Merge tag 'drm-intel-fixes-2016-05-02' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ddi.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30
31 struct ddi_buf_trans {
32 u32 trans1; /* balance leg enable, de-emph level */
33 u32 trans2; /* vref sel, vswing */
34 u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
35 };
36
37 /* HDMI/DVI modes ignore everything but the last 2 items. So we share
38 * them for both DP and FDI transports, allowing those ports to
39 * automatically adapt to HDMI connections as well
40 */
41 static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
42 { 0x00FFFFFF, 0x0006000E, 0x0 },
43 { 0x00D75FFF, 0x0005000A, 0x0 },
44 { 0x00C30FFF, 0x00040006, 0x0 },
45 { 0x80AAAFFF, 0x000B0000, 0x0 },
46 { 0x00FFFFFF, 0x0005000A, 0x0 },
47 { 0x00D75FFF, 0x000C0004, 0x0 },
48 { 0x80C30FFF, 0x000B0000, 0x0 },
49 { 0x00FFFFFF, 0x00040006, 0x0 },
50 { 0x80D75FFF, 0x000B0000, 0x0 },
51 };
52
53 static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
54 { 0x00FFFFFF, 0x0007000E, 0x0 },
55 { 0x00D75FFF, 0x000F000A, 0x0 },
56 { 0x00C30FFF, 0x00060006, 0x0 },
57 { 0x00AAAFFF, 0x001E0000, 0x0 },
58 { 0x00FFFFFF, 0x000F000A, 0x0 },
59 { 0x00D75FFF, 0x00160004, 0x0 },
60 { 0x00C30FFF, 0x001E0000, 0x0 },
61 { 0x00FFFFFF, 0x00060006, 0x0 },
62 { 0x00D75FFF, 0x001E0000, 0x0 },
63 };
64
65 static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
66 /* Idx NT mV d T mV d db */
67 { 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
68 { 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
69 { 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
70 { 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
71 { 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
72 { 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
73 { 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
74 { 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
75 { 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
76 { 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
77 { 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
78 { 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
79 };
80
81 static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
82 { 0x00FFFFFF, 0x00000012, 0x0 },
83 { 0x00EBAFFF, 0x00020011, 0x0 },
84 { 0x00C71FFF, 0x0006000F, 0x0 },
85 { 0x00AAAFFF, 0x000E000A, 0x0 },
86 { 0x00FFFFFF, 0x00020011, 0x0 },
87 { 0x00DB6FFF, 0x0005000F, 0x0 },
88 { 0x00BEEFFF, 0x000A000C, 0x0 },
89 { 0x00FFFFFF, 0x0005000F, 0x0 },
90 { 0x00DB6FFF, 0x000A000C, 0x0 },
91 };
92
93 static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
94 { 0x00FFFFFF, 0x0007000E, 0x0 },
95 { 0x00D75FFF, 0x000E000A, 0x0 },
96 { 0x00BEFFFF, 0x00140006, 0x0 },
97 { 0x80B2CFFF, 0x001B0002, 0x0 },
98 { 0x00FFFFFF, 0x000E000A, 0x0 },
99 { 0x00DB6FFF, 0x00160005, 0x0 },
100 { 0x80C71FFF, 0x001A0002, 0x0 },
101 { 0x00F7DFFF, 0x00180004, 0x0 },
102 { 0x80D75FFF, 0x001B0002, 0x0 },
103 };
104
105 static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
106 { 0x00FFFFFF, 0x0001000E, 0x0 },
107 { 0x00D75FFF, 0x0004000A, 0x0 },
108 { 0x00C30FFF, 0x00070006, 0x0 },
109 { 0x00AAAFFF, 0x000C0000, 0x0 },
110 { 0x00FFFFFF, 0x0004000A, 0x0 },
111 { 0x00D75FFF, 0x00090004, 0x0 },
112 { 0x00C30FFF, 0x000C0000, 0x0 },
113 { 0x00FFFFFF, 0x00070006, 0x0 },
114 { 0x00D75FFF, 0x000C0000, 0x0 },
115 };
116
117 static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
118 /* Idx NT mV d T mV df db */
119 { 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
120 { 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
121 { 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
122 { 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
123 { 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
124 { 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
125 { 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
126 { 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
127 { 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
128 { 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
129 };
130
131 /* Skylake H and S */
132 static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
133 { 0x00002016, 0x000000A0, 0x0 },
134 { 0x00005012, 0x0000009B, 0x0 },
135 { 0x00007011, 0x00000088, 0x0 },
136 { 0x80009010, 0x000000C0, 0x1 },
137 { 0x00002016, 0x0000009B, 0x0 },
138 { 0x00005012, 0x00000088, 0x0 },
139 { 0x80007011, 0x000000C0, 0x1 },
140 { 0x00002016, 0x000000DF, 0x0 },
141 { 0x80005012, 0x000000C0, 0x1 },
142 };
143
144 /* Skylake U */
145 static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
146 { 0x0000201B, 0x000000A2, 0x0 },
147 { 0x00005012, 0x00000088, 0x0 },
148 { 0x80007011, 0x000000CD, 0x0 },
149 { 0x80009010, 0x000000C0, 0x1 },
150 { 0x0000201B, 0x0000009D, 0x0 },
151 { 0x80005012, 0x000000C0, 0x1 },
152 { 0x80007011, 0x000000C0, 0x1 },
153 { 0x00002016, 0x00000088, 0x0 },
154 { 0x80005012, 0x000000C0, 0x1 },
155 };
156
157 /* Skylake Y */
158 static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
159 { 0x00000018, 0x000000A2, 0x0 },
160 { 0x00005012, 0x00000088, 0x0 },
161 { 0x80007011, 0x000000CD, 0x0 },
162 { 0x80009010, 0x000000C0, 0x3 },
163 { 0x00000018, 0x0000009D, 0x0 },
164 { 0x80005012, 0x000000C0, 0x3 },
165 { 0x80007011, 0x000000C0, 0x3 },
166 { 0x00000018, 0x00000088, 0x0 },
167 { 0x80005012, 0x000000C0, 0x3 },
168 };
169
170 /*
171 * Skylake H and S
172 * eDP 1.4 low vswing translation parameters
173 */
174 static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
175 { 0x00000018, 0x000000A8, 0x0 },
176 { 0x00004013, 0x000000A9, 0x0 },
177 { 0x00007011, 0x000000A2, 0x0 },
178 { 0x00009010, 0x0000009C, 0x0 },
179 { 0x00000018, 0x000000A9, 0x0 },
180 { 0x00006013, 0x000000A2, 0x0 },
181 { 0x00007011, 0x000000A6, 0x0 },
182 { 0x00000018, 0x000000AB, 0x0 },
183 { 0x00007013, 0x0000009F, 0x0 },
184 { 0x00000018, 0x000000DF, 0x0 },
185 };
186
187 /*
188 * Skylake U
189 * eDP 1.4 low vswing translation parameters
190 */
191 static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
192 { 0x00000018, 0x000000A8, 0x0 },
193 { 0x00004013, 0x000000A9, 0x0 },
194 { 0x00007011, 0x000000A2, 0x0 },
195 { 0x00009010, 0x0000009C, 0x0 },
196 { 0x00000018, 0x000000A9, 0x0 },
197 { 0x00006013, 0x000000A2, 0x0 },
198 { 0x00007011, 0x000000A6, 0x0 },
199 { 0x00002016, 0x000000AB, 0x0 },
200 { 0x00005013, 0x0000009F, 0x0 },
201 { 0x00000018, 0x000000DF, 0x0 },
202 };
203
204 /*
205 * Skylake Y
206 * eDP 1.4 low vswing translation parameters
207 */
208 static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
209 { 0x00000018, 0x000000A8, 0x0 },
210 { 0x00004013, 0x000000AB, 0x0 },
211 { 0x00007011, 0x000000A4, 0x0 },
212 { 0x00009010, 0x000000DF, 0x0 },
213 { 0x00000018, 0x000000AA, 0x0 },
214 { 0x00006013, 0x000000A4, 0x0 },
215 { 0x00007011, 0x0000009D, 0x0 },
216 { 0x00000018, 0x000000A0, 0x0 },
217 { 0x00006012, 0x000000DF, 0x0 },
218 { 0x00000018, 0x0000008A, 0x0 },
219 };
220
221 /* Skylake U, H and S */
222 static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
223 { 0x00000018, 0x000000AC, 0x0 },
224 { 0x00005012, 0x0000009D, 0x0 },
225 { 0x00007011, 0x00000088, 0x0 },
226 { 0x00000018, 0x000000A1, 0x0 },
227 { 0x00000018, 0x00000098, 0x0 },
228 { 0x00004013, 0x00000088, 0x0 },
229 { 0x80006012, 0x000000CD, 0x1 },
230 { 0x00000018, 0x000000DF, 0x0 },
231 { 0x80003015, 0x000000CD, 0x1 }, /* Default */
232 { 0x80003015, 0x000000C0, 0x1 },
233 { 0x80000018, 0x000000C0, 0x1 },
234 };
235
236 /* Skylake Y */
237 static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
238 { 0x00000018, 0x000000A1, 0x0 },
239 { 0x00005012, 0x000000DF, 0x0 },
240 { 0x80007011, 0x000000CB, 0x3 },
241 { 0x00000018, 0x000000A4, 0x0 },
242 { 0x00000018, 0x0000009D, 0x0 },
243 { 0x00004013, 0x00000080, 0x0 },
244 { 0x80006013, 0x000000C0, 0x3 },
245 { 0x00000018, 0x0000008A, 0x0 },
246 { 0x80003015, 0x000000C0, 0x3 }, /* Default */
247 { 0x80003015, 0x000000C0, 0x3 },
248 { 0x80000018, 0x000000C0, 0x3 },
249 };
250
251 struct bxt_ddi_buf_trans {
252 u32 margin; /* swing value */
253 u32 scale; /* scale value */
254 u32 enable; /* scale enable */
255 u32 deemphasis;
256 bool default_index; /* true if the entry represents default value */
257 };
258
259 static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
260 /* Idx NT mV diff db */
261 { 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
262 { 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
263 { 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
264 { 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
265 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
266 { 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
267 { 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
268 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
269 { 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
270 { 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
271 };
272
273 static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
274 /* Idx NT mV diff db */
275 { 26, 0, 0, 128, false }, /* 0: 200 0 */
276 { 38, 0, 0, 112, false }, /* 1: 200 1.5 */
277 { 48, 0, 0, 96, false }, /* 2: 200 4 */
278 { 54, 0, 0, 69, false }, /* 3: 200 6 */
279 { 32, 0, 0, 128, false }, /* 4: 250 0 */
280 { 48, 0, 0, 104, false }, /* 5: 250 1.5 */
281 { 54, 0, 0, 85, false }, /* 6: 250 4 */
282 { 43, 0, 0, 128, false }, /* 7: 300 0 */
283 { 54, 0, 0, 101, false }, /* 8: 300 1.5 */
284 { 48, 0, 0, 128, false }, /* 9: 300 0 */
285 };
286
287 /* BSpec has 2 recommended values - entries 0 and 8.
288 * Using the entry with higher vswing.
