Merge branch 'for-4.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include "i915_drv.h"
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
33
34 /**
35 * DOC: RC6
36 *
37 * RC6 is a special power stage which allows the GPU to enter an very
38 * low-voltage mode when idle, using down to 0V while at this stage. This
39 * stage is entered automatically when the GPU is idle when RC6 support is
40 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
41 *
42 * There are different RC6 modes available in Intel GPU, which differentiate
43 * among each other with the latency required to enter and leave RC6 and
44 * voltage consumed by the GPU in different states.
45 *
46 * The combination of the following flags define which states GPU is allowed
47 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
48 * RC6pp is deepest RC6. Their support by hardware varies according to the
49 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
50 * which brings the most power savings; deeper states save more power, but
51 * require higher latency to switch to and wake up.
52 */
53 #define INTEL_RC6_ENABLE (1<<0)
54 #define INTEL_RC6p_ENABLE (1<<1)
55 #define INTEL_RC6pp_ENABLE (1<<2)
56
57 static void bxt_init_clock_gating(struct drm_device *dev)
58 {
59 struct drm_i915_private *dev_priv = dev->dev_private;
60
61 /* WaDisableSDEUnitClockGating:bxt */
62 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
63 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
64
65 /*
66 * FIXME:
67 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
68 */
69 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
70 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
71
72 /*
73 * Wa: Backlight PWM may stop in the asserted state, causing backlight
74 * to stay fully on.
75 */
76 if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
77 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
78 PWM1_GATING_DIS | PWM2_GATING_DIS);
79 }
80
81 static void i915_pineview_get_mem_freq(struct drm_device *dev)
82 {
83 struct drm_i915_private *dev_priv = dev->dev_private;
84 u32 tmp;
85
86 tmp = I915_READ(CLKCFG);
87
88 switch (tmp & CLKCFG_FSB_MASK) {
89 case CLKCFG_FSB_533:
90 dev_priv->fsb_freq = 533; /* 133*4 */
91 break;
92 case CLKCFG_FSB_800:
93 dev_priv->fsb_freq = 800; /* 200*4 */
94 break;
95 case CLKCFG_FSB_667:
96 dev_priv->fsb_freq = 667; /* 167*4 */
97 break;
98 case CLKCFG_FSB_400:
99 dev_priv->fsb_freq = 400; /* 100*4 */
100 break;
101 }
102
103 switch (tmp & CLKCFG_MEM_MASK) {
104 case CLKCFG_MEM_533:
105 dev_priv->mem_freq = 533;
106 break;
107 case CLKCFG_MEM_667:
108 dev_priv->mem_freq = 667;
109 break;
110 case CLKCFG_MEM_800:
111 dev_priv->mem_freq = 800;
112 break;
113 }
114
115 /* detect pineview DDR3 setting */
116 tmp = I915_READ(CSHRDDR3CTL);
117 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
118 }
119
120 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123 u16 ddrpll, csipll;
124
125 ddrpll = I915_READ16(DDRMPLL1);
126 csipll = I915_READ16(CSIPLL0);
127
128 switch (ddrpll & 0xff) {
129 case 0xc:
130 dev_priv->mem_freq = 800;
131 break;
132 case 0x10:
133 dev_priv->mem_freq = 1066;
134 break;
135 case 0x14:
136 dev_priv->mem_freq = 1333;
137 break;
138 case 0x18:
139 dev_priv->mem_freq = 1600;
140 break;
141 default:
142 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
143 ddrpll & 0xff);
144 dev_priv->mem_freq = 0;
145 break;
146 }
147
148 dev_priv->ips.r_t = dev_priv->mem_freq;
149
150 switch (csipll & 0x3ff) {
151 case 0x00c:
152 dev_priv->fsb_freq = 3200;
153 break;
154 case 0x00e:
155 dev_priv->fsb_freq = 3733;
156 break;
157 case 0x010:
158 dev_priv->fsb_freq = 4266;
159 break;
160 case 0x012:
161 dev_priv->fsb_freq = 4800;
162 break;
163 case 0x014:
164 dev_priv->fsb_freq = 5333;
165 break;
166 case 0x016:
167 dev_priv->fsb_freq = 5866;
168 break;
169 case 0x018:
170 dev_priv->fsb_freq = 6400;
171 break;
172 default:
173 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
174 csipll & 0x3ff);
175 dev_priv->fsb_freq = 0;
176 break;
177 }
178
179 if (dev_priv->fsb_freq == 3200) {
180 dev_priv->ips.c_m = 0;
181 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
182 dev_priv->ips.c_m = 1;
183 } else {
184 dev_priv->ips.c_m = 2;
185 }
186 }
187
188 static const struct cxsr_latency cxsr_latency_table[] = {
189 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
190 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
191 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
192 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
193 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
194
195 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
196 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
197 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
198 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
199 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
200
201 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
202 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
203 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
204 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
205 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
206
207 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
208 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
209 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
210 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
211 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
212
213 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
214 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
215 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
216 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
217 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
218
219 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
220 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
221 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
222 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
223 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
224 };
225
226 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
227 int is_ddr3,
228 int fsb,
229 int mem)
230 {
231 const struct cxsr_latency *latency;
232 int i;
233
234 if (fsb == 0 || mem == 0)
235 return NULL;
236
237 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
238 latency = &cxsr_latency_table[i];
239 if (is_desktop == latency->is_desktop &&
240 is_ddr3 == latency->is_ddr3 &&
241 fsb == latency->fsb_freq && mem == latency->mem_freq)
242 return latency;
243 }
244
245 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
246
247 return NULL;
248 }
249
250 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
251 {
252 u32 val;
253
254 mutex_lock(&dev_priv->rps.hw_lock);
255
256 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
257 if (enable)
258 val &= ~FORCE_DDR_HIGH_FREQ;
259 else
260 val |= FORCE_DDR_HIGH_FREQ;
261 val &= ~FORCE_DDR_LOW_FREQ;
262 val |= FORCE_DDR_FREQ_REQ_ACK;
263 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
264
265 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
266 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
267 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
268
269 mutex_unlock(&dev_priv->rps.hw_lock);
270 }
271
272 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
273 {
274 u32 val;
275
276 mutex_lock(&dev_priv->rps.hw_lock);
277
278 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
279 if (enable)
280 val |= DSP_MAXFIFO_PM5_ENABLE;
281 else
282 val &= ~DSP_MAXFIFO_PM5_ENABLE;
283 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
284
285 mutex_unlock(&dev_priv->rps.hw_lock);
286 }
287
288 #define FW_WM(value, plane) \
289 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
290
291 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
292 {
293 struct drm_device *dev = dev_priv->dev;
294 u32 val;
295
296 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
297 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
298 POSTING_READ(FW_BLC_SELF_VLV);
299 dev_priv->wm.vlv.cxsr = enable;
300 } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
301 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
302 POSTING_READ(FW_BLC_SELF);
303 } else if (IS_PINEVIEW(dev)) {
304 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
305 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
306 I915_WRITE(DSPFW3, val);
307 POSTING_READ(DSPFW3);
308 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
309 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
310 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
311 I915_WRITE(FW_BLC_SELF, val);
312 POSTING_READ(FW_BLC_SELF);
313 } else if (IS_I915GM(dev)) {
314 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
315 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
316 I915_WRITE(INSTPM, val);
317 POSTING_READ(INSTPM);
318 } else {
319 return;
320 }
321
322 DRM_DEBUG_KMS("memory self-refresh is %s\n",
323 enable ? "enabled" : "disabled");
324 }
325
326
327 /*
328 * Latency for FIFO fetches is dependent on several factors:
329 * - memory configuration (speed, channels)
330 * - chipset
331 * - current MCH state
332 * It can be fairly high in some situations, so here we assume a fairly
333 * pessimal value. It's a tradeoff between extra memory fetches (if we
334 * set this value too high, the FIFO will fetch frequently to stay full)
335 * and power consumption (set it too low to save power and we might see
336 * FIFO underruns and display "flicker").
337 *
338 * A value of 5us seems to be a good balance; safe for very low end
339 * platforms but not overly aggressive on lower latency configs.
340 */
341 static const int pessimal_latency_ns = 5000;
342
343 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
344 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
345
346 static int vlv_get_fifo_size(struct drm_device *dev,
347 enum pipe pipe, int plane)
348 {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 int sprite0_start, sprite1_start, size;
351
352 switch (pipe) {
353 uint32_t dsparb, dsparb2, dsparb3;
354 case PIPE_A:
355 dsparb = I915_READ(DSPARB);
356 dsparb2 = I915_READ(DSPARB2);
357 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
358 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
359 break;
360 case PIPE_B:
361 dsparb = I915_READ(DSPARB);
362 dsparb2 = I915_READ(DSPARB2);
363 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
364 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
365 break;
366 case PIPE_C:
367 dsparb2 = I915_READ(DSPARB2);
368 dsparb3 = I915_READ(DSPARB3);
369 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
370 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
371 break;
372 default:
373 return 0;
374 }
375
376 switch (plane) {
377 case 0:
378 size = sprite0_start;
379 break;
380 case 1:
381 size = sprite1_start - sprite0_start;
382 break;
383 case 2:
384 size = 512 - 1 - sprite1_start;
385 break;
386 default:
387 return 0;
388 }
389
390 DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
391 pipe_name(pipe), plane == 0 ? "primary" : "sprite",
392 plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
393 size);
394
395 return size;
396 }
397
398 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
399 {
400 struct drm_i915_private *dev_priv = dev->dev_private;
401 uint32_t dsparb = I915_READ(DSPARB);
402 int size;
403
404 size = dsparb & 0x7f;
405 if (plane)
406 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
407
408 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
409 plane ? "B" : "A", size);
410
411 return size;
412 }
413
414 static int i830_get_fifo_size(struct drm_device *dev, int plane)
415 {
416 struct drm_i915_private *dev_priv = dev->dev_private;
417 uint32_t dsparb = I915_READ(DSPARB);
418 int size;
419
420 size = dsparb & 0x1ff;
421 if (plane)
422 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
423 size >>= 1; /* Convert to cachelines */
424
425 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
426 plane ? "B" : "A", size);
427
428 return size;
429 }
430
431 static int i845_get_fifo_size(struct drm_device *dev, int plane)
432 {
433 struct drm_i915_private *dev_priv = dev->dev_private;
434 uint32_t dsparb = I915_READ(DSPARB);
435 int size;
436
437 size = dsparb & 0x7f;
438 size >>= 2; /* Convert to cachelines */
439
440 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
441 plane ? "B" : "A",
442 size);
443
444 return size;
445 }
446
447 /* Pineview has different values for various configs */
448 static const struct intel_watermark_params pineview_display_wm = {
449 .fifo_size = PINEVIEW_DISPLAY_FIFO,
450 .max_wm = PINEVIEW_MAX_WM,
451 .default_wm = PINEVIEW_DFT_WM,
452 .guard_size = PINEVIEW_GUARD_WM,
453 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
454 };
455 static const struct intel_watermark_params pineview_display_hplloff_wm = {
456 .fifo_size = PINEVIEW_DISPLAY_FIFO,
457 .max_wm = PINEVIEW_MAX_WM,
458 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
459 .guard_size = PINEVIEW_GUARD_WM,
460 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
461 };
462 static const struct intel_watermark_params pineview_cursor_wm = {
463 .fifo_size = PINEVIEW_CURSOR_FIFO,
464 .max_wm = PINEVIEW_CURSOR_MAX_WM,
465 .default_wm = PINEVIEW_CURSOR_DFT_WM,
466 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
467 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
468 };
469 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
470 .fifo_size = PINEVIEW_CURSOR_FIFO,
471 .max_wm = PINEVIEW_CURSOR_MAX_WM,
472 .default_wm = PINEVIEW_CURSOR_DFT_WM,
473 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
474 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
475 };
476 static const struct intel_watermark_params g4x_wm_info = {
477 .fifo_size = G4X_FIFO_SIZE,
478 .max_wm = G4X_MAX_WM,
479 .default_wm = G4X_MAX_WM,
480 .guard_size = 2,
481 .cacheline_size = G4X_FIFO_LINE_SIZE,
482 };
483 static const struct intel_watermark_params g4x_cursor_wm_info = {
484 .fifo_size = I965_CURSOR_FIFO,
485 .max_wm = I965_CURSOR_MAX_WM,
486 .default_wm = I965_CURSOR_DFT_WM,
487 .guard_size = 2,
488 .cacheline_size = G4X_FIFO_LINE_SIZE,
489 };
490 static const struct intel_watermark_params valleyview_wm_info = {
491 .fifo_size = VALLEYVIEW_FIFO_SIZE,
492 .max_wm = VALLEYVIEW_MAX_WM,
493 .default_wm = VALLEYVIEW_MAX_WM,
494 .guard_size = 2,
495 .cacheline_size = G4X_FIFO_LINE_SIZE,
496 };
497 static const struct intel_watermark_params valleyview_cursor_wm_info = {
498 .fifo_size = I965_CURSOR_FIFO,
499 .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
500 .default_wm = I965_CURSOR_DFT_WM,
501 .guard_size = 2,
502 .cacheline_size = G4X_FIFO_LINE_SIZE,
503 };
504 static const struct intel_watermark_params i965_cursor_wm_info = {
505 .fifo_size = I965_CURSOR_FIFO,
506 .max_wm = I965_CURSOR_MAX_WM,
507 .default_wm = I965_CURSOR_DFT_WM,
508 .guard_size = 2,
509 .cacheline_size = I915_FIFO_LINE_SIZE,
510 };
511 static const struct intel_watermark_params i945_wm_info = {
512 .fifo_size = I945_FIFO_SIZE,
513 .max_wm = I915_MAX_WM,
514 .default_wm = 1,
515 .guard_size = 2,
516 .cacheline_size = I915_FIFO_LINE_SIZE,
517 };
518 static const struct intel_watermark_params i915_wm_info = {
519 .fifo_size = I915_FIFO_SIZE,
520 .max_wm = I915_MAX_WM,
521 .default_wm = 1,
522 .guard_size = 2,
523 .cacheline_size = I915_FIFO_LINE_SIZE,
524 };
525 static const struct intel_watermark_params i830_a_wm_info = {
526 .fifo_size = I855GM_FIFO_SIZE,
527 .max_wm = I915_MAX_WM,
528 .default_wm = 1,
529 .guard_size = 2,
530 .cacheline_size = I830_FIFO_LINE_SIZE,
531 };
532 static const struct intel_watermark_params i830_bc_wm_info = {
533 .fifo_size = I855GM_FIFO_SIZE,
534 .max_wm = I915_MAX_WM/2,
535 .default_wm = 1,
536 .guard_size = 2,
537 .cacheline_size = I830_FIFO_LINE_SIZE,
538 };
539 static const struct intel_watermark_params i845_wm_info = {
540 .fifo_size = I830_FIFO_SIZE,
541 .max_wm = I915_MAX_WM,
542 .default_wm = 1,
543 .guard_size = 2,
544 .cacheline_size = I830_FIFO_LINE_SIZE,
545 };
546
547 /**
548 * intel_calculate_wm - calculate watermark level
549 * @clock_in_khz: pixel clock
550 * @wm: chip FIFO params
551 * @cpp: bytes per pixel
552 * @latency_ns: memory latency for the platform
553 *
554 * Calculate the watermark level (the level at which the display plane will
555 * start fetching from memory again). Each chip has a different display
556 * FIFO size and allocation, so the caller needs to figure that out and pass
557 * in the correct intel_watermark_params structure.
558 *
559 * As the pixel clock runs, the FIFO will be drained at a rate that depends
560 * on the pixel size. When it reaches the watermark level, it'll start
561 * fetching FIFO line sized based chunks from memory until the FIFO fills
562 * past the watermark point. If the FIFO drains completely, a FIFO underrun
563 * will occur, and a display engine hang could result.
564 */
565 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
566 const struct intel_watermark_params *wm,
567 int fifo_size, int cpp,
568 unsigned long latency_ns)
569 {
570 long entries_required, wm_size;
571
572 /*
573 * Note: we need to make sure we don't overflow for various clock &
574 * latency values.
575 * clocks go from a few thousand to several hundred thousand.
576 * latency is usually a few thousand
577 */
578 entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
579 1000;
580 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
581
582 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
583
584 wm_size = fifo_size - (entries_required + wm->guard_size);
585
586 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
587
588 /* Don't promote wm_size to unsigned... */
589 if (wm_size > (long)wm->max_wm)
590 wm_size = wm->max_wm;
591 if (wm_size <= 0)
592 wm_size = wm->default_wm;
593
594 /*
595 * Bspec seems to indicate that the value shouldn't be lower than
596 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
597 * Lets go for 8 which is the burst size since certain platforms
598 * already use a hardcoded 8 (which is what the spec says should be
599 * done).
600 */
601 if (wm_size <= 8)
602 wm_size = 8;
603
604 return wm_size;
605 }
606
607 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
608 {
609 struct drm_crtc *crtc, *enabled = NULL;
610
611 for_each_crtc(dev, crtc) {
612 if (intel_crtc_active(crtc)) {
613 if (enabled)
614 return NULL;
615 enabled = crtc;
616 }
617 }
618
619 return enabled;
620 }
621
622 static void pineview_update_wm(struct drm_crtc *unused_crtc)
623 {
624 struct drm_device *dev = unused_crtc->dev;
625 struct drm_i915_private *dev_priv = dev->dev_private;
626 struct drm_crtc *crtc;
627 const struct cxsr_latency *latency;
628 u32 reg;
629 unsigned long wm;
630
631 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
632 dev_priv->fsb_freq, dev_priv->mem_freq);
633 if (!latency) {
634 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
635 intel_set_memory_cxsr(dev_priv, false);
636 return;
637 }
638
639 crtc = single_enabled_crtc(dev);
640 if (crtc) {
641 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
642 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
643 int clock = adjusted_mode->crtc_clock;
644
645 /* Display SR */
646 wm = intel_calculate_wm(clock, &pineview_display_wm,
647 pineview_display_wm.fifo_size,
648 cpp, latency->display_sr);
649 reg = I915_READ(DSPFW1);
650 reg &= ~DSPFW_SR_MASK;
651 reg |= FW_WM(wm, SR);
652 I915_WRITE(DSPFW1, reg);
653 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
654
655 /* cursor SR */
656 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
657 pineview_display_wm.fifo_size,
658 cpp, latency->cursor_sr);
659 reg = I915_READ(DSPFW3);
660 reg &= ~DSPFW_CURSOR_SR_MASK;
661 reg |= FW_WM(wm, CURSOR_SR);
662 I915_WRITE(DSPFW3, reg);
663
664 /* Display HPLL off SR */
665 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
666 pineview_display_hplloff_wm.fifo_size,
667 cpp, latency->display_hpll_disable);
668 reg = I915_READ(DSPFW3);
669 reg &= ~DSPFW_HPLL_SR_MASK;
670 reg |= FW_WM(wm, HPLL_SR);
671 I915_WRITE(DSPFW3, reg);
672
673 /* cursor HPLL off SR */
674 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
675 pineview_display_hplloff_wm.fifo_size,
676 cpp, latency->cursor_hpll_disable);
677 reg = I915_READ(DSPFW3);
678 reg &= ~DSPFW_HPLL_CURSOR_MASK;
679 reg |= FW_WM(wm, HPLL_CURSOR);
680 I915_WRITE(DSPFW3, reg);
681 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
682
683 intel_set_memory_cxsr(dev_priv, true);
684 } else {
685 intel_set_memory_cxsr(dev_priv, false);
686 }
687 }
688
689 static bool g4x_compute_wm0(struct drm_device *dev,
690 int plane,
691 const struct intel_watermark_params *display,
692 int display_latency_ns,
693 const struct intel_watermark_params *cursor,
694 int cursor_latency_ns,
695 int *plane_wm,
696 int *cursor_wm)
697 {
698 struct drm_crtc *crtc;
699 const struct drm_display_mode *adjusted_mode;
700 int htotal, hdisplay, clock, cpp;
701 int line_time_us, line_count;
702 int entries, tlb_miss;
703
704 crtc = intel_get_crtc_for_plane(dev, plane);
705 if (!intel_crtc_active(crtc)) {
706 *cursor_wm = cursor->guard_size;
707 *plane_wm = display->guard_size;
708 return false;
709 }
710
711 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
712 clock = adjusted_mode->crtc_clock;
713 htotal = adjusted_mode->crtc_htotal;
714 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
715 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
716
717 /* Use the small buffer method to calculate plane watermark */
718 entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
719 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
720 if (tlb_miss > 0)
721 entries += tlb_miss;
722 entries = DIV_ROUND_UP(entries, display->cacheline_size);
723 *plane_wm = entries + display->guard_size;
724 if (*plane_wm > (int)display->max_wm)
725 *plane_wm = display->max_wm;
726
727 /* Use the large buffer method to calculate cursor watermark */
728 line_time_us = max(htotal * 1000 / clock, 1);
729 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
730 entries = line_count * crtc->cursor->state->crtc_w * cpp;
731 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
732 if (tlb_miss > 0)
733 entries += tlb_miss;
734 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
735 *cursor_wm = entries + cursor->guard_size;
736 if (*cursor_wm > (int)cursor->max_wm)
737 *cursor_wm = (int)cursor->max_wm;
738
739 return true;
740 }
741
742 /*
743 * Check the wm result.
