ARC: support HIGHMEM even without PAE40
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
1 /*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34
35 struct i915_mm_struct {
36 struct mm_struct *mm;
37 struct drm_device *dev;
38 struct i915_mmu_notifier *mn;
39 struct hlist_node node;
40 struct kref kref;
41 struct work_struct work;
42 };
43
44 #if defined(CONFIG_MMU_NOTIFIER)
45 #include <linux/interval_tree.h>
46
47 struct i915_mmu_notifier {
48 spinlock_t lock;
49 struct hlist_node node;
50 struct mmu_notifier mn;
51 struct rb_root objects;
52 };
53
54 struct i915_mmu_object {
55 struct i915_mmu_notifier *mn;
56 struct drm_i915_gem_object *obj;
57 struct interval_tree_node it;
58 struct list_head link;
59 struct work_struct work;
60 bool attached;
61 };
62
63 static void cancel_userptr(struct work_struct *work)
64 {
65 struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
66 struct drm_i915_gem_object *obj = mo->obj;
67 struct drm_device *dev = obj->base.dev;
68
69 mutex_lock(&dev->struct_mutex);
70 /* Cancel any active worker and force us to re-evaluate gup */
71 obj->userptr.work = NULL;
72
73 if (obj->pages != NULL) {
74 struct drm_i915_private *dev_priv = to_i915(dev);
75 struct i915_vma *vma, *tmp;
76 bool was_interruptible;
77
78 was_interruptible = dev_priv->mm.interruptible;
79 dev_priv->mm.interruptible = false;
80
81 list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link) {
82 int ret = i915_vma_unbind(vma);
83 WARN_ON(ret && ret != -EIO);
84 }
85 WARN_ON(i915_gem_object_put_pages(obj));
86
87 dev_priv->mm.interruptible = was_interruptible;
88 }
89
90 drm_gem_object_unreference(&obj->base);
91 mutex_unlock(&dev->struct_mutex);
92 }
93
94 static void add_object(struct i915_mmu_object *mo)
95 {
96 if (mo->attached)
97 return;
98
99 interval_tree_insert(&mo->it, &mo->mn->objects);
100 mo->attached = true;
101 }
102
103 static void del_object(struct i915_mmu_object *mo)
104 {
105 if (!mo->attached)
106 return;
107
108 interval_tree_remove(&mo->it, &mo->mn->objects);
109 mo->attached = false;
110 }
111
112 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
113 struct mm_struct *mm,
114 unsigned long start,
115 unsigned long end)
116 {
117 struct i915_mmu_notifier *mn =
118 container_of(_mn, struct i915_mmu_notifier, mn);
119 struct i915_mmu_object *mo;
120 struct interval_tree_node *it;
121 LIST_HEAD(cancelled);
122
123 if (RB_EMPTY_ROOT(&mn->objects))
124 return;
125
126 /* interval ranges are inclusive, but invalidate range is exclusive */
127 end--;
128
129 spin_lock(&mn->lock);
130 it = interval_tree_iter_first(&mn->objects, start, end);
131 while (it) {
132 /* The mmu_object is released late when destroying the
133 * GEM object so it is entirely possible to gain a
134 * reference on an object in the process of being freed
135 * since our serialisation is via the spinlock and not
136 * the struct_mutex - and consequently use it after it
137 * is freed and then double free it. To prevent that
138 * use-after-free we only acquire a reference on the
139 * object if it is not in the process of being destroyed.