289 */
290 static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
291 /* Idx NT mV diff db */
292 { 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
293 { 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
294 { 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
295 { 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
296 { 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
297 { 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
298 { 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
299 { 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
300 { 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
301 { 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
302 };
303
304 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
305 u32 level, enum port port, int type);
306
307 static void ddi_get_encoder_port(struct intel_encoder *intel_encoder,
308 struct intel_digital_port **dig_port,
309 enum port *port)
310 {
311 struct drm_encoder *encoder = &intel_encoder->base;
312
313 switch (intel_encoder->type) {
314 case INTEL_OUTPUT_DP_MST:
315 *dig_port = enc_to_mst(encoder)->primary;
316 *port = (*dig_port)->port;
317 break;
318 case INTEL_OUTPUT_DISPLAYPORT:
319 case INTEL_OUTPUT_EDP:
320 case INTEL_OUTPUT_HDMI:
321 case INTEL_OUTPUT_UNKNOWN:
322 *dig_port = enc_to_dig_port(encoder);
323 *port = (*dig_port)->port;
324 break;
325 case INTEL_OUTPUT_ANALOG:
326 *dig_port = NULL;
327 *port = PORT_E;
328 break;
329 default:
330 WARN(1, "Invalid DDI encoder type %d\n", intel_encoder->type);
331 break;
332 }
333 }
334
335 enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
336 {
337 struct intel_digital_port *dig_port;
338 enum port port;
339
340 ddi_get_encoder_port(intel_encoder, &dig_port, &port);
341
342 return port;
343 }
344
345 static const struct ddi_buf_trans *
346 skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
347 {
348 if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
349 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
350 return skl_y_ddi_translations_dp;
351 } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
352 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
353 return skl_u_ddi_translations_dp;
354 } else {
355 *n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
356 return skl_ddi_translations_dp;
357 }
358 }
359
360 static const struct ddi_buf_trans *
361 skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
362 {
363 if (dev_priv->edp_low_vswing) {
364 if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
365 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
366 return skl_y_ddi_translations_edp;
367 } else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
368 *n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
369 return skl_u_ddi_translations_edp;
370 } else {
371 *n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
372 return skl_ddi_translations_edp;
373 }
374 }
375
376 return skl_get_buf_trans_dp(dev_priv, n_entries);
377 }
378
379 static const struct ddi_buf_trans *
380 skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
381 {
382 if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
383 *n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
384 return skl_y_ddi_translations_hdmi;
385 } else {
386 *n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
387 return skl_ddi_translations_hdmi;
388 }
389 }
390
391 /*
392 * Starting with Haswell, DDI port buffers must be programmed with correct
393 * values in advance. The buffer values are different for FDI and DP modes,
394 * but the HDMI/DVI fields are shared among those. So we program the DDI
395 * in either FDI or DP modes only, as HDMI connections will work with both
396 * of those
397 */
398 void intel_prepare_ddi_buffer(struct intel_encoder *encoder)
399 {
400 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
401 u32 iboost_bit = 0;
402 int i, n_hdmi_entries, n_dp_entries, n_edp_entries, hdmi_default_entry,
403 size;
404 int hdmi_level;
405 enum port port;
406 const struct ddi_buf_trans *ddi_translations_fdi;
407 const struct ddi_buf_trans *ddi_translations_dp;
408 const struct ddi_buf_trans *ddi_translations_edp;
409 const struct ddi_buf_trans *ddi_translations_hdmi;
410 const struct ddi_buf_trans *ddi_translations;
411
412 port = intel_ddi_get_encoder_port(encoder);
413 hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
414
415 if (IS_BROXTON(dev_priv)) {
416 if (encoder->type != INTEL_OUTPUT_HDMI)
417 return;
418
419 /* Vswing programming for HDMI */
420 bxt_ddi_vswing_sequence(dev_priv, hdmi_level, port,
421 INTEL_OUTPUT_HDMI);
422 return;
423 }
424
425 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
426 ddi_translations_fdi = NULL;
427 ddi_translations_dp =
428 skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
429 ddi_translations_edp =
430 skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
431 ddi_translations_hdmi =
432 skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
433 hdmi_default_entry = 8;
434 /* If we're boosting the current, set bit 31 of trans1 */
435 if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level ||
436 dev_priv->vbt.ddi_port_info[port].dp_boost_level)
437 iboost_bit = 1<<31;
438
439 if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
440 port != PORT_A && port != PORT_E &&
441 n_edp_entries > 9))
442 n_edp_entries = 9;
443 } else if (IS_BROADWELL(dev_priv)) {
444 ddi_translations_fdi = bdw_ddi_translations_fdi;
445 ddi_translations_dp = bdw_ddi_translations_dp;
446
447 if (dev_priv->edp_low_vswing) {
448 ddi_translations_edp = bdw_ddi_translations_edp;
449 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
450 } else {
451 ddi_translations_edp = bdw_ddi_translations_dp;
452 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
453 }
454
455 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
456
457 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
458 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
459 hdmi_default_entry = 7;
460 } else if (IS_HASWELL(dev_priv)) {
461 ddi_translations_fdi = hsw_ddi_translations_fdi;
462 ddi_translations_dp = hsw_ddi_translations_dp;
463 ddi_translations_edp = hsw_ddi_translations_dp;
464 ddi_translations_hdmi = hsw_ddi_translations_hdmi;
465 n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
466 n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
467 hdmi_default_entry = 6;
468 } else {
469 WARN(1, "ddi translation table missing\n");
470 ddi_translations_edp = bdw_ddi_translations_dp;
471 ddi_translations_fdi = bdw_ddi_translations_fdi;
472 ddi_translations_dp = bdw_ddi_translations_dp;
473 ddi_translations_hdmi = bdw_ddi_translations_hdmi;
474 n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
475 n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
476 n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
477 hdmi_default_entry = 7;
478 }
479
480 switch (encoder->type) {
481 case INTEL_OUTPUT_EDP:
482 ddi_translations = ddi_translations_edp;
483 size = n_edp_entries;
484 break;
485 case INTEL_OUTPUT_DISPLAYPORT:
486 case INTEL_OUTPUT_HDMI:
487 ddi_translations = ddi_translations_dp;
488 size = n_dp_entries;
489 break;
490 case INTEL_OUTPUT_ANALOG:
491 ddi_translations = ddi_translations_fdi;
492 size = n_dp_entries;
493 break;
494 default:
495 BUG();
496 }
497
498 for (i = 0; i < size; i++) {
499 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
500 ddi_translations[i].trans1 | iboost_bit);
501 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
502 ddi_translations[i].trans2);
503 }
504
505 if (encoder->type != INTEL_OUTPUT_HDMI)
506 return;
507
508 /* Choose a good default if VBT is badly populated */
509 if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
510 hdmi_level >= n_hdmi_entries)
511 hdmi_level = hdmi_default_entry;
512
513 /* Entry 9 is for HDMI: */
514 I915_WRITE(DDI_BUF_TRANS_LO(port, i),
515 ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
516 I915_WRITE(DDI_BUF_TRANS_HI(port, i),
517 ddi_translations_hdmi[hdmi_level].trans2);
518 }
519
520 static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
521 enum port port)
522 {
523 i915_reg_t reg = DDI_BUF_CTL(port);
524 int i;
525
526 for (i = 0; i < 16; i++) {
527 udelay(1);
528 if (I915_READ(reg) & DDI_BUF_IS_IDLE)
529 return;
530 }
531 DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
532 }
533
534 /* Starting with Haswell, different DDI ports can work in FDI mode for
535 * connection to the PCH-located connectors. For this, it is necessary to train
536 * both the DDI port and PCH receiver for the desired DDI buffer settings.
537 *
538 * The recommended port to work in FDI mode is DDI E, which we use here. Also,
539 * please note that when FDI mode is active on DDI E, it shares 2 lines with
540 * DDI A (which is used for eDP)
541 */
542
543 void hsw_fdi_link_train(struct drm_crtc *crtc)
544 {
545 struct drm_device *dev = crtc->dev;
546 struct drm_i915_private *dev_priv = dev->dev_private;
547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
548 struct intel_encoder *encoder;
549 u32 temp, i, rx_ctl_val;
550
551 for_each_encoder_on_crtc(dev, crtc, encoder) {
552 WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
553 intel_prepare_ddi_buffer(encoder);
554 }
555
556 /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
557 * mode set "sequence for CRT port" document:
558 * - TP1 to TP2 time with the default value
559 * - FDI delay to 90h
560 *
561 * WaFDIAutoLinkSetTimingOverrride:hsw
562 */
563 I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
564 FDI_RX_PWRDN_LANE0_VAL(2) |
565 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
566
567 /* Enable the PCH Receiver FDI PLL */
568 rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
569 FDI_RX_PLL_ENABLE |
570 FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
571 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
572 POSTING_READ(FDI_RX_CTL(PIPE_A));
573 udelay(220);
574
575 /* Switch from Rawclk to PCDclk */
576 rx_ctl_val |= FDI_PCDCLK;
577 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
578
579 /* Configure Port Clock Select */
580 I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
581 WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
582
583 /* Start the training iterating through available voltages and emphasis,
584 * testing each value twice. */
585 for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
586 /* Configure DP_TP_CTL with auto-training */
587 I915_WRITE(DP_TP_CTL(PORT_E),
588 DP_TP_CTL_FDI_AUTOTRAIN |
589 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
590 DP_TP_CTL_LINK_TRAIN_PAT1 |
591 DP_TP_CTL_ENABLE);
592
593 /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
594 * DDI E does not support port reversal, the functionality is
595 * achieved on the PCH side in FDI_RX_CTL, so no need to set the
596 * port reversal bit */
597 I915_WRITE(DDI_BUF_CTL(PORT_E),
598 DDI_BUF_CTL_ENABLE |
599 ((intel_crtc->config->fdi_lanes - 1) << 1) |
600 DDI_BUF_TRANS_SELECT(i / 2));
601 POSTING_READ(DDI_BUF_CTL(PORT_E));
602
603 udelay(600);
604
605 /* Program PCH FDI Receiver TU */
606 I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
607
608 /* Enable PCH FDI Receiver with auto-training */
609 rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
610 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
611 POSTING_READ(FDI_RX_CTL(PIPE_A));
612
613 /* Wait for FDI receiver lane calibration */
614 udelay(30);
615
616 /* Unset FDI_RX_MISC pwrdn lanes */
617 temp = I915_READ(FDI_RX_MISC(PIPE_A));
618 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
619 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
620 POSTING_READ(FDI_RX_MISC(PIPE_A));
621
622 /* Wait for FDI auto training time */
623 udelay(5);
624
625 temp = I915_READ(DP_TP_STATUS(PORT_E));
626 if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
627 DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
628 break;
629 }
630
631 /*
632 * Leave things enabled even if we failed to train FDI.
633 * Results in less fireworks from the state checker.
634 */
635 if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
636 DRM_ERROR("FDI link training failed!\n");
637 break;
638 }
639
640 temp = I915_READ(DDI_BUF_CTL(PORT_E));
641 temp &= ~DDI_BUF_CTL_ENABLE;
642 I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
643 POSTING_READ(DDI_BUF_CTL(PORT_E));
644
645 /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
646 temp = I915_READ(DP_TP_CTL(PORT_E));
647 temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
648 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
649 I915_WRITE(DP_TP_CTL(PORT_E), temp);
650 POSTING_READ(DP_TP_CTL(PORT_E));
651
652 intel_wait_ddi_buf_idle(dev_priv, PORT_E);
653
654 rx_ctl_val &= ~FDI_RX_ENABLE;
655 I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
656 POSTING_READ(FDI_RX_CTL(PIPE_A));
657
658 /* Reset FDI_RX_MISC pwrdn lanes */
659 temp = I915_READ(FDI_RX_MISC(PIPE_A));
660 temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
661 temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
662 I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
663 POSTING_READ(FDI_RX_MISC(PIPE_A));
664 }
665
666 /* Enable normal pixel sending for FDI */
667 I915_WRITE(DP_TP_CTL(PORT_E),
668 DP_TP_CTL_FDI_AUTOTRAIN |
669 DP_TP_CTL_LINK_TRAIN_NORMAL |
670 DP_TP_CTL_ENHANCED_FRAME_ENABLE |
671 DP_TP_CTL_ENABLE);
672 }
673
674 void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
675 {
676 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
677 struct intel_digital_port *intel_dig_port =
678 enc_to_dig_port(&encoder->base);
679
680 intel_dp->DP = intel_dig_port->saved_port_bits |
681 DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
682 intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
683 }
684
685 static struct intel_encoder *
686 intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
687 {
688 struct drm_device *dev = crtc->dev;
689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
690 struct intel_encoder *intel_encoder, *ret = NULL;
691 int num_encoders = 0;
692
693 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
694 ret = intel_encoder;
695 num_encoders++;
696 }
697
698 if (num_encoders != 1)
699 WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
700 pipe_name(intel_crtc->pipe));
701
702 BUG_ON(ret == NULL);
703 return ret;
704 }
705
706 struct intel_encoder *
707 intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
708 {
709 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
710 struct intel_encoder *ret = NULL;
711 struct drm_atomic_state *state;
712 struct drm_connector *connector;
713 struct drm_connector_state *connector_state;
714 int num_encoders = 0;
715 int i;
716
717 state = crtc_state->base.state;
718
719 for_each_connector_in_state(state, connector, connector_state, i) {
720 if (connector_state->crtc != crtc_state->base.crtc)
721 continue;
722
723 ret = to_intel_encoder(connector_state->best_encoder);
724 num_encoders++;
725 }
726
727 WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
728 pipe_name(crtc->pipe));
729
730 BUG_ON(ret == NULL);
731 return ret;
732 }
733
734 #define LC_FREQ 2700
735 #define LC_FREQ_2K U64_C(LC_FREQ * 2000)
736
737 #define P_MIN 2
738 #define P_MAX 64
739 #define P_INC 2
740
741 /* Constraints for PLL good behavior */
742 #define REF_MIN 48
743 #define REF_MAX 400
744 #define VCO_MIN 2400
745 #define VCO_MAX 4800
746
747 #define abs_diff(a, b) ({ \
748 typeof(a) __a = (a); \
749 typeof(b) __b = (b); \
750 (void) (&__a == &__b); \
751 __a > __b ? (__a - __b) : (__b - __a); })
752
753 struct hsw_wrpll_rnp {
754 unsigned p, n2, r2;
755 };
756
757 static unsigned hsw_wrpll_get_budget_for_freq(int clock)
758 {
759 unsigned budget;
760
761 switch (clock) {
762 case 25175000:
763 case 25200000:
764 case 27000000:
765 case 27027000:
766 case 37762500:
767 case 37800000:
768 case 40500000:
769 case 40541000:
770 case 54000000:
771 case 54054000:
772 case 59341000:
773 case 59400000:
774 case 72000000:
775 case 74176000:
776 case 74250000:
777 case 81000000:
778 case 81081000:
779 case 89012000:
780 case 89100000:
781 case 108000000:
782 case 108108000:
783 case 111264000:
784 case 111375000:
785 case 148352000:
786 case 148500000:
787 case 162000000:
788 case 162162000:
789 case 222525000:
790 case 222750000:
791 case 296703000:
792 case 297000000:
793 budget = 0;
794 break;
795 case 233500000:
796 case 245250000:
797 case 247750000:
798 case 253250000:
799 case 298000000:
800 budget = 1500;
801 break;
802 case 169128000:
803 case 169500000:
804 case 179500000:
805 case 202000000:
806 budget = 2000;
807 break;
808 case 256250000:
809 case 262500000:
810 case 270000000:
811 case 272500000:
812 case 273750000:
813 case 280750000:
814 case 281250000:
815 case 286000000:
816 case 291750000:
817 budget = 4000;
818 break;
819 case 267250000:
820 case 268500000:
821 budget = 5000;
822 break;
823 default:
824 budget = 1000;
825 break;
826 }
827
828 return budget;
829 }
830
831 static void hsw_wrpll_update_rnp(uint64_t freq2k, unsigned budget,
832 unsigned r2, unsigned n2, unsigned p,
833 struct hsw_wrpll_rnp *best)
834 {
835 uint64_t a, b, c, d, diff, diff_best;
836
837 /* No best (r,n,p) yet */
838 if (best->p == 0) {
839 best->p = p;
840 best->n2 = n2;
841 best->r2 = r2;
842 return;
843 }
844
845 /*
846 * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
847 * freq2k.