744 *
745 * If any calculated watermark values is larger than the maximum value that
746 * can be programmed into the associated watermark register, that watermark
747 * must be disabled.
748 */
749 static bool g4x_check_srwm(struct drm_device *dev,
750 int display_wm, int cursor_wm,
751 const struct intel_watermark_params *display,
752 const struct intel_watermark_params *cursor)
753 {
754 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
755 display_wm, cursor_wm);
756
757 if (display_wm > display->max_wm) {
758 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
759 display_wm, display->max_wm);
760 return false;
761 }
762
763 if (cursor_wm > cursor->max_wm) {
764 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
765 cursor_wm, cursor->max_wm);
766 return false;
767 }
768
769 if (!(display_wm || cursor_wm)) {
770 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
771 return false;
772 }
773
774 return true;
775 }
776
777 static bool g4x_compute_srwm(struct drm_device *dev,
778 int plane,
779 int latency_ns,
780 const struct intel_watermark_params *display,
781 const struct intel_watermark_params *cursor,
782 int *display_wm, int *cursor_wm)
783 {
784 struct drm_crtc *crtc;
785 const struct drm_display_mode *adjusted_mode;
786 int hdisplay, htotal, cpp, clock;
787 unsigned long line_time_us;
788 int line_count, line_size;
789 int small, large;
790 int entries;
791
792 if (!latency_ns) {
793 *display_wm = *cursor_wm = 0;
794 return false;
795 }
796
797 crtc = intel_get_crtc_for_plane(dev, plane);
798 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
799 clock = adjusted_mode->crtc_clock;
800 htotal = adjusted_mode->crtc_htotal;
801 hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
802 cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
803
804 line_time_us = max(htotal * 1000 / clock, 1);
805 line_count = (latency_ns / line_time_us + 1000) / 1000;
806 line_size = hdisplay * cpp;
807
808 /* Use the minimum of the small and large buffer method for primary */
809 small = ((clock * cpp / 1000) * latency_ns) / 1000;
810 large = line_count * line_size;
811
812 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
813 *display_wm = entries + display->guard_size;
814
815 /* calculate the self-refresh watermark for display cursor */
816 entries = line_count * cpp * crtc->cursor->state->crtc_w;
817 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
818 *cursor_wm = entries + cursor->guard_size;
819
820 return g4x_check_srwm(dev,
821 *display_wm, *cursor_wm,
822 display, cursor);
823 }
824
825 #define FW_WM_VLV(value, plane) \
826 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
827
828 static void vlv_write_wm_values(struct intel_crtc *crtc,
829 const struct vlv_wm_values *wm)
830 {
831 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
832 enum pipe pipe = crtc->pipe;
833
834 I915_WRITE(VLV_DDL(pipe),
835 (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
836 (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
837 (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
838 (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
839
840 I915_WRITE(DSPFW1,
841 FW_WM(wm->sr.plane, SR) |
842 FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
843 FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
844 FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
845 I915_WRITE(DSPFW2,
846 FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
847 FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
848 FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
849 I915_WRITE(DSPFW3,
850 FW_WM(wm->sr.cursor, CURSOR_SR));
851
852 if (IS_CHERRYVIEW(dev_priv)) {
853 I915_WRITE(DSPFW7_CHV,
854 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
855 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
856 I915_WRITE(DSPFW8_CHV,
857 FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
858 FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
859 I915_WRITE(DSPFW9_CHV,
860 FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
861 FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
862 I915_WRITE(DSPHOWM,
863 FW_WM(wm->sr.plane >> 9, SR_HI) |
864 FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
865 FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
866 FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
867 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
868 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
869 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
870 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
871 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
872 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
873 } else {
874 I915_WRITE(DSPFW7,
875 FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
876 FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
877 I915_WRITE(DSPHOWM,
878 FW_WM(wm->sr.plane >> 9, SR_HI) |
879 FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
880 FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
881 FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
882 FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
883 FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
884 FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
885 }
886
887 /* zero (unused) WM1 watermarks */
888 I915_WRITE(DSPFW4, 0);
889 I915_WRITE(DSPFW5, 0);
890 I915_WRITE(DSPFW6, 0);
891 I915_WRITE(DSPHOWM1, 0);
892
893 POSTING_READ(DSPFW1);
894 }
895
896 #undef FW_WM_VLV
897
898 enum vlv_wm_level {
899 VLV_WM_LEVEL_PM2,
900 VLV_WM_LEVEL_PM5,
901 VLV_WM_LEVEL_DDR_DVFS,
902 };
903
904 /* latency must be in 0.1us units. */
905 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
906 unsigned int pipe_htotal,
907 unsigned int horiz_pixels,
908 unsigned int cpp,
909 unsigned int latency)
910 {
911 unsigned int ret;
912
913 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
914 ret = (ret + 1) * horiz_pixels * cpp;
915 ret = DIV_ROUND_UP(ret, 64);
916
917 return ret;
918 }
919
920 static void vlv_setup_wm_latency(struct drm_device *dev)
921 {
922 struct drm_i915_private *dev_priv = dev->dev_private;
923
924 /* all latencies in usec */
925 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
926
927 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
928
929 if (IS_CHERRYVIEW(dev_priv)) {
930 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
931 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
932
933 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
934 }
935 }
936
937 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
938 struct intel_crtc *crtc,
939 const struct intel_plane_state *state,
940 int level)
941 {
942 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
943 int clock, htotal, cpp, width, wm;
944
945 if (dev_priv->wm.pri_latency[level] == 0)
946 return USHRT_MAX;
947
948 if (!state->visible)
949 return 0;
950
951 cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
952 clock = crtc->config->base.adjusted_mode.crtc_clock;
953 htotal = crtc->config->base.adjusted_mode.crtc_htotal;
954 width = crtc->config->pipe_src_w;
955 if (WARN_ON(htotal == 0))
956 htotal = 1;
957
958 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
959 /*
960 * FIXME the formula gives values that are
961 * too big for the cursor FIFO, and hence we
962 * would never be able to use cursors. For
963 * now just hardcode the watermark.
964 */
965 wm = 63;
966 } else {
967 wm = vlv_wm_method2(clock, htotal, width, cpp,
968 dev_priv->wm.pri_latency[level] * 10);
969 }
970
971 return min_t(int, wm, USHRT_MAX);
972 }
973
974 static void vlv_compute_fifo(struct intel_crtc *crtc)
975 {
976 struct drm_device *dev = crtc->base.dev;
977 struct vlv_wm_state *wm_state = &crtc->wm_state;
978 struct intel_plane *plane;
979 unsigned int total_rate = 0;
980 const int fifo_size = 512 - 1;
981 int fifo_extra, fifo_left = fifo_size;
982
983 for_each_intel_plane_on_crtc(dev, crtc, plane) {
984 struct intel_plane_state *state =
985 to_intel_plane_state(plane->base.state);
986
987 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
988 continue;
989
990 if (state->visible) {
991 wm_state->num_active_planes++;
992 total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
993 }
994 }
995
996 for_each_intel_plane_on_crtc(dev, crtc, plane) {
997 struct intel_plane_state *state =
998 to_intel_plane_state(plane->base.state);
999 unsigned int rate;
1000
1001 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1002 plane->wm.fifo_size = 63;
1003 continue;
1004 }
1005
1006 if (!state->visible) {
1007 plane->wm.fifo_size = 0;
1008 continue;
1009 }
1010
1011 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1012 plane->wm.fifo_size = fifo_size * rate / total_rate;
1013 fifo_left -= plane->wm.fifo_size;
1014 }
1015
1016 fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1017
1018 /* spread the remainder evenly */
1019 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1020 int plane_extra;
1021
1022 if (fifo_left == 0)
1023 break;
1024
1025 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1026 continue;
1027
1028 /* give it all to the first plane if none are active */
1029 if (plane->wm.fifo_size == 0 &&
1030 wm_state->num_active_planes)
1031 continue;
1032
1033 plane_extra = min(fifo_extra, fifo_left);
1034 plane->wm.fifo_size += plane_extra;
1035 fifo_left -= plane_extra;
1036 }
1037
1038 WARN_ON(fifo_left != 0);
1039 }
1040
1041 static void vlv_invert_wms(struct intel_crtc *crtc)
1042 {
1043 struct vlv_wm_state *wm_state = &crtc->wm_state;
1044 int level;
1045
1046 for (level = 0; level < wm_state->num_levels; level++) {
1047 struct drm_device *dev = crtc->base.dev;
1048 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1049 struct intel_plane *plane;
1050
1051 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1052 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1053
1054 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1055 switch (plane->base.type) {
1056 int sprite;
1057 case DRM_PLANE_TYPE_CURSOR:
1058 wm_state->wm[level].cursor = plane->wm.fifo_size -
1059 wm_state->wm[level].cursor;
1060 break;
1061 case DRM_PLANE_TYPE_PRIMARY:
1062 wm_state->wm[level].primary = plane->wm.fifo_size -
1063 wm_state->wm[level].primary;
1064 break;
1065 case DRM_PLANE_TYPE_OVERLAY:
1066 sprite = plane->plane;
1067 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1068 wm_state->wm[level].sprite[sprite];
1069 break;
1070 }
1071 }
1072 }
1073 }
1074
1075 static void vlv_compute_wm(struct intel_crtc *crtc)
1076 {
1077 struct drm_device *dev = crtc->base.dev;
1078 struct vlv_wm_state *wm_state = &crtc->wm_state;
1079 struct intel_plane *plane;
1080 int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1081 int level;
1082
1083 memset(wm_state, 0, sizeof(*wm_state));
1084
1085 wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1086 wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1087
1088 wm_state->num_active_planes = 0;
1089
1090 vlv_compute_fifo(crtc);
1091
1092 if (wm_state->num_active_planes != 1)
1093 wm_state->cxsr = false;
1094
1095 if (wm_state->cxsr) {
1096 for (level = 0; level < wm_state->num_levels; level++) {
1097 wm_state->sr[level].plane = sr_fifo_size;
1098 wm_state->sr[level].cursor = 63;
1099 }
1100 }
1101
1102 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1103 struct intel_plane_state *state =
1104 to_intel_plane_state(plane->base.state);
1105
1106 if (!state->visible)
1107 continue;
1108
1109 /* normal watermarks */
1110 for (level = 0; level < wm_state->num_levels; level++) {
1111 int wm = vlv_compute_wm_level(plane, crtc, state, level);
1112 int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1113
1114 /* hack */
1115 if (WARN_ON(level == 0 && wm > max_wm))
1116 wm = max_wm;
1117
1118 if (wm > plane->wm.fifo_size)
1119 break;
1120
1121 switch (plane->base.type) {
1122 int sprite;
1123 case DRM_PLANE_TYPE_CURSOR:
1124 wm_state->wm[level].cursor = wm;
1125 break;
1126 case DRM_PLANE_TYPE_PRIMARY:
1127 wm_state->wm[level].primary = wm;
1128 break;
1129 case DRM_PLANE_TYPE_OVERLAY:
1130 sprite = plane->plane;
1131 wm_state->wm[level].sprite[sprite] = wm;
1132 break;
1133 }
1134 }
1135
1136 wm_state->num_levels = level;
1137
1138 if (!wm_state->cxsr)
1139 continue;
1140
1141 /* maxfifo watermarks */
1142 switch (plane->base.type) {
1143 int sprite, level;
1144 case DRM_PLANE_TYPE_CURSOR:
1145 for (level = 0; level < wm_state->num_levels; level++)
1146 wm_state->sr[level].cursor =
1147 wm_state->wm[level].cursor;
1148 break;
1149 case DRM_PLANE_TYPE_PRIMARY:
1150 for (level = 0; level < wm_state->num_levels; level++)
1151 wm_state->sr[level].plane =
1152 min(wm_state->sr[level].plane,
1153 wm_state->wm[level].primary);
1154 break;
1155 case DRM_PLANE_TYPE_OVERLAY:
1156 sprite = plane->plane;
1157 for (level = 0; level < wm_state->num_levels; level++)
1158 wm_state->sr[level].plane =
1159 min(wm_state->sr[level].plane,
1160 wm_state->wm[level].sprite[sprite]);
1161 break;
1162 }
1163 }
1164
1165 /* clear any (partially) filled invalid levels */
1166 for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1167 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1168 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1169 }
1170
1171 vlv_invert_wms(crtc);
1172 }
1173
1174 #define VLV_FIFO(plane, value) \
1175 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1176
1177 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1178 {
1179 struct drm_device *dev = crtc->base.dev;
1180 struct drm_i915_private *dev_priv = to_i915(dev);
1181 struct intel_plane *plane;
1182 int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1183
1184 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1185 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1186 WARN_ON(plane->wm.fifo_size != 63);
1187 continue;
1188 }
1189
1190 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1191 sprite0_start = plane->wm.fifo_size;
1192 else if (plane->plane == 0)
1193 sprite1_start = sprite0_start + plane->wm.fifo_size;
1194 else
1195 fifo_size = sprite1_start + plane->wm.fifo_size;
1196 }
1197
1198 WARN_ON(fifo_size != 512 - 1);
1199
1200 DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1201 pipe_name(crtc->pipe), sprite0_start,
1202 sprite1_start, fifo_size);
1203
1204 switch (crtc->pipe) {
1205 uint32_t dsparb, dsparb2, dsparb3;
1206 case PIPE_A:
1207 dsparb = I915_READ(DSPARB);
1208 dsparb2 = I915_READ(DSPARB2);
1209
1210 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1211 VLV_FIFO(SPRITEB, 0xff));
1212 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1213 VLV_FIFO(SPRITEB, sprite1_start));
1214
1215 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1216 VLV_FIFO(SPRITEB_HI, 0x1));
1217 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1218 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1219
1220 I915_WRITE(DSPARB, dsparb);
1221 I915_WRITE(DSPARB2, dsparb2);
1222 break;
1223 case PIPE_B:
1224 dsparb = I915_READ(DSPARB);
1225 dsparb2 = I915_READ(DSPARB2);
1226
1227 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1228 VLV_FIFO(SPRITED, 0xff));
1229 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1230 VLV_FIFO(SPRITED, sprite1_start));
1231
1232 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1233 VLV_FIFO(SPRITED_HI, 0xff));
1234 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1235 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1236
1237 I915_WRITE(DSPARB, dsparb);
1238 I915_WRITE(DSPARB2, dsparb2);
1239 break;
1240 case PIPE_C:
1241 dsparb3 = I915_READ(DSPARB3);
1242 dsparb2 = I915_READ(DSPARB2);
1243
1244 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1245 VLV_FIFO(SPRITEF, 0xff));
1246 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1247 VLV_FIFO(SPRITEF, sprite1_start));
1248
1249 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1250 VLV_FIFO(SPRITEF_HI, 0xff));
1251 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1252 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1253
1254 I915_WRITE(DSPARB3, dsparb3);
1255 I915_WRITE(DSPARB2, dsparb2);
1256 break;
1257 default:
1258 break;
1259 }
1260 }
1261
1262 #undef VLV_FIFO
1263
1264 static void vlv_merge_wm(struct drm_device *dev,
1265 struct vlv_wm_values *wm)
1266 {
1267 struct intel_crtc *crtc;
1268 int num_active_crtcs = 0;
1269
1270 wm->level = to_i915(dev)->wm.max_level;
1271 wm->cxsr = true;
1272
1273 for_each_intel_crtc(dev, crtc) {
1274 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1275
1276 if (!crtc->active)
1277 continue;
1278
1279 if (!wm_state->cxsr)
1280 wm->cxsr = false;
1281
1282 num_active_crtcs++;
1283 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1284 }
1285
1286 if (num_active_crtcs != 1)
1287 wm->cxsr = false;
1288
1289 if (num_active_crtcs > 1)
1290 wm->level = VLV_WM_LEVEL_PM2;
1291
1292 for_each_intel_crtc(dev, crtc) {
1293 struct vlv_wm_state *wm_state = &crtc->wm_state;
1294 enum pipe pipe = crtc->pipe;
1295
1296 if (!crtc->active)
1297 continue;
1298
1299 wm->pipe[pipe] = wm_state->wm[wm->level];
1300 if (wm->cxsr)
1301 wm->sr = wm_state->sr[wm->level];
1302
1303 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1304 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1305 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1306 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1307 }
1308 }
1309
1310 static void vlv_update_wm(struct drm_crtc *crtc)
1311 {
1312 struct drm_device *dev = crtc->dev;
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1315 enum pipe pipe = intel_crtc->pipe;
1316 struct vlv_wm_values wm = {};
1317
1318 vlv_compute_wm(intel_crtc);
1319 vlv_merge_wm(dev, &wm);
1320
1321 if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1322 /* FIXME should be part of crtc atomic commit */
1323 vlv_pipe_set_fifo_size(intel_crtc);
1324 return;
1325 }
1326
1327 if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1328 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1329 chv_set_memory_dvfs(dev_priv, false);
1330
1331 if (wm.level < VLV_WM_LEVEL_PM5 &&
1332 dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1333 chv_set_memory_pm5(dev_priv, false);
1334
1335 if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1336 intel_set_memory_cxsr(dev_priv, false);
1337
1338 /* FIXME should be part of crtc atomic commit */
1339 vlv_pipe_set_fifo_size(intel_crtc);
1340
1341 vlv_write_wm_values(intel_crtc, &wm);
1342
1343 DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1344 "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1345 pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1346 wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1347 wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1348
1349 if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1350 intel_set_memory_cxsr(dev_priv, true);
1351
1352 if (wm.level >= VLV_WM_LEVEL_PM5 &&
1353 dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1354 chv_set_memory_pm5(dev_priv, true);
1355
1356 if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1357 dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1358 chv_set_memory_dvfs(dev_priv, true);
1359
1360 dev_priv->wm.vlv = wm;
1361 }
1362
1363 #define single_plane_enabled(mask) is_power_of_2(mask)
1364
1365 static void g4x_update_wm(struct drm_crtc *crtc)
1366 {
1367 struct drm_device *dev = crtc->dev;
1368 static const int sr_latency_ns = 12000;
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1371 int plane_sr, cursor_sr;
1372 unsigned int enabled = 0;
1373 bool cxsr_enabled;
1374
1375 if (g4x_compute_wm0(dev, PIPE_A,
1376 &g4x_wm_info, pessimal_latency_ns,
1377 &g4x_cursor_wm_info, pessimal_latency_ns,
1378 &planea_wm, &cursora_wm))
1379 enabled |= 1 << PIPE_A;
1380
1381 if (g4x_compute_wm0(dev, PIPE_B,
1382 &g4x_wm_info, pessimal_latency_ns,
1383 &g4x_cursor_wm_info, pessimal_latency_ns,
1384 &planeb_wm, &cursorb_wm))
1385 enabled |= 1 << PIPE_B;
1386
1387 if (single_plane_enabled(enabled) &&
1388 g4x_compute_srwm(dev, ffs(enabled) - 1,
1389 sr_latency_ns,
1390 &g4x_wm_info,
1391 &g4x_cursor_wm_info,
1392 &plane_sr, &cursor_sr)) {
1393 cxsr_enabled = true;
1394 } else {
1395 cxsr_enabled = false;
1396 intel_set_memory_cxsr(dev_priv, false);
1397 plane_sr = cursor_sr = 0;
1398 }
1399
1400 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1401 "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1402 planea_wm, cursora_wm,
1403 planeb_wm, cursorb_wm,
1404 plane_sr, cursor_sr);
1405
1406 I915_WRITE(DSPFW1,
1407 FW_WM(plane_sr, SR) |
1408 FW_WM(cursorb_wm, CURSORB) |
1409 FW_WM(planeb_wm, PLANEB) |
1410 FW_WM(planea_wm, PLANEA));
1411 I915_WRITE(DSPFW2,
1412 (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1413 FW_WM(cursora_wm, CURSORA));
1414 /* HPLL off in SR has some issues on G4x... disable it */
1415 I915_WRITE(DSPFW3,
1416 (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1417 FW_WM(cursor_sr, CURSOR_SR));
1418
1419 if (cxsr_enabled)
1420 intel_set_memory_cxsr(dev_priv, true);
1421 }
1422
1423 static void i965_update_wm(struct drm_crtc *unused_crtc)
1424 {
1425 struct drm_device *dev = unused_crtc->dev;
1426 struct drm_i915_private *dev_priv = dev->dev_private;
1427 struct drm_crtc *crtc;
1428 int srwm = 1;
1429 int cursor_sr = 16;
1430 bool cxsr_enabled;
1431
1432 /* Calc sr entries for one plane configs */
1433 crtc = single_enabled_crtc(dev);
1434 if (crtc) {
1435 /* self-refresh has much higher latency */
1436 static const int sr_latency_ns = 12000;
1437 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1438 int clock = adjusted_mode->crtc_clock;
1439 int htotal = adjusted_mode->crtc_htotal;
1440 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1441 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1442 unsigned long line_time_us;
1443 int entries;
1444
1445 line_time_us = max(htotal * 1000 / clock, 1);
1446
1447 /* Use ns/us then divide to preserve precision */
1448 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1449 cpp * hdisplay;
1450 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1451 srwm = I965_FIFO_SIZE - entries;
1452 if (srwm < 0)
1453 srwm = 1;
1454 srwm &= 0x1ff;
1455 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1456 entries, srwm);
1457
1458 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1459 cpp * crtc->cursor->state->crtc_w;
1460 entries = DIV_ROUND_UP(entries,
1461 i965_cursor_wm_info.cacheline_size);
1462 cursor_sr = i965_cursor_wm_info.fifo_size -
1463 (entries + i965_cursor_wm_info.guard_size);
1464
1465 if (cursor_sr > i965_cursor_wm_info.max_wm)
1466 cursor_sr = i965_cursor_wm_info.max_wm;
1467
1468 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1469 "cursor %d\n", srwm, cursor_sr);
1470
1471 cxsr_enabled = true;
1472 } else {
1473 cxsr_enabled = false;
1474 /* Turn off self refresh if both pipes are enabled */
1475 intel_set_memory_cxsr(dev_priv, false);
1476 }
1477
1478 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1479 srwm);
1480
1481 /* 965 has limitations... */
1482 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1483 FW_WM(8, CURSORB) |
1484 FW_WM(8, PLANEB) |
1485 FW_WM(8, PLANEA));
1486 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1487 FW_WM(8, PLANEC_OLD));
1488 /* update cursor SR watermark */
1489 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1490
1491 if (cxsr_enabled)
1492 intel_set_memory_cxsr(dev_priv, true);
1493 }
1494
1495 #undef FW_WM
1496
1497 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1498 {
1499 struct drm_device *dev = unused_crtc->dev;
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 const struct intel_watermark_params *wm_info;
1502 uint32_t fwater_lo;
1503 uint32_t fwater_hi;
1504 int cwm, srwm = 1;
1505 int fifo_size;
1506 int planea_wm, planeb_wm;
1507 struct drm_crtc *crtc, *enabled = NULL;
1508
1509 if (IS_I945GM(dev))
1510 wm_info = &i945_wm_info;
1511 else if (!IS_GEN2(dev))
1512 wm_info = &i915_wm_info;
1513 else
1514 wm_info = &i830_a_wm_info;
1515
1516 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1517 crtc = intel_get_crtc_for_plane(dev, 0);
1518 if (intel_crtc_active(crtc)) {
1519 const struct drm_display_mode *adjusted_mode;
1520 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1521 if (IS_GEN2(dev))
1522 cpp = 4;
1523
1524 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1525 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1526 wm_info, fifo_size, cpp,
1527 pessimal_latency_ns);
1528 enabled = crtc;
1529 } else {
1530 planea_wm = fifo_size - wm_info->guard_size;
1531 if (planea_wm > (long)wm_info->max_wm)
1532 planea_wm = wm_info->max_wm;
1533 }
1534
1535 if (IS_GEN2(dev))
1536 wm_info = &i830_bc_wm_info;
1537
1538 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1539 crtc = intel_get_crtc_for_plane(dev, 1);
1540 if (intel_crtc_active(crtc)) {
1541 const struct drm_display_mode *adjusted_mode;
1542 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1543 if (IS_GEN2(dev))
1544 cpp = 4;
1545
1546 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1547 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1548 wm_info, fifo_size, cpp,
1549 pessimal_latency_ns);
1550 if (enabled == NULL)
1551 enabled = crtc;
1552 else
1553 enabled = NULL;
1554 } else {
1555 planeb_wm = fifo_size - wm_info->guard_size;
1556 if (planeb_wm > (long)wm_info->max_wm)
1557 planeb_wm = wm_info->max_wm;
1558 }
1559
1560 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1561
1562 if (IS_I915GM(dev) && enabled) {
1563 struct drm_i915_gem_object *obj;
1564
1565 obj = intel_fb_obj(enabled->primary->state->fb);
1566
1567 /* self-refresh seems busted with untiled */
1568 if (obj->tiling_mode == I915_TILING_NONE)
1569 enabled = NULL;
1570 }
1571
1572 /*
1573 * Overlay gets an aggressive default since video jitter is bad.
