0)
282 #define PL330_DBGMC_START(addr) (cmd_line = addr)
283 #else
284 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
285 #define PL330_DBGMC_START(addr) do {} while (0)
286 #endif
287
288 /* The number of default descriptors */
289
290 #define NR_DEFAULT_DESC 16
291
292 /* Populated by the PL330 core driver for DMA API driver's info */
293 struct pl330_config {
294 u32 periph_id;
295 u32 pcell_id;
296 #define DMAC_MODE_NS (1 << 0)
297 unsigned int mode;
298 unsigned int data_bus_width:10; /* In number of bits */
299 unsigned int data_buf_dep:10;
300 unsigned int num_chan:4;
301 unsigned int num_peri:6;
302 u32 peri_ns;
303 unsigned int num_events:6;
304 u32 irq_ns;
305 };
306
307 /* Handle to the DMAC provided to the PL330 core */
308 struct pl330_info {
309 /* Owning device */
310 struct device *dev;
311 /* Size of MicroCode buffers for each channel. */
312 unsigned mcbufsz;
313 /* ioremap'ed address of PL330 registers. */
314 void __iomem *base;
315 /* Client can freely use it. */
316 void *client_data;
317 /* PL330 core data, Client must not touch it. */
318 void *pl330_data;
319 /* Populated by the PL330 core driver during pl330_add */
320 struct pl330_config pcfg;
321 /*
322 * If the DMAC has some reset mechanism, then the
323 * client may want to provide pointer to the method.
324 */
325 void (*dmac_reset)(struct pl330_info *pi);
326 };
327
328 /**
329 * Request Configuration.
330 * The PL330 core does not modify this and uses the last
331 * working configuration if the request doesn't provide any.
332 *
333 * The Client may want to provide this info only for the
334 * first request and a request with new settings.
335 */
336 struct pl330_reqcfg {
337 /* Address Incrementing */
338 unsigned dst_inc:1;
339 unsigned src_inc:1;
340
341 /*
342 * For now, the SRC & DST protection levels
343 * and burst size/length are assumed same.
344 */
345 bool nonsecure;
346 bool privileged;
347 bool insnaccess;
348 unsigned brst_len:5;
349 unsigned brst_size:3; /* in power of 2 */
350
351 enum pl330_dstcachectrl dcctl;
352 enum pl330_srccachectrl scctl;
353 enum pl330_byteswap swap;
354 struct pl330_config *pcfg;
355 };
356
357 /*
358 * One cycle of DMAC operation.
359 * There may be more than one xfer in a request.
360 */
361 struct pl330_xfer {
362 u32 src_addr;
363 u32 dst_addr;
364 /* Size to xfer */
365 u32 bytes;
366 /*
367 * Pointer to next xfer in the list.
368 * The last xfer in the req must point to NULL.
369 */
370 struct pl330_xfer *next;
371 };
372
373 /* The xfer callbacks are made with one of these arguments. */
374 enum pl330_op_err {
375 /* The all xfers in the request were success. */
376 PL330_ERR_NONE,
377 /* If req aborted due to global error. */
378 PL330_ERR_ABORT,
379 /* If req failed due to problem with Channel. */
380 PL330_ERR_FAIL,
381 };
382
383 /* A request defining Scatter-Gather List ending with NULL xfer. */
384 struct pl330_req {
385 enum pl330_reqtype rqtype;
386 /* Index of peripheral for the xfer. */
387 unsigned peri:5;
388 /* Unique token for this xfer, set by the client. */
389 void *token;
390 /* Callback to be called after xfer. */
391 void (*xfer_cb)(void *token, enum pl330_op_err err);
392 /* If NULL, req will be done at last set parameters. */
393 struct pl330_reqcfg *cfg;
394 /* Pointer to first xfer in the request. */
395 struct pl330_xfer *x;
396 };
397
398 /*
399 * To know the status of the channel and DMAC, the client
400 * provides a pointer to this structure. The PL330 core
401 * fills it with current information.
402 */
403 struct pl330_chanstatus {
404 /*
405 * If the DMAC engine halted due to some error,
406 * the client should remove-add DMAC.
407 */
408 bool dmac_halted;
409 /*
410 * If channel is halted due to some error,
411 * the client should ABORT/FLUSH and START the channel.
412 */
413 bool faulting;
414 /* Location of last load */
415 u32 src_addr;
416 /* Location of last store */
417 u32 dst_addr;
418 /*
419 * Pointer to the currently active req, NULL if channel is
420 * inactive, even though the requests may be present.
421 */
422 struct pl330_req *top_req;
423 /* Pointer to req waiting second in the queue if any. */
424 struct pl330_req *wait_req;
425 };
426
427 enum pl330_chan_op {
428 /* Start the channel */
429 PL330_OP_START,
430 /* Abort the active xfer */
431 PL330_OP_ABORT,
432 /* Stop xfer and flush queue */
433 PL330_OP_FLUSH,
434 };
435
436 struct _xfer_spec {
437 u32 ccr;
438 struct pl330_req *r;
439 struct pl330_xfer *x;
440 };
441
442 enum dmamov_dst {
443 SAR = 0,
444 CCR,
445 DAR,
446 };
447
448 enum pl330_dst {
449 SRC = 0,
450 DST,
451 };
452
453 enum pl330_cond {
454 SINGLE,
455 BURST,
456 ALWAYS,
457 };
458
459 struct _pl330_req {
460 u32 mc_bus;
461 void *mc_cpu;
462 /* Number of bytes taken to setup MC for the req */
463 u32 mc_len;
464 struct pl330_req *r;
465 /* Hook to attach to DMAC's list of reqs with due callback */
466 struct list_head rqd;
467 };
468
469 /* ToBeDone for tasklet */
470 struct _pl330_tbd {
471 bool reset_dmac;
472 bool reset_mngr;
473 u8 reset_chan;
474 };
475
476 /* A DMAC Thread */
477 struct pl330_thread {
478 u8 id;
479 int ev;
480 /* If the channel is not yet acquired by any client */
481 bool free;
482 /* Parent DMAC */
483 struct pl330_dmac *dmac;
484 /* Only two at a time */
485 struct _pl330_req req[2];
486 /* Index of the last enqueued request */
487 unsigned lstenq;
488 /* Index of the last submitted request or -1 if the DMA is stopped */
489 int req_running;
490 };
491
492 enum pl330_dmac_state {
493 UNINIT,
494 INIT,
495 DYING,
496 };
497
498 /* A DMAC */
499 struct pl330_dmac {
500 spinlock_t lock;
501 /* Holds list of reqs with due callbacks */
502 struct list_head req_done;
503 /* Pointer to platform specific stuff */
504 struct pl330_info *pinfo;
505 /* Maximum possible events/irqs */
506 int events[32];
507 /* BUS address of MicroCode buffer */
508 u32 mcode_bus;
509 /* CPU address of MicroCode buffer */
510 void *mcode_cpu;
511 /* List of all Channel threads */
512 struct pl330_thread *channels;
513 /* Pointer to the MANAGER thread */
514 struct pl330_thread *manager;
515 /* To handle bad news in interrupt */
516 struct tasklet_struct tasks;
517 struct _pl330_tbd dmac_tbd;
518 /* State of DMAC operation */
519 enum pl330_dmac_state state;
520 };
521
522 enum desc_status {
523 /* In the DMAC pool */
524 FREE,
525 /*
526 * Allocted to some channel during prep_xxx
527 * Also may be sitting on the work_list.
528 */
529 PREP,
530 /*
531 * Sitting on the work_list and already submitted
532 * to the PL330 core. Not more than two descriptors
533 * of a channel can be BUSY at any time.
534 */
535 BUSY,
536 /*
537 * Sitting on the channel work_list but xfer done
538 * by PL330 core
539 */
540 DONE,
541 };
542
543 struct dma_pl330_chan {
544 /* Schedule desc completion */
545 struct tasklet_struct task;
546
547 /* DMA-Engine Channel */
548 struct dma_chan chan;
549
550 /* List of to be xfered descriptors */
551 struct list_head work_list;
552
553 /* Pointer to the DMAC that manages this channel,
554 * NULL if the channel is available to be acquired.
555 * As the parent, this DMAC also provides descriptors
556 * to the channel.
557 */
558 struct dma_pl330_dmac *dmac;
559
560 /* To protect channel manipulation */
561 spinlock_t lock;
562
563 /* Token of a hardware channel thread of PL330 DMAC
564 * NULL if the channel is available to be acquired.