140 */
141 mo = container_of(it, struct i915_mmu_object, it);
142 if (kref_get_unless_zero(&mo->obj->base.refcount))
143 schedule_work(&mo->work);
144
145 list_add(&mo->link, &cancelled);
146 it = interval_tree_iter_next(it, start, end);
147 }
148 list_for_each_entry(mo, &cancelled, link)
149 del_object(mo);
150 spin_unlock(&mn->lock);
151 }
152
153 static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
154 .invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
155 };
156
157 static struct i915_mmu_notifier *
158 i915_mmu_notifier_create(struct mm_struct *mm)
159 {
160 struct i915_mmu_notifier *mn;
161 int ret;
162
163 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
164 if (mn == NULL)
165 return ERR_PTR(-ENOMEM);
166
167 spin_lock_init(&mn->lock);
168 mn->mn.ops = &i915_gem_userptr_notifier;
169 mn->objects = RB_ROOT;
170
171 /* Protected by mmap_sem (write-lock) */
172 ret = __mmu_notifier_register(&mn->mn, mm);
173 if (ret) {
174 kfree(mn);
175 return ERR_PTR(ret);
176 }
177
178 return mn;
179 }
180
181 static void
182 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
183 {
184 struct i915_mmu_object *mo;
185
186 mo = obj->userptr.mmu_object;
187 if (mo == NULL)
188 return;
189
190 spin_lock(&mo->mn->lock);
191 del_object(mo);
192 spin_unlock(&mo->mn->lock);
193 kfree(mo);
194
195 obj->userptr.mmu_object = NULL;
196 }
197
198 static struct i915_mmu_notifier *
199 i915_mmu_notifier_find(struct i915_mm_struct *mm)
200 {
201 struct i915_mmu_notifier *mn = mm->mn;
202
203 mn = mm->mn;
204 if (mn)
205 return mn;
206
207 down_write(&mm->mm->mmap_sem);
208 mutex_lock(&to_i915(mm->dev)->mm_lock);
209 if ((mn = mm->mn) == NULL) {
210 mn = i915_mmu_notifier_create(mm->mm);
211 if (!IS_ERR(mn))
212 mm->mn = mn;
213 }
214 mutex_unlock(&to_i915(mm->dev)->mm_lock);
215 up_write(&mm->mm->mmap_sem);
216
217 return mn;
218 }
219
220 static int
221 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
222 unsigned flags)
223 {
224 struct i915_mmu_notifier *mn;
225 struct i915_mmu_object *mo;
226
227 if (flags & I915_USERPTR_UNSYNCHRONIZED)
228 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
229
230 if (WARN_ON(obj->userptr.mm == NULL))
231 return -EINVAL;
232
233 mn = i915_mmu_notifier_find(obj->userptr.mm);
234 if (IS_ERR(mn))
235 return PTR_ERR(mn);
236
237 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
238 if (mo == NULL)
239 return -ENOMEM;
240
241 mo->mn = mn;
242 mo->obj = obj;
243 mo->it.start = obj->userptr.ptr;
244 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
245 INIT_WORK(&mo->work, cancel_userptr);
246
247 obj->userptr.mmu_object = mo;
248 return 0;
249 }
250
251 static void
252 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
253 struct mm_struct *mm)
254 {
255 if (mn == NULL)
256 return;
257
258 mmu_notifier_unregister(&mn->mn, mm);
259 kfree(mn);
260 }
261
262 #else
263
264 static void
265 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
266 {
267 }
268
269 static int
270 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
271 unsigned flags)
272 {
273 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
274 return -ENODEV;
275
276 if (!capable(CAP_SYS_ADMIN))
277 return -EPERM;
278
279 return 0;
280 }
281
282 static void
283 i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
284 struct mm_struct *mm)
285 {
286 }
287
288 #endif
289
290 static struct i915_mm_struct *
291 __i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
292 {
293 struct i915_mm_struct *mm;
294
295 /* Protected by dev_priv->mm_lock */
296 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
297 if (mm->mm == real)
298 return mm;
299
300 return NULL;
301 }
302
303 static int
304 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
305 {
306 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
307 struct i915_mm_struct *mm;
308 int ret = 0;
309
310 /* During release of the GEM object we hold the struct_mutex. This
311 * precludes us from calling mmput() at that time as that may be
312 * the last reference and so call exit_mmap(). exit_mmap() will
313 * attempt to reap the vma, and if we were holding a GTT mmap
314 * would then call drm_gem_vm_close() and attempt to reacquire
315 * the struct mutex. So in order to avoid that recursion, we have
316 * to defer releasing the mm reference until after we drop the
317 * struct_mutex, i.e. we need to schedule a worker to do the clean
318 * up.