1574 */
1575 cwm = 2;
1576
1577 /* Play safe and disable self-refresh before adjusting watermarks. */
1578 intel_set_memory_cxsr(dev_priv, false);
1579
1580 /* Calc sr entries for one plane configs */
1581 if (HAS_FW_BLC(dev) && enabled) {
1582 /* self-refresh has much higher latency */
1583 static const int sr_latency_ns = 6000;
1584 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1585 int clock = adjusted_mode->crtc_clock;
1586 int htotal = adjusted_mode->crtc_htotal;
1587 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1588 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1589 unsigned long line_time_us;
1590 int entries;
1591
1592 line_time_us = max(htotal * 1000 / clock, 1);
1593
1594 /* Use ns/us then divide to preserve precision */
1595 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1596 cpp * hdisplay;
1597 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1598 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1599 srwm = wm_info->fifo_size - entries;
1600 if (srwm < 0)
1601 srwm = 1;
1602
1603 if (IS_I945G(dev) || IS_I945GM(dev))
1604 I915_WRITE(FW_BLC_SELF,
1605 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1606 else if (IS_I915GM(dev))
1607 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1608 }
1609
1610 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1611 planea_wm, planeb_wm, cwm, srwm);
1612
1613 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1614 fwater_hi = (cwm & 0x1f);
1615
1616 /* Set request length to 8 cachelines per fetch */
1617 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1618 fwater_hi = fwater_hi | (1 << 8);
1619
1620 I915_WRITE(FW_BLC, fwater_lo);
1621 I915_WRITE(FW_BLC2, fwater_hi);
1622
1623 if (enabled)
1624 intel_set_memory_cxsr(dev_priv, true);
1625 }
1626
1627 static void i845_update_wm(struct drm_crtc *unused_crtc)
1628 {
1629 struct drm_device *dev = unused_crtc->dev;
1630 struct drm_i915_private *dev_priv = dev->dev_private;
1631 struct drm_crtc *crtc;
1632 const struct drm_display_mode *adjusted_mode;
1633 uint32_t fwater_lo;
1634 int planea_wm;
1635
1636 crtc = single_enabled_crtc(dev);
1637 if (crtc == NULL)
1638 return;
1639
1640 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1641 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1642 &i845_wm_info,
1643 dev_priv->display.get_fifo_size(dev, 0),
1644 4, pessimal_latency_ns);
1645 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1646 fwater_lo |= (3<<8) | planea_wm;
1647
1648 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1649
1650 I915_WRITE(FW_BLC, fwater_lo);
1651 }
1652
1653 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1654 {
1655 uint32_t pixel_rate;
1656
1657 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1658
1659 /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1660 * adjust the pixel_rate here. */
1661
1662 if (pipe_config->pch_pfit.enabled) {
1663 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1664 uint32_t pfit_size = pipe_config->pch_pfit.size;
1665
1666 pipe_w = pipe_config->pipe_src_w;
1667 pipe_h = pipe_config->pipe_src_h;
1668
1669 pfit_w = (pfit_size >> 16) & 0xFFFF;
1670 pfit_h = pfit_size & 0xFFFF;
1671 if (pipe_w < pfit_w)
1672 pipe_w = pfit_w;
1673 if (pipe_h < pfit_h)
1674 pipe_h = pfit_h;
1675
1676 if (WARN_ON(!pfit_w || !pfit_h))
1677 return pixel_rate;
1678
1679 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1680 pfit_w * pfit_h);
1681 }
1682
1683 return pixel_rate;
1684 }
1685
1686 /* latency must be in 0.1us units. */
1687 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1688 {
1689 uint64_t ret;
1690
1691 if (WARN(latency == 0, "Latency value missing\n"))
1692 return UINT_MAX;
1693
1694 ret = (uint64_t) pixel_rate * cpp * latency;
1695 ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1696
1697 return ret;
1698 }
1699
1700 /* latency must be in 0.1us units. */
1701 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1702 uint32_t horiz_pixels, uint8_t cpp,
1703 uint32_t latency)
1704 {
1705 uint32_t ret;
1706
1707 if (WARN(latency == 0, "Latency value missing\n"))
1708 return UINT_MAX;
1709 if (WARN_ON(!pipe_htotal))
1710 return UINT_MAX;
1711
1712 ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1713 ret = (ret + 1) * horiz_pixels * cpp;
1714 ret = DIV_ROUND_UP(ret, 64) + 2;
1715 return ret;
1716 }
1717
1718 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1719 uint8_t cpp)
1720 {
1721 /*
1722 * Neither of these should be possible since this function shouldn't be
1723 * called if the CRTC is off or the plane is invisible. But let's be
1724 * extra paranoid to avoid a potential divide-by-zero if we screw up
1725 * elsewhere in the driver.
1726 */
1727 if (WARN_ON(!cpp))
1728 return 0;
1729 if (WARN_ON(!horiz_pixels))
1730 return 0;
1731
1732 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1733 }
1734
1735 struct ilk_wm_maximums {
1736 uint16_t pri;
1737 uint16_t spr;
1738 uint16_t cur;
1739 uint16_t fbc;
1740 };
1741
1742 /*
1743 * For both WM_PIPE and WM_LP.
1744 * mem_value must be in 0.1us units.
1745 */
1746 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1747 const struct intel_plane_state *pstate,
1748 uint32_t mem_value,
1749 bool is_lp)
1750 {
1751 int cpp = pstate->base.fb ?
1752 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1753 uint32_t method1, method2;
1754
1755 if (!cstate->base.active || !pstate->visible)
1756 return 0;
1757
1758 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1759
1760 if (!is_lp)
1761 return method1;
1762
1763 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1764 cstate->base.adjusted_mode.crtc_htotal,
1765 drm_rect_width(&pstate->dst),
1766 cpp, mem_value);
1767
1768 return min(method1, method2);
1769 }
1770
1771 /*
1772 * For both WM_PIPE and WM_LP.
1773 * mem_value must be in 0.1us units.
1774 */
1775 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1776 const struct intel_plane_state *pstate,
1777 uint32_t mem_value)
1778 {
1779 int cpp = pstate->base.fb ?
1780 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1781 uint32_t method1, method2;
1782
1783 if (!cstate->base.active || !pstate->visible)
1784 return 0;
1785
1786 method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1787 method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1788 cstate->base.adjusted_mode.crtc_htotal,
1789 drm_rect_width(&pstate->dst),
1790 cpp, mem_value);
1791 return min(method1, method2);
1792 }
1793
1794 /*
1795 * For both WM_PIPE and WM_LP.
1796 * mem_value must be in 0.1us units.
1797 */
1798 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1799 const struct intel_plane_state *pstate,
1800 uint32_t mem_value)
1801 {
1802 /*
1803 * We treat the cursor plane as always-on for the purposes of watermark
1804 * calculation. Until we have two-stage watermark programming merged,
1805 * this is necessary to avoid flickering.
1806 */
1807 int cpp = 4;
1808 int width = pstate->visible ? pstate->base.crtc_w : 64;
1809
1810 if (!cstate->base.active)
1811 return 0;
1812
1813 return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1814 cstate->base.adjusted_mode.crtc_htotal,
1815 width, cpp, mem_value);
1816 }
1817
1818 /* Only for WM_LP. */
1819 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1820 const struct intel_plane_state *pstate,
1821 uint32_t pri_val)
1822 {
1823 int cpp = pstate->base.fb ?
1824 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1825
1826 if (!cstate->base.active || !pstate->visible)
1827 return 0;
1828
1829 return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), cpp);
1830 }
1831
1832 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1833 {
1834 if (INTEL_INFO(dev)->gen >= 8)
1835 return 3072;
1836 else if (INTEL_INFO(dev)->gen >= 7)
1837 return 768;
1838 else
1839 return 512;
1840 }
1841
1842 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1843 int level, bool is_sprite)
1844 {
1845 if (INTEL_INFO(dev)->gen >= 8)
1846 /* BDW primary/sprite plane watermarks */
1847 return level == 0 ? 255 : 2047;
1848 else if (INTEL_INFO(dev)->gen >= 7)
1849 /* IVB/HSW primary/sprite plane watermarks */
1850 return level == 0 ? 127 : 1023;
1851 else if (!is_sprite)
1852 /* ILK/SNB primary plane watermarks */
1853 return level == 0 ? 127 : 511;
1854 else
1855 /* ILK/SNB sprite plane watermarks */
1856 return level == 0 ? 63 : 255;
1857 }
1858
1859 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1860 int level)
1861 {
1862 if (INTEL_INFO(dev)->gen >= 7)
1863 return level == 0 ? 63 : 255;
1864 else
1865 return level == 0 ? 31 : 63;
1866 }
1867
1868 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1869 {
1870 if (INTEL_INFO(dev)->gen >= 8)
1871 return 31;
1872 else
1873 return 15;
1874 }
1875
1876 /* Calculate the maximum primary/sprite plane watermark */
1877 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1878 int level,
1879 const struct intel_wm_config *config,
1880 enum intel_ddb_partitioning ddb_partitioning,
1881 bool is_sprite)
1882 {
1883 unsigned int fifo_size = ilk_display_fifo_size(dev);
1884
1885 /* if sprites aren't enabled, sprites get nothing */
1886 if (is_sprite && !config->sprites_enabled)
1887 return 0;
1888
1889 /* HSW allows LP1+ watermarks even with multiple pipes */
1890 if (level == 0 || config->num_pipes_active > 1) {
1891 fifo_size /= INTEL_INFO(dev)->num_pipes;
1892
1893 /*
1894 * For some reason the non self refresh
1895 * FIFO size is only half of the self
1896 * refresh FIFO size on ILK/SNB.
1897 */
1898 if (INTEL_INFO(dev)->gen <= 6)
1899 fifo_size /= 2;
1900 }
1901
1902 if (config->sprites_enabled) {
1903 /* level 0 is always calculated with 1:1 split */
1904 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1905 if (is_sprite)
1906 fifo_size *= 5;
1907 fifo_size /= 6;
1908 } else {
1909 fifo_size /= 2;
1910 }
1911 }
1912
1913 /* clamp to max that the registers can hold */
1914 return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1915 }
1916
1917 /* Calculate the maximum cursor plane watermark */
1918 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1919 int level,
1920 const struct intel_wm_config *config)
1921 {
1922 /* HSW LP1+ watermarks w/ multiple pipes */
1923 if (level > 0 && config->num_pipes_active > 1)
1924 return 64;
1925
1926 /* otherwise just report max that registers can hold */
1927 return ilk_cursor_wm_reg_max(dev, level);
1928 }
1929
1930 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1931 int level,
1932 const struct intel_wm_config *config,
1933 enum intel_ddb_partitioning ddb_partitioning,
1934 struct ilk_wm_maximums *max)
1935 {
1936 max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1937 max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1938 max->cur = ilk_cursor_wm_max(dev, level, config);
1939 max->fbc = ilk_fbc_wm_reg_max(dev);
1940 }
1941
1942 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1943 int level,
1944 struct ilk_wm_maximums *max)
1945 {
1946 max->pri = ilk_plane_wm_reg_max(dev, level, false);
1947 max->spr = ilk_plane_wm_reg_max(dev, level, true);
1948 max->cur = ilk_cursor_wm_reg_max(dev, level);
1949 max->fbc = ilk_fbc_wm_reg_max(dev);
1950 }
1951
1952 static bool ilk_validate_wm_level(int level,
1953 const struct ilk_wm_maximums *max,
1954 struct intel_wm_level *result)
1955 {
1956 bool ret;
1957
1958 /* already determined to be invalid? */
1959 if (!result->enable)
1960 return false;
1961
1962 result->enable = result->pri_val <= max->pri &&
1963 result->spr_val <= max->spr &&
1964 result->cur_val <= max->cur;
1965
1966 ret = result->enable;
1967
1968 /*
1969 * HACK until we can pre-compute everything,
1970 * and thus fail gracefully if LP0 watermarks
1971 * are exceeded...
1972 */
1973 if (level == 0 && !result->enable) {
1974 if (result->pri_val > max->pri)
1975 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1976 level, result->pri_val, max->pri);
1977 if (result->spr_val > max->spr)
1978 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1979 level, result->spr_val, max->spr);
1980 if (result->cur_val > max->cur)
1981 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1982 level, result->cur_val, max->cur);
1983
1984 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1985 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1986 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1987 result->enable = true;
1988 }
1989
1990 return ret;
1991 }
1992
1993 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1994 const struct intel_crtc *intel_crtc,
1995 int level,
1996 struct intel_crtc_state *cstate,
1997 struct intel_plane_state *pristate,
1998 struct intel_plane_state *sprstate,
1999 struct intel_plane_state *curstate,
2000 struct intel_wm_level *result)
2001 {
2002 uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2003 uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2004 uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2005
2006 /* WM1+ latency values stored in 0.5us units */
2007 if (level > 0) {
2008 pri_latency *= 5;
2009 spr_latency *= 5;
2010 cur_latency *= 5;
2011 }
2012
2013 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2014 pri_latency, level);
2015 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2016 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2017 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2018 result->enable = true;
2019 }
2020
2021 static uint32_t
2022 hsw_compute_linetime_wm(struct drm_device *dev,
2023 struct intel_crtc_state *cstate)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 const struct drm_display_mode *adjusted_mode =
2027 &cstate->base.adjusted_mode;
2028 u32 linetime, ips_linetime;
2029
2030 if (!cstate->base.active)
2031 return 0;
2032 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2033 return 0;
2034 if (WARN_ON(dev_priv->cdclk_freq == 0))
2035 return 0;
2036
2037 /* The WM are computed with base on how long it takes to fill a single
2038 * row at the given clock rate, multiplied by 8.
2039 * */
2040 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2041 adjusted_mode->crtc_clock);
2042 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2043 dev_priv->cdclk_freq);
2044
2045 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2046 PIPE_WM_LINETIME_TIME(linetime);
2047 }
2048
2049 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2050 {
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052
2053 if (IS_GEN9(dev)) {
2054 uint32_t val;
2055 int ret, i;
2056 int level, max_level = ilk_wm_max_level(dev);
2057
2058 /* read the first set of memory latencies[0:3] */
2059 val = 0; /* data0 to be programmed to 0 for first set */
2060 mutex_lock(&dev_priv->rps.hw_lock);
2061 ret = sandybridge_pcode_read(dev_priv,
2062 GEN9_PCODE_READ_MEM_LATENCY,
2063 &val);
2064 mutex_unlock(&dev_priv->rps.hw_lock);
2065
2066 if (ret) {
2067 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2068 return;
2069 }
2070
2071 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2072 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2073 GEN9_MEM_LATENCY_LEVEL_MASK;
2074 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2075 GEN9_MEM_LATENCY_LEVEL_MASK;
2076 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2077 GEN9_MEM_LATENCY_LEVEL_MASK;
2078
2079 /* read the second set of memory latencies[4:7] */
2080 val = 1; /* data0 to be programmed to 1 for second set */
2081 mutex_lock(&dev_priv->rps.hw_lock);
2082 ret = sandybridge_pcode_read(dev_priv,
2083 GEN9_PCODE_READ_MEM_LATENCY,
2084 &val);
2085 mutex_unlock(&dev_priv->rps.hw_lock);
2086 if (ret) {
2087 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2088 return;
2089 }
2090
2091 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2092 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2093 GEN9_MEM_LATENCY_LEVEL_MASK;
2094 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2095 GEN9_MEM_LATENCY_LEVEL_MASK;
2096 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2097 GEN9_MEM_LATENCY_LEVEL_MASK;
2098
2099 /*
2100 * WaWmMemoryReadLatency:skl
2101 *
2102 * punit doesn't take into account the read latency so we need
2103 * to add 2us to the various latency levels we retrieve from
2104 * the punit.