565 */
566 void *pl330_chid;
567
568 /* For D-to-M and M-to-D channels */
569 int burst_sz; /* the peripheral fifo width */
570 int burst_len; /* the number of burst */
571 dma_addr_t fifo_addr;
572
573 /* for cyclic capability */
574 bool cyclic;
575 };
576
577 struct dma_pl330_dmac {
578 struct pl330_info pif;
579
580 /* DMA-Engine Device */
581 struct dma_device ddma;
582
583 /* Pool of descriptors available for the DMAC's channels */
584 struct list_head desc_pool;
585 /* To protect desc_pool manipulation */
586 spinlock_t pool_lock;
587
588 /* Peripheral channels connected to this DMAC */
589 struct dma_pl330_chan *peripherals; /* keep at end */
590
591 struct clk *clk;
592 };
593
594 struct dma_pl330_desc {
595 /* To attach to a queue as child */
596 struct list_head node;
597
598 /* Descriptor for the DMA Engine API */
599 struct dma_async_tx_descriptor txd;
600
601 /* Xfer for PL330 core */
602 struct pl330_xfer px;
603
604 struct pl330_reqcfg rqcfg;
605 struct pl330_req req;
606
607 enum desc_status status;
608
609 /* The channel which currently holds this desc */
610 struct dma_pl330_chan *pchan;
611 };
612
613 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
614 {
615 if (r && r->xfer_cb)
616 r->xfer_cb(r->token, err);
617 }
618
619 static inline bool _queue_empty(struct pl330_thread *thrd)
620 {
621 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
622 ? true : false;
623 }
624
625 static inline bool _queue_full(struct pl330_thread *thrd)
626 {
627 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
628 ? false : true;
629 }
630
631 static inline bool is_manager(struct pl330_thread *thrd)
632 {
633 struct pl330_dmac *pl330 = thrd->dmac;
634
635 /* MANAGER is indexed at the end */
636 if (thrd->id == pl330->pinfo->pcfg.num_chan)
637 return true;
638 else
639 return false;
640 }
641
642 /* If manager of the thread is in Non-Secure mode */
643 static inline bool _manager_ns(struct pl330_thread *thrd)
644 {
645 struct pl330_dmac *pl330 = thrd->dmac;
646
647 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
648 }
649
650 static inline u32 get_id(struct pl330_info *pi, u32 off)
651 {
652 void __iomem *regs = pi->base;
653 u32 id = 0;
654
655 id |= (readb(regs + off + 0x0) << 0);
656 id |= (readb(regs + off + 0x4) << 8);
657 id |= (readb(regs + off + 0x8) << 16);
658 id |= (readb(regs + off + 0xc) << 24);
659
660 return id;
661 }
662
663 static inline u32 get_revision(u32 periph_id)
664 {
665 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
666 }
667
668 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
669 enum pl330_dst da, u16 val)
670 {
671 if (dry_run)
672 return SZ_DMAADDH;
673
674 buf[0] = CMD_DMAADDH;
675 buf[0] |= (da << 1);
676 *((u16 *)&buf[1]) = val;
677
678 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
679 da == 1 ? "DA" : "SA", val);
680
681 return SZ_DMAADDH;
682 }
683
684 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
685 {
686 if (dry_run)
687 return SZ_DMAEND;
688
689 buf[0] = CMD_DMAEND;
690
691 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
692
693 return SZ_DMAEND;
694 }
695
696 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
697 {
698 if (dry_run)
699 return SZ_DMAFLUSHP;
700
701 buf[0] = CMD_DMAFLUSHP;
702
703 peri &= 0x1f;
704 peri <<= 3;
705 buf[1] = peri;
706
707 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
708
709 return SZ_DMAFLUSHP;
710 }
711
712 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
713 {
714 if (dry_run)
715 return SZ_DMALD;
716
717 buf[0] = CMD_DMALD;
718
719 if (cond == SINGLE)
720 buf[0] |= (0 << 1) | (1 << 0);
721 else if (cond == BURST)
722 buf[0] |= (1 << 1) | (1 << 0);
723
724 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
725 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
726
727 return SZ_DMALD;
728 }
729
730 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
731 enum pl330_cond cond, u8 peri)
732 {
733 if (dry_run)
734 return SZ_DMALDP;
735
736 buf[0] = CMD_DMALDP;
737
738 if (cond == BURST)
739 buf[0] |= (1 << 1);
740
741 peri &= 0x1f;
742 peri <<= 3;
743 buf[1] = peri;
744
745 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
746 cond == SINGLE ? 'S' : 'B', peri >> 3);
747
748 return SZ_DMALDP;
749 }
750
751 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
752 unsigned loop, u8 cnt)
753 {
754 if (dry_run)
755 return SZ_DMALP;
756
757 buf[0] = CMD_DMALP;
758
759 if (loop)
760 buf[0] |= (1 << 1);
761
762 cnt--; /* DMAC increments by 1 internally */
763 buf[1] = cnt;
764
765 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
766
767 return SZ_DMALP;
768 }
769
770 struct _arg_LPEND {
771 enum pl330_cond cond;
772 bool forever;
773 unsigned loop;
774 u8 bjump;
775 };
776
777 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
778 const struct _arg_LPEND *arg)
779 {
780 enum pl330_cond cond = arg->cond;
781 bool forever = arg->forever;
782 unsigned loop = arg->loop;
783 u8 bjump = arg->bjump;
784
785 if (dry_run)
786 return SZ_DMALPEND;
787
788 buf[0] = CMD_DMALPEND;
789
790 if (loop)
791 buf[0] |= (1 << 2);
792
793 if (!forever)
794 buf[0] |= (1 << 4);
795
796 if (cond == SINGLE)
797 buf[0] |= (0 << 1) | (1 << 0);
798 else if (cond == BURST)
799 buf[0] |= (1 << 1) | (1 << 0);
800
801 buf[1] = bjump;
802
803 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
804 forever ? "FE" : "END",
805 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
806 loop ? '1' : '0',
807 bjump);
808
809 return SZ_DMALPEND;
810 }
811
812 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
813 {
814 if (dry_run)
815 return SZ_DMAKILL;
816
817 buf[0] = CMD_DMAKILL;
818
819 return SZ_DMAKILL;
820 }
821
822 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
823 enum dmamov_dst dst, u32 val)
824 {
825 if (dry_run)
826 return SZ_DMAMOV;
827
828 buf[0] = CMD_DMAMOV;
829 buf[1] = dst;
830 *((u32 *)&buf[2]) = val;
831
832 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
833 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
834
835 return SZ_DMAMOV;
836 }
837
838 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
839 {
840 if (dry_run)
841 return SZ_DMANOP;
842
843 buf[0] = CMD_DMANOP;
844
845 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
846
847 return SZ_DMANOP;
848 }
849
850 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
851 {
852 if (dry_run)
853 return SZ_DMARMB;
854
855 buf[0] = CMD_DMARMB;
856
857 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
858
859 return SZ_DMARMB;
860 }
861
862 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
863 {
864 if (dry_run)
865 return SZ_DMASEV;
866
867 buf[0] = CMD_DMASEV;
868
869 ev &= 0x1f;
870 ev <<= 3;
871 buf[1] = ev;
872
873 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
874
875 return SZ_DMASEV;
876 }
877
878 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
879 {
880 if (dry_run)
881 return SZ_DMAST;
882
883 buf[0] = CMD_DMAST;
884
885 if (cond == SINGLE)
886 buf[0] |= (0 << 1) | (1 << 0);
887 else if (cond == BURST)
888 buf[0] |= (1 << 1) | (1 << 0);
889
890 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
891 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
892
893 return SZ_DMAST;
894 }
895
896 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
897 enum pl330_cond cond, u8 peri)
898 {
899 if (dry_run)
900 return SZ_DMASTP;
901
902 buf[0] = CMD_DMASTP;
903
904 if (cond == BURST)
905 buf[0] |= (1 << 1);
906
907 peri &= 0x1f;
908 peri <<= 3;
909 buf[1] = peri;
910
911 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
912 cond == SINGLE ? 'S' : 'B', peri >> 3);
913
914 return SZ_DMASTP;
915 }
916
917 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
918 {
919 if (dry_run)
920 return SZ_DMASTZ;
921
922 buf[0] = CMD_DMASTZ;
923
924 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
925
926 return SZ_DMASTZ;
927 }
928
929 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
930 unsigned invalidate)
931 {
932 if (dry_run)
933 return SZ_DMAWFE;
934
935 buf[0] = CMD_DMAWFE;
936
937 ev &= 0x1f;
938 ev <<= 3;
939 buf[1] = ev;
940
941 if (invalidate)
942 buf[1] |= (1 << 1);
943
944 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
945 ev >> 3, invalidate ? ", I" : "");
946
947 return SZ_DMAWFE;
948 }
949
950 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
951 enum pl330_cond cond, u8 peri)
952 {
953 if (dry_run)
954 return SZ_DMAWFP;
955
956 buf[0] = CMD_DMAWFP;
957
958 if (cond == SINGLE)
959 buf[0] |= (0 << 1) | (0 << 0);
960 else if (cond == BURST)
961 buf[0] |= (1 << 1) | (0 << 0);
962 else
963 buf[0] |= (0 << 1) | (1 << 0);
964
965 peri &= 0x1f;
966 peri <<= 3;
967 buf[1] = peri;
968
969 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
970 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
971
972 return SZ_DMAWFP;
973 }
974
975 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
976 {
977 if (dry_run)
978 return SZ_DMAWMB;
979
980 buf[0] = CMD_DMAWMB;
981
982 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
983
984 return SZ_DMAWMB;
985 }
986
987 struct _arg_GO {
988 u8 chan;
989 u32 addr;
990 unsigned ns;
991 };
992
993 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
994 const struct _arg_GO *arg)
995 {
996 u8 chan = arg->chan;
997 u32 addr = arg->addr;
998 unsigned ns = arg->ns;
999
1000 if (dry_run)
1001 return SZ_DMAGO;
1002
1003 buf[0] = CMD_DMAGO;
1004 buf[0] |= (ns << 1);
1005
1006 buf[1] = chan & 0x7;
1007
1008 *((u32 *)&buf[2]) = addr;
1009
1010 return SZ_DMAGO;
1011 }
1012
1013 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1014
1015 /* Returns Time-Out */
1016 static bool _until_dmac_idle(struct pl330_thread *thrd)
1017 {
1018 void __iomem *regs = thrd->dmac->pinfo->base;
1019 unsigned long loops = msecs_to_loops(5);
1020
1021 do {
1022 /* Until Manager is Idle */
1023 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1024 break;
1025
1026 cpu_relax();
1027 } while (--loops);
1028
1029 if (!loops)
1030 return true;
1031
1032 return false;
1033 }
1034
1035 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1036 u8 insn[], bool as_manager)
1037 {
1038 void __iomem *regs = thrd->dmac->pinfo->base;
1039 u32 val;
1040
1041 val = (insn[0] << 16) | (insn[1] << 24);
1042 if (!as_manager) {
1043 val |= (1 << 0);
1044 val |= (thrd->id << 8); /* Channel Number */
1045 }
1046 writel(val, regs + DBGINST0);
1047
1048 val = *((u32 *)&insn[2]);
1049 writel(val, regs + DBGINST1);
1050
1051 /* If timed out due to halted state-machine */
1052 if (_until_dmac_idle(thrd)) {
1053 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1054 return;
1055 }
1056
1057 /* Get going */
1058 writel(0, regs + DBGCMD);
1059 }
1060
1061 /*
1062 * Mark a _pl330_req as free.
1063 * We do it by writing DMAEND as the first instruction
1064 * because no valid request is going to have DMAEND as
1065 * its first instruction to execute.