319 */
320 mutex_lock(&dev_priv->mm_lock);
321 mm = __i915_mm_struct_find(dev_priv, current->mm);
322 if (mm == NULL) {
323 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
324 if (mm == NULL) {
325 ret = -ENOMEM;
326 goto out;
327 }
328
329 kref_init(&mm->kref);
330 mm->dev = obj->base.dev;
331
332 mm->mm = current->mm;
333 atomic_inc(&current->mm->mm_count);
334
335 mm->mn = NULL;
336
337 /* Protected by dev_priv->mm_lock */
338 hash_add(dev_priv->mm_structs,
339 &mm->node, (unsigned long)mm->mm);
340 } else
341 kref_get(&mm->kref);
342
343 obj->userptr.mm = mm;
344 out:
345 mutex_unlock(&dev_priv->mm_lock);
346 return ret;
347 }
348
349 static void
350 __i915_mm_struct_free__worker(struct work_struct *work)
351 {
352 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
353 i915_mmu_notifier_free(mm->mn, mm->mm);
354 mmdrop(mm->mm);
355 kfree(mm);
356 }
357
358 static void
359 __i915_mm_struct_free(struct kref *kref)
360 {
361 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
362
363 /* Protected by dev_priv->mm_lock */
364 hash_del(&mm->node);
365 mutex_unlock(&to_i915(mm->dev)->mm_lock);
366
367 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
368 schedule_work(&mm->work);
369 }
370
371 static void
372 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
373 {
374 if (obj->userptr.mm == NULL)
375 return;
376
377 kref_put_mutex(&obj->userptr.mm->kref,
378 __i915_mm_struct_free,
379 &to_i915(obj->base.dev)->mm_lock);
380 obj->userptr.mm = NULL;
381 }
382
383 struct get_pages_work {
384 struct work_struct work;
385 struct drm_i915_gem_object *obj;
386 struct task_struct *task;
387 };
388
389 #if IS_ENABLED(CONFIG_SWIOTLB)
390 #define swiotlb_active() swiotlb_nr_tbl()
391 #else
392 #define swiotlb_active() 0
393 #endif
394
395 static int
396 st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
397 {
398 struct scatterlist *sg;
399 int ret, n;
400
401 *st = kmalloc(sizeof(**st), GFP_KERNEL);
402 if (*st == NULL)
403 return -ENOMEM;
404
405 if (swiotlb_active()) {
406 ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
407 if (ret)
408 goto err;
409
410 for_each_sg((*st)->sgl, sg, num_pages, n)
411 sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
412 } else {
413 ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
414 0, num_pages << PAGE_SHIFT,
415 GFP_KERNEL);
416 if (ret)
417 goto err;
418 }
419
420 return 0;
421
422 err:
423 kfree(*st);
424 *st = NULL;
425 return ret;
426 }
427
428 static int
429 __i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
430 struct page **pvec, int num_pages)
431 {
432 int ret;
433
434 ret = st_set_pages(&obj->pages, pvec, num_pages);
435 if (ret)
436 return ret;
437
438 ret = i915_gem_gtt_prepare_object(obj);
439 if (ret) {
440 sg_free_table(obj->pages);
441 kfree(obj->pages);
442 obj->pages = NULL;
443 }
444
445 return ret;
446 }
447
448 static int
449 __i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
450 bool value)
451 {
452 int ret = 0;
453
454 /* During mm_invalidate_range we need to cancel any userptr that
455 * overlaps the range being invalidated. Doing so requires the
456 * struct_mutex, and that risks recursion. In order to cause
457 * recursion, the user must alias the userptr address space with
458 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
459 * to invalidate that mmaping, mm_invalidate_range is called with
460 * the userptr address *and* the struct_mutex held. To prevent that
461 * we set a flag under the i915_mmu_notifier spinlock to indicate
462 * whether this object is valid.