2105 * - W0 is a bit special in that it's the only level that
2106 * can't be disabled if we want to have display working, so
2107 * we always add 2us there.
2108 * - For levels >=1, punit returns 0us latency when they are
2109 * disabled, so we respect that and don't add 2us then
2110 *
2111 * Additionally, if a level n (n > 1) has a 0us latency, all
2112 * levels m (m >= n) need to be disabled. We make sure to
2113 * sanitize the values out of the punit to satisfy this
2114 * requirement.
2115 */
2116 wm[0] += 2;
2117 for (level = 1; level <= max_level; level++)
2118 if (wm[level] != 0)
2119 wm[level] += 2;
2120 else {
2121 for (i = level + 1; i <= max_level; i++)
2122 wm[i] = 0;
2123
2124 break;
2125 }
2126 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2127 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2128
2129 wm[0] = (sskpd >> 56) & 0xFF;
2130 if (wm[0] == 0)
2131 wm[0] = sskpd & 0xF;
2132 wm[1] = (sskpd >> 4) & 0xFF;
2133 wm[2] = (sskpd >> 12) & 0xFF;
2134 wm[3] = (sskpd >> 20) & 0x1FF;
2135 wm[4] = (sskpd >> 32) & 0x1FF;
2136 } else if (INTEL_INFO(dev)->gen >= 6) {
2137 uint32_t sskpd = I915_READ(MCH_SSKPD);
2138
2139 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2140 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2141 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2142 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2143 } else if (INTEL_INFO(dev)->gen >= 5) {
2144 uint32_t mltr = I915_READ(MLTR_ILK);
2145
2146 /* ILK primary LP0 latency is 700 ns */
2147 wm[0] = 7;
2148 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2149 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2150 }
2151 }
2152
2153 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2154 {
2155 /* ILK sprite LP0 latency is 1300 ns */
2156 if (INTEL_INFO(dev)->gen == 5)
2157 wm[0] = 13;
2158 }
2159
2160 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2161 {
2162 /* ILK cursor LP0 latency is 1300 ns */
2163 if (INTEL_INFO(dev)->gen == 5)
2164 wm[0] = 13;
2165
2166 /* WaDoubleCursorLP3Latency:ivb */
2167 if (IS_IVYBRIDGE(dev))
2168 wm[3] *= 2;
2169 }
2170
2171 int ilk_wm_max_level(const struct drm_device *dev)
2172 {
2173 /* how many WM levels are we expecting */
2174 if (INTEL_INFO(dev)->gen >= 9)
2175 return 7;
2176 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2177 return 4;
2178 else if (INTEL_INFO(dev)->gen >= 6)
2179 return 3;
2180 else
2181 return 2;
2182 }
2183
2184 static void intel_print_wm_latency(struct drm_device *dev,
2185 const char *name,
2186 const uint16_t wm[8])
2187 {
2188 int level, max_level = ilk_wm_max_level(dev);
2189
2190 for (level = 0; level <= max_level; level++) {
2191 unsigned int latency = wm[level];
2192
2193 if (latency == 0) {
2194 DRM_ERROR("%s WM%d latency not provided\n",
2195 name, level);
2196 continue;
2197 }
2198
2199 /*
2200 * - latencies are in us on gen9.
2201 * - before then, WM1+ latency values are in 0.5us units
2202 */
2203 if (IS_GEN9(dev))
2204 latency *= 10;
2205 else if (level > 0)
2206 latency *= 5;
2207
2208 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2209 name, level, wm[level],
2210 latency / 10, latency % 10);
2211 }
2212 }
2213
2214 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2215 uint16_t wm[5], uint16_t min)
2216 {
2217 int level, max_level = ilk_wm_max_level(dev_priv->dev);
2218
2219 if (wm[0] >= min)
2220 return false;
2221
2222 wm[0] = max(wm[0], min);
2223 for (level = 1; level <= max_level; level++)
2224 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2225
2226 return true;
2227 }
2228
2229 static void snb_wm_latency_quirk(struct drm_device *dev)
2230 {
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 bool changed;
2233
2234 /*
2235 * The BIOS provided WM memory latency values are often
2236 * inadequate for high resolution displays. Adjust them.
2237 */
2238 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2239 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2240 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2241
2242 if (!changed)
2243 return;
2244
2245 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2246 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2247 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2248 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2249 }
2250
2251 static void ilk_setup_wm_latency(struct drm_device *dev)
2252 {
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255 intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2256
2257 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2258 sizeof(dev_priv->wm.pri_latency));
2259 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2260 sizeof(dev_priv->wm.pri_latency));
2261
2262 intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2263 intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2264
2265 intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2266 intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2267 intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2268
2269 if (IS_GEN6(dev))
2270 snb_wm_latency_quirk(dev);
2271 }
2272
2273 static void skl_setup_wm_latency(struct drm_device *dev)
2274 {
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276
2277 intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2278 intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2279 }
2280
2281 /* Compute new watermarks for the pipe */
2282 static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
2283 struct drm_atomic_state *state)
2284 {
2285 struct intel_pipe_wm *pipe_wm;
2286 struct drm_device *dev = intel_crtc->base.dev;
2287 const struct drm_i915_private *dev_priv = dev->dev_private;
2288 struct intel_crtc_state *cstate = NULL;
2289 struct intel_plane *intel_plane;
2290 struct drm_plane_state *ps;
2291 struct intel_plane_state *pristate = NULL;
2292 struct intel_plane_state *sprstate = NULL;
2293 struct intel_plane_state *curstate = NULL;
2294 int level, max_level = ilk_wm_max_level(dev);
2295 /* LP0 watermark maximums depend on this pipe alone */
2296 struct intel_wm_config config = {
2297 .num_pipes_active = 1,
2298 };
2299 struct ilk_wm_maximums max;
2300
2301 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
2302 if (IS_ERR(cstate))
2303 return PTR_ERR(cstate);
2304
2305 pipe_wm = &cstate->wm.optimal.ilk;
2306 memset(pipe_wm, 0, sizeof(*pipe_wm));
2307
2308 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2309 ps = drm_atomic_get_plane_state(state,
2310 &intel_plane->base);
2311 if (IS_ERR(ps))
2312 return PTR_ERR(ps);
2313
2314 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2315 pristate = to_intel_plane_state(ps);
2316 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2317 sprstate = to_intel_plane_state(ps);
2318 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2319 curstate = to_intel_plane_state(ps);
2320 }
2321
2322 config.sprites_enabled = sprstate->visible;
2323 config.sprites_scaled = sprstate->visible &&
2324 (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
2325 drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
2326
2327 pipe_wm->pipe_enabled = cstate->base.active;
2328 pipe_wm->sprites_enabled = config.sprites_enabled;
2329 pipe_wm->sprites_scaled = config.sprites_scaled;
2330
2331 /* ILK/SNB: LP2+ watermarks only w/o sprites */
2332 if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2333 max_level = 1;
2334
2335 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2336 if (config.sprites_scaled)
2337 max_level = 0;
2338
2339 ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2340 pristate, sprstate, curstate, &pipe_wm->wm[0]);
2341
2342 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2343 pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
2344
2345 /* LP0 watermarks always use 1/2 DDB partitioning */
2346 ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2347
2348 /* At least LP0 must be valid */
2349 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2350 return -EINVAL;
2351
2352 ilk_compute_wm_reg_maximums(dev, 1, &max);
2353
2354 for (level = 1; level <= max_level; level++) {
2355 struct intel_wm_level wm = {};
2356
2357 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2358 pristate, sprstate, curstate, &wm);
2359
2360 /*
2361 * Disable any watermark level that exceeds the
2362 * register maximums since such watermarks are
2363 * always invalid.
2364 */
2365 if (!ilk_validate_wm_level(level, &max, &wm))
2366 break;
2367
2368 pipe_wm->wm[level] = wm;
2369 }
2370
2371 return 0;
2372 }
2373
2374 /*
2375 * Merge the watermarks from all active pipes for a specific level.
2376 */
2377 static void ilk_merge_wm_level(struct drm_device *dev,
2378 int level,
2379 struct intel_wm_level *ret_wm)
2380 {
2381 const struct intel_crtc *intel_crtc;
2382
2383 ret_wm->enable = true;
2384
2385 for_each_intel_crtc(dev, intel_crtc) {
2386 const struct intel_crtc_state *cstate =
2387 to_intel_crtc_state(intel_crtc->base.state);
2388 const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2389 const struct intel_wm_level *wm = &active->wm[level];
2390
2391 if (!active->pipe_enabled)
2392 continue;
2393
2394 /*
2395 * The watermark values may have been used in the past,
2396 * so we must maintain them in the registers for some
2397 * time even if the level is now disabled.
2398 */
2399 if (!wm->enable)
2400 ret_wm->enable = false;
2401
2402 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2403 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2404 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2405 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2406 }
2407 }
2408
2409 /*
2410 * Merge all low power watermarks for all active pipes.
2411 */
2412 static void ilk_wm_merge(struct drm_device *dev,
2413 const struct intel_wm_config *config,
2414 const struct ilk_wm_maximums *max,
2415 struct intel_pipe_wm *merged)
2416 {
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 int level, max_level = ilk_wm_max_level(dev);
2419 int last_enabled_level = max_level;
2420
2421 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2422 if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2423 config->num_pipes_active > 1)
2424 return;
2425
2426 /* ILK: FBC WM must be disabled always */
2427 merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2428
2429 /* merge each WM1+ level */
2430 for (level = 1; level <= max_level; level++) {
2431 struct intel_wm_level *wm = &merged->wm[level];
2432
2433 ilk_merge_wm_level(dev, level, wm);
2434
2435 if (level > last_enabled_level)
2436 wm->enable = false;
2437 else if (!ilk_validate_wm_level(level, max, wm))
2438 /* make sure all following levels get disabled */
2439 last_enabled_level = level - 1;
2440
2441 /*
2442 * The spec says it is preferred to disable
2443 * FBC WMs instead of disabling a WM level.
2444 */
2445 if (wm->fbc_val > max->fbc) {
2446 if (wm->enable)
2447 merged->fbc_wm_enabled = false;
2448 wm->fbc_val = 0;
2449 }
2450 }
2451
2452 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2453 /*
2454 * FIXME this is racy. FBC might get enabled later.
2455 * What we should check here is whether FBC can be
2456 * enabled sometime later.
2457 */
2458 if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2459 intel_fbc_is_active(dev_priv)) {
2460 for (level = 2; level <= max_level; level++) {
2461 struct intel_wm_level *wm = &merged->wm[level];
2462
2463 wm->enable = false;
2464 }
2465 }
2466 }
2467
2468 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2469 {
2470 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2471 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2472 }
2473
2474 /* The value we need to program into the WM_LPx latency field */
2475 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2476 {
2477 struct drm_i915_private *dev_priv = dev->dev_private;
2478
2479 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2480 return 2 * level;
2481 else
2482 return dev_priv->wm.pri_latency[level];
2483 }
2484
2485 static void ilk_compute_wm_results(struct drm_device *dev,
2486 const struct intel_pipe_wm *merged,
2487 enum intel_ddb_partitioning partitioning,
2488 struct ilk_wm_values *results)
2489 {
2490 struct intel_crtc *intel_crtc;
2491 int level, wm_lp;
2492
2493 results->enable_fbc_wm = merged->fbc_wm_enabled;
2494 results->partitioning = partitioning;
2495
2496 /* LP1+ register values */
2497 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2498 const struct intel_wm_level *r;
2499
2500 level = ilk_wm_lp_to_level(wm_lp, merged);
2501
2502 r = &merged->wm[level];
2503
2504 /*
2505 * Maintain the watermark values even if the level is
2506 * disabled. Doing otherwise could cause underruns.
2507 */
2508 results->wm_lp[wm_lp - 1] =
2509 (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2510 (r->pri_val << WM1_LP_SR_SHIFT) |
2511 r->cur_val;
2512
2513 if (r->enable)
2514 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2515
2516 if (INTEL_INFO(dev)->gen >= 8)
2517 results->wm_lp[wm_lp - 1] |=
2518 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2519 else
2520 results->wm_lp[wm_lp - 1] |=
2521 r->fbc_val << WM1_LP_FBC_SHIFT;
2522
2523 /*
2524 * Always set WM1S_LP_EN when spr_val != 0, even if the
2525 * level is disabled. Doing otherwise could cause underruns.
2526 */
2527 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2528 WARN_ON(wm_lp != 1);
2529 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2530 } else
2531 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2532 }
2533
2534 /* LP0 register values */
2535 for_each_intel_crtc(dev, intel_crtc) {
2536 const struct intel_crtc_state *cstate =
2537 to_intel_crtc_state(intel_crtc->base.state);
2538 enum pipe pipe = intel_crtc->pipe;
2539 const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2540
2541 if (WARN_ON(!r->enable))
2542 continue;
2543
2544 results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2545
2546 results->wm_pipe[pipe] =
2547 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2548 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2549 r->cur_val;
2550 }
2551 }
2552
2553 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2554 * case both are at the same level. Prefer r1 in case they're the same. */
2555 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2556 struct intel_pipe_wm *r1,
2557 struct intel_pipe_wm *r2)
2558 {
2559 int level, max_level = ilk_wm_max_level(dev);
2560 int level1 = 0, level2 = 0;
2561
2562 for (level = 1; level <= max_level; level++) {
2563 if (r1->wm[level].enable)
2564 level1 = level;
2565 if (r2->wm[level].enable)
2566 level2 = level;
2567 }
2568
2569 if (level1 == level2) {
2570 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2571 return r2;
2572 else
2573 return r1;
2574 } else if (level1 > level2) {
2575 return r1;
2576 } else {
2577 return r2;
2578 }
2579 }
2580
2581 /* dirty bits used to track which watermarks need changes */
2582 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2583 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2584 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2585 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2586 #define WM_DIRTY_FBC (1 << 24)
2587 #define WM_DIRTY_DDB (1 << 25)
2588
2589 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2590 const struct ilk_wm_values *old,
2591 const struct ilk_wm_values *new)
2592 {
2593 unsigned int dirty = 0;
2594 enum pipe pipe;
2595 int wm_lp;
2596
2597 for_each_pipe(dev_priv, pipe) {
2598 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2599 dirty |= WM_DIRTY_LINETIME(pipe);
2600 /* Must disable LP1+ watermarks too */
2601 dirty |= WM_DIRTY_LP_ALL;
2602 }
2603
2604 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2605 dirty |= WM_DIRTY_PIPE(pipe);
2606 /* Must disable LP1+ watermarks too */
2607 dirty |= WM_DIRTY_LP_ALL;
2608 }
2609 }
2610
2611 if (old->enable_fbc_wm != new->enable_fbc_wm) {
2612 dirty |= WM_DIRTY_FBC;
2613 /* Must disable LP1+ watermarks too */
2614 dirty |= WM_DIRTY_LP_ALL;
2615 }
2616
2617 if (old->partitioning != new->partitioning) {
2618 dirty |= WM_DIRTY_DDB;
2619 /* Must disable LP1+ watermarks too */
2620 dirty |= WM_DIRTY_LP_ALL;
2621 }
2622
2623 /* LP1+ watermarks already deemed dirty, no need to continue */
2624 if (dirty & WM_DIRTY_LP_ALL)
2625 return dirty;
2626
2627 /* Find the lowest numbered LP1+ watermark in need of an update... */
2628 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2629 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2630 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2631 break;
2632 }
2633
2634 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2635 for (; wm_lp <= 3; wm_lp++)
2636 dirty |= WM_DIRTY_LP(wm_lp);
2637
2638 return dirty;
2639 }
2640
2641 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2642 unsigned int dirty)
2643 {
2644 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2645 bool changed = false;
2646
2647 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2648 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2649 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2650 changed = true;
2651 }
2652 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2653 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2654 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2655 changed = true;
2656 }
2657 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2658 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2659 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2660 changed = true;
2661 }
2662
2663 /*
2664 * Don't touch WM1S_LP_EN here.
2665 * Doing so could cause underruns.
2666 */
2667
2668 return changed;
2669 }
2670
2671 /*
2672 * The spec says we shouldn't write when we don't need, because every write
2673 * causes WMs to be re-evaluated, expending some power.
2674 */
2675 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2676 struct ilk_wm_values *results)
2677 {
2678 struct drm_device *dev = dev_priv->dev;
2679 struct ilk_wm_values *previous = &dev_priv->wm.hw;
2680 unsigned int dirty;
2681 uint32_t val;
2682
2683 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2684 if (!dirty)
2685 return;
2686
2687 _ilk_disable_lp_wm(dev_priv, dirty);
2688
2689 if (dirty & WM_DIRTY_PIPE(PIPE_A))
2690 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2691 if (dirty & WM_DIRTY_PIPE(PIPE_B))
2692 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2693 if (dirty & WM_DIRTY_PIPE(PIPE_C))
2694 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2695
2696 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2697 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2698 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2699 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2700 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2701 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2702
2703 if (dirty & WM_DIRTY_DDB) {
2704 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2705 val = I915_READ(WM_MISC);
2706 if (results->partitioning == INTEL_DDB_PART_1_2)
2707 val &= ~WM_MISC_DATA_PARTITION_5_6;
2708 else
2709 val |= WM_MISC_DATA_PARTITION_5_6;
2710 I915_WRITE(WM_MISC, val);
2711 } else {
2712 val = I915_READ(DISP_ARB_CTL2);
2713 if (results->partitioning == INTEL_DDB_PART_1_2)
2714 val &= ~DISP_DATA_PARTITION_5_6;
2715 else
2716 val |= DISP_DATA_PARTITION_5_6;
2717 I915_WRITE(DISP_ARB_CTL2, val);
2718 }
2719 }
2720
2721 if (dirty & WM_DIRTY_FBC) {
2722 val = I915_READ(DISP_ARB_CTL);
2723 if (results->enable_fbc_wm)
2724 val &= ~DISP_FBC_WM_DIS;
2725 else
2726 val |= DISP_FBC_WM_DIS;
2727 I915_WRITE(DISP_ARB_CTL, val);
2728 }
2729
2730 if (dirty & WM_DIRTY_LP(1) &&
2731 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2732 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2733
2734 if (INTEL_INFO(dev)->gen >= 7) {
2735 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2736 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2737 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2738 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2739 }
2740
2741 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2742 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2743 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2744 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2745 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2746 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2747
2748 dev_priv->wm.hw = *results;
2749 }
2750
2751 static bool ilk_disable_lp_wm(struct drm_device *dev)
2752 {
2753 struct drm_i915_private *dev_priv = dev->dev_private;
2754
2755 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2756 }
2757
2758 /*
2759 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2760 * different active planes.
2761 */
2762
2763 #define SKL_DDB_SIZE 896 /* in blocks */
2764 #define BXT_DDB_SIZE 512
2765
2766 /*
2767 * Return the index of a plane in the SKL DDB and wm result arrays. Primary
2768 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2769 * other universal planes are in indices 1..n. Note that this may leave unused
2770 * indices between the top "sprite" plane and the cursor.