1066 */
1067 static void mark_free(struct pl330_thread *thrd, int idx)
1068 {
1069 struct _pl330_req *req = &thrd->req[idx];
1070
1071 _emit_END(0, req->mc_cpu);
1072 req->mc_len = 0;
1073
1074 thrd->req_running = -1;
1075 }
1076
1077 static inline u32 _state(struct pl330_thread *thrd)
1078 {
1079 void __iomem *regs = thrd->dmac->pinfo->base;
1080 u32 val;
1081
1082 if (is_manager(thrd))
1083 val = readl(regs + DS) & 0xf;
1084 else
1085 val = readl(regs + CS(thrd->id)) & 0xf;
1086
1087 switch (val) {
1088 case DS_ST_STOP:
1089 return PL330_STATE_STOPPED;
1090 case DS_ST_EXEC:
1091 return PL330_STATE_EXECUTING;
1092 case DS_ST_CMISS:
1093 return PL330_STATE_CACHEMISS;
1094 case DS_ST_UPDTPC:
1095 return PL330_STATE_UPDTPC;
1096 case DS_ST_WFE:
1097 return PL330_STATE_WFE;
1098 case DS_ST_FAULT:
1099 return PL330_STATE_FAULTING;
1100 case DS_ST_ATBRR:
1101 if (is_manager(thrd))
1102 return PL330_STATE_INVALID;
1103 else
1104 return PL330_STATE_ATBARRIER;
1105 case DS_ST_QBUSY:
1106 if (is_manager(thrd))
1107 return PL330_STATE_INVALID;
1108 else
1109 return PL330_STATE_QUEUEBUSY;
1110 case DS_ST_WFP:
1111 if (is_manager(thrd))
1112 return PL330_STATE_INVALID;
1113 else
1114 return PL330_STATE_WFP;
1115 case DS_ST_KILL:
1116 if (is_manager(thrd))
1117 return PL330_STATE_INVALID;
1118 else
1119 return PL330_STATE_KILLING;
1120 case DS_ST_CMPLT:
1121 if (is_manager(thrd))
1122 return PL330_STATE_INVALID;
1123 else
1124 return PL330_STATE_COMPLETING;
1125 case DS_ST_FLTCMP:
1126 if (is_manager(thrd))
1127 return PL330_STATE_INVALID;
1128 else
1129 return PL330_STATE_FAULT_COMPLETING;
1130 default:
1131 return PL330_STATE_INVALID;
1132 }
1133 }
1134
1135 static void _stop(struct pl330_thread *thrd)
1136 {
1137 void __iomem *regs = thrd->dmac->pinfo->base;
1138 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1139
1140 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1141 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1142
1143 /* Return if nothing needs to be done */
1144 if (_state(thrd) == PL330_STATE_COMPLETING
1145 || _state(thrd) == PL330_STATE_KILLING
1146 || _state(thrd) == PL330_STATE_STOPPED)
1147 return;
1148
1149 _emit_KILL(0, insn);
1150
1151 /* Stop generating interrupts for SEV */
1152 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1153
1154 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1155 }
1156
1157 /* Start doing req 'idx' of thread 'thrd' */
1158 static bool _trigger(struct pl330_thread *thrd)
1159 {
1160 void __iomem *regs = thrd->dmac->pinfo->base;
1161 struct _pl330_req *req;
1162 struct pl330_req *r;
1163 struct _arg_GO go;
1164 unsigned ns;
1165 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1166 int idx;
1167
1168 /* Return if already ACTIVE */
1169 if (_state(thrd) != PL330_STATE_STOPPED)
1170 return true;
1171
1172 idx = 1 - thrd->lstenq;
1173 if (!IS_FREE(&thrd->req[idx]))
1174 req = &thrd->req[idx];
1175 else {
1176 idx = thrd->lstenq;
1177 if (!IS_FREE(&thrd->req[idx]))
1178 req = &thrd->req[idx];
1179 else
1180 req = NULL;
1181 }
1182
1183 /* Return if no request */
1184 if (!req || !req->r)
1185 return true;
1186
1187 r = req->r;
1188
1189 if (r->cfg)
1190 ns = r->cfg->nonsecure ? 1 : 0;
1191 else if (readl(regs + CS(thrd->id)) & CS_CNS)
1192 ns = 1;
1193 else
1194 ns = 0;
1195
1196 /* See 'Abort Sources' point-4 at Page 2-25 */
1197 if (_manager_ns(thrd) && !ns)
1198 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1199 __func__, __LINE__);
1200
1201 go.chan = thrd->id;
1202 go.addr = req->mc_bus;
1203 go.ns = ns;
1204 _emit_GO(0, insn, &go);
1205
1206 /* Set to generate interrupts for SEV */
1207 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1208
1209 /* Only manager can execute GO */
1210 _execute_DBGINSN(thrd, insn, true);
1211
1212 thrd->req_running = idx;
1213
1214 return true;
1215 }
1216
1217 static bool _start(struct pl330_thread *thrd)
1218 {
1219 switch (_state(thrd)) {
1220 case PL330_STATE_FAULT_COMPLETING:
1221 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1222
1223 if (_state(thrd) == PL330_STATE_KILLING)
1224 UNTIL(thrd, PL330_STATE_STOPPED)
1225
1226 case PL330_STATE_FAULTING:
1227 _stop(thrd);
1228
1229 case PL330_STATE_KILLING:
1230 case PL330_STATE_COMPLETING:
1231 UNTIL(thrd, PL330_STATE_STOPPED)
1232
1233 case PL330_STATE_STOPPED:
1234 return _trigger(thrd);
1235
1236 case PL330_STATE_WFP:
1237 case PL330_STATE_QUEUEBUSY:
1238 case PL330_STATE_ATBARRIER:
1239 case PL330_STATE_UPDTPC:
1240 case PL330_STATE_CACHEMISS:
1241 case PL330_STATE_EXECUTING:
1242 return true;
1243
1244 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1245 default:
1246 return false;
1247 }
1248 }
1249
1250 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1251 const struct _xfer_spec *pxs, int cyc)
1252 {
1253 int off = 0;
1254 struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1255
1256 /* check lock-up free version */
1257 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1258 while (cyc--) {
1259 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1260 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1261 }
1262 } else {
1263 while (cyc--) {
1264 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1265 off += _emit_RMB(dry_run, &buf[off]);
1266 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1267 off += _emit_WMB(dry_run, &buf[off]);
1268 }
1269 }
1270
1271 return off;
1272 }
1273
1274 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1275 const struct _xfer_spec *pxs, int cyc)
1276 {
1277 int off = 0;
1278
1279 while (cyc--) {
1280 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1281 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1282 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1283 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1284 }
1285
1286 return off;
1287 }
1288
1289 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1290 const struct _xfer_spec *pxs, int cyc)
1291 {
1292 int off = 0;
1293
1294 while (cyc--) {
1295 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1296 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1297 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1298 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1299 }
1300
1301 return off;
1302 }
1303
1304 static int _bursts(unsigned dry_run, u8 buf[],
1305 const struct _xfer_spec *pxs, int cyc)
1306 {
1307 int off = 0;
1308
1309 switch (pxs->r->rqtype) {
1310 case MEMTODEV:
1311 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1312 break;
1313 case DEVTOMEM:
1314 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1315 break;
1316 case MEMTOMEM:
1317 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1318 break;
1319 default:
1320 off += 0x40000000; /* Scare off the Client */
1321 break;
1322 }
1323
1324 return off;
1325 }
1326
1327 /* Returns bytes consumed and updates bursts */
1328 static inline int _loop(unsigned dry_run, u8 buf[],
1329 unsigned long *bursts, const struct _xfer_spec *pxs)
1330 {
1331 int cyc, cycmax, szlp, szlpend, szbrst, off;
1332 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1333 struct _arg_LPEND lpend;
1334
1335 /* Max iterations possible in DMALP is 256 */
1336 if (*bursts >= 256*256) {
1337 lcnt1 = 256;
1338 lcnt0 = 256;
1339 cyc = *bursts / lcnt1 / lcnt0;
1340 } else if (*bursts > 256) {
1341 lcnt1 = 256;
1342 lcnt0 = *bursts / lcnt1;
1343 cyc = 1;
1344 } else {
1345 lcnt1 = *bursts;
1346 lcnt0 = 0;
1347 cyc = 1;
1348 }
1349
1350 szlp = _emit_LP(1, buf, 0, 0);
1351 szbrst = _bursts(1, buf, pxs, 1);
1352
1353 lpend.cond = ALWAYS;
1354 lpend.forever = false;
1355 lpend.loop = 0;
1356 lpend.bjump = 0;
1357 szlpend = _emit_LPEND(1, buf, &lpend);
1358
1359 if (lcnt0) {
1360 szlp *= 2;
1361 szlpend *= 2;
1362 }
1363
1364 /*
1365 * Max bursts that we can unroll due to limit on the
1366 * size of backward jump that can be encoded in DMALPEND
1367 * which is 8-bits and hence 255
1368 */
1369 cycmax = (255 - (szlp + szlpend)) / szbrst;
1370
1371 cyc = (cycmax < cyc) ? cycmax : cyc;
1372
1373 off = 0;
1374
1375 if (lcnt0) {
1376 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1377 ljmp0 = off;
1378 }
1379
1380 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1381 ljmp1 = off;
1382
1383 off += _bursts(dry_run, &buf[off], pxs, cyc);
1384
1385 lpend.cond = ALWAYS;
1386 lpend.forever = false;
1387 lpend.loop = 1;
1388 lpend.bjump = off - ljmp1;
1389 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1390
1391 if (lcnt0) {
1392 lpend.cond = ALWAYS;
1393 lpend.forever = false;
1394 lpend.loop = 0;
1395 lpend.bjump = off - ljmp0;
1396 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1397 }
1398
1399 *bursts = lcnt1 * cyc;
1400 if (lcnt0)
1401 *bursts *= lcnt0;
1402
1403 return off;
1404 }
1405
1406 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1407 const struct _xfer_spec *pxs)
1408 {
1409 struct pl330_xfer *x = pxs->x;
1410 u32 ccr = pxs->ccr;
1411 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1412 int off = 0;
1413
1414 while (bursts) {
1415 c = bursts;
1416 off += _loop(dry_run, &buf[off], &c, pxs);
1417 bursts -= c;
1418 }
1419
1420 return off;
1421 }
1422
1423 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1424 const struct _xfer_spec *pxs)
1425 {
1426 struct pl330_xfer *x = pxs->x;
1427 int off = 0;
1428
1429 /* DMAMOV SAR, x->src_addr */
1430 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1431 /* DMAMOV DAR, x->dst_addr */
1432 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1433
1434 /* Setup Loop(s) */
1435 off += _setup_loops(dry_run, &buf[off], pxs);
1436
1437 return off;
1438 }
1439
1440 /*
1441 * A req is a sequence of one or more xfer units.