848 *
849 * delta = 1e6 *
850 * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
851 * freq2k;
852 *
853 * and we would like delta <= budget.
854 *
855 * If the discrepancy is above the PPM-based budget, always prefer to
856 * improve upon the previous solution. However, if you're within the
857 * budget, try to maximize Ref * VCO, that is N / (P * R^2).
858 */
859 a = freq2k * budget * p * r2;
860 b = freq2k * budget * best->p * best->r2;
861 diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
862 diff_best = abs_diff(freq2k * best->p * best->r2,
863 LC_FREQ_2K * best->n2);
864 c = 1000000 * diff;
865 d = 1000000 * diff_best;
866
867 if (a < c && b < d) {
868 /* If both are above the budget, pick the closer */
869 if (best->p * best->r2 * diff < p * r2 * diff_best) {
870 best->p = p;
871 best->n2 = n2;
872 best->r2 = r2;
873 }
874 } else if (a >= c && b < d) {
875 /* If A is below the threshold but B is above it? Update. */
876 best->p = p;
877 best->n2 = n2;
878 best->r2 = r2;
879 } else if (a >= c && b >= d) {
880 /* Both are below the limit, so pick the higher n2/(r2*r2) */
881 if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
882 best->p = p;
883 best->n2 = n2;
884 best->r2 = r2;
885 }
886 }
887 /* Otherwise a < c && b >= d, do nothing */
888 }
889
890 static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
891 i915_reg_t reg)
892 {
893 int refclk = LC_FREQ;
894 int n, p, r;
895 u32 wrpll;
896
897 wrpll = I915_READ(reg);
898 switch (wrpll & WRPLL_PLL_REF_MASK) {
899 case WRPLL_PLL_SSC:
900 case WRPLL_PLL_NON_SSC:
901 /*
902 * We could calculate spread here, but our checking
903 * code only cares about 5% accuracy, and spread is a max of
904 * 0.5% downspread.
905 */
906 refclk = 135;
907 break;
908 case WRPLL_PLL_LCPLL:
909 refclk = LC_FREQ;
910 break;
911 default:
912 WARN(1, "bad wrpll refclk\n");
913 return 0;
914 }
915
916 r = wrpll & WRPLL_DIVIDER_REF_MASK;
917 p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
918 n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
919
920 /* Convert to KHz, p & r have a fixed point portion */
921 return (refclk * n * 100) / (p * r);
922 }
923
924 static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
925 uint32_t dpll)
926 {
927 i915_reg_t cfgcr1_reg, cfgcr2_reg;
928 uint32_t cfgcr1_val, cfgcr2_val;
929 uint32_t p0, p1, p2, dco_freq;
930
931 cfgcr1_reg = DPLL_CFGCR1(dpll);
932 cfgcr2_reg = DPLL_CFGCR2(dpll);
933
934 cfgcr1_val = I915_READ(cfgcr1_reg);
935 cfgcr2_val = I915_READ(cfgcr2_reg);
936
937 p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
938 p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
939
940 if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
941 p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
942 else
943 p1 = 1;
944
945
946 switch (p0) {
947 case DPLL_CFGCR2_PDIV_1:
948 p0 = 1;
949 break;
950 case DPLL_CFGCR2_PDIV_2:
951 p0 = 2;
952 break;
953 case DPLL_CFGCR2_PDIV_3:
954 p0 = 3;
955 break;
956 case DPLL_CFGCR2_PDIV_7:
957 p0 = 7;
958 break;
959 }
960
961 switch (p2) {
962 case DPLL_CFGCR2_KDIV_5:
963 p2 = 5;
964 break;
965 case DPLL_CFGCR2_KDIV_2:
966 p2 = 2;
967 break;
968 case DPLL_CFGCR2_KDIV_3:
969 p2 = 3;
970 break;
971 case DPLL_CFGCR2_KDIV_1:
972 p2 = 1;
973 break;
974 }
975
976 dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
977
978 dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
979 1000) / 0x8000;
980
981 return dco_freq / (p0 * p1 * p2 * 5);
982 }
983
984 static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
985 {
986 int dotclock;
987
988 if (pipe_config->has_pch_encoder)
989 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
990 &pipe_config->fdi_m_n);
991 else if (pipe_config->has_dp_encoder)
992 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
993 &pipe_config->dp_m_n);
994 else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
995 dotclock = pipe_config->port_clock * 2 / 3;
996 else
997 dotclock = pipe_config->port_clock;
998
999 if (pipe_config->pixel_multiplier)
1000 dotclock /= pipe_config->pixel_multiplier;
1001
1002 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
1003 }
1004
1005 static void skl_ddi_clock_get(struct intel_encoder *encoder,
1006 struct intel_crtc_state *pipe_config)
1007 {
1008 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1009 int link_clock = 0;
1010 uint32_t dpll_ctl1, dpll;
1011
1012 dpll = pipe_config->ddi_pll_sel;
1013
1014 dpll_ctl1 = I915_READ(DPLL_CTRL1);
1015
1016 if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
1017 link_clock = skl_calc_wrpll_link(dev_priv, dpll);
1018 } else {
1019 link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
1020 link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
1021
1022 switch (link_clock) {
1023 case DPLL_CTRL1_LINK_RATE_810:
1024 link_clock = 81000;
1025 break;
1026 case DPLL_CTRL1_LINK_RATE_1080:
1027 link_clock = 108000;
1028 break;
1029 case DPLL_CTRL1_LINK_RATE_1350:
1030 link_clock = 135000;
1031 break;
1032 case DPLL_CTRL1_LINK_RATE_1620:
1033 link_clock = 162000;
1034 break;
1035 case DPLL_CTRL1_LINK_RATE_2160:
1036 link_clock = 216000;
1037 break;
1038 case DPLL_CTRL1_LINK_RATE_2700:
1039 link_clock = 270000;
1040 break;
1041 default:
1042 WARN(1, "Unsupported link rate\n");
1043 break;
1044 }
1045 link_clock *= 2;
1046 }
1047
1048 pipe_config->port_clock = link_clock;
1049
1050 ddi_dotclock_get(pipe_config);
1051 }
1052
1053 static void hsw_ddi_clock_get(struct intel_encoder *encoder,
1054 struct intel_crtc_state *pipe_config)
1055 {
1056 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1057 int link_clock = 0;
1058 u32 val, pll;
1059
1060 val = pipe_config->ddi_pll_sel;
1061 switch (val & PORT_CLK_SEL_MASK) {
1062 case PORT_CLK_SEL_LCPLL_810:
1063 link_clock = 81000;
1064 break;
1065 case PORT_CLK_SEL_LCPLL_1350:
1066 link_clock = 135000;
1067 break;
1068 case PORT_CLK_SEL_LCPLL_2700:
1069 link_clock = 270000;
1070 break;
1071 case PORT_CLK_SEL_WRPLL1:
1072 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
1073 break;
1074 case PORT_CLK_SEL_WRPLL2:
1075 link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
1076 break;
1077 case PORT_CLK_SEL_SPLL:
1078 pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
1079 if (pll == SPLL_PLL_FREQ_810MHz)
1080 link_clock = 81000;
1081 else if (pll == SPLL_PLL_FREQ_1350MHz)
1082 link_clock = 135000;
1083 else if (pll == SPLL_PLL_FREQ_2700MHz)
1084 link_clock = 270000;
1085 else {
1086 WARN(1, "bad spll freq\n");
1087 return;
1088 }
1089 break;
1090 default:
1091 WARN(1, "bad port clock sel\n");
1092 return;
1093 }
1094
1095 pipe_config->port_clock = link_clock * 2;
1096
1097 ddi_dotclock_get(pipe_config);
1098 }
1099
1100 static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
1101 enum intel_dpll_id dpll)
1102 {
1103 struct intel_shared_dpll *pll;
1104 struct intel_dpll_hw_state *state;
1105 intel_clock_t clock;
1106
1107 /* For DDI ports we always use a shared PLL. */
1108 if (WARN_ON(dpll == DPLL_ID_PRIVATE))
1109 return 0;
1110
1111 pll = &dev_priv->shared_dplls[dpll];
1112 state = &pll->config.hw_state;
1113
1114 clock.m1 = 2;
1115 clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
1116 if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
1117 clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
1118 clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
1119 clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
1120 clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
1121
1122 return chv_calc_dpll_params(100000, &clock);
1123 }
1124
1125 static void bxt_ddi_clock_get(struct intel_encoder *encoder,
1126 struct intel_crtc_state *pipe_config)
1127 {
1128 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
1129 enum port port = intel_ddi_get_encoder_port(encoder);
1130 uint32_t dpll = port;
1131
1132 pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
1133
1134 ddi_dotclock_get(pipe_config);
1135 }
1136
1137 void intel_ddi_clock_get(struct intel_encoder *encoder,
1138 struct intel_crtc_state *pipe_config)
1139 {
1140 struct drm_device *dev = encoder->base.dev;
1141
1142 if (INTEL_INFO(dev)->gen <= 8)
1143 hsw_ddi_clock_get(encoder, pipe_config);
1144 else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1145 skl_ddi_clock_get(encoder, pipe_config);
1146 else if (IS_BROXTON(dev))
1147 bxt_ddi_clock_get(encoder, pipe_config);
1148 }
1149
1150 static void
1151 hsw_ddi_calculate_wrpll(int clock /* in Hz */,
1152 unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
1153 {
1154 uint64_t freq2k;
1155 unsigned p, n2, r2;
1156 struct hsw_wrpll_rnp best = { 0, 0, 0 };
1157 unsigned budget;
1158
1159 freq2k = clock / 100;
1160
1161 budget = hsw_wrpll_get_budget_for_freq(clock);
1162
1163 /* Special case handling for 540 pixel clock: bypass WR PLL entirely
1164 * and directly pass the LC PLL to it. */
1165 if (freq2k == 5400000) {
1166 *n2_out = 2;
1167 *p_out = 1;
1168 *r2_out = 2;
1169 return;
1170 }
1171
1172 /*
1173 * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
1174 * the WR PLL.
1175 *
1176 * We want R so that REF_MIN <= Ref <= REF_MAX.
1177 * Injecting R2 = 2 * R gives:
1178 * REF_MAX * r2 > LC_FREQ * 2 and
1179 * REF_MIN * r2 < LC_FREQ * 2
1180 *
1181 * Which means the desired boundaries for r2 are:
1182 * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
1183 *
1184 */
1185 for (r2 = LC_FREQ * 2 / REF_MAX + 1;
1186 r2 <= LC_FREQ * 2 / REF_MIN;
1187 r2++) {
1188
1189 /*
1190 * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
1191 *
1192 * Once again we want VCO_MIN <= VCO <= VCO_MAX.