463 */
464 #if defined(CONFIG_MMU_NOTIFIER)
465 if (obj->userptr.mmu_object == NULL)
466 return 0;
467
468 spin_lock(&obj->userptr.mmu_object->mn->lock);
469 /* In order to serialise get_pages with an outstanding
470 * cancel_userptr, we must drop the struct_mutex and try again.
471 */
472 if (!value)
473 del_object(obj->userptr.mmu_object);
474 else if (!work_pending(&obj->userptr.mmu_object->work))
475 add_object(obj->userptr.mmu_object);
476 else
477 ret = -EAGAIN;
478 spin_unlock(&obj->userptr.mmu_object->mn->lock);
479 #endif
480
481 return ret;
482 }
483
484 static void
485 __i915_gem_userptr_get_pages_worker(struct work_struct *_work)
486 {
487 struct get_pages_work *work = container_of(_work, typeof(*work), work);
488 struct drm_i915_gem_object *obj = work->obj;
489 struct drm_device *dev = obj->base.dev;
490 const int npages = obj->base.size >> PAGE_SHIFT;
491 struct page **pvec;
492 int pinned, ret;
493
494 ret = -ENOMEM;
495 pinned = 0;
496
497 pvec = kmalloc(npages*sizeof(struct page *),
498 GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
499 if (pvec == NULL)
500 pvec = drm_malloc_ab(npages, sizeof(struct page *));
501 if (pvec != NULL) {
502 struct mm_struct *mm = obj->userptr.mm->mm;
503
504 down_read(&mm->mmap_sem);
505 while (pinned < npages) {
506 ret = get_user_pages_remote(work->task, mm,
507 obj->userptr.ptr + pinned * PAGE_SIZE,
508 npages - pinned,
509 !obj->userptr.read_only, 0,
510 pvec + pinned, NULL);
511 if (ret < 0)
512 break;
513
514 pinned += ret;
515 }
516 up_read(&mm->mmap_sem);
517 }
518
519 mutex_lock(&dev->struct_mutex);
520 if (obj->userptr.work == &work->work) {
521 if (pinned == npages) {
522 ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
523 if (ret == 0) {
524 list_add_tail(&obj->global_list,
525 &to_i915(dev)->mm.unbound_list);
526 obj->get_page.sg = obj->pages->sgl;
527 obj->get_page.last = 0;
528 pinned = 0;
529 }
530 }
531 obj->userptr.work = ERR_PTR(ret);
532 if (ret)
533 __i915_gem_userptr_set_active(obj, false);
534 }
535
536 obj->userptr.workers--;
537 drm_gem_object_unreference(&obj->base);
538 mutex_unlock(&dev->struct_mutex);
539
540 release_pages(pvec, pinned, 0);
541 drm_free_large(pvec);
542
543 put_task_struct(work->task);
544 kfree(work);
545 }
546
547 static int
548 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
549 bool *active)
550 {
551 struct get_pages_work *work;
552
553 /* Spawn a worker so that we can acquire the
554 * user pages without holding our mutex. Access
555 * to the user pages requires mmap_sem, and we have
556 * a strict lock ordering of mmap_sem, struct_mutex -
557 * we already hold struct_mutex here and so cannot
558 * call gup without encountering a lock inversion.
559 *
560 * Userspace will keep on repeating the operation
561 * (thanks to EAGAIN) until either we hit the fast
562 * path or the worker completes. If the worker is
563 * cancelled or superseded, the task is still run
564 * but the results ignored. (This leads to
565 * complications that we may have a stray object
566 * refcount that we need to be wary of when
567 * checking for existing objects during creation.)
568 * If the worker encounters an error, it reports
569 * that error back to this function through
570 * obj->userptr.work = ERR_PTR.