1442 * Returns the number of bytes taken to setup the MC for the req.
1443 */
1444 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1445 unsigned index, struct _xfer_spec *pxs)
1446 {
1447 struct _pl330_req *req = &thrd->req[index];
1448 struct pl330_xfer *x;
1449 u8 *buf = req->mc_cpu;
1450 int off = 0;
1451
1452 PL330_DBGMC_START(req->mc_bus);
1453
1454 /* DMAMOV CCR, ccr */
1455 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1456
1457 x = pxs->r->x;
1458 do {
1459 /* Error if xfer length is not aligned at burst size */
1460 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1461 return -EINVAL;
1462
1463 pxs->x = x;
1464 off += _setup_xfer(dry_run, &buf[off], pxs);
1465
1466 x = x->next;
1467 } while (x);
1468
1469 /* DMASEV peripheral/event */
1470 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1471 /* DMAEND */
1472 off += _emit_END(dry_run, &buf[off]);
1473
1474 return off;
1475 }
1476
1477 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1478 {
1479 u32 ccr = 0;
1480
1481 if (rqc->src_inc)
1482 ccr |= CC_SRCINC;
1483
1484 if (rqc->dst_inc)
1485 ccr |= CC_DSTINC;
1486
1487 /* We set same protection levels for Src and DST for now */
1488 if (rqc->privileged)
1489 ccr |= CC_SRCPRI | CC_DSTPRI;
1490 if (rqc->nonsecure)
1491 ccr |= CC_SRCNS | CC_DSTNS;
1492 if (rqc->insnaccess)
1493 ccr |= CC_SRCIA | CC_DSTIA;
1494
1495 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1496 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1497
1498 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1499 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1500
1501 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1502 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1503
1504 ccr |= (rqc->swap << CC_SWAP_SHFT);
1505
1506 return ccr;
1507 }
1508
1509 static inline bool _is_valid(u32 ccr)
1510 {
1511 enum pl330_dstcachectrl dcctl;
1512 enum pl330_srccachectrl scctl;
1513
1514 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1515 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1516
1517 if (dcctl == DINVALID1 || dcctl == DINVALID2
1518 || scctl == SINVALID1 || scctl == SINVALID2)
1519 return false;
1520 else
1521 return true;
1522 }
1523
1524 /*
1525 * Submit a list of xfers after which the client wants notification.
1526 * Client is not notified after each xfer unit, just once after all
1527 * xfer units are done or some error occurs.
1528 */
1529 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1530 {
1531 struct pl330_thread *thrd = ch_id;
1532 struct pl330_dmac *pl330;
1533 struct pl330_info *pi;
1534 struct _xfer_spec xs;
1535 unsigned long flags;
1536 void __iomem *regs;
1537 unsigned idx;
1538 u32 ccr;
1539 int ret = 0;
1540
1541 /* No Req or Unacquired Channel or DMAC */
1542 if (!r || !thrd || thrd->free)
1543 return -EINVAL;
1544
1545 pl330 = thrd->dmac;
1546 pi = pl330->pinfo;
1547 regs = pi->base;
1548
1549 if (pl330->state == DYING
1550 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1551 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1552 __func__, __LINE__);
1553 return -EAGAIN;
1554 }
1555
1556 /* If request for non-existing peripheral */
1557 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1558 dev_info(thrd->dmac->pinfo->dev,
1559 "%s:%d Invalid peripheral(%u)!\n",
1560 __func__, __LINE__, r->peri);
1561 return -EINVAL;
1562 }
1563
1564 spin_lock_irqsave(&pl330->lock, flags);
1565
1566 if (_queue_full(thrd)) {
1567 ret = -EAGAIN;
1568 goto xfer_exit;
1569 }
1570
1571 /* Prefer Secure Channel */
1572 if (!_manager_ns(thrd))
1573 r->cfg->nonsecure = 0;
1574 else
1575 r->cfg->nonsecure = 1;
1576
1577 /* Use last settings, if not provided */
1578 if (r->cfg)
1579 ccr = _prepare_ccr(r->cfg);
1580 else
1581 ccr = readl(regs + CC(thrd->id));
1582
1583 /* If this req doesn't have valid xfer settings */
1584 if (!_is_valid(ccr)) {
1585 ret = -EINVAL;
1586 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1587 __func__, __LINE__, ccr);
1588 goto xfer_exit;
1589 }
1590
1591 idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1592
1593 xs.ccr = ccr;
1594 xs.r = r;
1595
1596 /* First dry run to check if req is acceptable */
1597 ret = _setup_req(1, thrd, idx, &xs);
1598 if (ret < 0)
1599 goto xfer_exit;
1600
1601 if (ret > pi->mcbufsz / 2) {
1602 dev_info(thrd->dmac->pinfo->dev,
1603 "%s:%d Trying increasing mcbufsz\n",
1604 __func__, __LINE__);
1605 ret = -ENOMEM;
1606 goto xfer_exit;
1607 }
1608
1609 /* Hook the request */
1610 thrd->lstenq = idx;
1611 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1612 thrd->req[idx].r = r;
1613
1614 ret = 0;
1615
1616 xfer_exit:
1617 spin_unlock_irqrestore(&pl330->lock, flags);
1618
1619 return ret;
1620 }
1621
1622 static void pl330_dotask(unsigned long data)
1623 {
1624 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1625 struct pl330_info *pi = pl330->pinfo;
1626 unsigned long flags;
1627 int i;
1628
1629 spin_lock_irqsave(&pl330->lock, flags);
1630
1631 /* The DMAC itself gone nuts */
1632 if (pl330->dmac_tbd.reset_dmac) {
1633 pl330->state = DYING;
1634 /* Reset the manager too */
1635 pl330->dmac_tbd.reset_mngr = true;
1636 /* Clear the reset flag */
1637 pl330->dmac_tbd.reset_dmac = false;
1638 }
1639
1640 if (pl330->dmac_tbd.reset_mngr) {
1641 _stop(pl330->manager);
1642 /* Reset all channels */
1643 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1644 /* Clear the reset flag */
1645 pl330->dmac_tbd.reset_mngr = false;
1646 }
1647
1648 for (i = 0; i < pi->pcfg.num_chan; i++) {
1649
1650 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1651 struct pl330_thread *thrd = &pl330->channels[i];
1652 void __iomem *regs = pi->base;
1653 enum pl330_op_err err;
1654
1655 _stop(thrd);
1656
1657 if (readl(regs + FSC) & (1 << thrd->id))
1658 err = PL330_ERR_FAIL;
1659 else
1660 err = PL330_ERR_ABORT;
1661
1662 spin_unlock_irqrestore(&pl330->lock, flags);
1663
1664 _callback(thrd->req[1 - thrd->lstenq].r, err);
1665 _callback(thrd->req[thrd->lstenq].r, err);
1666
1667 spin_lock_irqsave(&pl330->lock, flags);
1668
1669 thrd->req[0].r = NULL;
1670 thrd->req[1].r = NULL;
1671 mark_free(thrd, 0);
1672 mark_free(thrd, 1);
1673
1674 /* Clear the reset flag */
1675 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1676 }
1677 }
1678
1679 spin_unlock_irqrestore(&pl330->lock, flags);
1680
1681 return;
1682 }
1683
1684 /* Returns 1 if state was updated, 0 otherwise */
1685 static int pl330_update(const struct pl330_info *pi)
1686 {
1687 struct _pl330_req *rqdone;
1688 struct pl330_dmac *pl330;
1689 unsigned long flags;
1690 void __iomem *regs;
1691 u32 val;
1692 int id, ev, ret = 0;
1693
1694 if (!pi || !pi->pl330_data)
1695 return 0;
1696
1697 regs = pi->base;
1698 pl330 = pi->pl330_data;
1699
1700 spin_lock_irqsave(&pl330->lock, flags);
1701
1702 val = readl(regs + FSM) & 0x1;
1703 if (val)
1704 pl330->dmac_tbd.reset_mngr = true;
1705 else
1706 pl330->dmac_tbd.reset_mngr = false;
1707
1708 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1709 pl330->dmac_tbd.reset_chan |= val;
1710 if (val) {
1711 int i = 0;
1712 while (i < pi->pcfg.num_chan) {
1713 if (val & (1 << i)) {
1714 dev_info(pi->dev,
1715 "Reset Channel-%d\t CS-%x FTC-%x\n",
1716 i, readl(regs + CS(i)),
1717 readl(regs + FTC(i)));
1718 _stop(&pl330->channels[i]);
1719 }
1720 i++;
1721 }
1722 }
1723
1724 /* Check which event happened i.e, thread notified */
1725 val = readl(regs + ES);
1726 if (pi->pcfg.num_events < 32
1727 && val & ~((1 << pi->pcfg.num_events) - 1)) {
1728 pl330->dmac_tbd.reset_dmac = true;
1729 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1730 ret = 1;
1731 goto updt_exit;
1732 }
1733
1734 for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1735 if (val & (1 << ev)) { /* Event occurred */
1736 struct pl330_thread *thrd;
1737 u32 inten = readl(regs + INTEN);
1738 int active;
1739
1740 /* Clear the event */
1741 if (inten & (1 << ev))
1742 writel(1 << ev, regs + INTCLR);
1743
1744 ret = 1;
1745
1746 id = pl330->events[ev];
1747
1748 thrd = &pl330->channels[id];
1749
1750 active = thrd->req_running;
1751 if (active == -1) /* Aborted */
1752 continue;
1753
1754 rqdone = &thrd->req[active];
1755 mark_free(thrd, active);
1756
1757 /* Get going again ASAP */
1758 _start(thrd);
1759
1760 /* For now, just make a list of callbacks to be done */
1761 list_add_tail(&rqdone->rqd, &pl330->req_done);
1762 }
1763 }
1764
1765 /* Now that we are in no hurry, do the callbacks */
1766 while (!list_empty(&pl330->req_done)) {
1767 struct pl330_req *r;
1768
1769 rqdone = container_of(pl330->req_done.next,
1770 struct _pl330_req, rqd);
1771
1772 list_del_init(&rqdone->rqd);
1773
1774 /* Detach the req */
1775 r = rqdone->r;
1776 rqdone->r = NULL;
1777
1778 spin_unlock_irqrestore(&pl330->lock, flags);
1779 _callback(r, PL330_ERR_NONE);
1780 spin_lock_irqsave(&pl330->lock, flags);
1781 }
1782
1783 updt_exit:
1784 spin_unlock_irqrestore(&pl330->lock, flags);
1785
1786 if (pl330->dmac_tbd.reset_dmac
1787 || pl330->dmac_tbd.reset_mngr
1788 || pl330->dmac_tbd.reset_chan) {
1789 ret = 1;
1790 tasklet_schedule(&pl330->tasks);
1791 }
1792
1793 return ret;
1794 }
1795
1796 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1797 {
1798 struct pl330_thread *thrd = ch_id;
1799 struct pl330_dmac *pl330;
1800 unsigned long flags;
1801 int ret = 0, active = thrd->req_running;
1802
1803 if (!thrd || thrd->free || thrd->dmac->state == DYING)
1804 return -EINVAL;
1805
1806 pl330 = thrd->dmac;
1807
1808 spin_lock_irqsave(&pl330->lock, flags);
1809
1810 switch (op) {
1811 case PL330_OP_FLUSH:
1812 /* Make sure the channel is stopped */
1813 _stop(thrd);
1814
1815 thrd->req[0].r = NULL;
1816 thrd->req[1].r = NULL;
1817 mark_free(thrd, 0);
1818 mark_free(thrd, 1);
1819 break;
1820
1821 case PL330_OP_ABORT:
1822 /* Make sure the channel is stopped */
1823 _stop(thrd);
1824
1825 /* ABORT is only for the active req */
1826 if (active == -1)
1827 break;
1828
1829 thrd->req[active].r = NULL;
1830 mark_free(thrd, active);
1831
1832 /* Start the next */
1833 case PL330_OP_START:
1834 if ((active == -1) && !_start(thrd))
1835 ret = -EIO;
1836 break;
1837
1838 default:
1839 ret = -EINVAL;
1840 }
1841
1842 spin_unlock_irqrestore(&pl330->lock, flags);
1843 return ret;
1844 }
1845
1846 /* Reserve an event */
1847 static inline int _alloc_event(struct pl330_thread *thrd)
1848 {
1849 struct pl330_dmac *pl330 = thrd->dmac;
1850 struct pl330_info *pi = pl330->pinfo;
1851 int ev;
1852
1853 for (ev = 0; ev < pi->pcfg.num_events; ev++)
1854 if (pl330->events[ev] == -1) {
1855 pl330->events[ev] = thrd->id;
1856 return ev;
1857 }
1858
1859 return -1;
1860 }
1861
1862 static bool _chan_ns(const struct pl330_info *pi, int i)
1863 {
1864 return pi->pcfg.irq_ns & (1 << i);
1865 }
1866
1867 /* Upon success, returns IdentityToken for the
1868 * allocated channel, NULL otherwise.