1193 * Injecting R2 = 2 * R and N2 = 2 * N, we get:
1194 * VCO_MAX * r2 > n2 * LC_FREQ and
1195 * VCO_MIN * r2 < n2 * LC_FREQ)
1196 *
1197 * Which means the desired boundaries for n2 are:
1198 * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
1199 */
1200 for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
1201 n2 <= VCO_MAX * r2 / LC_FREQ;
1202 n2++) {
1203
1204 for (p = P_MIN; p <= P_MAX; p += P_INC)
1205 hsw_wrpll_update_rnp(freq2k, budget,
1206 r2, n2, p, &best);
1207 }
1208 }
1209
1210 *n2_out = best.n2;
1211 *p_out = best.p;
1212 *r2_out = best.r2;
1213 }
1214
1215 static bool
1216 hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
1217 struct intel_crtc_state *crtc_state,
1218 struct intel_encoder *intel_encoder)
1219 {
1220 int clock = crtc_state->port_clock;
1221
1222 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1223 struct intel_shared_dpll *pll;
1224 uint32_t val;
1225 unsigned p, n2, r2;
1226
1227 hsw_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
1228
1229 val = WRPLL_PLL_ENABLE | WRPLL_PLL_LCPLL |
1230 WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
1231 WRPLL_DIVIDER_POST(p);
1232
1233 memset(&crtc_state->dpll_hw_state, 0,
1234 sizeof(crtc_state->dpll_hw_state));
1235
1236 crtc_state->dpll_hw_state.wrpll = val;
1237
1238 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1239 if (pll == NULL) {
1240 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1241 pipe_name(intel_crtc->pipe));
1242 return false;
1243 }
1244
1245 crtc_state->ddi_pll_sel = PORT_CLK_SEL_WRPLL(pll->id);
1246 } else if (crtc_state->ddi_pll_sel == PORT_CLK_SEL_SPLL) {
1247 struct drm_atomic_state *state = crtc_state->base.state;
1248 struct intel_shared_dpll_config *spll =
1249 &intel_atomic_get_shared_dpll_state(state)[DPLL_ID_SPLL];
1250
1251 if (spll->crtc_mask &&
1252 WARN_ON(spll->hw_state.spll != crtc_state->dpll_hw_state.spll))
1253 return false;
1254
1255 crtc_state->shared_dpll = DPLL_ID_SPLL;
1256 spll->hw_state.spll = crtc_state->dpll_hw_state.spll;
1257 spll->crtc_mask |= 1 << intel_crtc->pipe;
1258 }
1259
1260 return true;
1261 }
1262
1263 struct skl_wrpll_context {
1264 uint64_t min_deviation; /* current minimal deviation */
1265 uint64_t central_freq; /* chosen central freq */
1266 uint64_t dco_freq; /* chosen dco freq */
1267 unsigned int p; /* chosen divider */
1268 };
1269
1270 static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
1271 {
1272 memset(ctx, 0, sizeof(*ctx));
1273
1274 ctx->min_deviation = U64_MAX;
1275 }
1276
1277 /* DCO freq must be within +1%/-6% of the DCO central freq */
1278 #define SKL_DCO_MAX_PDEVIATION 100
1279 #define SKL_DCO_MAX_NDEVIATION 600
1280
1281 static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
1282 uint64_t central_freq,
1283 uint64_t dco_freq,
1284 unsigned int divider)
1285 {
1286 uint64_t deviation;
1287
1288 deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
1289 central_freq);
1290
1291 /* positive deviation */
1292 if (dco_freq >= central_freq) {
1293 if (deviation < SKL_DCO_MAX_PDEVIATION &&
1294 deviation < ctx->min_deviation) {
1295 ctx->min_deviation = deviation;
1296 ctx->central_freq = central_freq;
1297 ctx->dco_freq = dco_freq;
1298 ctx->p = divider;
1299 }
1300 /* negative deviation */
1301 } else if (deviation < SKL_DCO_MAX_NDEVIATION &&
1302 deviation < ctx->min_deviation) {
1303 ctx->min_deviation = deviation;
1304 ctx->central_freq = central_freq;
1305 ctx->dco_freq = dco_freq;
1306 ctx->p = divider;
1307 }
1308 }
1309
1310 static void skl_wrpll_get_multipliers(unsigned int p,
1311 unsigned int *p0 /* out */,
1312 unsigned int *p1 /* out */,
1313 unsigned int *p2 /* out */)
1314 {
1315 /* even dividers */
1316 if (p % 2 == 0) {
1317 unsigned int half = p / 2;
1318
1319 if (half == 1 || half == 2 || half == 3 || half == 5) {
1320 *p0 = 2;
1321 *p1 = 1;
1322 *p2 = half;
1323 } else if (half % 2 == 0) {
1324 *p0 = 2;
1325 *p1 = half / 2;
1326 *p2 = 2;
1327 } else if (half % 3 == 0) {
1328 *p0 = 3;
1329 *p1 = half / 3;
1330 *p2 = 2;
1331 } else if (half % 7 == 0) {
1332 *p0 = 7;
1333 *p1 = half / 7;
1334 *p2 = 2;
1335 }
1336 } else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
1337 *p0 = 3;
1338 *p1 = 1;
1339 *p2 = p / 3;
1340 } else if (p == 5 || p == 7) {
1341 *p0 = p;
1342 *p1 = 1;
1343 *p2 = 1;
1344 } else if (p == 15) {
1345 *p0 = 3;
1346 *p1 = 1;
1347 *p2 = 5;
1348 } else if (p == 21) {
1349 *p0 = 7;
1350 *p1 = 1;
1351 *p2 = 3;
1352 } else if (p == 35) {
1353 *p0 = 7;
1354 *p1 = 1;
1355 *p2 = 5;
1356 }
1357 }
1358
1359 struct skl_wrpll_params {
1360 uint32_t dco_fraction;
1361 uint32_t dco_integer;
1362 uint32_t qdiv_ratio;
1363 uint32_t qdiv_mode;
1364 uint32_t kdiv;
1365 uint32_t pdiv;
1366 uint32_t central_freq;
1367 };
1368
1369 static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
1370 uint64_t afe_clock,
1371 uint64_t central_freq,
1372 uint32_t p0, uint32_t p1, uint32_t p2)
1373 {
1374 uint64_t dco_freq;
1375
1376 switch (central_freq) {
1377 case 9600000000ULL:
1378 params->central_freq = 0;
1379 break;
1380 case 9000000000ULL:
1381 params->central_freq = 1;
1382 break;
1383 case 8400000000ULL:
1384 params->central_freq = 3;
1385 }
1386
1387 switch (p0) {
1388 case 1:
1389 params->pdiv = 0;
1390 break;
1391 case 2:
1392 params->pdiv = 1;
1393 break;
1394 case 3:
1395 params->pdiv = 2;
1396 break;
1397 case 7:
1398 params->pdiv = 4;
1399 break;
1400 default:
1401 WARN(1, "Incorrect PDiv\n");
1402 }
1403
1404 switch (p2) {
1405 case 5:
1406 params->kdiv = 0;
1407 break;
1408 case 2:
1409 params->kdiv = 1;
1410 break;
1411 case 3:
1412 params->kdiv = 2;
1413 break;
1414 case 1:
1415 params->kdiv = 3;
1416 break;
1417 default:
1418 WARN(1, "Incorrect KDiv\n");
1419 }
1420
1421 params->qdiv_ratio = p1;
1422 params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
1423
1424 dco_freq = p0 * p1 * p2 * afe_clock;
1425
1426 /*
1427 * Intermediate values are in Hz.
1428 * Divide by MHz to match bsepc
1429 */
1430 params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
1431 params->dco_fraction =
1432 div_u64((div_u64(dco_freq, 24) -
1433 params->dco_integer * MHz(1)) * 0x8000, MHz(1));
1434 }
1435
1436 static bool
1437 skl_ddi_calculate_wrpll(int clock /* in Hz */,
1438 struct skl_wrpll_params *wrpll_params)
1439 {
1440 uint64_t afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
1441 uint64_t dco_central_freq[3] = {8400000000ULL,
1442 9000000000ULL,
1443 9600000000ULL};
1444 static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
1445 24, 28, 30, 32, 36, 40, 42, 44,
1446 48, 52, 54, 56, 60, 64, 66, 68,
1447 70, 72, 76, 78, 80, 84, 88, 90,
1448 92, 96, 98 };
1449 static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
1450 static const struct {
1451 const int *list;
1452 int n_dividers;
1453 } dividers[] = {
1454 { even_dividers, ARRAY_SIZE(even_dividers) },
1455 { odd_dividers, ARRAY_SIZE(odd_dividers) },
1456 };
1457 struct skl_wrpll_context ctx;
1458 unsigned int dco, d, i;
1459 unsigned int p0, p1, p2;
1460
1461 skl_wrpll_context_init(&ctx);
1462
1463 for (d = 0; d < ARRAY_SIZE(dividers); d++) {
1464 for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
1465 for (i = 0; i < dividers[d].n_dividers; i++) {
1466 unsigned int p = dividers[d].list[i];
1467 uint64_t dco_freq = p * afe_clock;
1468
1469 skl_wrpll_try_divider(&ctx,
1470 dco_central_freq[dco],
1471 dco_freq,
1472 p);
1473 /*
1474 * Skip the remaining dividers if we're sure to
1475 * have found the definitive divider, we can't
1476 * improve a 0 deviation.
1477 */
1478 if (ctx.min_deviation == 0)
1479 goto skip_remaining_dividers;
1480 }
1481 }
1482
1483 skip_remaining_dividers:
1484 /*
1485 * If a solution is found with an even divider, prefer
1486 * this one.
1487 */
1488 if (d == 0 && ctx.p)
1489 break;
1490 }
1491
1492 if (!ctx.p) {
1493 DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
1494 return false;
1495 }
1496
1497 /*
1498 * gcc incorrectly analyses that these can be used without being
1499 * initialized. To be fair, it's hard to guess.
1500 */
1501 p0 = p1 = p2 = 0;
1502 skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
1503 skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
1504 p0, p1, p2);
1505
1506 return true;
1507 }
1508
1509 static bool
1510 skl_ddi_pll_select(struct intel_crtc *intel_crtc,
1511 struct intel_crtc_state *crtc_state,
1512 struct intel_encoder *intel_encoder)
1513 {
1514 struct intel_shared_dpll *pll;
1515 uint32_t ctrl1, cfgcr1, cfgcr2;
1516 int clock = crtc_state->port_clock;
1517
1518 /*
1519 * See comment in intel_dpll_hw_state to understand why we always use 0
1520 * as the DPLL id in this function.
1521 */
1522
1523 ctrl1 = DPLL_CTRL1_OVERRIDE(0);
1524
1525 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1526 struct skl_wrpll_params wrpll_params = { 0, };
1527
1528 ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
1529
1530 if (!skl_ddi_calculate_wrpll(clock * 1000, &wrpll_params))
1531 return false;
1532
1533 cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
1534 DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
1535 wrpll_params.dco_integer;
1536
1537 cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
1538 DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
1539 DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
1540 DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
1541 wrpll_params.central_freq;
1542 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1543 intel_encoder->type == INTEL_OUTPUT_DP_MST) {
1544 switch (crtc_state->port_clock / 2) {
1545 case 81000:
1546 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
1547 break;
1548 case 135000:
1549 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
1550 break;
1551 case 270000:
1552 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
1553 break;
1554 }
1555
1556 cfgcr1 = cfgcr2 = 0;
1557 } else if (intel_encoder->type == INTEL_OUTPUT_EDP) {
1558 return true;
1559 } else
1560 return false;
1561
1562 memset(&crtc_state->dpll_hw_state, 0,
1563 sizeof(crtc_state->dpll_hw_state));
1564
1565 crtc_state->dpll_hw_state.ctrl1 = ctrl1;
1566 crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
1567 crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
1568
1569 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1570 if (pll == NULL) {
1571 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1572 pipe_name(intel_crtc->pipe));
1573 return false;
1574 }
1575
1576 /* shared DPLL id 0 is DPLL 1 */
1577 crtc_state->ddi_pll_sel = pll->id + 1;
1578
1579 return true;
1580 }
1581
1582 /* bxt clock parameters */
1583 struct bxt_clk_div {
1584 int clock;
1585 uint32_t p1;
1586 uint32_t p2;
1587 uint32_t m2_int;
1588 uint32_t m2_frac;
1589 bool m2_frac_en;
1590 uint32_t n;
1591 };
1592
1593 /* pre-calculated values for DP linkrates */
1594 static const struct bxt_clk_div bxt_dp_clk_val[] = {
1595 {162000, 4, 2, 32, 1677722, 1, 1},
1596 {270000, 4, 1, 27, 0, 0, 1},
1597 {540000, 2, 1, 27, 0, 0, 1},
1598 {216000, 3, 2, 32, 1677722, 1, 1},
1599 {243000, 4, 1, 24, 1258291, 1, 1},
1600 {324000, 4, 1, 32, 1677722, 1, 1},
1601 {432000, 3, 1, 32, 1677722, 1, 1}
1602 };
1603
1604 static bool
1605 bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
1606 struct intel_crtc_state *crtc_state,
1607 struct intel_encoder *intel_encoder)
1608 {
1609 struct intel_shared_dpll *pll;
1610 struct bxt_clk_div clk_div = {0};
1611 int vco = 0;
1612 uint32_t prop_coef, int_coef, gain_ctl, targ_cnt;
1613 uint32_t lanestagger;
1614 int clock = crtc_state->port_clock;
1615
1616 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
1617 intel_clock_t best_clock;
1618
1619 /* Calculate HDMI div */
1620 /*
1621 * FIXME: tie the following calculation into
1622 * i9xx_crtc_compute_clock
1623 */
1624 if (!bxt_find_best_dpll(crtc_state, clock, &best_clock)) {
1625 DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
1626 clock, pipe_name(intel_crtc->pipe));
1627 return false;
1628 }
1629
1630 clk_div.p1 = best_clock.p1;
1631 clk_div.p2 = best_clock.p2;
1632 WARN_ON(best_clock.m1 != 2);
1633 clk_div.n = best_clock.n;
1634 clk_div.m2_int = best_clock.m2 >> 22;
1635 clk_div.m2_frac = best_clock.m2 & ((1 << 22) - 1);
1636 clk_div.m2_frac_en = clk_div.m2_frac != 0;
1637
1638 vco = best_clock.vco;
1639 } else if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
1640 intel_encoder->type == INTEL_OUTPUT_EDP) {
1641 int i;
1642
1643 clk_div = bxt_dp_clk_val[0];
1644 for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
1645 if (bxt_dp_clk_val[i].clock == clock) {
1646 clk_div = bxt_dp_clk_val[i];
1647 break;
1648 }
1649 }
1650 vco = clock * 10 / 2 * clk_div.p1 * clk_div.p2;
1651 }
1652
1653 if (vco >= 6200000 && vco <= 6700000) {
1654 prop_coef = 4;
1655 int_coef = 9;
1656 gain_ctl = 3;
1657 targ_cnt = 8;
1658 } else if ((vco > 5400000 && vco < 6200000) ||
1659 (vco >= 4800000 && vco < 5400000)) {
1660 prop_coef = 5;
1661 int_coef = 11;
1662 gain_ctl = 3;
1663 targ_cnt = 9;
1664 } else if (vco == 5400000) {
1665 prop_coef = 3;
1666 int_coef = 8;
1667 gain_ctl = 1;
1668 targ_cnt = 9;
1669 } else {
1670 DRM_ERROR("Invalid VCO\n");
1671 return false;
1672 }
1673
1674 memset(&crtc_state->dpll_hw_state, 0,
1675 sizeof(crtc_state->dpll_hw_state));
1676
1677 if (clock > 270000)
1678 lanestagger = 0x18;
1679 else if (clock > 135000)
1680 lanestagger = 0x0d;
1681 else if (clock > 67000)
1682 lanestagger = 0x07;
1683 else if (clock > 33000)
1684 lanestagger = 0x04;
1685 else
1686 lanestagger = 0x02;
1687
1688 crtc_state->dpll_hw_state.ebb0 =
1689 PORT_PLL_P1(clk_div.p1) | PORT_PLL_P2(clk_div.p2);
1690 crtc_state->dpll_hw_state.pll0 = clk_div.m2_int;
1691 crtc_state->dpll_hw_state.pll1 = PORT_PLL_N(clk_div.n);
1692 crtc_state->dpll_hw_state.pll2 = clk_div.m2_frac;
1693
1694 if (clk_div.m2_frac_en)
1695 crtc_state->dpll_hw_state.pll3 =
1696 PORT_PLL_M2_FRAC_ENABLE;
1697
1698 crtc_state->dpll_hw_state.pll6 =
1699 prop_coef | PORT_PLL_INT_COEFF(int_coef);
1700 crtc_state->dpll_hw_state.pll6 |=
1701 PORT_PLL_GAIN_CTL(gain_ctl);
1702
1703 crtc_state->dpll_hw_state.pll8 = targ_cnt;
1704
1705 crtc_state->dpll_hw_state.pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
1706
1707 crtc_state->dpll_hw_state.pll10 =
1708 PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
1709 | PORT_PLL_DCO_AMP_OVR_EN_H;
1710
1711 crtc_state->dpll_hw_state.ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
1712
1713 crtc_state->dpll_hw_state.pcsdw12 =
1714 LANESTAGGER_STRAP_OVRD | lanestagger;
1715
1716 pll = intel_get_shared_dpll(intel_crtc, crtc_state);
1717 if (pll == NULL) {
1718 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
1719 pipe_name(intel_crtc->pipe));
1720 return false;
1721 }
1722
1723 /* shared DPLL id 0 is DPLL A */
1724 crtc_state->ddi_pll_sel = pll->id;
1725
1726 return true;
1727 }
1728
1729 /*
1730 * Tries to find a *shared* PLL for the CRTC and store it in
1731 * intel_crtc->ddi_pll_sel.