2771 */
2772 static int
2773 skl_wm_plane_id(const struct intel_plane *plane)
2774 {
2775 switch (plane->base.type) {
2776 case DRM_PLANE_TYPE_PRIMARY:
2777 return 0;
2778 case DRM_PLANE_TYPE_CURSOR:
2779 return PLANE_CURSOR;
2780 case DRM_PLANE_TYPE_OVERLAY:
2781 return plane->plane + 1;
2782 default:
2783 MISSING_CASE(plane->base.type);
2784 return plane->plane;
2785 }
2786 }
2787
2788 static void
2789 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2790 const struct intel_crtc_state *cstate,
2791 const struct intel_wm_config *config,
2792 struct skl_ddb_entry *alloc /* out */)
2793 {
2794 struct drm_crtc *for_crtc = cstate->base.crtc;
2795 struct drm_crtc *crtc;
2796 unsigned int pipe_size, ddb_size;
2797 int nth_active_pipe;
2798
2799 if (!cstate->base.active) {
2800 alloc->start = 0;
2801 alloc->end = 0;
2802 return;
2803 }
2804
2805 if (IS_BROXTON(dev))
2806 ddb_size = BXT_DDB_SIZE;
2807 else
2808 ddb_size = SKL_DDB_SIZE;
2809
2810 ddb_size -= 4; /* 4 blocks for bypass path allocation */
2811
2812 nth_active_pipe = 0;
2813 for_each_crtc(dev, crtc) {
2814 if (!to_intel_crtc(crtc)->active)
2815 continue;
2816
2817 if (crtc == for_crtc)
2818 break;
2819
2820 nth_active_pipe++;
2821 }
2822
2823 pipe_size = ddb_size / config->num_pipes_active;
2824 alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2825 alloc->end = alloc->start + pipe_size;
2826 }
2827
2828 static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2829 {
2830 if (config->num_pipes_active == 1)
2831 return 32;
2832
2833 return 8;
2834 }
2835
2836 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2837 {
2838 entry->start = reg & 0x3ff;
2839 entry->end = (reg >> 16) & 0x3ff;
2840 if (entry->end)
2841 entry->end += 1;
2842 }
2843
2844 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2845 struct skl_ddb_allocation *ddb /* out */)
2846 {
2847 enum pipe pipe;
2848 int plane;
2849 u32 val;
2850
2851 memset(ddb, 0, sizeof(*ddb));
2852
2853 for_each_pipe(dev_priv, pipe) {
2854 enum intel_display_power_domain power_domain;
2855
2856 power_domain = POWER_DOMAIN_PIPE(pipe);
2857 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2858 continue;
2859
2860 for_each_plane(dev_priv, pipe, plane) {
2861 val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2862 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2863 val);
2864 }
2865
2866 val = I915_READ(CUR_BUF_CFG(pipe));
2867 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
2868 val);
2869
2870 intel_display_power_put(dev_priv, power_domain);
2871 }
2872 }
2873
2874 static unsigned int
2875 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
2876 const struct drm_plane_state *pstate,
2877 int y)
2878 {
2879 struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
2880 struct drm_framebuffer *fb = pstate->fb;
2881 uint32_t width = 0, height = 0;
2882
2883 width = drm_rect_width(&intel_pstate->src) >> 16;
2884 height = drm_rect_height(&intel_pstate->src) >> 16;
2885
2886 if (intel_rotation_90_or_270(pstate->rotation))
2887 swap(width, height);
2888
2889 /* for planar format */
2890 if (fb->pixel_format == DRM_FORMAT_NV12) {
2891 if (y) /* y-plane data rate */
2892 return width * height *
2893 drm_format_plane_cpp(fb->pixel_format, 0);
2894 else /* uv-plane data rate */
2895 return (width / 2) * (height / 2) *
2896 drm_format_plane_cpp(fb->pixel_format, 1);
2897 }
2898
2899 /* for packed formats */
2900 return width * height * drm_format_plane_cpp(fb->pixel_format, 0);
2901 }
2902
2903 /*
2904 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2905 * a 8192x4096@32bpp framebuffer:
2906 * 3 * 4096 * 8192 * 4 < 2^32
2907 */
2908 static unsigned int
2909 skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2910 {
2911 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2912 struct drm_device *dev = intel_crtc->base.dev;
2913 const struct intel_plane *intel_plane;
2914 unsigned int total_data_rate = 0;
2915
2916 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2917 const struct drm_plane_state *pstate = intel_plane->base.state;
2918
2919 if (pstate->fb == NULL)
2920 continue;
2921
2922 if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2923 continue;
2924
2925 /* packed/uv */
2926 total_data_rate += skl_plane_relative_data_rate(cstate,
2927 pstate,
2928 0);
2929
2930 if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
2931 /* y-plane */
2932 total_data_rate += skl_plane_relative_data_rate(cstate,
2933 pstate,
2934 1);
2935 }
2936
2937 return total_data_rate;
2938 }
2939
2940 static void
2941 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2942 struct skl_ddb_allocation *ddb /* out */)
2943 {
2944 struct drm_crtc *crtc = cstate->base.crtc;
2945 struct drm_device *dev = crtc->dev;
2946 struct drm_i915_private *dev_priv = to_i915(dev);
2947 struct intel_wm_config *config = &dev_priv->wm.config;
2948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2949 struct intel_plane *intel_plane;
2950 enum pipe pipe = intel_crtc->pipe;
2951 struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2952 uint16_t alloc_size, start, cursor_blocks;
2953 uint16_t minimum[I915_MAX_PLANES];
2954 uint16_t y_minimum[I915_MAX_PLANES];
2955 unsigned int total_data_rate;
2956
2957 skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2958 alloc_size = skl_ddb_entry_size(alloc);
2959 if (alloc_size == 0) {
2960 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2961 memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
2962 sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2963 return;
2964 }
2965
2966 cursor_blocks = skl_cursor_allocation(config);
2967 ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
2968 ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2969
2970 alloc_size -= cursor_blocks;
2971 alloc->end -= cursor_blocks;
2972
2973 /* 1. Allocate the mininum required blocks for each active plane */
2974 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2975 struct drm_plane *plane = &intel_plane->base;
2976 struct drm_framebuffer *fb = plane->state->fb;
2977 int id = skl_wm_plane_id(intel_plane);
2978
2979 if (!to_intel_plane_state(plane->state)->visible)
2980 continue;
2981
2982 if (plane->type == DRM_PLANE_TYPE_CURSOR)
2983 continue;
2984
2985 minimum[id] = 8;
2986 alloc_size -= minimum[id];
2987 y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
2988 alloc_size -= y_minimum[id];
2989 }
2990
2991 /*
2992 * 2. Distribute the remaining space in proportion to the amount of
2993 * data each plane needs to fetch from memory.
2994 *
2995 * FIXME: we may not allocate every single block here.
2996 */
2997 total_data_rate = skl_get_total_relative_data_rate(cstate);
2998
2999 start = alloc->start;
3000 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3001 struct drm_plane *plane = &intel_plane->base;
3002 struct drm_plane_state *pstate = intel_plane->base.state;
3003 unsigned int data_rate, y_data_rate;
3004 uint16_t plane_blocks, y_plane_blocks = 0;
3005 int id = skl_wm_plane_id(intel_plane);
3006
3007 if (!to_intel_plane_state(pstate)->visible)
3008 continue;
3009 if (plane->type == DRM_PLANE_TYPE_CURSOR)
3010 continue;
3011
3012 data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
3013
3014 /*
3015 * allocation for (packed formats) or (uv-plane part of planar format):
3016 * promote the expression to 64 bits to avoid overflowing, the
3017 * result is < available as data_rate / total_data_rate < 1
3018 */
3019 plane_blocks = minimum[id];
3020 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3021 total_data_rate);
3022
3023 ddb->plane[pipe][id].start = start;
3024 ddb->plane[pipe][id].end = start + plane_blocks;
3025
3026 start += plane_blocks;
3027
3028 /*
3029 * allocation for y_plane part of planar format:
3030 */
3031 if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
3032 y_data_rate = skl_plane_relative_data_rate(cstate,
3033 pstate,
3034 1);
3035 y_plane_blocks = y_minimum[id];
3036 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3037 total_data_rate);
3038
3039 ddb->y_plane[pipe][id].start = start;
3040 ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3041
3042 start += y_plane_blocks;
3043 }
3044
3045 }
3046
3047 }
3048
3049 static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3050 {
3051 /* TODO: Take into account the scalers once we support them */
3052 return config->base.adjusted_mode.crtc_clock;
3053 }
3054
3055 /*
3056 * The max latency should be 257 (max the punit can code is 255 and we add 2us
3057 * for the read latency) and cpp should always be <= 8, so that
3058 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3059 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3060 */
3061 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3062 {
3063 uint32_t wm_intermediate_val, ret;
3064
3065 if (latency == 0)
3066 return UINT_MAX;
3067
3068 wm_intermediate_val = latency * pixel_rate * cpp / 512;
3069 ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3070
3071 return ret;
3072 }
3073
3074 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3075 uint32_t horiz_pixels, uint8_t cpp,
3076 uint64_t tiling, uint32_t latency)
3077 {
3078 uint32_t ret;
3079 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3080 uint32_t wm_intermediate_val;
3081
3082 if (latency == 0)
3083 return UINT_MAX;
3084
3085 plane_bytes_per_line = horiz_pixels * cpp;
3086
3087 if (tiling == I915_FORMAT_MOD_Y_TILED ||
3088 tiling == I915_FORMAT_MOD_Yf_TILED) {
3089 plane_bytes_per_line *= 4;
3090 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3091 plane_blocks_per_line /= 4;
3092 } else {
3093 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3094 }
3095
3096 wm_intermediate_val = latency * pixel_rate;
3097 ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3098 plane_blocks_per_line;
3099
3100 return ret;
3101 }
3102
3103 static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
3104 const struct intel_crtc *intel_crtc)
3105 {
3106 struct drm_device *dev = intel_crtc->base.dev;
3107 struct drm_i915_private *dev_priv = dev->dev_private;
3108 const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3109
3110 /*
3111 * If ddb allocation of pipes changed, it may require recalculation of
3112 * watermarks
3113 */
3114 if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
3115 return true;
3116
3117 return false;
3118 }
3119
3120 static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3121 struct intel_crtc_state *cstate,
3122 struct intel_plane *intel_plane,
3123 uint16_t ddb_allocation,
3124 int level,
3125 uint16_t *out_blocks, /* out */
3126 uint8_t *out_lines /* out */)
3127 {
3128 struct drm_plane *plane = &intel_plane->base;
3129 struct drm_framebuffer *fb = plane->state->fb;
3130 struct intel_plane_state *intel_pstate =
3131 to_intel_plane_state(plane->state);
3132 uint32_t latency = dev_priv->wm.skl_latency[level];
3133 uint32_t method1, method2;
3134 uint32_t plane_bytes_per_line, plane_blocks_per_line;
3135 uint32_t res_blocks, res_lines;
3136 uint32_t selected_result;
3137 uint8_t cpp;
3138 uint32_t width = 0, height = 0;
3139
3140 if (latency == 0 || !cstate->base.active || !intel_pstate->visible)
3141 return false;
3142
3143 width = drm_rect_width(&intel_pstate->src) >> 16;
3144 height = drm_rect_height(&intel_pstate->src) >> 16;
3145
3146 if (intel_rotation_90_or_270(plane->state->rotation))
3147 swap(width, height);
3148
3149 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3150 method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3151 cpp, latency);
3152 method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
3153 cstate->base.adjusted_mode.crtc_htotal,
3154 width,
3155 cpp,
3156 fb->modifier[0],
3157 latency);
3158
3159 plane_bytes_per_line = width * cpp;
3160 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3161
3162 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3163 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3164 uint32_t min_scanlines = 4;
3165 uint32_t y_tile_minimum;
3166 if (intel_rotation_90_or_270(plane->state->rotation)) {
3167 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3168 drm_format_plane_cpp(fb->pixel_format, 1) :
3169 drm_format_plane_cpp(fb->pixel_format, 0);
3170
3171 switch (cpp) {
3172 case 1:
3173 min_scanlines = 16;
3174 break;
3175 case 2:
3176 min_scanlines = 8;
3177 break;
3178 case 8:
3179 WARN(1, "Unsupported pixel depth for rotation");
3180 }
3181 }
3182 y_tile_minimum = plane_blocks_per_line * min_scanlines;
3183 selected_result = max(method2, y_tile_minimum);
3184 } else {
3185 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3186 selected_result = min(method1, method2);
3187 else
3188 selected_result = method1;
3189 }
3190
3191 res_blocks = selected_result + 1;
3192 res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3193
3194 if (level >= 1 && level <= 7) {
3195 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3196 fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3197 res_lines += 4;
3198 else
3199 res_blocks++;
3200 }
3201
3202 if (res_blocks >= ddb_allocation || res_lines > 31)
3203 return false;
3204
3205 *out_blocks = res_blocks;
3206 *out_lines = res_lines;
3207
3208 return true;
3209 }
3210
3211 static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3212 struct skl_ddb_allocation *ddb,
3213 struct intel_crtc_state *cstate,
3214 int level,
3215 struct skl_wm_level *result)
3216 {
3217 struct drm_device *dev = dev_priv->dev;
3218 struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3219 struct intel_plane *intel_plane;
3220 uint16_t ddb_blocks;
3221 enum pipe pipe = intel_crtc->pipe;
3222
3223 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3224 int i = skl_wm_plane_id(intel_plane);
3225
3226 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3227
3228 result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3229 cstate,
3230 intel_plane,
3231 ddb_blocks,
3232 level,
3233 &result->plane_res_b[i],
3234 &result->plane_res_l[i]);
3235 }
3236 }
3237
3238 static uint32_t
3239 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3240 {
3241 if (!cstate->base.active)
3242 return 0;
3243
3244 if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3245 return 0;
3246
3247 return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3248 skl_pipe_pixel_rate(cstate));
3249 }
3250
3251 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3252 struct skl_wm_level *trans_wm /* out */)
3253 {
3254 struct drm_crtc *crtc = cstate->base.crtc;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 struct intel_plane *intel_plane;
3257
3258 if (!cstate->base.active)
3259 return;
3260
3261 /* Until we know more, just disable transition WMs */
3262 for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3263 int i = skl_wm_plane_id(intel_plane);
3264
3265 trans_wm->plane_en[i] = false;
3266 }
3267 }
3268
3269 static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3270 struct skl_ddb_allocation *ddb,
3271 struct skl_pipe_wm *pipe_wm)
3272 {
3273 struct drm_device *dev = cstate->base.crtc->dev;
3274 const struct drm_i915_private *dev_priv = dev->dev_private;
3275 int level, max_level = ilk_wm_max_level(dev);
3276
3277 for (level = 0; level <= max_level; level++) {
3278 skl_compute_wm_level(dev_priv, ddb, cstate,
3279 level, &pipe_wm->wm[level]);
3280 }
3281 pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3282
3283 skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3284 }
3285
3286 static void skl_compute_wm_results(struct drm_device *dev,
3287 struct skl_pipe_wm *p_wm,
3288 struct skl_wm_values *r,
3289 struct intel_crtc *intel_crtc)
3290 {
3291 int level, max_level = ilk_wm_max_level(dev);
3292 enum pipe pipe = intel_crtc->pipe;
3293 uint32_t temp;
3294 int i;
3295
3296 for (level = 0; level <= max_level; level++) {
3297 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3298 temp = 0;
3299
3300 temp |= p_wm->wm[level].plane_res_l[i] <<
3301 PLANE_WM_LINES_SHIFT;
3302 temp |= p_wm->wm[level].plane_res_b[i];
3303 if (p_wm->wm[level].plane_en[i])
3304 temp |= PLANE_WM_EN;
3305
3306 r->plane[pipe][i][level] = temp;
3307 }
3308
3309 temp = 0;
3310
3311 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3312 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3313
3314 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3315 temp |= PLANE_WM_EN;
3316
3317 r->plane[pipe][PLANE_CURSOR][level] = temp;
3318
3319 }
3320
3321 /* transition WMs */
3322 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3323 temp = 0;
3324 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3325 temp |= p_wm->trans_wm.plane_res_b[i];
3326 if (p_wm->trans_wm.plane_en[i])
3327 temp |= PLANE_WM_EN;
3328
3329 r->plane_trans[pipe][i] = temp;
3330 }
3331
3332 temp = 0;
3333 temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3334 temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3335 if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3336 temp |= PLANE_WM_EN;
3337
3338 r->plane_trans[pipe][PLANE_CURSOR] = temp;
3339
3340 r->wm_linetime[pipe] = p_wm->linetime;
3341 }
3342
3343 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3344 i915_reg_t reg,
3345 const struct skl_ddb_entry *entry)
3346 {
3347 if (entry->end)
3348 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3349 else
3350 I915_WRITE(reg, 0);
3351 }
3352
3353 static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3354 const struct skl_wm_values *new)
3355 {
3356 struct drm_device *dev = dev_priv->dev;
3357 struct intel_crtc *crtc;
3358
3359 for_each_intel_crtc(dev, crtc) {
3360 int i, level, max_level = ilk_wm_max_level(dev);
3361 enum pipe pipe = crtc->pipe;
3362
3363 if (!new->dirty[pipe])
3364 continue;
3365
3366 I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3367
3368 for (level = 0; level <= max_level; level++) {
3369 for (i = 0; i < intel_num_planes(crtc); i++)
3370 I915_WRITE(PLANE_WM(pipe, i, level),
3371 new->plane[pipe][i][level]);
3372 I915_WRITE(CUR_WM(pipe, level),
3373 new->plane[pipe][PLANE_CURSOR][level]);
3374 }
3375 for (i = 0; i < intel_num_planes(crtc); i++)
3376 I915_WRITE(PLANE_WM_TRANS(pipe, i),
3377 new->plane_trans[pipe][i]);
3378 I915_WRITE(CUR_WM_TRANS(pipe),
3379 new->plane_trans[pipe][PLANE_CURSOR]);
3380
3381 for (i = 0; i < intel_num_planes(crtc); i++) {
3382 skl_ddb_entry_write(dev_priv,
3383 PLANE_BUF_CFG(pipe, i),
3384 &new->ddb.plane[pipe][i]);
3385 skl_ddb_entry_write(dev_priv,
3386 PLANE_NV12_BUF_CFG(pipe, i),
3387 &new->ddb.y_plane[pipe][i]);
3388 }
3389
3390 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3391 &new->ddb.plane[pipe][PLANE_CURSOR]);
3392 }
3393 }
3394
3395 /*
3396 * When setting up a new DDB allocation arrangement, we need to correctly
3397 * sequence the times at which the new allocations for the pipes are taken into
3398 * account or we'll have pipes fetching from space previously allocated to
3399 * another pipe.
3400 *
3401 * Roughly the sequence looks like:
3402 * 1. re-allocate the pipe(s) with the allocation being reduced and not
3403 * overlapping with a previous light-up pipe (another way to put it is:
3404 * pipes with their new allocation strickly included into their old ones).
3405 * 2. re-allocate the other pipes that get their allocation reduced
3406 * 3. allocate the pipes having their allocation increased
3407 *
3408 * Steps 1. and 2. are here to take care of the following case:
3409 * - Initially DDB looks like this:
3410 * | B | C |
3411 * - enable pipe A.
3412 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3413 * allocation
3414 * | A | B | C |
3415 *
3416 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3417 */
3418
3419 static void
3420 skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3421 {
3422 int plane;
3423
3424 DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3425
3426 for_each_plane(dev_priv, pipe, plane) {
3427 I915_WRITE(PLANE_SURF(pipe, plane),
3428 I915_READ(PLANE_SURF(pipe, plane)));
3429 }
3430 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3431 }
3432
3433 static bool
3434 skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3435 const struct skl_ddb_allocation *new,
3436 enum pipe pipe)
3437 {
3438 uint16_t old_size, new_size;
3439
3440 old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3441 new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3442
3443 return old_size != new_size &&
3444 new->pipe[pipe].start >= old->pipe[pipe].start &&
3445 new->pipe[pipe].end <= old->pipe[pipe].end;
3446 }
3447
3448 static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3449 struct skl_wm_values *new_values)
3450 {
3451 struct drm_device *dev = dev_priv->dev;
3452 struct skl_ddb_allocation *cur_ddb, *new_ddb;
3453 bool reallocated[I915_MAX_PIPES] = {};
3454 struct intel_crtc *crtc;
3455 enum pipe pipe;
3456
3457 new_ddb = &new_values->ddb;
3458 cur_ddb = &dev_priv->wm.skl_hw.ddb;
3459
3460 /*
3461 * First pass: flush the pipes with the new allocation contained into
3462 * the old space.
3463 *
3464 * We'll wait for the vblank on those pipes to ensure we can safely
3465 * re-allocate the freed space without this pipe fetching from it.
3466 */
3467 for_each_intel_crtc(dev, crtc) {
3468 if (!crtc->active)
3469 continue;
3470
3471 pipe = crtc->pipe;
3472
3473 if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3474 continue;
3475
3476 skl_wm_flush_pipe(dev_priv, pipe, 1);
3477 intel_wait_for_vblank(dev, pipe);
3478
3479 reallocated[pipe] = true;
3480 }
3481
3482
3483 /*
3484 * Second pass: flush the pipes that are having their allocation
3485 * reduced, but overlapping with a previous allocation.
3486 *
3487 * Here as well we need to wait for the vblank to make sure the freed
3488 * space is not used anymore.
3489 */
3490 for_each_intel_crtc(dev, crtc) {
3491 if (!crtc->active)
3492 continue;
3493
3494 pipe = crtc->pipe;
3495
3496 if (reallocated[pipe])
3497 continue;
3498
3499 if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3500 skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3501 skl_wm_flush_pipe(dev_priv, pipe, 2);
3502 intel_wait_for_vblank(dev, pipe);
3503 reallocated[pipe] = true;
3504 }
3505 }
3506
3507 /*
3508 * Third pass: flush the pipes that got more space allocated.
3509 *
3510 * We don't need to actively wait for the update here, next vblank
3511 * will just get more DDB space with the correct WM values.