1869 */
1870 static void *pl330_request_channel(const struct pl330_info *pi)
1871 {
1872 struct pl330_thread *thrd = NULL;
1873 struct pl330_dmac *pl330;
1874 unsigned long flags;
1875 int chans, i;
1876
1877 if (!pi || !pi->pl330_data)
1878 return NULL;
1879
1880 pl330 = pi->pl330_data;
1881
1882 if (pl330->state == DYING)
1883 return NULL;
1884
1885 chans = pi->pcfg.num_chan;
1886
1887 spin_lock_irqsave(&pl330->lock, flags);
1888
1889 for (i = 0; i < chans; i++) {
1890 thrd = &pl330->channels[i];
1891 if ((thrd->free) && (!_manager_ns(thrd) ||
1892 _chan_ns(pi, i))) {
1893 thrd->ev = _alloc_event(thrd);
1894 if (thrd->ev >= 0) {
1895 thrd->free = false;
1896 thrd->lstenq = 1;
1897 thrd->req[0].r = NULL;
1898 mark_free(thrd, 0);
1899 thrd->req[1].r = NULL;
1900 mark_free(thrd, 1);
1901 break;
1902 }
1903 }
1904 thrd = NULL;
1905 }
1906
1907 spin_unlock_irqrestore(&pl330->lock, flags);
1908
1909 return thrd;
1910 }
1911
1912 /* Release an event */
1913 static inline void _free_event(struct pl330_thread *thrd, int ev)
1914 {
1915 struct pl330_dmac *pl330 = thrd->dmac;
1916 struct pl330_info *pi = pl330->pinfo;
1917
1918 /* If the event is valid and was held by the thread */
1919 if (ev >= 0 && ev < pi->pcfg.num_events
1920 && pl330->events[ev] == thrd->id)
1921 pl330->events[ev] = -1;
1922 }
1923
1924 static void pl330_release_channel(void *ch_id)
1925 {
1926 struct pl330_thread *thrd = ch_id;
1927 struct pl330_dmac *pl330;
1928 unsigned long flags;
1929
1930 if (!thrd || thrd->free)
1931 return;
1932
1933 _stop(thrd);
1934
1935 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1936 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1937
1938 pl330 = thrd->dmac;
1939
1940 spin_lock_irqsave(&pl330->lock, flags);
1941 _free_event(thrd, thrd->ev);
1942 thrd->free = true;
1943 spin_unlock_irqrestore(&pl330->lock, flags);
1944 }
1945
1946 /* Initialize the structure for PL330 configuration, that can be used
1947 * by the client driver the make best use of the DMAC
1948 */
1949 static void read_dmac_config(struct pl330_info *pi)
1950 {
1951 void __iomem *regs = pi->base;
1952 u32 val;
1953
1954 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1955 val &= CRD_DATA_WIDTH_MASK;
1956 pi->pcfg.data_bus_width = 8 * (1 << val);
1957
1958 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1959 val &= CRD_DATA_BUFF_MASK;
1960 pi->pcfg.data_buf_dep = val + 1;
1961
1962 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1963 val &= CR0_NUM_CHANS_MASK;
1964 val += 1;
1965 pi->pcfg.num_chan = val;
1966
1967 val = readl(regs + CR0);
1968 if (val & CR0_PERIPH_REQ_SET) {
1969 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1970 val += 1;
1971 pi->pcfg.num_peri = val;
1972 pi->pcfg.peri_ns = readl(regs + CR4);
1973 } else {
1974 pi->pcfg.num_peri = 0;
1975 }
1976
1977 val = readl(regs + CR0);
1978 if (val & CR0_BOOT_MAN_NS)
1979 pi->pcfg.mode |= DMAC_MODE_NS;
1980 else
1981 pi->pcfg.mode &= ~DMAC_MODE_NS;
1982
1983 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1984 val &= CR0_NUM_EVENTS_MASK;
1985 val += 1;
1986 pi->pcfg.num_events = val;
1987
1988 pi->pcfg.irq_ns = readl(regs + CR3);
1989
1990 pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1991 pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1992 }
1993
1994 static inline void _reset_thread(struct pl330_thread *thrd)
1995 {
1996 struct pl330_dmac *pl330 = thrd->dmac;
1997 struct pl330_info *pi = pl330->pinfo;
1998
1999 thrd->req[0].mc_cpu = pl330->mcode_cpu
2000 + (thrd->id * pi->mcbufsz);
2001 thrd->req[0].mc_bus = pl330->mcode_bus
2002 + (thrd->id * pi->mcbufsz);
2003 thrd->req[0].r = NULL;
2004 mark_free(thrd, 0);
2005
2006 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2007 + pi->mcbufsz / 2;
2008 thrd->req[1].mc_bus = thrd->req[0].mc_bus
2009 + pi->mcbufsz / 2;
2010 thrd->req[1].r = NULL;
2011 mark_free(thrd, 1);
2012 }
2013
2014 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2015 {
2016 struct pl330_info *pi = pl330->pinfo;
2017 int chans = pi->pcfg.num_chan;
2018 struct pl330_thread *thrd;
2019 int i;
2020
2021 /* Allocate 1 Manager and 'chans' Channel threads */
2022 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2023 GFP_KERNEL);
2024 if (!pl330->channels)
2025 return -ENOMEM;
2026
2027 /* Init Channel threads */
2028 for (i = 0; i < chans; i++) {
2029 thrd = &pl330->channels[i];
2030 thrd->id = i;
2031 thrd->dmac = pl330;
2032 _reset_thread(thrd);
2033 thrd->free = true;
2034 }
2035
2036 /* MANAGER is indexed at the end */
2037 thrd = &pl330->channels[chans];
2038 thrd->id = chans;
2039 thrd->dmac = pl330;
2040 thrd->free = false;
2041 pl330->manager = thrd;
2042
2043 return 0;
2044 }
2045
2046 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2047 {
2048 struct pl330_info *pi = pl330->pinfo;
2049 int chans = pi->pcfg.num_chan;
2050 int ret;
2051
2052 /*
2053 * Alloc MicroCode buffer for 'chans' Channel threads.
2054 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2055 */
2056 pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2057 chans * pi->mcbufsz,
2058 &pl330->mcode_bus, GFP_KERNEL);
2059 if (!pl330->mcode_cpu) {
2060 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2061 __func__, __LINE__);
2062 return -ENOMEM;
2063 }
2064
2065 ret = dmac_alloc_threads(pl330);
2066 if (ret) {
2067 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2068 __func__, __LINE__);
2069 dma_free_coherent(pi->dev,
2070 chans * pi->mcbufsz,
2071 pl330->mcode_cpu, pl330->mcode_bus);
2072 return ret;
2073 }
2074
2075 return 0;
2076 }
2077
2078 static int pl330_add(struct pl330_info *pi)
2079 {
2080 struct pl330_dmac *pl330;
2081 void __iomem *regs;
2082 int i, ret;
2083
2084 if (!pi || !pi->dev)
2085 return -EINVAL;
2086
2087 /* If already added */
2088 if (pi->pl330_data)
2089 return -EINVAL;
2090
2091 /*
2092 * If the SoC can perform reset on the DMAC, then do it
2093 * before reading its configuration.