1732 *
1733 * For private DPLLs, compute_config() should do the selection for us. This
1734 * function should be folded into compute_config() eventually.
1735 */
1736 bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
1737 struct intel_crtc_state *crtc_state)
1738 {
1739 struct drm_device *dev = intel_crtc->base.dev;
1740 struct intel_encoder *intel_encoder =
1741 intel_ddi_get_crtc_new_encoder(crtc_state);
1742
1743 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1744 return skl_ddi_pll_select(intel_crtc, crtc_state,
1745 intel_encoder);
1746 else if (IS_BROXTON(dev))
1747 return bxt_ddi_pll_select(intel_crtc, crtc_state,
1748 intel_encoder);
1749 else
1750 return hsw_ddi_pll_select(intel_crtc, crtc_state,
1751 intel_encoder);
1752 }
1753
1754 void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
1755 {
1756 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1758 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1759 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1760 int type = intel_encoder->type;
1761 uint32_t temp;
1762
1763 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
1764 temp = TRANS_MSA_SYNC_CLK;
1765 switch (intel_crtc->config->pipe_bpp) {
1766 case 18:
1767 temp |= TRANS_MSA_6_BPC;
1768 break;
1769 case 24:
1770 temp |= TRANS_MSA_8_BPC;
1771 break;
1772 case 30:
1773 temp |= TRANS_MSA_10_BPC;
1774 break;
1775 case 36:
1776 temp |= TRANS_MSA_12_BPC;
1777 break;
1778 default:
1779 BUG();
1780 }
1781 I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
1782 }
1783 }
1784
1785 void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
1786 {
1787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1788 struct drm_device *dev = crtc->dev;
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1791 uint32_t temp;
1792 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1793 if (state == true)
1794 temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1795 else
1796 temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
1797 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1798 }
1799
1800 void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
1801 {
1802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1803 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
1804 struct drm_encoder *encoder = &intel_encoder->base;
1805 struct drm_device *dev = crtc->dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 enum pipe pipe = intel_crtc->pipe;
1808 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1809 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1810 int type = intel_encoder->type;
1811 uint32_t temp;
1812
1813 /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
1814 temp = TRANS_DDI_FUNC_ENABLE;
1815 temp |= TRANS_DDI_SELECT_PORT(port);
1816
1817 switch (intel_crtc->config->pipe_bpp) {
1818 case 18:
1819 temp |= TRANS_DDI_BPC_6;
1820 break;
1821 case 24:
1822 temp |= TRANS_DDI_BPC_8;
1823 break;
1824 case 30:
1825 temp |= TRANS_DDI_BPC_10;
1826 break;
1827 case 36:
1828 temp |= TRANS_DDI_BPC_12;
1829 break;
1830 default:
1831 BUG();
1832 }
1833
1834 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
1835 temp |= TRANS_DDI_PVSYNC;
1836 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
1837 temp |= TRANS_DDI_PHSYNC;
1838
1839 if (cpu_transcoder == TRANSCODER_EDP) {
1840 switch (pipe) {
1841 case PIPE_A:
1842 /* On Haswell, can only use the always-on power well for
1843 * eDP when not using the panel fitter, and when not
1844 * using motion blur mitigation (which we don't
1845 * support). */
1846 if (IS_HASWELL(dev) &&
1847 (intel_crtc->config->pch_pfit.enabled ||
1848 intel_crtc->config->pch_pfit.force_thru))
1849 temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
1850 else
1851 temp |= TRANS_DDI_EDP_INPUT_A_ON;
1852 break;
1853 case PIPE_B:
1854 temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
1855 break;
1856 case PIPE_C:
1857 temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
1858 break;
1859 default:
1860 BUG();
1861 break;
1862 }
1863 }
1864
1865 if (type == INTEL_OUTPUT_HDMI) {
1866 if (intel_crtc->config->has_hdmi_sink)
1867 temp |= TRANS_DDI_MODE_SELECT_HDMI;
1868 else
1869 temp |= TRANS_DDI_MODE_SELECT_DVI;
1870
1871 } else if (type == INTEL_OUTPUT_ANALOG) {
1872 temp |= TRANS_DDI_MODE_SELECT_FDI;
1873 temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
1874
1875 } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
1876 type == INTEL_OUTPUT_EDP) {
1877 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1878
1879 if (intel_dp->is_mst) {
1880 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1881 } else
1882 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1883
1884 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1885 } else if (type == INTEL_OUTPUT_DP_MST) {
1886 struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
1887
1888 if (intel_dp->is_mst) {
1889 temp |= TRANS_DDI_MODE_SELECT_DP_MST;
1890 } else
1891 temp |= TRANS_DDI_MODE_SELECT_DP_SST;
1892
1893 temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
1894 } else {
1895 WARN(1, "Invalid encoder type %d for pipe %c\n",
1896 intel_encoder->type, pipe_name(pipe));
1897 }
1898
1899 I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
1900 }
1901
1902 void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
1903 enum transcoder cpu_transcoder)
1904 {
1905 i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1906 uint32_t val = I915_READ(reg);
1907
1908 val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
1909 val |= TRANS_DDI_PORT_NONE;
1910 I915_WRITE(reg, val);
1911 }
1912
1913 bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
1914 {
1915 struct drm_device *dev = intel_connector->base.dev;
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917 struct intel_encoder *intel_encoder = intel_connector->encoder;
1918 int type = intel_connector->base.connector_type;
1919 enum port port = intel_ddi_get_encoder_port(intel_encoder);
1920 enum pipe pipe = 0;
1921 enum transcoder cpu_transcoder;
1922 enum intel_display_power_domain power_domain;
1923 uint32_t tmp;
1924 bool ret;
1925
1926 power_domain = intel_display_port_power_domain(intel_encoder);
1927 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1928 return false;
1929
1930 if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
1931 ret = false;
1932 goto out;
1933 }
1934
1935 if (port == PORT_A)
1936 cpu_transcoder = TRANSCODER_EDP;
1937 else
1938 cpu_transcoder = (enum transcoder) pipe;
1939
1940 tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1941
1942 switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
1943 case TRANS_DDI_MODE_SELECT_HDMI:
1944 case TRANS_DDI_MODE_SELECT_DVI:
1945 ret = type == DRM_MODE_CONNECTOR_HDMIA;
1946 break;
1947
1948 case TRANS_DDI_MODE_SELECT_DP_SST:
1949 ret = type == DRM_MODE_CONNECTOR_eDP ||
1950 type == DRM_MODE_CONNECTOR_DisplayPort;
1951 break;
1952
1953 case TRANS_DDI_MODE_SELECT_DP_MST:
1954 /* if the transcoder is in MST state then
1955 * connector isn't connected */
1956 ret = false;
1957 break;
1958
1959 case TRANS_DDI_MODE_SELECT_FDI:
1960 ret = type == DRM_MODE_CONNECTOR_VGA;
1961 break;
1962
1963 default:
1964 ret = false;
1965 break;
1966 }
1967
1968 out:
1969 intel_display_power_put(dev_priv, power_domain);
1970
1971 return ret;
1972 }
1973
1974 bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
1975 enum pipe *pipe)
1976 {
1977 struct drm_device *dev = encoder->base.dev;
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 enum port port = intel_ddi_get_encoder_port(encoder);
1980 enum intel_display_power_domain power_domain;
1981 u32 tmp;
1982 int i;
1983 bool ret;
1984
1985 power_domain = intel_display_port_power_domain(encoder);
1986 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
1987 return false;
1988
1989 ret = false;
1990
1991 tmp = I915_READ(DDI_BUF_CTL(port));
1992
1993 if (!(tmp & DDI_BUF_CTL_ENABLE))
1994 goto out;
1995
1996 if (port == PORT_A) {
1997 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
1998
1999 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
2000 case TRANS_DDI_EDP_INPUT_A_ON:
2001 case TRANS_DDI_EDP_INPUT_A_ONOFF:
2002 *pipe = PIPE_A;
2003 break;
2004 case TRANS_DDI_EDP_INPUT_B_ONOFF:
2005 *pipe = PIPE_B;
2006 break;
2007 case TRANS_DDI_EDP_INPUT_C_ONOFF:
2008 *pipe = PIPE_C;
2009 break;
2010 }
2011
2012 ret = true;
2013
2014 goto out;
2015 }
2016
2017 for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
2018 tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
2019
2020 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
2021 if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
2022 TRANS_DDI_MODE_SELECT_DP_MST)
2023 goto out;
2024
2025 *pipe = i;
2026 ret = true;
2027
2028 goto out;
2029 }
2030 }
2031
2032 DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
2033
2034 out:
2035 intel_display_power_put(dev_priv, power_domain);
2036
2037 return ret;
2038 }
2039
2040 void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
2041 {
2042 struct drm_crtc *crtc = &intel_crtc->base;
2043 struct drm_device *dev = crtc->dev;
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
2046 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2047 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2048
2049 if (cpu_transcoder != TRANSCODER_EDP)
2050 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2051 TRANS_CLK_SEL_PORT(port));
2052 }
2053
2054 void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
2055 {
2056 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
2057 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
2058
2059 if (cpu_transcoder != TRANSCODER_EDP)
2060 I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
2061 TRANS_CLK_SEL_DISABLED);
2062 }
2063
2064 static void skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
2065 u32 level, enum port port, int type)
2066 {
2067 const struct ddi_buf_trans *ddi_translations;
2068 uint8_t iboost;
2069 uint8_t dp_iboost, hdmi_iboost;
2070 int n_entries;
2071 u32 reg;
2072
2073 /* VBT may override standard boost values */
2074 dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
2075 hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
2076
2077 if (type == INTEL_OUTPUT_DISPLAYPORT) {
2078 if (dp_iboost) {
2079 iboost = dp_iboost;
2080 } else {
2081 ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
2082 iboost = ddi_translations[level].i_boost;
2083 }
2084 } else if (type == INTEL_OUTPUT_EDP) {
2085 if (dp_iboost) {
2086 iboost = dp_iboost;
2087 } else {
2088 ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
2089
2090 if (WARN_ON(port != PORT_A &&
2091 port != PORT_E && n_entries > 9))
2092 n_entries = 9;
2093
2094 iboost = ddi_translations[level].i_boost;
2095 }
2096 } else if (type == INTEL_OUTPUT_HDMI) {
2097 if (hdmi_iboost) {
2098 iboost = hdmi_iboost;
2099 } else {
2100 ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
2101 iboost = ddi_translations[level].i_boost;
2102 }
2103 } else {
2104 return;
2105 }
2106
2107 /* Make sure that the requested I_boost is valid */
2108 if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
2109 DRM_ERROR("Invalid I_boost value %u\n", iboost);
2110 return;
2111 }
2112
2113 reg = I915_READ(DISPIO_CR_TX_BMU_CR0);
2114 reg &= ~BALANCE_LEG_MASK(port);
2115 reg &= ~(1 << (BALANCE_LEG_DISABLE_SHIFT + port));
2116
2117 if (iboost)
2118 reg |= iboost << BALANCE_LEG_SHIFT(port);
2119 else
2120 reg |= 1 << (BALANCE_LEG_DISABLE_SHIFT + port);
2121
2122 I915_WRITE(DISPIO_CR_TX_BMU_CR0, reg);
2123 }
2124
2125 static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
2126 u32 level, enum port port, int type)
2127 {
2128 const struct bxt_ddi_buf_trans *ddi_translations;
2129 u32 n_entries, i;
2130 uint32_t val;
2131
2132 if (type == INTEL_OUTPUT_EDP && dev_priv->edp_low_vswing) {
2133 n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
2134 ddi_translations = bxt_ddi_translations_edp;
2135 } else if (type == INTEL_OUTPUT_DISPLAYPORT
2136 || type == INTEL_OUTPUT_EDP) {
2137 n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
2138 ddi_translations = bxt_ddi_translations_dp;
2139 } else if (type == INTEL_OUTPUT_HDMI) {
2140 n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
2141 ddi_translations = bxt_ddi_translations_hdmi;
2142 } else {
2143 DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
2144 type);
2145 return;
2146 }
2147
2148 /* Check if default value has to be used */
2149 if (level >= n_entries ||
2150 (type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
2151 for (i = 0; i < n_entries; i++) {
2152 if (ddi_translations[i].default_index) {
2153 level = i;
2154 break;
2155 }
2156 }
2157 }
2158
2159 /*
2160 * While we write to the group register to program all lanes at once we
2161 * can read only lane registers and we pick lanes 0/1 for that.