3512 */
3513 for_each_intel_crtc(dev, crtc) {
3514 if (!crtc->active)
3515 continue;
3516
3517 pipe = crtc->pipe;
3518
3519 /*
3520 * At this point, only the pipes more space than before are
3521 * left to re-allocate.
3522 */
3523 if (reallocated[pipe])
3524 continue;
3525
3526 skl_wm_flush_pipe(dev_priv, pipe, 3);
3527 }
3528 }
3529
3530 static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3531 struct skl_ddb_allocation *ddb, /* out */
3532 struct skl_pipe_wm *pipe_wm /* out */)
3533 {
3534 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3535 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3536
3537 skl_allocate_pipe_ddb(cstate, ddb);
3538 skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3539
3540 if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3541 return false;
3542
3543 intel_crtc->wm.active.skl = *pipe_wm;
3544
3545 return true;
3546 }
3547
3548 static void skl_update_other_pipe_wm(struct drm_device *dev,
3549 struct drm_crtc *crtc,
3550 struct skl_wm_values *r)
3551 {
3552 struct intel_crtc *intel_crtc;
3553 struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3554
3555 /*
3556 * If the WM update hasn't changed the allocation for this_crtc (the
3557 * crtc we are currently computing the new WM values for), other
3558 * enabled crtcs will keep the same allocation and we don't need to
3559 * recompute anything for them.
3560 */
3561 if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3562 return;
3563
3564 /*
3565 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3566 * other active pipes need new DDB allocation and WM values.
3567 */
3568 for_each_intel_crtc(dev, intel_crtc) {
3569 struct skl_pipe_wm pipe_wm = {};
3570 bool wm_changed;
3571
3572 if (this_crtc->pipe == intel_crtc->pipe)
3573 continue;
3574
3575 if (!intel_crtc->active)
3576 continue;
3577
3578 wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3579 &r->ddb, &pipe_wm);
3580
3581 /*
3582 * If we end up re-computing the other pipe WM values, it's
3583 * because it was really needed, so we expect the WM values to
3584 * be different.
3585 */
3586 WARN_ON(!wm_changed);
3587
3588 skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3589 r->dirty[intel_crtc->pipe] = true;
3590 }
3591 }
3592
3593 static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
3594 {
3595 watermarks->wm_linetime[pipe] = 0;
3596 memset(watermarks->plane[pipe], 0,
3597 sizeof(uint32_t) * 8 * I915_MAX_PLANES);
3598 memset(watermarks->plane_trans[pipe],
3599 0, sizeof(uint32_t) * I915_MAX_PLANES);
3600 watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3601
3602 /* Clear ddb entries for pipe */
3603 memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
3604 memset(&watermarks->ddb.plane[pipe], 0,
3605 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3606 memset(&watermarks->ddb.y_plane[pipe], 0,
3607 sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3608 memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
3609 sizeof(struct skl_ddb_entry));
3610
3611 }
3612
3613 static void skl_update_wm(struct drm_crtc *crtc)
3614 {
3615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3616 struct drm_device *dev = crtc->dev;
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618 struct skl_wm_values *results = &dev_priv->wm.skl_results;
3619 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3620 struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3621
3622
3623 /* Clear all dirty flags */
3624 memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
3625
3626 skl_clear_wm(results, intel_crtc->pipe);
3627
3628 if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
3629 return;
3630
3631 skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3632 results->dirty[intel_crtc->pipe] = true;
3633
3634 skl_update_other_pipe_wm(dev, crtc, results);
3635 skl_write_wm_values(dev_priv, results);
3636 skl_flush_wm_values(dev_priv, results);
3637
3638 /* store the new configuration */
3639 dev_priv->wm.skl_hw = *results;
3640 }
3641
3642 static void ilk_compute_wm_config(struct drm_device *dev,
3643 struct intel_wm_config *config)
3644 {
3645 struct intel_crtc *crtc;
3646
3647 /* Compute the currently _active_ config */
3648 for_each_intel_crtc(dev, crtc) {
3649 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
3650
3651 if (!wm->pipe_enabled)
3652 continue;
3653
3654 config->sprites_enabled |= wm->sprites_enabled;
3655 config->sprites_scaled |= wm->sprites_scaled;
3656 config->num_pipes_active++;
3657 }
3658 }
3659
3660 static void ilk_program_watermarks(struct intel_crtc_state *cstate)
3661 {
3662 struct drm_crtc *crtc = cstate->base.crtc;
3663 struct drm_device *dev = crtc->dev;
3664 struct drm_i915_private *dev_priv = to_i915(dev);
3665 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3666 struct ilk_wm_maximums max;
3667 struct intel_wm_config config = {};
3668 struct ilk_wm_values results = {};
3669 enum intel_ddb_partitioning partitioning;
3670
3671 ilk_compute_wm_config(dev, &config);
3672
3673 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3674 ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3675
3676 /* 5/6 split only in single pipe config on IVB+ */
3677 if (INTEL_INFO(dev)->gen >= 7 &&
3678 config.num_pipes_active == 1 && config.sprites_enabled) {
3679 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3680 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3681
3682 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3683 } else {
3684 best_lp_wm = &lp_wm_1_2;
3685 }
3686
3687 partitioning = (best_lp_wm == &lp_wm_1_2) ?
3688 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3689
3690 ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3691
3692 ilk_write_wm_values(dev_priv, &results);
3693 }
3694
3695 static void ilk_update_wm(struct drm_crtc *crtc)
3696 {
3697 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3698 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3699
3700 WARN_ON(cstate->base.active != intel_crtc->active);
3701
3702 /*
3703 * IVB workaround: must disable low power watermarks for at least
3704 * one frame before enabling scaling. LP watermarks can be re-enabled
3705 * when scaling is disabled.
3706 *
3707 * WaCxSRDisabledForSpriteScaling:ivb
3708 */
3709 if (cstate->disable_lp_wm) {
3710 ilk_disable_lp_wm(crtc->dev);
3711 intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
3712 }
3713
3714 intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3715
3716 ilk_program_watermarks(cstate);
3717 }
3718
3719 static void skl_pipe_wm_active_state(uint32_t val,
3720 struct skl_pipe_wm *active,
3721 bool is_transwm,
3722 bool is_cursor,
3723 int i,
3724 int level)
3725 {
3726 bool is_enabled = (val & PLANE_WM_EN) != 0;
3727
3728 if (!is_transwm) {
3729 if (!is_cursor) {
3730 active->wm[level].plane_en[i] = is_enabled;
3731 active->wm[level].plane_res_b[i] =
3732 val & PLANE_WM_BLOCKS_MASK;
3733 active->wm[level].plane_res_l[i] =
3734 (val >> PLANE_WM_LINES_SHIFT) &
3735 PLANE_WM_LINES_MASK;
3736 } else {
3737 active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
3738 active->wm[level].plane_res_b[PLANE_CURSOR] =
3739 val & PLANE_WM_BLOCKS_MASK;
3740 active->wm[level].plane_res_l[PLANE_CURSOR] =
3741 (val >> PLANE_WM_LINES_SHIFT) &
3742 PLANE_WM_LINES_MASK;
3743 }
3744 } else {
3745 if (!is_cursor) {
3746 active->trans_wm.plane_en[i] = is_enabled;
3747 active->trans_wm.plane_res_b[i] =
3748 val & PLANE_WM_BLOCKS_MASK;
3749 active->trans_wm.plane_res_l[i] =
3750 (val >> PLANE_WM_LINES_SHIFT) &
3751 PLANE_WM_LINES_MASK;
3752 } else {
3753 active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
3754 active->trans_wm.plane_res_b[PLANE_CURSOR] =
3755 val & PLANE_WM_BLOCKS_MASK;
3756 active->trans_wm.plane_res_l[PLANE_CURSOR] =
3757 (val >> PLANE_WM_LINES_SHIFT) &
3758 PLANE_WM_LINES_MASK;
3759 }
3760 }
3761 }
3762
3763 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3764 {
3765 struct drm_device *dev = crtc->dev;
3766 struct drm_i915_private *dev_priv = dev->dev_private;
3767 struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3769 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3770 struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3771 enum pipe pipe = intel_crtc->pipe;
3772 int level, i, max_level;
3773 uint32_t temp;
3774
3775 max_level = ilk_wm_max_level(dev);
3776
3777 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3778
3779 for (level = 0; level <= max_level; level++) {
3780 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3781 hw->plane[pipe][i][level] =
3782 I915_READ(PLANE_WM(pipe, i, level));
3783 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3784 }
3785
3786 for (i = 0; i < intel_num_planes(intel_crtc); i++)
3787 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3788 hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3789
3790 if (!intel_crtc->active)
3791 return;
3792
3793 hw->dirty[pipe] = true;
3794
3795 active->linetime = hw->wm_linetime[pipe];
3796
3797 for (level = 0; level <= max_level; level++) {
3798 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3799 temp = hw->plane[pipe][i][level];
3800 skl_pipe_wm_active_state(temp, active, false,
3801 false, i, level);
3802 }
3803 temp = hw->plane[pipe][PLANE_CURSOR][level];
3804 skl_pipe_wm_active_state(temp, active, false, true, i, level);
3805 }
3806
3807 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3808 temp = hw->plane_trans[pipe][i];
3809 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3810 }
3811
3812 temp = hw->plane_trans[pipe][PLANE_CURSOR];
3813 skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3814
3815 intel_crtc->wm.active.skl = *active;
3816 }
3817
3818 void skl_wm_get_hw_state(struct drm_device *dev)
3819 {
3820 struct drm_i915_private *dev_priv = dev->dev_private;
3821 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3822 struct drm_crtc *crtc;
3823
3824 skl_ddb_get_hw_state(dev_priv, ddb);
3825 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3826 skl_pipe_wm_get_hw_state(crtc);
3827 }
3828
3829 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3830 {
3831 struct drm_device *dev = crtc->dev;
3832 struct drm_i915_private *dev_priv = dev->dev_private;
3833 struct ilk_wm_values *hw = &dev_priv->wm.hw;
3834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3835 struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3836 struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3837 enum pipe pipe = intel_crtc->pipe;
3838 static const i915_reg_t wm0_pipe_reg[] = {
3839 [PIPE_A] = WM0_PIPEA_ILK,
3840 [PIPE_B] = WM0_PIPEB_ILK,
3841 [PIPE_C] = WM0_PIPEC_IVB,
3842 };
3843
3844 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3845 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3846 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3847
3848 active->pipe_enabled = intel_crtc->active;
3849
3850 if (active->pipe_enabled) {
3851 u32 tmp = hw->wm_pipe[pipe];
3852
3853 /*
3854 * For active pipes LP0 watermark is marked as
3855 * enabled, and LP1+ watermaks as disabled since
3856 * we can't really reverse compute them in case
3857 * multiple pipes are active.
3858 */
3859 active->wm[0].enable = true;
3860 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3861 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3862 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3863 active->linetime = hw->wm_linetime[pipe];
3864 } else {
3865 int level, max_level = ilk_wm_max_level(dev);
3866
3867 /*
3868 * For inactive pipes, all watermark levels
3869 * should be marked as enabled but zeroed,
3870 * which is what we'd compute them to.
3871 */
3872 for (level = 0; level <= max_level; level++)
3873 active->wm[level].enable = true;
3874 }
3875
3876 intel_crtc->wm.active.ilk = *active;
3877 }
3878
3879 #define _FW_WM(value, plane) \
3880 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
3881 #define _FW_WM_VLV(value, plane) \
3882 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
3883
3884 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
3885 struct vlv_wm_values *wm)
3886 {
3887 enum pipe pipe;
3888 uint32_t tmp;
3889
3890 for_each_pipe(dev_priv, pipe) {
3891 tmp = I915_READ(VLV_DDL(pipe));
3892
3893 wm->ddl[pipe].primary =
3894 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3895 wm->ddl[pipe].cursor =
3896 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3897 wm->ddl[pipe].sprite[0] =
3898 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3899 wm->ddl[pipe].sprite[1] =
3900 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
3901 }
3902
3903 tmp = I915_READ(DSPFW1);
3904 wm->sr.plane = _FW_WM(tmp, SR);
3905 wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
3906 wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
3907 wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
3908
3909 tmp = I915_READ(DSPFW2);
3910 wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
3911 wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
3912 wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
3913
3914 tmp = I915_READ(DSPFW3);
3915 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
3916
3917 if (IS_CHERRYVIEW(dev_priv)) {
3918 tmp = I915_READ(DSPFW7_CHV);
3919 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3920 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3921
3922 tmp = I915_READ(DSPFW8_CHV);
3923 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
3924 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
3925
3926 tmp = I915_READ(DSPFW9_CHV);
3927 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
3928 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
3929
3930 tmp = I915_READ(DSPHOWM);
3931 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3932 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
3933 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
3934 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
3935 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3936 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3937 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3938 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3939 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3940 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3941 } else {
3942 tmp = I915_READ(DSPFW7);
3943 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
3944 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
3945
3946 tmp = I915_READ(DSPHOWM);
3947 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
3948 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
3949 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
3950 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
3951 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
3952 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
3953 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
3954 }
3955 }
3956
3957 #undef _FW_WM
3958 #undef _FW_WM_VLV
3959
3960 void vlv_wm_get_hw_state(struct drm_device *dev)
3961 {
3962 struct drm_i915_private *dev_priv = to_i915(dev);
3963 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
3964 struct intel_plane *plane;
3965 enum pipe pipe;
3966 u32 val;
3967
3968 vlv_read_wm_values(dev_priv, wm);
3969
3970 for_each_intel_plane(dev, plane) {
3971 switch (plane->base.type) {
3972 int sprite;
3973 case DRM_PLANE_TYPE_CURSOR:
3974 plane->wm.fifo_size = 63;
3975 break;
3976 case DRM_PLANE_TYPE_PRIMARY:
3977 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
3978 break;
3979 case DRM_PLANE_TYPE_OVERLAY:
3980 sprite = plane->plane;
3981 plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
3982 break;
3983 }
3984 }
3985
3986 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
3987 wm->level = VLV_WM_LEVEL_PM2;
3988
3989 if (IS_CHERRYVIEW(dev_priv)) {
3990 mutex_lock(&dev_priv->rps.hw_lock);
3991
3992 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3993 if (val & DSP_MAXFIFO_PM5_ENABLE)
3994 wm->level = VLV_WM_LEVEL_PM5;
3995
3996 /*
3997 * If DDR DVFS is disabled in the BIOS, Punit
3998 * will never ack the request. So if that happens
3999 * assume we don't have to enable/disable DDR DVFS
4000 * dynamically. To test that just set the REQ_ACK
4001 * bit to poke the Punit, but don't change the
4002 * HIGH/LOW bits so that we don't actually change
4003 * the current state.
4004 */
4005 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4006 val |= FORCE_DDR_FREQ_REQ_ACK;
4007 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4008
4009 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4010 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4011 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4012 "assuming DDR DVFS is disabled\n");
4013 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4014 } else {
4015 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4016 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4017 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4018 }
4019
4020 mutex_unlock(&dev_priv->rps.hw_lock);
4021 }
4022
4023 for_each_pipe(dev_priv, pipe)
4024 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4025 pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4026 wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4027
4028 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4029 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4030 }
4031
4032 void ilk_wm_get_hw_state(struct drm_device *dev)
4033 {
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 struct ilk_wm_values *hw = &dev_priv->wm.hw;
4036 struct drm_crtc *crtc;
4037
4038 for_each_crtc(dev, crtc)
4039 ilk_pipe_wm_get_hw_state(crtc);
4040
4041 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4042 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4043 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4044
4045 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4046 if (INTEL_INFO(dev)->gen >= 7) {
4047 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4048 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4049 }
4050
4051 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4052 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4053 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4054 else if (IS_IVYBRIDGE(dev))
4055 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4056 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4057
4058 hw->enable_fbc_wm =
4059 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4060 }
4061
4062 /**
4063 * intel_update_watermarks - update FIFO watermark values based on current modes
4064 *
4065 * Calculate watermark values for the various WM regs based on current mode
4066 * and plane configuration.
4067 *
4068 * There are several cases to deal with here:
4069 * - normal (i.e. non-self-refresh)
4070 * - self-refresh (SR) mode
4071 * - lines are large relative to FIFO size (buffer can hold up to 2)
4072 * - lines are small relative to FIFO size (buffer can hold more than 2
4073 * lines), so need to account for TLB latency
4074 *
4075 * The normal calculation is:
4076 * watermark = dotclock * bytes per pixel * latency
4077 * where latency is platform & configuration dependent (we assume pessimal
4078 * values here).
4079 *
4080 * The SR calculation is:
4081 * watermark = (trunc(latency/line time)+1) * surface width *
4082 * bytes per pixel
4083 * where
4084 * line time = htotal / dotclock
4085 * surface width = hdisplay for normal plane and 64 for cursor
4086 * and latency is assumed to be high, as above.
4087 *
4088 * The final value programmed to the register should always be rounded up,
4089 * and include an extra 2 entries to account for clock crossings.
4090 *
4091 * We don't use the sprite, so we can ignore that. And on Crestline we have
4092 * to set the non-SR watermarks to 8.
4093 */
4094 void intel_update_watermarks(struct drm_crtc *crtc)
4095 {
4096 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4097
4098 if (dev_priv->display.update_wm)
4099 dev_priv->display.update_wm(crtc);
4100 }
4101
4102 /*
4103 * Lock protecting IPS related data structures
4104 */
4105 DEFINE_SPINLOCK(mchdev_lock);
4106
4107 /* Global for IPS driver to get at the current i915 device. Protected by
4108 * mchdev_lock. */
4109 static struct drm_i915_private *i915_mch_dev;
4110
4111 bool ironlake_set_drps(struct drm_device *dev, u8 val)
4112 {
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 u16 rgvswctl;
4115
4116 assert_spin_locked(&mchdev_lock);
4117
4118 rgvswctl = I915_READ16(MEMSWCTL);
4119 if (rgvswctl & MEMCTL_CMD_STS) {
4120 DRM_DEBUG("gpu busy, RCS change rejected\n");
4121 return false; /* still busy with another command */
4122 }
4123
4124 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4125 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4126 I915_WRITE16(MEMSWCTL, rgvswctl);
4127 POSTING_READ16(MEMSWCTL);
4128
4129 rgvswctl |= MEMCTL_CMD_STS;
4130 I915_WRITE16(MEMSWCTL, rgvswctl);
4131
4132 return true;
4133 }
4134
4135 static void ironlake_enable_drps(struct drm_device *dev)
4136 {
4137 struct drm_i915_private *dev_priv = dev->dev_private;
4138 u32 rgvmodectl;
4139 u8 fmax, fmin, fstart, vstart;
4140
4141 spin_lock_irq(&mchdev_lock);
4142
4143 rgvmodectl = I915_READ(MEMMODECTL);
4144
4145 /* Enable temp reporting */
4146 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4147 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4148
4149 /* 100ms RC evaluation intervals */
4150 I915_WRITE(RCUPEI, 100000);
4151 I915_WRITE(RCDNEI, 100000);
4152
4153 /* Set max/min thresholds to 90ms and 80ms respectively */
4154 I915_WRITE(RCBMAXAVG, 90000);
4155 I915_WRITE(RCBMINAVG, 80000);
4156
4157 I915_WRITE(MEMIHYST, 1);
4158
4159 /* Set up min, max, and cur for interrupt handling */
4160 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4161 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4162 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4163 MEMMODE_FSTART_SHIFT;
4164
4165 vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4166 PXVFREQ_PX_SHIFT;
4167
4168 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4169 dev_priv->ips.fstart = fstart;
4170
4171 dev_priv->ips.max_delay = fstart;
4172 dev_priv->ips.min_delay = fmin;
4173 dev_priv->ips.cur_delay = fstart;
4174
4175 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4176 fmax, fmin, fstart);
4177
4178 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4179
4180 /*
4181 * Interrupts will be enabled in ironlake_irq_postinstall
4182 */
4183
4184 I915_WRITE(VIDSTART, vstart);
4185 POSTING_READ(VIDSTART);
4186
4187 rgvmodectl |= MEMMODE_SWMODE_EN;
4188 I915_WRITE(MEMMODECTL, rgvmodectl);
4189
4190 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4191 DRM_ERROR("stuck trying to change perf mode\n");
4192 mdelay(1);
4193
4194 ironlake_set_drps(dev, fstart);
4195
4196 dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4197 I915_READ(DDREC) + I915_READ(CSIEC);
4198 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4199 dev_priv->ips.last_count2 = I915_READ(GFXEC);
4200 dev_priv->ips.last_time2 = ktime_get_raw_ns();
4201
4202 spin_unlock_irq(&mchdev_lock);
4203 }
4204
4205 static void ironlake_disable_drps(struct drm_device *dev)
4206 {
4207 struct drm_i915_private *dev_priv = dev->dev_private;
4208 u16 rgvswctl;
4209
4210 spin_lock_irq(&mchdev_lock);
4211
4212 rgvswctl = I915_READ16(MEMSWCTL);
4213
4214 /* Ack interrupts, disable EFC interrupt */
4215 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4216 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4217 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4218 I915_WRITE(DEIIR, DE_PCU_EVENT);
4219 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4220
4221 /* Go back to the starting frequency */
4222 ironlake_set_drps(dev, dev_priv->ips.fstart);
4223 mdelay(1);
4224 rgvswctl |= MEMCTL_CMD_STS;
4225 I915_WRITE(MEMSWCTL, rgvswctl);
4226 mdelay(1);
4227
4228 spin_unlock_irq(&mchdev_lock);
4229 }
4230
4231 /* There's a funny hw issue where the hw returns all 0 when reading from
4232 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4233 * ourselves, instead of doing a rmw cycle (which might result in us clearing
4234 * all limits and the gpu stuck at whatever frequency it is at atm).