2094 */
2095 if (pi->dmac_reset)
2096 pi->dmac_reset(pi);
2097
2098 regs = pi->base;
2099
2100 /* Check if we can handle this DMAC */
2101 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2102 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2103 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2104 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2105 return -EINVAL;
2106 }
2107
2108 /* Read the configuration of the DMAC */
2109 read_dmac_config(pi);
2110
2111 if (pi->pcfg.num_events == 0) {
2112 dev_err(pi->dev, "%s:%d Can't work without events!\n",
2113 __func__, __LINE__);
2114 return -EINVAL;
2115 }
2116
2117 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2118 if (!pl330) {
2119 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2120 __func__, __LINE__);
2121 return -ENOMEM;
2122 }
2123
2124 /* Assign the info structure and private data */
2125 pl330->pinfo = pi;
2126 pi->pl330_data = pl330;
2127
2128 spin_lock_init(&pl330->lock);
2129
2130 INIT_LIST_HEAD(&pl330->req_done);
2131
2132 /* Use default MC buffer size if not provided */
2133 if (!pi->mcbufsz)
2134 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2135
2136 /* Mark all events as free */
2137 for (i = 0; i < pi->pcfg.num_events; i++)
2138 pl330->events[i] = -1;
2139
2140 /* Allocate resources needed by the DMAC */
2141 ret = dmac_alloc_resources(pl330);
2142 if (ret) {
2143 dev_err(pi->dev, "Unable to create channels for DMAC\n");
2144 kfree(pl330);
2145 return ret;
2146 }
2147
2148 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2149
2150 pl330->state = INIT;
2151
2152 return 0;
2153 }
2154
2155 static int dmac_free_threads(struct pl330_dmac *pl330)
2156 {
2157 struct pl330_info *pi = pl330->pinfo;
2158 int chans = pi->pcfg.num_chan;
2159 struct pl330_thread *thrd;
2160 int i;
2161
2162 /* Release Channel threads */
2163 for (i = 0; i < chans; i++) {
2164 thrd = &pl330->channels[i];
2165 pl330_release_channel((void *)thrd);
2166 }
2167
2168 /* Free memory */
2169 kfree(pl330->channels);
2170
2171 return 0;
2172 }
2173
2174 static void dmac_free_resources(struct pl330_dmac *pl330)
2175 {
2176 struct pl330_info *pi = pl330->pinfo;
2177 int chans = pi->pcfg.num_chan;
2178
2179 dmac_free_threads(pl330);
2180
2181 dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2182 pl330->mcode_cpu, pl330->mcode_bus);
2183 }
2184
2185 static void pl330_del(struct pl330_info *pi)
2186 {
2187 struct pl330_dmac *pl330;
2188
2189 if (!pi || !pi->pl330_data)
2190 return;
2191
2192 pl330 = pi->pl330_data;
2193
2194 pl330->state = UNINIT;
2195
2196 tasklet_kill(&pl330->tasks);
2197
2198 /* Free DMAC resources */
2199 dmac_free_resources(pl330);
2200
2201 kfree(pl330);
2202 pi->pl330_data = NULL;
2203 }
2204
2205 /* forward declaration */
2206 static struct amba_driver pl330_driver;
2207
2208 static inline struct dma_pl330_chan *
2209 to_pchan(struct dma_chan *ch)
2210 {
2211 if (!ch)
2212 return NULL;
2213
2214 return container_of(ch, struct dma_pl330_chan, chan);
2215 }
2216
2217 static inline struct dma_pl330_desc *
2218 to_desc(struct dma_async_tx_descriptor *tx)
2219 {
2220 return container_of(tx, struct dma_pl330_desc, txd);
2221 }
2222
2223 static inline void free_desc_list(struct list_head *list)
2224 {
2225 struct dma_pl330_dmac *pdmac;
2226 struct dma_pl330_desc *desc;
2227 struct dma_pl330_chan *pch;
2228 unsigned long flags;
2229
2230 if (list_empty(list))
2231 return;
2232
2233 /* Finish off the work list */
2234 list_for_each_entry(desc, list, node) {
2235 dma_async_tx_callback callback;
2236 void *param;
2237
2238 /* All desc in a list belong to same channel */
2239 pch = desc->pchan;
2240 callback = desc->txd.callback;
2241 param = desc->txd.callback_param;
2242
2243 if (callback)
2244 callback(param);
2245
2246 desc->pchan = NULL;
2247 }
2248
2249 pdmac = pch->dmac;
2250
2251 spin_lock_irqsave(&pdmac->pool_lock, flags);
2252 list_splice_tail_init(list, &pdmac->desc_pool);
2253 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2254 }
2255
2256 static inline void handle_cyclic_desc_list(struct list_head *list)
2257 {
2258 struct dma_pl330_desc *desc;
2259 struct dma_pl330_chan *pch;
2260 unsigned long flags;
2261
2262 if (list_empty(list))
2263 return;
2264
2265 list_for_each_entry(desc, list, node) {
2266 dma_async_tx_callback callback;
2267
2268 /* Change status to reload it */
2269 desc->status = PREP;
2270 pch = desc->pchan;
2271 callback = desc->txd.callback;
2272 if (callback)
2273 callback(desc->txd.callback_param);
2274 }
2275
2276 spin_lock_irqsave(&pch->lock, flags);
2277 list_splice_tail_init(list, &pch->work_list);
2278 spin_unlock_irqrestore(&pch->lock, flags);
2279 }
2280
2281 static inline void fill_queue(struct dma_pl330_chan *pch)
2282 {
2283 struct dma_pl330_desc *desc;
2284 int ret;
2285
2286 list_for_each_entry(desc, &pch->work_list, node) {
2287
2288 /* If already submitted */
2289 if (desc->status == BUSY)
2290 break;
2291
2292 ret = pl330_submit_req(pch->pl330_chid,
2293 &desc->req);
2294 if (!ret) {
2295 desc->status = BUSY;
2296 break;
2297 } else if (ret == -EAGAIN) {
2298 /* QFull or DMAC Dying */
2299 break;
2300 } else {
2301 /* Unacceptable request */
2302 desc->status = DONE;
2303 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2304 __func__, __LINE__, desc->txd.cookie);
2305 tasklet_schedule(&pch->task);
2306 }
2307 }
2308 }
2309
2310 static void pl330_tasklet(unsigned long data)
2311 {
2312 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2313 struct dma_pl330_desc *desc, *_dt;
2314 unsigned long flags;
2315 LIST_HEAD(list);
2316
2317 spin_lock_irqsave(&pch->lock, flags);
2318
2319 /* Pick up ripe tomatoes */
2320 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2321 if (desc->status == DONE) {
2322 dma_cookie_complete(&desc->txd);
2323 list_move_tail(&desc->node, &list);
2324 }
2325
2326 /* Try to submit a req imm. next to the last completed cookie */
2327 fill_queue(pch);
2328
2329 /* Make sure the PL330 Channel thread is active */
2330 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2331
2332 spin_unlock_irqrestore(&pch->lock, flags);
2333
2334 if (pch->cyclic)
2335 handle_cyclic_desc_list(&list);
2336 else
2337 free_desc_list(&list);
2338 }
2339
2340 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2341 {
2342 struct dma_pl330_desc *desc = token;
2343 struct dma_pl330_chan *pch = desc->pchan;
2344 unsigned long flags;
2345
2346 /* If desc aborted */
2347 if (!pch)
2348 return;
2349
2350 spin_lock_irqsave(&pch->lock, flags);
2351
2352 desc->status = DONE;
2353
2354 spin_unlock_irqrestore(&pch->lock, flags);
2355
2356 tasklet_schedule(&pch->task);
2357 }
2358
2359 bool pl330_filter(struct dma_chan *chan, void *param)
2360 {
2361 u8 *peri_id;
2362
2363 if (chan->device->dev->driver != &pl330_driver.drv)
2364 return false;
2365
2366 #ifdef CONFIG_OF
2367 if (chan->device->dev->of_node) {
2368 const __be32 *prop_value;
2369 phandle phandle;
2370 struct device_node *node;
2371
2372 prop_value = ((struct property *)param)->value;
2373 phandle = be32_to_cpup(prop_value++);
2374 node = of_find_node_by_phandle(phandle);
2375 return ((chan->private == node) &&
2376 (chan->chan_id == be32_to_cpup(prop_value)));
2377 }
2378 #endif
2379
2380 peri_id = chan->private;
2381 return *peri_id == (unsigned)param;
2382 }
2383 EXPORT_SYMBOL(pl330_filter);
2384
2385 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2386 {
2387 struct dma_pl330_chan *pch = to_pchan(chan);
2388 struct dma_pl330_dmac *pdmac = pch->dmac;
2389 unsigned long flags;
2390
2391 spin_lock_irqsave(&pch->lock, flags);
2392
2393 dma_cookie_init(chan);
2394 pch->cyclic = false;
2395
2396 pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2397 if (!pch->pl330_chid) {
2398 spin_unlock_irqrestore(&pch->lock, flags);
2399 return 0;
2400 }
2401
2402 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2403
2404 spin_unlock_irqrestore(&pch->lock, flags);
2405
2406 return 1;
2407 }
2408
2409 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2410 {
2411 struct dma_pl330_chan *pch = to_pchan(chan);
2412 struct dma_pl330_desc *desc, *_dt;
2413 unsigned long flags;
2414 struct dma_pl330_dmac *pdmac = pch->dmac;
2415 struct dma_slave_config *slave_config;
2416 LIST_HEAD(list);
2417
2418 switch (cmd) {
2419 case DMA_TERMINATE_ALL:
2420 spin_lock_irqsave(&pch->lock, flags);
2421
2422 /* FLUSH the PL330 Channel thread */
2423 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2424
2425 /* Mark all desc done */
2426 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2427 desc->status = DONE;
2428 list_move_tail(&desc->node, &list);
2429 }
2430
2431 list_splice_tail_init(&list, &pdmac->desc_pool);
2432 spin_unlock_irqrestore(&pch->lock, flags);
2433 break;
2434 case DMA_SLAVE_CONFIG:
2435 slave_config = (struct dma_slave_config *)arg;
2436
2437 if (slave_config->direction == DMA_MEM_TO_DEV) {
2438 if (slave_config->dst_addr)
2439 pch->fifo_addr = slave_config->dst_addr;
2440 if (slave_config->dst_addr_width)
2441 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2442 if (slave_config->dst_maxburst)
2443 pch->burst_len = slave_config->dst_maxburst;
2444 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2445 if (slave_config->src_addr)
2446 pch->fifo_addr = slave_config->src_addr;
2447 if (slave_config->src_addr_width)
2448 pch->burst_sz = __ffs(slave_config->src_addr_width);
2449 if (slave_config->src_maxburst)
2450 pch->burst_len = slave_config->src_maxburst;
2451 }
2452 break;
2453 default:
2454 dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2455 return -ENXIO;
2456 }
2457
2458 return 0;
2459 }
2460
2461 static void pl330_free_chan_resources(struct dma_chan *chan)
2462 {
2463 struct dma_pl330_chan *pch = to_pchan(chan);
2464 unsigned long flags;
2465
2466 spin_lock_irqsave(&pch->lock, flags);
2467
2468 tasklet_kill(&pch->task);
2469
2470 pl330_release_channel(pch->pl330_chid);
2471 pch->pl330_chid = NULL;
2472
2473 if (pch->cyclic)
2474 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2475
2476 spin_unlock_irqrestore(&pch->lock, flags);
2477 }
2478
2479 static enum dma_status
2480 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2481 struct dma_tx_state *txstate)
2482 {
2483 return dma_cookie_status(chan, cookie, txstate);
2484 }
2485
2486 static void pl330_issue_pending(struct dma_chan *chan)
2487 {
2488 pl330_tasklet((unsigned long) to_pchan(chan));
2489 }
2490
2491 /*
2492 * We returned the last one of the circular list of descriptor(s)
2493 * from prep_xxx, so the argument to submit corresponds to the last
2494 * descriptor of the list.