2162 */
2163 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2164 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
2165 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2166
2167 val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
2168 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
2169 val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
2170 ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
2171 I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
2172
2173 val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
2174 val &= ~SCALE_DCOMP_METHOD;
2175 if (ddi_translations[level].enable)
2176 val |= SCALE_DCOMP_METHOD;
2177
2178 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
2179 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
2180
2181 I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
2182
2183 val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
2184 val &= ~DE_EMPHASIS;
2185 val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
2186 I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
2187
2188 val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
2189 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
2190 I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
2191 }
2192
2193 static uint32_t translate_signal_level(int signal_levels)
2194 {
2195 uint32_t level;
2196
2197 switch (signal_levels) {
2198 default:
2199 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
2200 signal_levels);
2201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2202 level = 0;
2203 break;
2204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2205 level = 1;
2206 break;
2207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2208 level = 2;
2209 break;
2210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
2211 level = 3;
2212 break;
2213
2214 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2215 level = 4;
2216 break;
2217 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2218 level = 5;
2219 break;
2220 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
2221 level = 6;
2222 break;
2223
2224 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2225 level = 7;
2226 break;
2227 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
2228 level = 8;
2229 break;
2230
2231 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
2232 level = 9;
2233 break;
2234 }
2235
2236 return level;
2237 }
2238
2239 uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
2240 {
2241 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2242 struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
2243 struct intel_encoder *encoder = &dport->base;
2244 uint8_t train_set = intel_dp->train_set[0];
2245 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2246 DP_TRAIN_PRE_EMPHASIS_MASK);
2247 enum port port = dport->port;
2248 uint32_t level;
2249
2250 level = translate_signal_level(signal_levels);
2251
2252 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2253 skl_ddi_set_iboost(dev_priv, level, port, encoder->type);
2254 else if (IS_BROXTON(dev_priv))
2255 bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
2256
2257 return DDI_BUF_TRANS_SELECT(level);
2258 }
2259
2260 void intel_ddi_clk_select(struct intel_encoder *encoder,
2261 const struct intel_crtc_state *pipe_config)
2262 {
2263 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2264 enum port port = intel_ddi_get_encoder_port(encoder);
2265
2266 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2267 uint32_t dpll = pipe_config->ddi_pll_sel;
2268 uint32_t val;
2269
2270 /*
2271 * DPLL0 is used for eDP and is the only "private" DPLL (as
2272 * opposed to shared) on SKL
2273 */
2274 if (encoder->type == INTEL_OUTPUT_EDP) {
2275 WARN_ON(dpll != SKL_DPLL0);
2276
2277 val = I915_READ(DPLL_CTRL1);
2278
2279 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) |
2280 DPLL_CTRL1_SSC(dpll) |
2281 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2282 val |= pipe_config->dpll_hw_state.ctrl1 << (dpll * 6);
2283
2284 I915_WRITE(DPLL_CTRL1, val);
2285 POSTING_READ(DPLL_CTRL1);
2286 }
2287
2288 /* DDI -> PLL mapping */
2289 val = I915_READ(DPLL_CTRL2);
2290
2291 val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
2292 DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
2293 val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
2294 DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
2295
2296 I915_WRITE(DPLL_CTRL2, val);
2297
2298 } else if (INTEL_INFO(dev_priv)->gen < 9) {
2299 WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
2300 I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
2301 }
2302 }
2303
2304 static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
2305 {
2306 struct drm_encoder *encoder = &intel_encoder->base;
2307 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
2308 struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
2309 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2310 int type = intel_encoder->type;
2311
2312 intel_prepare_ddi_buffer(intel_encoder);
2313
2314 if (type == INTEL_OUTPUT_EDP) {
2315 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2316 intel_edp_panel_on(intel_dp);
2317 }
2318
2319 intel_ddi_clk_select(intel_encoder, crtc->config);
2320
2321 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2322 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2323
2324 intel_dp_set_link_params(intel_dp, crtc->config);
2325
2326 intel_ddi_init_dp_buf_reg(intel_encoder);
2327
2328 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2329 intel_dp_start_link_train(intel_dp);
2330 if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
2331 intel_dp_stop_link_train(intel_dp);
2332 } else if (type == INTEL_OUTPUT_HDMI) {
2333 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2334
2335 intel_hdmi->set_infoframes(encoder,
2336 crtc->config->has_hdmi_sink,
2337 &crtc->config->base.adjusted_mode);
2338 }
2339 }
2340
2341 static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
2342 {
2343 struct drm_encoder *encoder = &intel_encoder->base;
2344 struct drm_device *dev = encoder->dev;
2345 struct drm_i915_private *dev_priv = dev->dev_private;
2346 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2347 int type = intel_encoder->type;
2348 uint32_t val;
2349 bool wait = false;
2350
2351 val = I915_READ(DDI_BUF_CTL(port));
2352 if (val & DDI_BUF_CTL_ENABLE) {
2353 val &= ~DDI_BUF_CTL_ENABLE;
2354 I915_WRITE(DDI_BUF_CTL(port), val);
2355 wait = true;
2356 }
2357
2358 val = I915_READ(DP_TP_CTL(port));
2359 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
2360 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
2361 I915_WRITE(DP_TP_CTL(port), val);
2362
2363 if (wait)
2364 intel_wait_ddi_buf_idle(dev_priv, port);
2365
2366 if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
2367 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2368 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2369 intel_edp_panel_vdd_on(intel_dp);
2370 intel_edp_panel_off(intel_dp);
2371 }
2372
2373 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2374 I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
2375 DPLL_CTRL2_DDI_CLK_OFF(port)));
2376 else if (INTEL_INFO(dev)->gen < 9)
2377 I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
2378 }
2379
2380 static void intel_enable_ddi(struct intel_encoder *intel_encoder)
2381 {
2382 struct drm_encoder *encoder = &intel_encoder->base;
2383 struct drm_crtc *crtc = encoder->crtc;
2384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385 struct drm_device *dev = encoder->dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 enum port port = intel_ddi_get_encoder_port(intel_encoder);
2388 int type = intel_encoder->type;
2389
2390 if (type == INTEL_OUTPUT_HDMI) {
2391 struct intel_digital_port *intel_dig_port =
2392 enc_to_dig_port(encoder);
2393
2394 /* In HDMI/DVI mode, the port width, and swing/emphasis values
2395 * are ignored so nothing special needs to be done besides
2396 * enabling the port.
2397 */
2398 I915_WRITE(DDI_BUF_CTL(port),
2399 intel_dig_port->saved_port_bits |
2400 DDI_BUF_CTL_ENABLE);
2401 } else if (type == INTEL_OUTPUT_EDP) {
2402 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2403
2404 if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
2405 intel_dp_stop_link_train(intel_dp);
2406
2407 intel_edp_backlight_on(intel_dp);
2408 intel_psr_enable(intel_dp);
2409 intel_edp_drrs_enable(intel_dp);
2410 }
2411
2412 if (intel_crtc->config->has_audio) {
2413 intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
2414 intel_audio_codec_enable(intel_encoder);
2415 }
2416 }
2417
2418 static void intel_disable_ddi(struct intel_encoder *intel_encoder)
2419 {
2420 struct drm_encoder *encoder = &intel_encoder->base;
2421 struct drm_crtc *crtc = encoder->crtc;
2422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2423 int type = intel_encoder->type;
2424 struct drm_device *dev = encoder->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426
2427 if (intel_crtc->config->has_audio) {
2428 intel_audio_codec_disable(intel_encoder);
2429 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
2430 }
2431
2432 if (type == INTEL_OUTPUT_EDP) {
2433 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2434
2435 intel_edp_drrs_disable(intel_dp);
2436 intel_psr_disable(intel_dp);
2437 intel_edp_backlight_off(intel_dp);
2438 }
2439 }
2440
2441 static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
2442 struct intel_shared_dpll *pll)
2443 {
2444 I915_WRITE(WRPLL_CTL(pll->id), pll->config.hw_state.wrpll);
2445 POSTING_READ(WRPLL_CTL(pll->id));
2446 udelay(20);
2447 }
2448
2449 static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
2450 struct intel_shared_dpll *pll)
2451 {
2452 I915_WRITE(SPLL_CTL, pll->config.hw_state.spll);
2453 POSTING_READ(SPLL_CTL);
2454 udelay(20);
2455 }
2456
2457 static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
2458 struct intel_shared_dpll *pll)
2459 {
2460 uint32_t val;
2461
2462 val = I915_READ(WRPLL_CTL(pll->id));
2463 I915_WRITE(WRPLL_CTL(pll->id), val & ~WRPLL_PLL_ENABLE);
2464 POSTING_READ(WRPLL_CTL(pll->id));
2465 }
2466
2467 static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
2468 struct intel_shared_dpll *pll)
2469 {
2470 uint32_t val;
2471
2472 val = I915_READ(SPLL_CTL);
2473 I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
2474 POSTING_READ(SPLL_CTL);
2475 }
2476
2477 static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
2478 struct intel_shared_dpll *pll,
2479 struct intel_dpll_hw_state *hw_state)
2480 {
2481 uint32_t val;
2482
2483 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
2484 return false;
2485
2486 val = I915_READ(WRPLL_CTL(pll->id));
2487 hw_state->wrpll = val;
2488
2489 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2490
2491 return val & WRPLL_PLL_ENABLE;
2492 }
2493
2494 static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
2495 struct intel_shared_dpll *pll,
2496 struct intel_dpll_hw_state *hw_state)
2497 {
2498 uint32_t val;
2499
2500 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
2501 return false;
2502
2503 val = I915_READ(SPLL_CTL);
2504 hw_state->spll = val;
2505
2506 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2507
2508 return val & SPLL_PLL_ENABLE;
2509 }
2510
2511
2512 static const char * const hsw_ddi_pll_names[] = {
2513 "WRPLL 1",
2514 "WRPLL 2",
2515 "SPLL"
2516 };
2517
2518 static void hsw_shared_dplls_init(struct drm_i915_private *dev_priv)
2519 {
2520 int i;
2521
2522 dev_priv->num_shared_dpll = 3;
2523
2524 for (i = 0; i < 2; i++) {
2525 dev_priv->shared_dplls[i].id = i;
2526 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2527 dev_priv->shared_dplls[i].disable = hsw_ddi_wrpll_disable;
2528 dev_priv->shared_dplls[i].enable = hsw_ddi_wrpll_enable;
2529 dev_priv->shared_dplls[i].get_hw_state =
2530 hsw_ddi_wrpll_get_hw_state;
2531 }
2532
2533 /* SPLL is special, but needs to be initialized anyway.. */
2534 dev_priv->shared_dplls[i].id = i;
2535 dev_priv->shared_dplls[i].name = hsw_ddi_pll_names[i];
2536 dev_priv->shared_dplls[i].disable = hsw_ddi_spll_disable;
2537 dev_priv->shared_dplls[i].enable = hsw_ddi_spll_enable;
2538 dev_priv->shared_dplls[i].get_hw_state = hsw_ddi_spll_get_hw_state;
2539
2540 }
2541
2542 static const char * const skl_ddi_pll_names[] = {
2543 "DPLL 1",
2544 "DPLL 2",
2545 "DPLL 3",
2546 };
2547
2548 struct skl_dpll_regs {
2549 i915_reg_t ctl, cfgcr1, cfgcr2;
2550 };
2551
2552 /* this array is indexed by the *shared* pll id */
2553 static const struct skl_dpll_regs skl_dpll_regs[3] = {
2554 {
2555 /* DPLL 1 */
2556 .ctl = LCPLL2_CTL,
2557 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
2558 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
2559 },
2560 {
2561 /* DPLL 2 */
2562 .ctl = WRPLL_CTL(0),
2563 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
2564 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
2565 },
2566 {
2567 /* DPLL 3 */
2568 .ctl = WRPLL_CTL(1),
2569 .cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
2570 .cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
2571 },
2572 };
2573
2574 static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
2575 struct intel_shared_dpll *pll)
2576 {
2577 uint32_t val;
2578 unsigned int dpll;
2579 const struct skl_dpll_regs *regs = skl_dpll_regs;
2580
2581 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2582 dpll = pll->id + 1;
2583
2584 val = I915_READ(DPLL_CTRL1);
2585
2586 val &= ~(DPLL_CTRL1_HDMI_MODE(dpll) | DPLL_CTRL1_SSC(dpll) |
2587 DPLL_CTRL1_LINK_RATE_MASK(dpll));
2588 val |= pll->config.hw_state.ctrl1 << (dpll * 6);
2589
2590 I915_WRITE(DPLL_CTRL1, val);
2591 POSTING_READ(DPLL_CTRL1);
2592
2593 I915_WRITE(regs[pll->id].cfgcr1, pll->config.hw_state.cfgcr1);
2594 I915_WRITE(regs[pll->id].cfgcr2, pll->config.hw_state.cfgcr2);
2595 POSTING_READ(regs[pll->id].cfgcr1);
2596 POSTING_READ(regs[pll->id].cfgcr2);
2597
2598 /* the enable bit is always bit 31 */
2599 I915_WRITE(regs[pll->id].ctl,
2600 I915_READ(regs[pll->id].ctl) | LCPLL_PLL_ENABLE);
2601
2602 if (wait_for(I915_READ(DPLL_STATUS) & DPLL_LOCK(dpll), 5))
2603 DRM_ERROR("DPLL %d not locked\n", dpll);
2604 }
2605
2606 static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
2607 struct intel_shared_dpll *pll)
2608 {
2609 const struct skl_dpll_regs *regs = skl_dpll_regs;
2610
2611 /* the enable bit is always bit 31 */
2612 I915_WRITE(regs[pll->id].ctl,
2613 I915_READ(regs[pll->id].ctl) & ~LCPLL_PLL_ENABLE);
2614 POSTING_READ(regs[pll->id].ctl);
2615 }
2616
2617 static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2618 struct intel_shared_dpll *pll,
2619 struct intel_dpll_hw_state *hw_state)
2620 {
2621 uint32_t val;
2622 unsigned int dpll;
2623 const struct skl_dpll_regs *regs = skl_dpll_regs;
2624 bool ret;
2625
2626 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
2627 return false;
2628
2629 ret = false;
2630
2631 /* DPLL0 is not part of the shared DPLLs, so pll->id is 0 for DPLL1 */
2632 dpll = pll->id + 1;
2633
2634 val = I915_READ(regs[pll->id].ctl);
2635 if (!(val & LCPLL_PLL_ENABLE))
2636 goto out;
2637
2638 val = I915_READ(DPLL_CTRL1);
2639 hw_state->ctrl1 = (val >> (dpll * 6)) & 0x3f;
2640
2641 /* avoid reading back stale values if HDMI mode is not enabled */
2642 if (val & DPLL_CTRL1_HDMI_MODE(dpll)) {
2643 hw_state->cfgcr1 = I915_READ(regs[pll->id].cfgcr1);
2644 hw_state->cfgcr2 = I915_READ(regs[pll->id].cfgcr2);
2645 }
2646 ret = true;
2647
2648 out:
2649 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2650
2651 return ret;
2652 }
2653
2654 static void skl_shared_dplls_init(struct drm_i915_private *dev_priv)
2655 {
2656 int i;
2657
2658 dev_priv->num_shared_dpll = 3;
2659
2660 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2661 dev_priv->shared_dplls[i].id = i;
2662 dev_priv->shared_dplls[i].name = skl_ddi_pll_names[i];
2663 dev_priv->shared_dplls[i].disable = skl_ddi_pll_disable;
2664 dev_priv->shared_dplls[i].enable = skl_ddi_pll_enable;
2665 dev_priv->shared_dplls[i].get_hw_state =
2666 skl_ddi_pll_get_hw_state;
2667 }
2668 }
2669
2670 static void broxton_phy_init(struct drm_i915_private *dev_priv,
2671 enum dpio_phy phy)
2672 {
2673 enum port port;
2674 uint32_t val;
2675
2676 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
2677 val |= GT_DISPLAY_POWER_ON(phy);
2678 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
2679
2680 /* Considering 10ms timeout until BSpec is updated */
2681 if (wait_for(I915_READ(BXT_PORT_CL1CM_DW0(phy)) & PHY_POWER_GOOD, 10))
2682 DRM_ERROR("timeout during PHY%d power on\n", phy);
2683
2684 for (port = (phy == DPIO_PHY0 ? PORT_B : PORT_A);
2685 port <= (phy == DPIO_PHY0 ? PORT_C : PORT_A); port++) {
2686 int lane;
2687
2688 for (lane = 0; lane < 4; lane++) {
2689 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
2690 /*
2691 * Note that on CHV this flag is called UPAR, but has
2692 * the same function.