4235 */
4236 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4237 {
4238 u32 limits;
4239
4240 /* Only set the down limit when we've reached the lowest level to avoid
4241 * getting more interrupts, otherwise leave this clear. This prevents a
4242 * race in the hw when coming out of rc6: There's a tiny window where
4243 * the hw runs at the minimal clock before selecting the desired
4244 * frequency, if the down threshold expires in that window we will not
4245 * receive a down interrupt. */
4246 if (IS_GEN9(dev_priv->dev)) {
4247 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4248 if (val <= dev_priv->rps.min_freq_softlimit)
4249 limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4250 } else {
4251 limits = dev_priv->rps.max_freq_softlimit << 24;
4252 if (val <= dev_priv->rps.min_freq_softlimit)
4253 limits |= dev_priv->rps.min_freq_softlimit << 16;
4254 }
4255
4256 return limits;
4257 }
4258
4259 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4260 {
4261 int new_power;
4262 u32 threshold_up = 0, threshold_down = 0; /* in % */
4263 u32 ei_up = 0, ei_down = 0;
4264
4265 new_power = dev_priv->rps.power;
4266 switch (dev_priv->rps.power) {
4267 case LOW_POWER:
4268 if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4269 new_power = BETWEEN;
4270 break;
4271
4272 case BETWEEN:
4273 if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4274 new_power = LOW_POWER;
4275 else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4276 new_power = HIGH_POWER;
4277 break;
4278
4279 case HIGH_POWER:
4280 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4281 new_power = BETWEEN;
4282 break;
4283 }
4284 /* Max/min bins are special */
4285 if (val <= dev_priv->rps.min_freq_softlimit)
4286 new_power = LOW_POWER;
4287 if (val >= dev_priv->rps.max_freq_softlimit)
4288 new_power = HIGH_POWER;
4289 if (new_power == dev_priv->rps.power)
4290 return;
4291
4292 /* Note the units here are not exactly 1us, but 1280ns. */
4293 switch (new_power) {
4294 case LOW_POWER:
4295 /* Upclock if more than 95% busy over 16ms */
4296 ei_up = 16000;
4297 threshold_up = 95;
4298
4299 /* Downclock if less than 85% busy over 32ms */
4300 ei_down = 32000;
4301 threshold_down = 85;
4302 break;
4303
4304 case BETWEEN:
4305 /* Upclock if more than 90% busy over 13ms */
4306 ei_up = 13000;
4307 threshold_up = 90;
4308
4309 /* Downclock if less than 75% busy over 32ms */
4310 ei_down = 32000;
4311 threshold_down = 75;
4312 break;
4313
4314 case HIGH_POWER:
4315 /* Upclock if more than 85% busy over 10ms */
4316 ei_up = 10000;
4317 threshold_up = 85;
4318
4319 /* Downclock if less than 60% busy over 32ms */
4320 ei_down = 32000;
4321 threshold_down = 60;
4322 break;
4323 }
4324
4325 I915_WRITE(GEN6_RP_UP_EI,
4326 GT_INTERVAL_FROM_US(dev_priv, ei_up));
4327 I915_WRITE(GEN6_RP_UP_THRESHOLD,
4328 GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
4329
4330 I915_WRITE(GEN6_RP_DOWN_EI,
4331 GT_INTERVAL_FROM_US(dev_priv, ei_down));
4332 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4333 GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
4334
4335 I915_WRITE(GEN6_RP_CONTROL,
4336 GEN6_RP_MEDIA_TURBO |
4337 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4338 GEN6_RP_MEDIA_IS_GFX |
4339 GEN6_RP_ENABLE |
4340 GEN6_RP_UP_BUSY_AVG |
4341 GEN6_RP_DOWN_IDLE_AVG);
4342
4343 dev_priv->rps.power = new_power;
4344 dev_priv->rps.up_threshold = threshold_up;
4345 dev_priv->rps.down_threshold = threshold_down;
4346 dev_priv->rps.last_adj = 0;
4347 }
4348
4349 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4350 {
4351 u32 mask = 0;
4352
4353 if (val > dev_priv->rps.min_freq_softlimit)
4354 mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4355 if (val < dev_priv->rps.max_freq_softlimit)
4356 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4357
4358 mask &= dev_priv->pm_rps_events;
4359
4360 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4361 }
4362
4363 /* gen6_set_rps is called to update the frequency request, but should also be
4364 * called when the range (min_delay and max_delay) is modified so that we can
4365 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4366 static void gen6_set_rps(struct drm_device *dev, u8 val)
4367 {
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369
4370 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4371 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4372 return;
4373
4374 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4375 WARN_ON(val > dev_priv->rps.max_freq);
4376 WARN_ON(val < dev_priv->rps.min_freq);
4377
4378 /* min/max delay may still have been modified so be sure to
4379 * write the limits value.
4380 */
4381 if (val != dev_priv->rps.cur_freq) {
4382 gen6_set_rps_thresholds(dev_priv, val);
4383
4384 if (IS_GEN9(dev))
4385 I915_WRITE(GEN6_RPNSWREQ,
4386 GEN9_FREQUENCY(val));
4387 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4388 I915_WRITE(GEN6_RPNSWREQ,
4389 HSW_FREQUENCY(val));
4390 else
4391 I915_WRITE(GEN6_RPNSWREQ,
4392 GEN6_FREQUENCY(val) |
4393 GEN6_OFFSET(0) |
4394 GEN6_AGGRESSIVE_TURBO);
4395 }
4396
4397 /* Make sure we continue to get interrupts
4398 * until we hit the minimum or maximum frequencies.
4399 */
4400 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4401 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4402
4403 POSTING_READ(GEN6_RPNSWREQ);
4404
4405 dev_priv->rps.cur_freq = val;
4406 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4407 }
4408
4409 static void valleyview_set_rps(struct drm_device *dev, u8 val)
4410 {
4411 struct drm_i915_private *dev_priv = dev->dev_private;
4412
4413 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4414 WARN_ON(val > dev_priv->rps.max_freq);
4415 WARN_ON(val < dev_priv->rps.min_freq);
4416
4417 if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4418 "Odd GPU freq value\n"))
4419 val &= ~1;
4420
4421 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4422
4423 if (val != dev_priv->rps.cur_freq) {
4424 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4425 if (!IS_CHERRYVIEW(dev_priv))
4426 gen6_set_rps_thresholds(dev_priv, val);
4427 }
4428
4429 dev_priv->rps.cur_freq = val;
4430 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4431 }
4432
4433 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4434 *
4435 * * If Gfx is Idle, then
4436 * 1. Forcewake Media well.
4437 * 2. Request idle freq.
4438 * 3. Release Forcewake of Media well.
4439 */
4440 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4441 {
4442 u32 val = dev_priv->rps.idle_freq;
4443
4444 if (dev_priv->rps.cur_freq <= val)
4445 return;
4446
4447 /* Wake up the media well, as that takes a lot less
4448 * power than the Render well. */
4449 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
4450 valleyview_set_rps(dev_priv->dev, val);
4451 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4452 }
4453
4454 void gen6_rps_busy(struct drm_i915_private *dev_priv)
4455 {
4456 mutex_lock(&dev_priv->rps.hw_lock);
4457 if (dev_priv->rps.enabled) {
4458 if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4459 gen6_rps_reset_ei(dev_priv);
4460 I915_WRITE(GEN6_PMINTRMSK,
4461 gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4462 }
4463 mutex_unlock(&dev_priv->rps.hw_lock);
4464 }
4465
4466 void gen6_rps_idle(struct drm_i915_private *dev_priv)
4467 {
4468 struct drm_device *dev = dev_priv->dev;
4469
4470 mutex_lock(&dev_priv->rps.hw_lock);
4471 if (dev_priv->rps.enabled) {
4472 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4473 vlv_set_rps_idle(dev_priv);
4474 else
4475 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4476 dev_priv->rps.last_adj = 0;
4477 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4478 }
4479 mutex_unlock(&dev_priv->rps.hw_lock);
4480
4481 spin_lock(&dev_priv->rps.client_lock);
4482 while (!list_empty(&dev_priv->rps.clients))
4483 list_del_init(dev_priv->rps.clients.next);
4484 spin_unlock(&dev_priv->rps.client_lock);
4485 }
4486
4487 void gen6_rps_boost(struct drm_i915_private *dev_priv,
4488 struct intel_rps_client *rps,
4489 unsigned long submitted)
4490 {
4491 /* This is intentionally racy! We peek at the state here, then
4492 * validate inside the RPS worker.
4493 */
4494 if (!(dev_priv->mm.busy &&
4495 dev_priv->rps.enabled &&
4496 dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
4497 return;
4498
4499 /* Force a RPS boost (and don't count it against the client) if
4500 * the GPU is severely congested.
4501 */
4502 if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4503 rps = NULL;
4504
4505 spin_lock(&dev_priv->rps.client_lock);
4506 if (rps == NULL || list_empty(&rps->link)) {
4507 spin_lock_irq(&dev_priv->irq_lock);
4508 if (dev_priv->rps.interrupts_enabled) {
4509 dev_priv->rps.client_boost = true;
4510 queue_work(dev_priv->wq, &dev_priv->rps.work);
4511 }
4512 spin_unlock_irq(&dev_priv->irq_lock);
4513
4514 if (rps != NULL) {
4515 list_add(&rps->link, &dev_priv->rps.clients);
4516 rps->boosts++;
4517 } else
4518 dev_priv->rps.boosts++;
4519 }
4520 spin_unlock(&dev_priv->rps.client_lock);
4521 }
4522
4523 void intel_set_rps(struct drm_device *dev, u8 val)
4524 {
4525 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4526 valleyview_set_rps(dev, val);
4527 else
4528 gen6_set_rps(dev, val);
4529 }
4530
4531 static void gen9_disable_rps(struct drm_device *dev)
4532 {
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534
4535 I915_WRITE(GEN6_RC_CONTROL, 0);
4536 I915_WRITE(GEN9_PG_ENABLE, 0);
4537 }
4538
4539 static void gen6_disable_rps(struct drm_device *dev)
4540 {
4541 struct drm_i915_private *dev_priv = dev->dev_private;
4542
4543 I915_WRITE(GEN6_RC_CONTROL, 0);
4544 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4545 }
4546
4547 static void cherryview_disable_rps(struct drm_device *dev)
4548 {
4549 struct drm_i915_private *dev_priv = dev->dev_private;
4550
4551 I915_WRITE(GEN6_RC_CONTROL, 0);
4552 }
4553
4554 static void valleyview_disable_rps(struct drm_device *dev)
4555 {
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557
4558 /* we're doing forcewake before Disabling RC6,
4559 * This what the BIOS expects when going into suspend */
4560 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4561
4562 I915_WRITE(GEN6_RC_CONTROL, 0);
4563
4564 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4565 }
4566
4567 static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4568 {
4569 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4570 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4571 mode = GEN6_RC_CTL_RC6_ENABLE;
4572 else
4573 mode = 0;
4574 }
4575 if (HAS_RC6p(dev))
4576 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4577 onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
4578 onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
4579 onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
4580
4581 else
4582 DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4583 onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
4584 }
4585
4586 static bool bxt_check_bios_rc6_setup(const struct drm_device *dev)
4587 {
4588 struct drm_i915_private *dev_priv = dev->dev_private;
4589 bool enable_rc6 = true;
4590 unsigned long rc6_ctx_base;
4591
4592 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
4593 DRM_DEBUG_KMS("RC6 Base location not set properly.\n");
4594 enable_rc6 = false;
4595 }
4596
4597 /*
4598 * The exact context size is not known for BXT, so assume a page size
4599 * for this check.
4600 */
4601 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
4602 if (!((rc6_ctx_base >= dev_priv->gtt.stolen_reserved_base) &&
4603 (rc6_ctx_base + PAGE_SIZE <= dev_priv->gtt.stolen_reserved_base +
4604 dev_priv->gtt.stolen_reserved_size))) {
4605 DRM_DEBUG_KMS("RC6 Base address not as expected.\n");
4606 enable_rc6 = false;
4607 }
4608
4609 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
4610 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
4611 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
4612 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
4613 DRM_DEBUG_KMS("Engine Idle wait time not set properly.\n");
4614 enable_rc6 = false;
4615 }
4616
4617 if (!(I915_READ(GEN6_RC_CONTROL) & (GEN6_RC_CTL_RC6_ENABLE |
4618 GEN6_RC_CTL_HW_ENABLE)) &&
4619 ((I915_READ(GEN6_RC_CONTROL) & GEN6_RC_CTL_HW_ENABLE) ||
4620 !(I915_READ(GEN6_RC_STATE) & RC6_STATE))) {
4621 DRM_DEBUG_KMS("HW/SW RC6 is not enabled by BIOS.\n");
4622 enable_rc6 = false;
4623 }
4624
4625 return enable_rc6;
4626 }
4627
4628 int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4629 {
4630 /* No RC6 before Ironlake and code is gone for ilk. */
4631 if (INTEL_INFO(dev)->gen < 6)
4632 return 0;
4633
4634 if (!enable_rc6)
4635 return 0;
4636
4637 if (IS_BROXTON(dev) && !bxt_check_bios_rc6_setup(dev)) {
4638 DRM_INFO("RC6 disabled by BIOS\n");
4639 return 0;
4640 }
4641
4642 /* Respect the kernel parameter if it is set */
4643 if (enable_rc6 >= 0) {
4644 int mask;
4645
4646 if (HAS_RC6p(dev))
4647 mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4648 INTEL_RC6pp_ENABLE;
4649 else
4650 mask = INTEL_RC6_ENABLE;
4651
4652 if ((enable_rc6 & mask) != enable_rc6)
4653 DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4654 enable_rc6 & mask, enable_rc6, mask);
4655
4656 return enable_rc6 & mask;
4657 }
4658
4659 if (IS_IVYBRIDGE(dev))
4660 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4661
4662 return INTEL_RC6_ENABLE;
4663 }
4664
4665 int intel_enable_rc6(const struct drm_device *dev)
4666 {
4667 return i915.enable_rc6;
4668 }
4669
4670 static void gen6_init_rps_frequencies(struct drm_device *dev)
4671 {
4672 struct drm_i915_private *dev_priv = dev->dev_private;
4673 uint32_t rp_state_cap;
4674 u32 ddcc_status = 0;
4675 int ret;
4676
4677 /* All of these values are in units of 50MHz */
4678 dev_priv->rps.cur_freq = 0;
4679 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
4680 if (IS_BROXTON(dev)) {
4681 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
4682 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
4683 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4684 dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
4685 } else {
4686 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4687 dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
4688 dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
4689 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
4690 }
4691
4692 /* hw_max = RP0 until we check for overclocking */
4693 dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
4694
4695 dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4696 if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
4697 IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4698 ret = sandybridge_pcode_read(dev_priv,
4699 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4700 &ddcc_status);
4701 if (0 == ret)
4702 dev_priv->rps.efficient_freq =
4703 clamp_t(u8,
4704 ((ddcc_status >> 8) & 0xff),
4705 dev_priv->rps.min_freq,
4706 dev_priv->rps.max_freq);
4707 }
4708
4709 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
4710 /* Store the frequency values in 16.66 MHZ units, which is
4711 the natural hardware unit for SKL */
4712 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4713 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4714 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4715 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
4716 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
4717 }
4718
4719 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4720
4721 /* Preserve min/max settings in case of re-init */
4722 if (dev_priv->rps.max_freq_softlimit == 0)
4723 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4724
4725 if (dev_priv->rps.min_freq_softlimit == 0) {
4726 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4727 dev_priv->rps.min_freq_softlimit =
4728 max_t(int, dev_priv->rps.efficient_freq,
4729 intel_freq_opcode(dev_priv, 450));
4730 else
4731 dev_priv->rps.min_freq_softlimit =
4732 dev_priv->rps.min_freq;
4733 }
4734 }
4735
4736 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
4737 static void gen9_enable_rps(struct drm_device *dev)
4738 {
4739 struct drm_i915_private *dev_priv = dev->dev_private;
4740
4741 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4742
4743 gen6_init_rps_frequencies(dev);
4744
4745 /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4746 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4747 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4748 return;
4749 }
4750
4751 /* Program defaults and thresholds for RPS*/
4752 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4753 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4754
4755 /* 1 second timeout*/
4756 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4757 GT_INTERVAL_FROM_US(dev_priv, 1000000));
4758
4759 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4760
4761 /* Leaning on the below call to gen6_set_rps to program/setup the
4762 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4763 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4764 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4765 gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4766
4767 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768 }
4769
4770 static void gen9_enable_rc6(struct drm_device *dev)
4771 {
4772 struct drm_i915_private *dev_priv = dev->dev_private;
4773 struct intel_engine_cs *ring;
4774 uint32_t rc6_mask = 0;
4775 int unused;
4776
4777 /* 1a: Software RC state - RC0 */
4778 I915_WRITE(GEN6_RC_STATE, 0);
4779
4780 /* 1b: Get forcewake during program sequence. Although the driver
4781 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4782 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4783
4784 /* 2a: Disable RC states. */
4785 I915_WRITE(GEN6_RC_CONTROL, 0);
4786
4787 /* 2b: Program RC6 thresholds.*/
4788
4789 /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
4790 if (IS_SKYLAKE(dev))
4791 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
4792 else
4793 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4794 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4795 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4796 for_each_ring(ring, dev_priv, unused)
4797 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4798
4799 if (HAS_GUC_UCODE(dev))
4800 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
4801
4802 I915_WRITE(GEN6_RC_SLEEP, 0);
4803
4804 /* 2c: Program Coarse Power Gating Policies. */
4805 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4806 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4807
4808 /* 3a: Enable RC6 */
4809 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4810 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4811 DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
4812 /* WaRsUseTimeoutMode */
4813 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
4814 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4815 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
4816 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4817 GEN7_RC_CTL_TO_MODE |
4818 rc6_mask);
4819 } else {
4820 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4821 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4822 GEN6_RC_CTL_EI_MODE(1) |
4823 rc6_mask);
4824 }
4825
4826 /*
4827 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4828 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4829 */
4830 if (NEEDS_WaRsDisableCoarsePowerGating(dev))
4831 I915_WRITE(GEN9_PG_ENABLE, 0);
4832 else
4833 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4834 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4835
4836 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837
4838 }
4839
4840 static void gen8_enable_rps(struct drm_device *dev)
4841 {
4842 struct drm_i915_private *dev_priv = dev->dev_private;
4843 struct intel_engine_cs *ring;
4844 uint32_t rc6_mask = 0;
4845 int unused;
4846
4847 /* 1a: Software RC state - RC0 */
4848 I915_WRITE(GEN6_RC_STATE, 0);
4849
4850 /* 1c & 1d: Get forcewake during program sequence. Although the driver
4851 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4852 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4853
4854 /* 2a: Disable RC states. */
4855 I915_WRITE(GEN6_RC_CONTROL, 0);
4856
4857 /* Initialize rps frequencies */
4858 gen6_init_rps_frequencies(dev);
4859
4860 /* 2b: Program RC6 thresholds.*/
4861 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4862 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4863 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4864 for_each_ring(ring, dev_priv, unused)
4865 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4866 I915_WRITE(GEN6_RC_SLEEP, 0);
4867 if (IS_BROADWELL(dev))
4868 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4869 else
4870 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4871
4872 /* 3: Enable RC6 */
4873 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4874 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4875 intel_print_rc6_info(dev, rc6_mask);
4876 if (IS_BROADWELL(dev))
4877 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4878 GEN7_RC_CTL_TO_MODE |
4879 rc6_mask);
4880 else
4881 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4882 GEN6_RC_CTL_EI_MODE(1) |
4883 rc6_mask);
4884
4885 /* 4 Program defaults and thresholds for RPS*/
4886 I915_WRITE(GEN6_RPNSWREQ,
4887 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4888 I915_WRITE(GEN6_RC_VIDEO_FREQ,
4889 HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4890 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4891 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4892
4893 /* Docs recommend 900MHz, and 300 MHz respectively */
4894 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4895 dev_priv->rps.max_freq_softlimit << 24 |
4896 dev_priv->rps.min_freq_softlimit << 16);
4897
4898 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4899 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4900 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4901 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4902
4903 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4904
4905 /* 5: Enable RPS */
4906 I915_WRITE(GEN6_RP_CONTROL,
4907 GEN6_RP_MEDIA_TURBO |
4908 GEN6_RP_MEDIA_HW_NORMAL_MODE |
4909 GEN6_RP_MEDIA_IS_GFX |
4910 GEN6_RP_ENABLE |
4911 GEN6_RP_UP_BUSY_AVG |
4912 GEN6_RP_DOWN_IDLE_AVG);
4913
4914 /* 6: Ring frequency + overclocking (our driver does this later */
4915
4916 dev_priv->rps.power = HIGH_POWER; /* force a reset */
4917 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4918
4919 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4920 }
4921
4922 static void gen6_enable_rps(struct drm_device *dev)
4923 {
4924 struct drm_i915_private *dev_priv = dev->dev_private;
4925 struct intel_engine_cs *ring;
4926 u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4927 u32 gtfifodbg;
4928 int rc6_mode;
4929 int i, ret;
4930
4931 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4932
4933 /* Here begins a magic sequence of register writes to enable
4934 * auto-downclocking.