2495 */
2496 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2497 {
2498 struct dma_pl330_desc *desc, *last = to_desc(tx);
2499 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2500 dma_cookie_t cookie;
2501 unsigned long flags;
2502
2503 spin_lock_irqsave(&pch->lock, flags);
2504
2505 /* Assign cookies to all nodes */
2506 while (!list_empty(&last->node)) {
2507 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2508
2509 dma_cookie_assign(&desc->txd);
2510
2511 list_move_tail(&desc->node, &pch->work_list);
2512 }
2513
2514 cookie = dma_cookie_assign(&last->txd);
2515 list_add_tail(&last->node, &pch->work_list);
2516 spin_unlock_irqrestore(&pch->lock, flags);
2517
2518 return cookie;
2519 }
2520
2521 static inline void _init_desc(struct dma_pl330_desc *desc)
2522 {
2523 desc->pchan = NULL;
2524 desc->req.x = &desc->px;
2525 desc->req.token = desc;
2526 desc->rqcfg.swap = SWAP_NO;
2527 desc->rqcfg.privileged = 0;
2528 desc->rqcfg.insnaccess = 0;
2529 desc->rqcfg.scctl = SCCTRL0;
2530 desc->rqcfg.dcctl = DCCTRL0;
2531 desc->req.cfg = &desc->rqcfg;
2532 desc->req.xfer_cb = dma_pl330_rqcb;
2533 desc->txd.tx_submit = pl330_tx_submit;
2534
2535 INIT_LIST_HEAD(&desc->node);
2536 }
2537
2538 /* Returns the number of descriptors added to the DMAC pool */
2539 int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2540 {
2541 struct dma_pl330_desc *desc;
2542 unsigned long flags;
2543 int i;
2544
2545 if (!pdmac)
2546 return 0;
2547
2548 desc = kmalloc(count * sizeof(*desc), flg);
2549 if (!desc)
2550 return 0;
2551
2552 spin_lock_irqsave(&pdmac->pool_lock, flags);
2553
2554 for (i = 0; i < count; i++) {
2555 _init_desc(&desc[i]);
2556 list_add_tail(&desc[i].node, &pdmac->desc_pool);
2557 }
2558
2559 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2560
2561 return count;
2562 }
2563
2564 static struct dma_pl330_desc *
2565 pluck_desc(struct dma_pl330_dmac *pdmac)
2566 {
2567 struct dma_pl330_desc *desc = NULL;
2568 unsigned long flags;
2569
2570 if (!pdmac)
2571 return NULL;
2572
2573 spin_lock_irqsave(&pdmac->pool_lock, flags);
2574
2575 if (!list_empty(&pdmac->desc_pool)) {
2576 desc = list_entry(pdmac->desc_pool.next,
2577 struct dma_pl330_desc, node);
2578
2579 list_del_init(&desc->node);
2580
2581 desc->status = PREP;
2582 desc->txd.callback = NULL;
2583 }
2584
2585 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2586
2587 return desc;
2588 }
2589
2590 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2591 {
2592 struct dma_pl330_dmac *pdmac = pch->dmac;
2593 u8 *peri_id = pch->chan.private;
2594 struct dma_pl330_desc *desc;
2595
2596 /* Pluck one desc from the pool of DMAC */
2597 desc = pluck_desc(pdmac);
2598
2599 /* If the DMAC pool is empty, alloc new */
2600 if (!desc) {
2601 if (!add_desc(pdmac, GFP_ATOMIC, 1))
2602 return NULL;
2603
2604 /* Try again */
2605 desc = pluck_desc(pdmac);
2606 if (!desc) {
2607 dev_err(pch->dmac->pif.dev,
2608 "%s:%d ALERT!\n", __func__, __LINE__);
2609 return NULL;
2610 }
2611 }
2612
2613 /* Initialize the descriptor */
2614 desc->pchan = pch;
2615 desc->txd.cookie = 0;
2616 async_tx_ack(&desc->txd);
2617
2618 desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2619 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2620
2621 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2622
2623 return desc;
2624 }
2625
2626 static inline void fill_px(struct pl330_xfer *px,
2627 dma_addr_t dst, dma_addr_t src, size_t len)
2628 {
2629 px->next = NULL;
2630 px->bytes = len;
2631 px->dst_addr = dst;
2632 px->src_addr = src;
2633 }
2634
2635 static struct dma_pl330_desc *
2636 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2637 dma_addr_t src, size_t len)
2638 {
2639 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2640
2641 if (!desc) {
2642 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2643 __func__, __LINE__);
2644 return NULL;
2645 }
2646
2647 /*
2648 * Ideally we should lookout for reqs bigger than
2649 * those that can be programmed with 256 bytes of
2650 * MC buffer, but considering a req size is seldom
2651 * going to be word-unaligned and more than 200MB,
2652 * we take it easy.
2653 * Also, should the limit is reached we'd rather
2654 * have the platform increase MC buffer size than
2655 * complicating this API driver.
2656 */
2657 fill_px(&desc->px, dst, src, len);
2658
2659 return desc;
2660 }
2661
2662 /* Call after fixing burst size */
2663 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2664 {
2665 struct dma_pl330_chan *pch = desc->pchan;
2666 struct pl330_info *pi = &pch->dmac->pif;
2667 int burst_len;
2668
2669 burst_len = pi->pcfg.data_bus_width / 8;
2670 burst_len *= pi->pcfg.data_buf_dep;
2671 burst_len >>= desc->rqcfg.brst_size;
2672
2673 /* src/dst_burst_len can't be more than 16 */
2674 if (burst_len > 16)
2675 burst_len = 16;
2676
2677 while (burst_len > 1) {
2678 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2679 break;
2680 burst_len--;
2681 }
2682
2683 return burst_len;
2684 }
2685
2686 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2687 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2688 size_t period_len, enum dma_transfer_direction direction)
2689 {
2690 struct dma_pl330_desc *desc;
2691 struct dma_pl330_chan *pch = to_pchan(chan);
2692 dma_addr_t dst;
2693 dma_addr_t src;
2694
2695 desc = pl330_get_desc(pch);
2696 if (!desc) {
2697 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2698 __func__, __LINE__);
2699 return NULL;
2700 }
2701
2702 switch (direction) {
2703 case DMA_MEM_TO_DEV:
2704 desc->rqcfg.src_inc = 1;
2705 desc->rqcfg.dst_inc = 0;
2706 desc->req.rqtype = MEMTODEV;
2707 src = dma_addr;
2708 dst = pch->fifo_addr;
2709 break;
2710 case DMA_DEV_TO_MEM:
2711 desc->rqcfg.src_inc = 0;
2712 desc->rqcfg.dst_inc = 1;
2713 desc->req.rqtype = DEVTOMEM;
2714 src = pch->fifo_addr;
2715 dst = dma_addr;
2716 break;
2717 default:
2718 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2719 __func__, __LINE__);
2720 return NULL;
2721 }
2722
2723 desc->rqcfg.brst_size = pch->burst_sz;
2724 desc->rqcfg.brst_len = 1;
2725
2726 pch->cyclic = true;
2727
2728 fill_px(&desc->px, dst, src, period_len);
2729
2730 return &desc->txd;
2731 }
2732
2733 static struct dma_async_tx_descriptor *
2734 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2735 dma_addr_t src, size_t len, unsigned long flags)
2736 {
2737 struct dma_pl330_desc *desc;
2738 struct dma_pl330_chan *pch = to_pchan(chan);
2739 struct pl330_info *pi;
2740 int burst;
2741
2742 if (unlikely(!pch || !len))
2743 return NULL;
2744
2745 pi = &pch->dmac->pif;
2746
2747 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2748 if (!desc)
2749 return NULL;
2750
2751 desc->rqcfg.src_inc = 1;
2752 desc->rqcfg.dst_inc = 1;
2753 desc->req.rqtype = MEMTOMEM;
2754
2755 /* Select max possible burst size */
2756 burst = pi->pcfg.data_bus_width / 8;
2757
2758 while (burst > 1) {
2759 if (!(len % burst))
2760 break;
2761 burst /= 2;
2762 }
2763
2764 desc->rqcfg.brst_size = 0;
2765 while (burst != (1 << desc->rqcfg.brst_size))
2766 desc->rqcfg.brst_size++;
2767
2768 desc->rqcfg.brst_len = get_burst_len(desc, len);
2769
2770 desc->txd.flags = flags;
2771
2772 return &desc->txd;
2773 }
2774
2775 static struct dma_async_tx_descriptor *
2776 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2777 unsigned int sg_len, enum dma_transfer_direction direction,
2778 unsigned long flg)
2779 {
2780 struct dma_pl330_desc *first, *desc = NULL;
2781 struct dma_pl330_chan *pch = to_pchan(chan);
2782 struct scatterlist *sg;
2783 unsigned long flags;
2784 int i;
2785 dma_addr_t addr;
2786
2787 if (unlikely(!pch || !sgl || !sg_len))
2788 return NULL;
2789
2790 addr = pch->fifo_addr;
2791
2792 first = NULL;
2793
2794 for_each_sg(sgl, sg, sg_len, i) {
2795
2796 desc = pl330_get_desc(pch);
2797 if (!desc) {
2798 struct dma_pl330_dmac *pdmac = pch->dmac;
2799
2800 dev_err(pch->dmac->pif.dev,
2801 "%s:%d Unable to fetch desc\n",
2802 __func__, __LINE__);
2803 if (!first)
2804 return NULL;
2805
2806 spin_lock_irqsave(&pdmac->pool_lock, flags);
2807
2808 while (!list_empty(&first->node)) {