571 */
572 if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
573 return -EAGAIN;
574
575 work = kmalloc(sizeof(*work), GFP_KERNEL);
576 if (work == NULL)
577 return -ENOMEM;
578
579 obj->userptr.work = &work->work;
580 obj->userptr.workers++;
581
582 work->obj = obj;
583 drm_gem_object_reference(&obj->base);
584
585 work->task = current;
586 get_task_struct(work->task);
587
588 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
589 schedule_work(&work->work);
590
591 *active = true;
592 return -EAGAIN;
593 }
594
595 static int
596 i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
597 {
598 const int num_pages = obj->base.size >> PAGE_SHIFT;
599 struct page **pvec;
600 int pinned, ret;
601 bool active;
602
603 /* If userspace should engineer that these pages are replaced in
604 * the vma between us binding this page into the GTT and completion
605 * of rendering... Their loss. If they change the mapping of their
606 * pages they need to create a new bo to point to the new vma.
607 *
608 * However, that still leaves open the possibility of the vma
609 * being copied upon fork. Which falls under the same userspace
610 * synchronisation issue as a regular bo, except that this time
611 * the process may not be expecting that a particular piece of
612 * memory is tied to the GPU.
613 *
614 * Fortunately, we can hook into the mmu_notifier in order to
615 * discard the page references prior to anything nasty happening
616 * to the vma (discard or cloning) which should prevent the more
617 * egregious cases from causing harm.
618 */
619 if (IS_ERR(obj->userptr.work)) {
620 /* active flag will have been dropped already by the worker */
621 ret = PTR_ERR(obj->userptr.work);
622 obj->userptr.work = NULL;
623 return ret;
624 }
625 if (obj->userptr.work)
626 /* active flag should still be held for the pending work */
627 return -EAGAIN;
628
629 /* Let the mmu-notifier know that we have begun and need cancellation */
630 ret = __i915_gem_userptr_set_active(obj, true);
631 if (ret)
632 return ret;
633
634 pvec = NULL;
635 pinned = 0;
636 if (obj->userptr.mm->mm == current->mm) {
637 pvec = kmalloc(num_pages*sizeof(struct page *),
638 GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
639 if (pvec == NULL) {
640 pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
641 if (pvec == NULL) {
642 __i915_gem_userptr_set_active(obj, false);
643 return -ENOMEM;
644 }
645 }
646
647 pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
648 !obj->userptr.read_only, pvec);
649 }
650
651 active = false;
652 if (pinned < 0)
653 ret = pinned, pinned = 0;
654 else if (pinned < num_pages)
655 ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
656 else
657 ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
658 if (ret) {
659 __i915_gem_userptr_set_active(obj, active);
660 release_pages(pvec, pinned, 0);
661 }
662 drm_free_large(pvec);
663 return ret;
664 }
665
666 static void
667 i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
668 {
669 struct sg_page_iter sg_iter;
670
671 BUG_ON(obj->userptr.work != NULL);
672 __i915_gem_userptr_set_active(obj, false);
673
674 if (obj->madv != I915_MADV_WILLNEED)
675 obj->dirty = 0;
676
677 i915_gem_gtt_finish_object(obj);
678
679 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
680 struct page *page = sg_page_iter_page(&sg_iter);
681
682 if (obj->dirty)
683 set_page_dirty(page);
684
685 mark_page_accessed(page);
686 put_page(page);
687 }
688 obj->dirty = 0;
689
690 sg_free_table(obj->pages);
691 kfree(obj->pages);
692 }
693
694 static void
695 i915_gem_userptr_release(struct drm_i915_gem_object *obj)
696 {
697 i915_gem_userptr_release__mmu_notifier(obj);
698 i915_gem_userptr_release__mm_struct(obj);
699 }
700
701 static int
702 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
703 {
704 if (obj->userptr.mmu_object)
705 return 0;
706
707 return i915_gem_userptr_init__mmu_notifier(obj, 0);
708 }
709
710 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
711 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
712 .get_pages = i915_gem_userptr_get_pages,
713 .put_pages = i915_gem_userptr_put_pages,
714 .dmabuf_export = i915_gem_userptr_dmabuf_export,
715 .release = i915_gem_userptr_release,
716 };
717
718 /**
719 * Creates a new mm object that wraps some normal memory from the process
720 * context - user memory.