2693 */
2694 val &= ~LATENCY_OPTIM;
2695 if (lane != 1)
2696 val |= LATENCY_OPTIM;
2697
2698 I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
2699 }
2700 }
2701
2702 /* Program PLL Rcomp code offset */
2703 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
2704 val &= ~IREF0RC_OFFSET_MASK;
2705 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
2706 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
2707
2708 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
2709 val &= ~IREF1RC_OFFSET_MASK;
2710 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
2711 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
2712
2713 /* Program power gating */
2714 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
2715 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
2716 SUS_CLK_CONFIG;
2717 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
2718
2719 if (phy == DPIO_PHY0) {
2720 val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
2721 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
2722 I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
2723 }
2724
2725 val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
2726 val &= ~OCL2_LDOFUSE_PWR_DIS;
2727 /*
2728 * On PHY1 disable power on the second channel, since no port is
2729 * connected there. On PHY0 both channels have a port, so leave it
2730 * enabled.
2731 * TODO: port C is only connected on BXT-P, so on BXT0/1 we should
2732 * power down the second channel on PHY0 as well.
2733 */
2734 if (phy == DPIO_PHY1)
2735 val |= OCL2_LDOFUSE_PWR_DIS;
2736 I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
2737
2738 if (phy == DPIO_PHY0) {
2739 uint32_t grc_code;
2740 /*
2741 * PHY0 isn't connected to an RCOMP resistor so copy over
2742 * the corresponding calibrated value from PHY1, and disable
2743 * the automatic calibration on PHY0.
2744 */
2745 if (wait_for(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE,
2746 10))
2747 DRM_ERROR("timeout waiting for PHY1 GRC\n");
2748
2749 val = I915_READ(BXT_PORT_REF_DW6(DPIO_PHY1));
2750 val = (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
2751 grc_code = val << GRC_CODE_FAST_SHIFT |
2752 val << GRC_CODE_SLOW_SHIFT |
2753 val;
2754 I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
2755
2756 val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
2757 val |= GRC_DIS | GRC_RDY_OVRD;
2758 I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
2759 }
2760
2761 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2762 val |= COMMON_RESET_DIS;
2763 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2764 }
2765
2766 void broxton_ddi_phy_init(struct drm_device *dev)
2767 {
2768 /* Enable PHY1 first since it provides Rcomp for PHY0 */
2769 broxton_phy_init(dev->dev_private, DPIO_PHY1);
2770 broxton_phy_init(dev->dev_private, DPIO_PHY0);
2771 }
2772
2773 static void broxton_phy_uninit(struct drm_i915_private *dev_priv,
2774 enum dpio_phy phy)
2775 {
2776 uint32_t val;
2777
2778 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
2779 val &= ~COMMON_RESET_DIS;
2780 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
2781 }
2782
2783 void broxton_ddi_phy_uninit(struct drm_device *dev)
2784 {
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786
2787 broxton_phy_uninit(dev_priv, DPIO_PHY1);
2788 broxton_phy_uninit(dev_priv, DPIO_PHY0);
2789
2790 /* FIXME: do this in broxton_phy_uninit per phy */
2791 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, 0);
2792 }
2793
2794 static const char * const bxt_ddi_pll_names[] = {
2795 "PORT PLL A",
2796 "PORT PLL B",
2797 "PORT PLL C",
2798 };
2799
2800 static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
2801 struct intel_shared_dpll *pll)
2802 {
2803 uint32_t temp;
2804 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2805
2806 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2807 temp &= ~PORT_PLL_REF_SEL;
2808 /* Non-SSC reference */
2809 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2810
2811 /* Disable 10 bit clock */
2812 temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2813 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2814 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2815
2816 /* Write P1 & P2 */
2817 temp = I915_READ(BXT_PORT_PLL_EBB_0(port));
2818 temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
2819 temp |= pll->config.hw_state.ebb0;
2820 I915_WRITE(BXT_PORT_PLL_EBB_0(port), temp);
2821
2822 /* Write M2 integer */
2823 temp = I915_READ(BXT_PORT_PLL(port, 0));
2824 temp &= ~PORT_PLL_M2_MASK;
2825 temp |= pll->config.hw_state.pll0;
2826 I915_WRITE(BXT_PORT_PLL(port, 0), temp);
2827
2828 /* Write N */
2829 temp = I915_READ(BXT_PORT_PLL(port, 1));
2830 temp &= ~PORT_PLL_N_MASK;
2831 temp |= pll->config.hw_state.pll1;
2832 I915_WRITE(BXT_PORT_PLL(port, 1), temp);
2833
2834 /* Write M2 fraction */
2835 temp = I915_READ(BXT_PORT_PLL(port, 2));
2836 temp &= ~PORT_PLL_M2_FRAC_MASK;
2837 temp |= pll->config.hw_state.pll2;
2838 I915_WRITE(BXT_PORT_PLL(port, 2), temp);
2839
2840 /* Write M2 fraction enable */
2841 temp = I915_READ(BXT_PORT_PLL(port, 3));
2842 temp &= ~PORT_PLL_M2_FRAC_ENABLE;
2843 temp |= pll->config.hw_state.pll3;
2844 I915_WRITE(BXT_PORT_PLL(port, 3), temp);
2845
2846 /* Write coeff */
2847 temp = I915_READ(BXT_PORT_PLL(port, 6));
2848 temp &= ~PORT_PLL_PROP_COEFF_MASK;
2849 temp &= ~PORT_PLL_INT_COEFF_MASK;
2850 temp &= ~PORT_PLL_GAIN_CTL_MASK;
2851 temp |= pll->config.hw_state.pll6;
2852 I915_WRITE(BXT_PORT_PLL(port, 6), temp);
2853
2854 /* Write calibration val */
2855 temp = I915_READ(BXT_PORT_PLL(port, 8));
2856 temp &= ~PORT_PLL_TARGET_CNT_MASK;
2857 temp |= pll->config.hw_state.pll8;
2858 I915_WRITE(BXT_PORT_PLL(port, 8), temp);
2859
2860 temp = I915_READ(BXT_PORT_PLL(port, 9));
2861 temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
2862 temp |= pll->config.hw_state.pll9;
2863 I915_WRITE(BXT_PORT_PLL(port, 9), temp);
2864
2865 temp = I915_READ(BXT_PORT_PLL(port, 10));
2866 temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
2867 temp &= ~PORT_PLL_DCO_AMP_MASK;
2868 temp |= pll->config.hw_state.pll10;
2869 I915_WRITE(BXT_PORT_PLL(port, 10), temp);
2870
2871 /* Recalibrate with new settings */
2872 temp = I915_READ(BXT_PORT_PLL_EBB_4(port));
2873 temp |= PORT_PLL_RECALIBRATE;
2874 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2875 temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
2876 temp |= pll->config.hw_state.ebb4;
2877 I915_WRITE(BXT_PORT_PLL_EBB_4(port), temp);
2878
2879 /* Enable PLL */
2880 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2881 temp |= PORT_PLL_ENABLE;
2882 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2883 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2884
2885 if (wait_for_atomic_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
2886 PORT_PLL_LOCK), 200))
2887 DRM_ERROR("PLL %d not locked\n", port);
2888
2889 /*
2890 * While we write to the group register to program all lanes at once we
2891 * can read only lane registers and we pick lanes 0/1 for that.
2892 */
2893 temp = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2894 temp &= ~LANE_STAGGER_MASK;
2895 temp &= ~LANESTAGGER_STRAP_OVRD;
2896 temp |= pll->config.hw_state.pcsdw12;
2897 I915_WRITE(BXT_PORT_PCS_DW12_GRP(port), temp);
2898 }
2899
2900 static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
2901 struct intel_shared_dpll *pll)
2902 {
2903 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2904 uint32_t temp;
2905
2906 temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
2907 temp &= ~PORT_PLL_ENABLE;
2908 I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
2909 POSTING_READ(BXT_PORT_PLL_ENABLE(port));
2910 }
2911
2912 static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
2913 struct intel_shared_dpll *pll,
2914 struct intel_dpll_hw_state *hw_state)
2915 {
2916 enum port port = (enum port)pll->id; /* 1:1 port->PLL mapping */
2917 uint32_t val;
2918 bool ret;
2919
2920 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_PLLS))
2921 return false;
2922
2923 ret = false;
2924
2925 val = I915_READ(BXT_PORT_PLL_ENABLE(port));
2926 if (!(val & PORT_PLL_ENABLE))
2927 goto out;
2928
2929 hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(port));
2930 hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
2931
2932 hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(port));
2933 hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
2934
2935 hw_state->pll0 = I915_READ(BXT_PORT_PLL(port, 0));
2936 hw_state->pll0 &= PORT_PLL_M2_MASK;
2937
2938 hw_state->pll1 = I915_READ(BXT_PORT_PLL(port, 1));
2939 hw_state->pll1 &= PORT_PLL_N_MASK;
2940
2941 hw_state->pll2 = I915_READ(BXT_PORT_PLL(port, 2));
2942 hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
2943
2944 hw_state->pll3 = I915_READ(BXT_PORT_PLL(port, 3));
2945 hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
2946
2947 hw_state->pll6 = I915_READ(BXT_PORT_PLL(port, 6));
2948 hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
2949 PORT_PLL_INT_COEFF_MASK |
2950 PORT_PLL_GAIN_CTL_MASK;
2951
2952 hw_state->pll8 = I915_READ(BXT_PORT_PLL(port, 8));
2953 hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
2954
2955 hw_state->pll9 = I915_READ(BXT_PORT_PLL(port, 9));
2956 hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
2957
2958 hw_state->pll10 = I915_READ(BXT_PORT_PLL(port, 10));
2959 hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
2960 PORT_PLL_DCO_AMP_MASK;
2961
2962 /*
2963 * While we write to the group register to program all lanes at once we
2964 * can read only lane registers. We configure all lanes the same way, so
2965 * here just read out lanes 0/1 and output a note if lanes 2/3 differ.