2809 desc = list_entry(first->node.next,
2810 struct dma_pl330_desc, node);
2811 list_move_tail(&desc->node, &pdmac->desc_pool);
2812 }
2813
2814 list_move_tail(&first->node, &pdmac->desc_pool);
2815
2816 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2817
2818 return NULL;
2819 }
2820
2821 if (!first)
2822 first = desc;
2823 else
2824 list_add_tail(&desc->node, &first->node);
2825
2826 if (direction == DMA_MEM_TO_DEV) {
2827 desc->rqcfg.src_inc = 1;
2828 desc->rqcfg.dst_inc = 0;
2829 desc->req.rqtype = MEMTODEV;
2830 fill_px(&desc->px,
2831 addr, sg_dma_address(sg), sg_dma_len(sg));
2832 } else {
2833 desc->rqcfg.src_inc = 0;
2834 desc->rqcfg.dst_inc = 1;
2835 desc->req.rqtype = DEVTOMEM;
2836 fill_px(&desc->px,
2837 sg_dma_address(sg), addr, sg_dma_len(sg));
2838 }
2839
2840 desc->rqcfg.brst_size = pch->burst_sz;
2841 desc->rqcfg.brst_len = 1;
2842 }
2843
2844 /* Return the last desc in the chain */
2845 desc->txd.flags = flg;
2846 return &desc->txd;
2847 }
2848
2849 static irqreturn_t pl330_irq_handler(int irq, void *data)
2850 {
2851 if (pl330_update(data))
2852 return IRQ_HANDLED;
2853 else
2854 return IRQ_NONE;
2855 }
2856
2857 static int __devinit
2858 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2859 {
2860 struct dma_pl330_platdata *pdat;
2861 struct dma_pl330_dmac *pdmac;
2862 struct dma_pl330_chan *pch;
2863 struct pl330_info *pi;
2864 struct dma_device *pd;
2865 struct resource *res;
2866 int i, ret, irq;
2867 int num_chan;
2868
2869 pdat = adev->dev.platform_data;
2870
2871 /* Allocate a new DMAC and its Channels */
2872 pdmac = kzalloc(sizeof(*pdmac), GFP_KERNEL);
2873 if (!pdmac) {
2874 dev_err(&adev->dev, "unable to allocate mem\n");
2875 return -ENOMEM;
2876 }
2877
2878 pi = &pdmac->pif;
2879 pi->dev = &adev->dev;
2880 pi->pl330_data = NULL;
2881 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2882
2883 res = &adev->res;
2884 request_mem_region(res->start, resource_size(res), "dma-pl330");
2885
2886 pi->base = ioremap(res->start, resource_size(res));
2887 if (!pi->base) {
2888 ret = -ENXIO;
2889 goto probe_err1;
2890 }
2891
2892 pdmac->clk = clk_get(&adev->dev, "dma");
2893 if (IS_ERR(pdmac->clk)) {
2894 dev_err(&adev->dev, "Cannot get operation clock.\n");
2895 ret = -EINVAL;
2896 goto probe_err2;
2897 }
2898
2899 amba_set_drvdata(adev, pdmac);
2900
2901 #ifndef CONFIG_PM_RUNTIME
2902 /* enable dma clk */
2903 clk_enable(pdmac->clk);
2904 #endif
2905
2906 irq = adev->irq[0];
2907 ret = request_irq(irq, pl330_irq_handler, 0,
2908 dev_name(&adev->dev), pi);
2909 if (ret)
2910 goto probe_err3;
2911
2912 ret = pl330_add(pi);
2913 if (ret)
2914 goto probe_err4;
2915
2916 INIT_LIST_HEAD(&pdmac->desc_pool);
2917 spin_lock_init(&pdmac->pool_lock);
2918
2919 /* Create a descriptor pool of default size */
2920 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2921 dev_warn(&adev->dev, "unable to allocate desc\n");
2922
2923 pd = &pdmac->ddma;
2924 INIT_LIST_HEAD(&pd->channels);
2925
2926 /* Initialize channel parameters */
2927 num_chan = max(pdat ? pdat->nr_valid_peri : (u8)pi->pcfg.num_peri,
2928 (u8)pi->pcfg.num_chan);
2929 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2930
2931 for (i = 0; i < num_chan; i++) {
2932 pch = &pdmac->peripherals[i];
2933 if (!adev->dev.of_node)
2934 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2935 else
2936 pch->chan.private = adev->dev.of_node;
2937
2938 INIT_LIST_HEAD(&pch->work_list);
2939 spin_lock_init(&pch->lock);
2940 pch->pl330_chid = NULL;
2941 pch->chan.device = pd;
2942 pch->dmac = pdmac;
2943
2944 /* Add the channel to the DMAC list */
2945 list_add_tail(&pch->chan.device_node, &pd->channels);
2946 }
2947
2948 pd->dev = &adev->dev;
2949 if (pdat) {
2950 pd->cap_mask = pdat->cap_mask;
2951 } else {
2952 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2953 if (pi->pcfg.num_peri) {
2954 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2955 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2956 }
2957 }
2958
2959 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2960 pd->device_free_chan_resources = pl330_free_chan_resources;
2961 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2962 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2963 pd->device_tx_status = pl330_tx_status;
2964 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2965 pd->device_control = pl330_control;
2966 pd->device_issue_pending = pl330_issue_pending;
2967
2968 ret = dma_async_device_register(pd);
2969 if (ret) {
2970 dev_err(&adev->dev, "unable to register DMAC\n");
2971 goto probe_err5;
2972 }
2973
2974 dev_info(&adev->dev,
2975 "Loaded driver for PL330 DMAC-%d\n", adev->periphid);
2976 dev_info(&adev->dev,
2977 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2978 pi->pcfg.data_buf_dep,
2979 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
2980 pi->pcfg.num_peri, pi->pcfg.num_events);
2981
2982 return 0;
2983
2984 probe_err5:
2985 pl330_del(pi);
2986 probe_err4:
2987 free_irq(irq, pi);
2988 probe_err3:
2989 #ifndef CONFIG_PM_RUNTIME
2990 clk_disable(pdmac->clk);
2991 #endif
2992 clk_put(pdmac->clk);
2993 probe_err2:
2994 iounmap(pi->base);
2995 probe_err1:
2996 release_mem_region(res->start, resource_size(res));
2997 kfree(pdmac);
2998
2999 return ret;
3000 }
3001
3002 static int __devexit pl330_remove(struct amba_device *adev)
3003 {
3004 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3005 struct dma_pl330_chan *pch, *_p;
3006 struct pl330_info *pi;
3007 struct resource *res;
3008 int irq;
3009
3010 if (!pdmac)
3011 return 0;
3012
3013 amba_set_drvdata(adev, NULL);
3014
3015 /* Idle the DMAC */
3016 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3017 chan.device_node) {
3018
3019 /* Remove the channel */
3020 list_del(&pch->chan.device_node);
3021
3022 /* Flush the channel */
3023 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3024 pl330_free_chan_resources(&pch->chan);
3025 }
3026
3027 pi = &pdmac->pif;
3028
3029 pl330_del(pi);
3030
3031 irq = adev->irq[0];
3032 free_irq(irq, pi);
3033
3034 iounmap(pi->base);
3035
3036 res = &adev->res;
3037 release_mem_region(res->start, resource_size(res));
3038
3039 #ifndef CONFIG_PM_RUNTIME
3040 clk_disable(pdmac->clk);
3041 #endif
3042
3043 kfree(pdmac);
3044
3045 return 0;
3046 }
3047
3048 static struct amba_id pl330_ids[] = {
3049 {
3050 .id = 0x00041330,
3051 .mask = 0x000fffff,
3052 },
3053 { 0, 0 },
3054 };
3055
3056 MODULE_DEVICE_TABLE(amba, pl330_ids);
3057
3058 #ifdef CONFIG_PM_RUNTIME
3059 static int pl330_runtime_suspend(struct device *dev)
3060 {
3061 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev);
3062
3063 if (!pdmac) {
3064 dev_err(dev, "failed to get dmac\n");
3065 return -ENODEV;
3066 }
3067
3068 clk_disable(pdmac->clk);
3069
3070 return 0;
3071 }
3072
3073 static int pl330_runtime_resume(struct device *dev)
3074 {
3075 struct dma_pl330_dmac *pdmac = dev_get_drvdata(dev);
3076
3077 if (!pdmac) {
3078 dev_err(dev, "failed to get dmac\n");
3079 return -ENODEV;
3080 }
3081
3082 clk_enable(pdmac->clk);
3083
3084 return 0;
3085 }
3086 #else
3087 #define pl330_runtime_suspend NULL
3088 #define pl330_runtime_resume NULL
3089 #endif /* CONFIG_PM_RUNTIME */
3090
3091 static const struct dev_pm_ops pl330_pm_ops = {
3092 .runtime_suspend = pl330_runtime_suspend,
3093 .runtime_resume = pl330_runtime_resume,
3094 };
3095
3096 static struct amba_driver pl330_driver = {
3097 .drv = {
3098 .owner = THIS_MODULE,
3099 .name = "dma-pl330",
3100 .pm = &pl330_pm_ops,
3101 },
3102 .id_table = pl330_ids,
3103 .probe = pl330_probe,
3104 .remove = pl330_remove,
3105 };
3106
3107 static int __init pl330_init(void)
3108 {
3109 return amba_driver_register(&pl330_driver);
3110 }
3111 module_init(pl330_init);
3112
3113 static void __exit pl330_exit(void)
3114 {
3115 amba_driver_unregister(&pl330_driver);
3116 return;
3117 }
3118 module_exit(pl330_exit);
3119
3120 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3121 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3122 MODULE_LICENSE("GPL");
This page took 0.088413 seconds and 4 git commands to generate.