721 *
722 * We impose several restrictions upon the memory being mapped
723 * into the GPU.
724 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
725 * 2. It must be normal system memory, not a pointer into another map of IO
726 * space (e.g. it must not be a GTT mmapping of another object).
727 * 3. We only allow a bo as large as we could in theory map into the GTT,
728 * that is we limit the size to the total size of the GTT.
729 * 4. The bo is marked as being snoopable. The backing pages are left
730 * accessible directly by the CPU, but reads and writes by the GPU may
731 * incur the cost of a snoop (unless you have an LLC architecture).
732 *
733 * Synchronisation between multiple users and the GPU is left to userspace
734 * through the normal set-domain-ioctl. The kernel will enforce that the
735 * GPU relinquishes the VMA before it is returned back to the system
736 * i.e. upon free(), munmap() or process termination. However, the userspace
737 * malloc() library may not immediately relinquish the VMA after free() and
738 * instead reuse it whilst the GPU is still reading and writing to the VMA.
739 * Caveat emptor.
740 *
741 * Also note, that the object created here is not currently a "first class"
742 * object, in that several ioctls are banned. These are the CPU access
743 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
744 * direct access via your pointer rather than use those ioctls. Another
745 * restriction is that we do not allow userptr surfaces to be pinned to the
746 * hardware and so we reject any attempt to create a framebuffer out of a
747 * userptr.
748 *
749 * If you think this is a good interface to use to pass GPU memory between
750 * drivers, please use dma-buf instead. In fact, wherever possible use
751 * dma-buf instead.
752 */
753 int
754 i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
755 {
756 struct drm_i915_gem_userptr *args = data;
757 struct drm_i915_gem_object *obj;
758 int ret;
759 u32 handle;
760
761 if (args->flags & ~(I915_USERPTR_READ_ONLY |
762 I915_USERPTR_UNSYNCHRONIZED))
763 return -EINVAL;
764
765 if (offset_in_page(args->user_ptr | args->user_size))
766 return -EINVAL;
767
768 if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
769 (char __user *)(unsigned long)args->user_ptr, args->user_size))
770 return -EFAULT;
771
772 if (args->flags & I915_USERPTR_READ_ONLY) {
773 /* On almost all of the current hw, we cannot tell the GPU that a
774 * page is readonly, so this is just a placeholder in the uAPI.
775 */
776 return -ENODEV;
777 }
778
779 obj = i915_gem_object_alloc(dev);
780 if (obj == NULL)
781 return -ENOMEM;
782
783 drm_gem_private_object_init(dev, &obj->base, args->user_size);
784 i915_gem_object_init(obj, &i915_gem_userptr_ops);
785 obj->cache_level = I915_CACHE_LLC;
786 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
787 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
788
789 obj->userptr.ptr = args->user_ptr;
790 obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
791
792 /* And keep a pointer to the current->mm for resolving the user pages
793 * at binding. This means that we need to hook into the mmu_notifier
794 * in order to detect if the mmu is destroyed.
795 */
796 ret = i915_gem_userptr_init__mm_struct(obj);
797 if (ret == 0)
798 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
799 if (ret == 0)
800 ret = drm_gem_handle_create(file, &obj->base, &handle);
801
802 /* drop reference from allocate - handle holds it now */
803 drm_gem_object_unreference_unlocked(&obj->base);
804 if (ret)
805 return ret;
806
807 args->handle = handle;
808 return 0;
809 }
810
811 int
812 i915_gem_init_userptr(struct drm_device *dev)
813 {
814 struct drm_i915_private *dev_priv = to_i915(dev);
815 mutex_init(&dev_priv->mm_lock);
816 hash_init(dev_priv->mm_structs);
817 return 0;
818 }
This page took 0.047271 seconds and 5 git commands to generate.