2966 */
2967 hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(port));
2968 if (I915_READ(BXT_PORT_PCS_DW12_LN23(port)) != hw_state->pcsdw12)
2969 DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
2970 hw_state->pcsdw12,
2971 I915_READ(BXT_PORT_PCS_DW12_LN23(port)));
2972 hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
2973
2974 ret = true;
2975
2976 out:
2977 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
2978
2979 return ret;
2980 }
2981
2982 static void bxt_shared_dplls_init(struct drm_i915_private *dev_priv)
2983 {
2984 int i;
2985
2986 dev_priv->num_shared_dpll = 3;
2987
2988 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2989 dev_priv->shared_dplls[i].id = i;
2990 dev_priv->shared_dplls[i].name = bxt_ddi_pll_names[i];
2991 dev_priv->shared_dplls[i].disable = bxt_ddi_pll_disable;
2992 dev_priv->shared_dplls[i].enable = bxt_ddi_pll_enable;
2993 dev_priv->shared_dplls[i].get_hw_state =
2994 bxt_ddi_pll_get_hw_state;
2995 }
2996 }
2997
2998 void intel_ddi_pll_init(struct drm_device *dev)
2999 {
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 uint32_t val = I915_READ(LCPLL_CTL);
3002
3003 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
3004 skl_shared_dplls_init(dev_priv);
3005 else if (IS_BROXTON(dev))
3006 bxt_shared_dplls_init(dev_priv);
3007 else
3008 hsw_shared_dplls_init(dev_priv);
3009
3010 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
3011 int cdclk_freq;
3012
3013 cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
3014 dev_priv->skl_boot_cdclk = cdclk_freq;
3015 if (skl_sanitize_cdclk(dev_priv))
3016 DRM_DEBUG_KMS("Sanitized cdclk programmed by pre-os\n");
3017 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE))
3018 DRM_ERROR("LCPLL1 is disabled\n");
3019 } else if (IS_BROXTON(dev)) {
3020 broxton_init_cdclk(dev);
3021 broxton_ddi_phy_init(dev);
3022 } else {
3023 /*
3024 * The LCPLL register should be turned on by the BIOS. For now
3025 * let's just check its state and print errors in case
3026 * something is wrong. Don't even try to turn it on.
3027 */
3028
3029 if (val & LCPLL_CD_SOURCE_FCLK)
3030 DRM_ERROR("CDCLK source is not LCPLL\n");
3031
3032 if (val & LCPLL_PLL_DISABLE)
3033 DRM_ERROR("LCPLL is disabled\n");
3034 }
3035 }
3036
3037 void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
3038 {
3039 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3040 struct drm_i915_private *dev_priv =
3041 to_i915(intel_dig_port->base.base.dev);
3042 enum port port = intel_dig_port->port;
3043 uint32_t val;
3044 bool wait = false;
3045
3046 if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
3047 val = I915_READ(DDI_BUF_CTL(port));
3048 if (val & DDI_BUF_CTL_ENABLE) {
3049 val &= ~DDI_BUF_CTL_ENABLE;
3050 I915_WRITE(DDI_BUF_CTL(port), val);
3051 wait = true;
3052 }
3053
3054 val = I915_READ(DP_TP_CTL(port));
3055 val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
3056 val |= DP_TP_CTL_LINK_TRAIN_PAT1;
3057 I915_WRITE(DP_TP_CTL(port), val);
3058 POSTING_READ(DP_TP_CTL(port));
3059
3060 if (wait)
3061 intel_wait_ddi_buf_idle(dev_priv, port);
3062 }
3063
3064 val = DP_TP_CTL_ENABLE |
3065 DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
3066 if (intel_dp->is_mst)
3067 val |= DP_TP_CTL_MODE_MST;
3068 else {
3069 val |= DP_TP_CTL_MODE_SST;
3070 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3071 val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
3072 }
3073 I915_WRITE(DP_TP_CTL(port), val);
3074 POSTING_READ(DP_TP_CTL(port));
3075
3076 intel_dp->DP |= DDI_BUF_CTL_ENABLE;
3077 I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
3078 POSTING_READ(DDI_BUF_CTL(port));
3079
3080 udelay(600);
3081 }
3082
3083 void intel_ddi_fdi_disable(struct drm_crtc *crtc)
3084 {
3085 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3086 struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
3087 uint32_t val;
3088
3089 intel_ddi_post_disable(intel_encoder);
3090
3091 val = I915_READ(FDI_RX_CTL(PIPE_A));
3092 val &= ~FDI_RX_ENABLE;
3093 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3094
3095 val = I915_READ(FDI_RX_MISC(PIPE_A));
3096 val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
3097 val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
3098 I915_WRITE(FDI_RX_MISC(PIPE_A), val);
3099
3100 val = I915_READ(FDI_RX_CTL(PIPE_A));
3101 val &= ~FDI_PCDCLK;
3102 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3103
3104 val = I915_READ(FDI_RX_CTL(PIPE_A));
3105 val &= ~FDI_RX_PLL_ENABLE;
3106 I915_WRITE(FDI_RX_CTL(PIPE_A), val);
3107 }
3108
3109 bool intel_ddi_is_audio_enabled(struct drm_i915_private *dev_priv,
3110 struct intel_crtc *intel_crtc)
3111 {
3112 u32 temp;
3113
3114 if (intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
3115 temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
3116
3117 intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
3118
3119 if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
3120 return true;
3121 }
3122
3123 return false;
3124 }
3125
3126 void intel_ddi_get_config(struct intel_encoder *encoder,
3127 struct intel_crtc_state *pipe_config)
3128 {
3129 struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
3130 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
3131 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
3132 struct intel_hdmi *intel_hdmi;
3133 u32 temp, flags = 0;
3134
3135 temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
3136 if (temp & TRANS_DDI_PHSYNC)
3137 flags |= DRM_MODE_FLAG_PHSYNC;
3138 else
3139 flags |= DRM_MODE_FLAG_NHSYNC;
3140 if (temp & TRANS_DDI_PVSYNC)
3141 flags |= DRM_MODE_FLAG_PVSYNC;
3142 else
3143 flags |= DRM_MODE_FLAG_NVSYNC;
3144
3145 pipe_config->base.adjusted_mode.flags |= flags;
3146
3147 switch (temp & TRANS_DDI_BPC_MASK) {
3148 case TRANS_DDI_BPC_6:
3149 pipe_config->pipe_bpp = 18;
3150 break;
3151 case TRANS_DDI_BPC_8:
3152 pipe_config->pipe_bpp = 24;
3153 break;
3154 case TRANS_DDI_BPC_10:
3155 pipe_config->pipe_bpp = 30;
3156 break;
3157 case TRANS_DDI_BPC_12:
3158 pipe_config->pipe_bpp = 36;
3159 break;
3160 default:
3161 break;
3162 }
3163
3164 switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
3165 case TRANS_DDI_MODE_SELECT_HDMI:
3166 pipe_config->has_hdmi_sink = true;
3167 intel_hdmi = enc_to_intel_hdmi(&encoder->base);
3168
3169 if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
3170 pipe_config->has_infoframe = true;
3171 break;
3172 case TRANS_DDI_MODE_SELECT_DVI:
3173 case TRANS_DDI_MODE_SELECT_FDI:
3174 break;
3175 case TRANS_DDI_MODE_SELECT_DP_SST:
3176 case TRANS_DDI_MODE_SELECT_DP_MST:
3177 pipe_config->has_dp_encoder = true;
3178 pipe_config->lane_count =
3179 ((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
3180 intel_dp_get_m_n(intel_crtc, pipe_config);
3181 break;
3182 default:
3183 break;
3184 }
3185
3186 pipe_config->has_audio =
3187 intel_ddi_is_audio_enabled(dev_priv, intel_crtc);
3188
3189 if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp_bpp &&
3190 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
3191 /*
3192 * This is a big fat ugly hack.
3193 *
3194 * Some machines in UEFI boot mode provide us a VBT that has 18
3195 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3196 * unknown we fail to light up. Yet the same BIOS boots up with
3197 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3198 * max, not what it tells us to use.
3199 *
3200 * Note: This will still be broken if the eDP panel is not lit
3201 * up by the BIOS, and thus we can't get the mode at module
3202 * load.
3203 */
3204 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3205 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
3206 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
3207 }
3208
3209 intel_ddi_clock_get(encoder, pipe_config);
3210 }
3211
3212 static bool intel_ddi_compute_config(struct intel_encoder *encoder,
3213 struct intel_crtc_state *pipe_config)
3214 {
3215 int type = encoder->type;
3216 int port = intel_ddi_get_encoder_port(encoder);
3217
3218 WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
3219
3220 if (port == PORT_A)
3221 pipe_config->cpu_transcoder = TRANSCODER_EDP;
3222
3223 if (type == INTEL_OUTPUT_HDMI)
3224 return intel_hdmi_compute_config(encoder, pipe_config);
3225 else
3226 return intel_dp_compute_config(encoder, pipe_config);
3227 }
3228
3229 static const struct drm_encoder_funcs intel_ddi_funcs = {
3230 .reset = intel_dp_encoder_reset,
3231 .destroy = intel_dp_encoder_destroy,
3232 };
3233
3234 static struct intel_connector *
3235 intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
3236 {
3237 struct intel_connector *connector;
3238 enum port port = intel_dig_port->port;
3239
3240 connector = intel_connector_alloc();
3241 if (!connector)
3242 return NULL;
3243
3244 intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
3245 if (!intel_dp_init_connector(intel_dig_port, connector)) {
3246 kfree(connector);
3247 return NULL;
3248 }
3249
3250 return connector;
3251 }
3252
3253 static struct intel_connector *
3254 intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
3255 {
3256 struct intel_connector *connector;
3257 enum port port = intel_dig_port->port;
3258
3259 connector = intel_connector_alloc();
3260 if (!connector)
3261 return NULL;
3262
3263 intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
3264 intel_hdmi_init_connector(intel_dig_port, connector);
3265
3266 return connector;
3267 }
3268
3269 void intel_ddi_init(struct drm_device *dev, enum port port)
3270 {
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 struct intel_digital_port *intel_dig_port;
3273 struct intel_encoder *intel_encoder;
3274 struct drm_encoder *encoder;
3275 bool init_hdmi, init_dp;
3276 int max_lanes;
3277
3278 if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
3279 switch (port) {
3280 case PORT_A:
3281 max_lanes = 4;
3282 break;
3283 case PORT_E:
3284 max_lanes = 0;
3285 break;
3286 default:
3287 max_lanes = 4;
3288 break;
3289 }
3290 } else {
3291 switch (port) {
3292 case PORT_A:
3293 max_lanes = 2;
3294 break;
3295 case PORT_E:
3296 max_lanes = 2;
3297 break;
3298 default:
3299 max_lanes = 4;
3300 break;
3301 }
3302 }
3303
3304 init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
3305 dev_priv->vbt.ddi_port_info[port].supports_hdmi);
3306 init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
3307 if (!init_dp && !init_hdmi) {
3308 DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
3309 port_name(port));
3310 return;
3311 }
3312
3313 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3314 if (!intel_dig_port)
3315 return;
3316
3317 intel_encoder = &intel_dig_port->base;
3318 encoder = &intel_encoder->base;
3319
3320 drm_encoder_init(dev, encoder, &intel_ddi_funcs,
3321 DRM_MODE_ENCODER_TMDS, NULL);
3322
3323 intel_encoder->compute_config = intel_ddi_compute_config;
3324 intel_encoder->enable = intel_enable_ddi;
3325 intel_encoder->pre_enable = intel_ddi_pre_enable;
3326 intel_encoder->disable = intel_disable_ddi;
3327 intel_encoder->post_disable = intel_ddi_post_disable;
3328 intel_encoder->get_hw_state = intel_ddi_get_hw_state;
3329 intel_encoder->get_config = intel_ddi_get_config;
3330 intel_encoder->suspend = intel_dp_encoder_suspend;
3331
3332 intel_dig_port->port = port;
3333 intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
3334 (DDI_BUF_PORT_REVERSAL |
3335 DDI_A_4_LANES);
3336
3337 /*
3338 * Bspec says that DDI_A_4_LANES is the only supported configuration
3339 * for Broxton. Yet some BIOS fail to set this bit on port A if eDP
3340 * wasn't lit up at boot. Force this bit on in our internal
3341 * configuration so that we use the proper lane count for our
3342 * calculations.
3343 */
3344 if (IS_BROXTON(dev) && port == PORT_A) {
3345 if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
3346 DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
3347 intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
3348 max_lanes = 4;
3349 }
3350 }
3351
3352 intel_dig_port->max_lanes = max_lanes;
3353
3354 intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
3355 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3356 intel_encoder->cloneable = 0;
3357
3358 if (init_dp) {
3359 if (!intel_ddi_init_dp_connector(intel_dig_port))
3360 goto err;
3361
3362 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
3363 /*
3364 * On BXT A0/A1, sw needs to activate DDIA HPD logic and
3365 * interrupts to check the external panel connection.
3366 */
3367 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
3368 dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
3369 else
3370 dev_priv->hotplug.irq_port[port] = intel_dig_port;
3371 }
3372
3373 /* In theory we don't need the encoder->type check, but leave it just in
3374 * case we have some really bad VBTs... */
3375 if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
3376 if (!intel_ddi_init_hdmi_connector(intel_dig_port))
3377 goto err;
3378 }
3379
3380 return;
3381
3382 err:
3383 drm_encoder_cleanup(encoder);
3384 kfree(intel_dig_port);
3385 }
This page took 0.10233 seconds and 5 git commands to generate.