4935 *
4936 * Perhaps there might be some value in exposing these to
4937 * userspace...
4938 */
4939 I915_WRITE(GEN6_RC_STATE, 0);
4940
4941 /* Clear the DBG now so we don't confuse earlier errors */
4942 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4943 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4944 I915_WRITE(GTFIFODBG, gtfifodbg);
4945 }
4946
4947 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4948
4949 /* Initialize rps frequencies */
4950 gen6_init_rps_frequencies(dev);
4951
4952 /* disable the counters and set deterministic thresholds */
4953 I915_WRITE(GEN6_RC_CONTROL, 0);
4954
4955 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4956 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4957 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4958 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4959 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4960
4961 for_each_ring(ring, dev_priv, i)
4962 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4963
4964 I915_WRITE(GEN6_RC_SLEEP, 0);
4965 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4966 if (IS_IVYBRIDGE(dev))
4967 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4968 else
4969 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4970 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4971 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4972
4973 /* Check if we are enabling RC6 */
4974 rc6_mode = intel_enable_rc6(dev_priv->dev);
4975 if (rc6_mode & INTEL_RC6_ENABLE)
4976 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4977
4978 /* We don't use those on Haswell */
4979 if (!IS_HASWELL(dev)) {
4980 if (rc6_mode & INTEL_RC6p_ENABLE)
4981 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4982
4983 if (rc6_mode & INTEL_RC6pp_ENABLE)
4984 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4985 }
4986
4987 intel_print_rc6_info(dev, rc6_mask);
4988
4989 I915_WRITE(GEN6_RC_CONTROL,
4990 rc6_mask |
4991 GEN6_RC_CTL_EI_MODE(1) |
4992 GEN6_RC_CTL_HW_ENABLE);
4993
4994 /* Power down if completely idle for over 50ms */
4995 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4996 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4997
4998 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4999 if (ret)
5000 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5001
5002 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
5003 if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
5004 DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
5005 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
5006 (pcu_mbox & 0xff) * 50);
5007 dev_priv->rps.max_freq = pcu_mbox & 0xff;
5008 }
5009
5010 dev_priv->rps.power = HIGH_POWER; /* force a reset */
5011 gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
5012
5013 rc6vids = 0;
5014 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5015 if (IS_GEN6(dev) && ret) {
5016 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5017 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5018 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5019 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5020 rc6vids &= 0xffff00;
5021 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5022 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5023 if (ret)
5024 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5025 }
5026
5027 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5028 }
5029
5030 static void __gen6_update_ring_freq(struct drm_device *dev)
5031 {
5032 struct drm_i915_private *dev_priv = dev->dev_private;
5033 int min_freq = 15;
5034 unsigned int gpu_freq;
5035 unsigned int max_ia_freq, min_ring_freq;
5036 unsigned int max_gpu_freq, min_gpu_freq;
5037 int scaling_factor = 180;
5038 struct cpufreq_policy *policy;
5039
5040 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5041
5042 policy = cpufreq_cpu_get(0);
5043 if (policy) {
5044 max_ia_freq = policy->cpuinfo.max_freq;
5045 cpufreq_cpu_put(policy);
5046 } else {
5047 /*
5048 * Default to measured freq if none found, PCU will ensure we
5049 * don't go over
5050 */
5051 max_ia_freq = tsc_khz;
5052 }
5053
5054 /* Convert from kHz to MHz */
5055 max_ia_freq /= 1000;
5056
5057 min_ring_freq = I915_READ(DCLK) & 0xf;
5058 /* convert DDR frequency from units of 266.6MHz to bandwidth */
5059 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5060
5061 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5062 /* Convert GT frequency to 50 HZ units */
5063 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5064 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5065 } else {
5066 min_gpu_freq = dev_priv->rps.min_freq;
5067 max_gpu_freq = dev_priv->rps.max_freq;
5068 }
5069
5070 /*
5071 * For each potential GPU frequency, load a ring frequency we'd like
5072 * to use for memory access. We do this by specifying the IA frequency
5073 * the PCU should use as a reference to determine the ring frequency.
5074 */
5075 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5076 int diff = max_gpu_freq - gpu_freq;
5077 unsigned int ia_freq = 0, ring_freq = 0;
5078
5079 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5080 /*
5081 * ring_freq = 2 * GT. ring_freq is in 100MHz units
5082 * No floor required for ring frequency on SKL.
5083 */
5084 ring_freq = gpu_freq;
5085 } else if (INTEL_INFO(dev)->gen >= 8) {
5086 /* max(2 * GT, DDR). NB: GT is 50MHz units */
5087 ring_freq = max(min_ring_freq, gpu_freq);
5088 } else if (IS_HASWELL(dev)) {
5089 ring_freq = mult_frac(gpu_freq, 5, 4);
5090 ring_freq = max(min_ring_freq, ring_freq);
5091 /* leave ia_freq as the default, chosen by cpufreq */
5092 } else {
5093 /* On older processors, there is no separate ring
5094 * clock domain, so in order to boost the bandwidth
5095 * of the ring, we need to upclock the CPU (ia_freq).
5096 *
5097 * For GPU frequencies less than 750MHz,
5098 * just use the lowest ring freq.
5099 */
5100 if (gpu_freq < min_freq)
5101 ia_freq = 800;
5102 else
5103 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5104 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5105 }
5106
5107 sandybridge_pcode_write(dev_priv,
5108 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5109 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5110 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5111 gpu_freq);
5112 }
5113 }
5114
5115 void gen6_update_ring_freq(struct drm_device *dev)
5116 {
5117 struct drm_i915_private *dev_priv = dev->dev_private;
5118
5119 if (!HAS_CORE_RING_FREQ(dev))
5120 return;
5121
5122 mutex_lock(&dev_priv->rps.hw_lock);
5123 __gen6_update_ring_freq(dev);
5124 mutex_unlock(&dev_priv->rps.hw_lock);
5125 }
5126
5127 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5128 {
5129 struct drm_device *dev = dev_priv->dev;
5130 u32 val, rp0;
5131
5132 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5133
5134 switch (INTEL_INFO(dev)->eu_total) {
5135 case 8:
5136 /* (2 * 4) config */
5137 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5138 break;
5139 case 12:
5140 /* (2 * 6) config */
5141 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5142 break;
5143 case 16:
5144 /* (2 * 8) config */
5145 default:
5146 /* Setting (2 * 8) Min RP0 for any other combination */
5147 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5148 break;
5149 }
5150
5151 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5152
5153 return rp0;
5154 }
5155
5156 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5157 {
5158 u32 val, rpe;
5159
5160 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5161 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5162
5163 return rpe;
5164 }
5165
5166 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5167 {
5168 u32 val, rp1;
5169
5170 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5171 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5172
5173 return rp1;
5174 }
5175
5176 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5177 {
5178 u32 val, rp1;
5179
5180 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5181
5182 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5183
5184 return rp1;
5185 }
5186
5187 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5188 {
5189 u32 val, rp0;
5190
5191 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5192
5193 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5194 /* Clamp to max */
5195 rp0 = min_t(u32, rp0, 0xea);
5196
5197 return rp0;
5198 }
5199
5200 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5201 {
5202 u32 val, rpe;
5203
5204 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5205 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5206 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5207 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5208
5209 return rpe;
5210 }
5211
5212 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5213 {
5214 u32 val;
5215
5216 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5217 /*
5218 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5219 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5220 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5221 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5222 * to make sure it matches what Punit accepts.
5223 */
5224 return max_t(u32, val, 0xc0);
5225 }
5226
5227 /* Check that the pctx buffer wasn't move under us. */
5228 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5229 {
5230 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5231
5232 WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5233 dev_priv->vlv_pctx->stolen->start);
5234 }
5235
5236
5237 /* Check that the pcbr address is not empty. */
5238 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5239 {
5240 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5241
5242 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5243 }
5244
5245 static void cherryview_setup_pctx(struct drm_device *dev)
5246 {
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 unsigned long pctx_paddr, paddr;
5249 struct i915_gtt *gtt = &dev_priv->gtt;
5250 u32 pcbr;
5251 int pctx_size = 32*1024;
5252
5253 pcbr = I915_READ(VLV_PCBR);
5254 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5255 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5256 paddr = (dev_priv->mm.stolen_base +
5257 (gtt->stolen_size - pctx_size));
5258
5259 pctx_paddr = (paddr & (~4095));
5260 I915_WRITE(VLV_PCBR, pctx_paddr);
5261 }
5262
5263 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5264 }
5265
5266 static void valleyview_setup_pctx(struct drm_device *dev)
5267 {
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 struct drm_i915_gem_object *pctx;
5270 unsigned long pctx_paddr;
5271 u32 pcbr;
5272 int pctx_size = 24*1024;
5273
5274 mutex_lock(&dev->struct_mutex);
5275
5276 pcbr = I915_READ(VLV_PCBR);
5277 if (pcbr) {
5278 /* BIOS set it up already, grab the pre-alloc'd space */
5279 int pcbr_offset;
5280
5281 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5282 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
5283 pcbr_offset,
5284 I915_GTT_OFFSET_NONE,
5285 pctx_size);
5286 goto out;
5287 }
5288
5289 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5290
5291 /*
5292 * From the Gunit register HAS:
5293 * The Gfx driver is expected to program this register and ensure
5294 * proper allocation within Gfx stolen memory. For example, this
5295 * register should be programmed such than the PCBR range does not
5296 * overlap with other ranges, such as the frame buffer, protected
5297 * memory, or any other relevant ranges.
5298 */
5299 pctx = i915_gem_object_create_stolen(dev, pctx_size);
5300 if (!pctx) {
5301 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5302 goto out;
5303 }
5304
5305 pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5306 I915_WRITE(VLV_PCBR, pctx_paddr);
5307
5308 out:
5309 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5310 dev_priv->vlv_pctx = pctx;
5311 mutex_unlock(&dev->struct_mutex);
5312 }
5313
5314 static void valleyview_cleanup_pctx(struct drm_device *dev)
5315 {
5316 struct drm_i915_private *dev_priv = dev->dev_private;
5317
5318 if (WARN_ON(!dev_priv->vlv_pctx))
5319 return;
5320
5321 drm_gem_object_unreference_unlocked(&dev_priv->vlv_pctx->base);
5322 dev_priv->vlv_pctx = NULL;
5323 }
5324
5325 static void valleyview_init_gt_powersave(struct drm_device *dev)
5326 {
5327 struct drm_i915_private *dev_priv = dev->dev_private;
5328 u32 val;
5329
5330 valleyview_setup_pctx(dev);
5331
5332 mutex_lock(&dev_priv->rps.hw_lock);
5333
5334 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5335 switch ((val >> 6) & 3) {
5336 case 0:
5337 case 1:
5338 dev_priv->mem_freq = 800;
5339 break;
5340 case 2:
5341 dev_priv->mem_freq = 1066;
5342 break;
5343 case 3:
5344 dev_priv->mem_freq = 1333;
5345 break;
5346 }
5347 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5348
5349 dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5350 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5351 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5352 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5353 dev_priv->rps.max_freq);
5354
5355 dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5356 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5357 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5358 dev_priv->rps.efficient_freq);
5359
5360 dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5361 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5362 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5363 dev_priv->rps.rp1_freq);
5364
5365 dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5366 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5367 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5368 dev_priv->rps.min_freq);
5369
5370 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5371
5372 /* Preserve min/max settings in case of re-init */
5373 if (dev_priv->rps.max_freq_softlimit == 0)
5374 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5375
5376 if (dev_priv->rps.min_freq_softlimit == 0)
5377 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5378
5379 mutex_unlock(&dev_priv->rps.hw_lock);
5380 }
5381
5382 static void cherryview_init_gt_powersave(struct drm_device *dev)
5383 {
5384 struct drm_i915_private *dev_priv = dev->dev_private;
5385 u32 val;
5386
5387 cherryview_setup_pctx(dev);
5388
5389 mutex_lock(&dev_priv->rps.hw_lock);
5390
5391 mutex_lock(&dev_priv->sb_lock);
5392 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5393 mutex_unlock(&dev_priv->sb_lock);
5394
5395 switch ((val >> 2) & 0x7) {
5396 case 3:
5397 dev_priv->mem_freq = 2000;
5398 break;
5399 default:
5400 dev_priv->mem_freq = 1600;
5401 break;
5402 }
5403 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5404
5405 dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5406 dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5407 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5408 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5409 dev_priv->rps.max_freq);
5410
5411 dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5412 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5413 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5414 dev_priv->rps.efficient_freq);
5415
5416 dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5417 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5418 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5419 dev_priv->rps.rp1_freq);
5420
5421 /* PUnit validated range is only [RPe, RP0] */
5422 dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5423 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5424 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5425 dev_priv->rps.min_freq);
5426
5427 WARN_ONCE((dev_priv->rps.max_freq |
5428 dev_priv->rps.efficient_freq |
5429 dev_priv->rps.rp1_freq |
5430 dev_priv->rps.min_freq) & 1,
5431 "Odd GPU freq values\n");
5432
5433 dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
5434
5435 /* Preserve min/max settings in case of re-init */
5436 if (dev_priv->rps.max_freq_softlimit == 0)
5437 dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
5438
5439 if (dev_priv->rps.min_freq_softlimit == 0)
5440 dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
5441
5442 mutex_unlock(&dev_priv->rps.hw_lock);
5443 }
5444
5445 static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
5446 {
5447 valleyview_cleanup_pctx(dev);
5448 }
5449
5450 static void cherryview_enable_rps(struct drm_device *dev)
5451 {
5452 struct drm_i915_private *dev_priv = dev->dev_private;
5453 struct intel_engine_cs *ring;
5454 u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5455 int i;
5456
5457 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5458
5459 gtfifodbg = I915_READ(GTFIFODBG);
5460 if (gtfifodbg) {
5461 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5462 gtfifodbg);
5463 I915_WRITE(GTFIFODBG, gtfifodbg);
5464 }
5465
5466 cherryview_check_pctx(dev_priv);
5467
5468 /* 1a & 1b: Get forcewake during program sequence. Although the driver
5469 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5470 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5471
5472 /* Disable RC states. */
5473 I915_WRITE(GEN6_RC_CONTROL, 0);
5474
5475 /* 2a: Program RC6 thresholds.*/
5476 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5477 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5478 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5479
5480 for_each_ring(ring, dev_priv, i)
5481 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5482 I915_WRITE(GEN6_RC_SLEEP, 0);
5483
5484 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
5485 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5486
5487 /* allows RC6 residency counter to work */
5488 I915_WRITE(VLV_COUNTER_CONTROL,
5489 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5490 VLV_MEDIA_RC6_COUNT_EN |
5491 VLV_RENDER_RC6_COUNT_EN));
5492
5493 /* For now we assume BIOS is allocating and populating the PCBR */
5494 pcbr = I915_READ(VLV_PCBR);
5495
5496 /* 3: Enable RC6 */
5497 if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5498 (pcbr >> VLV_PCBR_ADDR_SHIFT))
5499 rc6_mode = GEN7_RC_CTL_TO_MODE;
5500
5501 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5502
5503 /* 4 Program defaults and thresholds for RPS*/
5504 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5505 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5506 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5507 I915_WRITE(GEN6_RP_UP_EI, 66000);
5508 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5509
5510 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5511
5512 /* 5: Enable RPS */
5513 I915_WRITE(GEN6_RP_CONTROL,
5514 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5515 GEN6_RP_MEDIA_IS_GFX |
5516 GEN6_RP_ENABLE |
5517 GEN6_RP_UP_BUSY_AVG |
5518 GEN6_RP_DOWN_IDLE_AVG);
5519
5520 /* Setting Fixed Bias */
5521 val = VLV_OVERRIDE_EN |
5522 VLV_SOC_TDP_EN |
5523 CHV_BIAS_CPU_50_SOC_50;
5524 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5525
5526 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5527
5528 /* RPS code assumes GPLL is used */
5529 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5530
5531 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5532 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5533
5534 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5535 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5536 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5537 dev_priv->rps.cur_freq);
5538
5539 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5540 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5541 dev_priv->rps.efficient_freq);
5542
5543 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5544
5545 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5546 }
5547
5548 static void valleyview_enable_rps(struct drm_device *dev)
5549 {
5550 struct drm_i915_private *dev_priv = dev->dev_private;
5551 struct intel_engine_cs *ring;
5552 u32 gtfifodbg, val, rc6_mode = 0;
5553 int i;
5554
5555 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5556
5557 valleyview_check_pctx(dev_priv);
5558
5559 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5560 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5561 gtfifodbg);
5562 I915_WRITE(GTFIFODBG, gtfifodbg);
5563 }
5564
5565 /* If VLV, Forcewake all wells, else re-direct to regular path */
5566 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5567
5568 /* Disable RC states. */
5569 I915_WRITE(GEN6_RC_CONTROL, 0);
5570
5571 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5572 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5573 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5574 I915_WRITE(GEN6_RP_UP_EI, 66000);
5575 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5576
5577 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5578
5579 I915_WRITE(GEN6_RP_CONTROL,
5580 GEN6_RP_MEDIA_TURBO |
5581 GEN6_RP_MEDIA_HW_NORMAL_MODE |
5582 GEN6_RP_MEDIA_IS_GFX |
5583 GEN6_RP_ENABLE |
5584 GEN6_RP_UP_BUSY_AVG |
5585 GEN6_RP_DOWN_IDLE_CONT);
5586
5587 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5588 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5589 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5590
5591 for_each_ring(ring, dev_priv, i)
5592 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5593
5594 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5595
5596 /* allows RC6 residency counter to work */
5597 I915_WRITE(VLV_COUNTER_CONTROL,
5598 _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5599 VLV_RENDER_RC0_COUNT_EN |
5600 VLV_MEDIA_RC6_COUNT_EN |
5601 VLV_RENDER_RC6_COUNT_EN));
5602
5603 if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5604 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5605
5606 intel_print_rc6_info(dev, rc6_mode);
5607
5608 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5609
5610 /* Setting Fixed Bias */
5611 val = VLV_OVERRIDE_EN |
5612 VLV_SOC_TDP_EN |
5613 VLV_BIAS_CPU_125_SOC_875;
5614 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
5615
5616 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5617
5618 /* RPS code assumes GPLL is used */
5619 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5620
5621 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5622 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5623
5624 dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5625 DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5626 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5627 dev_priv->rps.cur_freq);
5628
5629 DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5630 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5631 dev_priv->rps.efficient_freq);
5632
5633 valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5634
5635 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5636 }
5637
5638 static unsigned long intel_pxfreq(u32 vidfreq)
5639 {
5640 unsigned long freq;
5641 int div = (vidfreq & 0x3f0000) >> 16;
5642 int post = (vidfreq & 0x3000) >> 12;
5643 int pre = (vidfreq & 0x7);
5644
5645 if (!pre)
5646 return 0;
5647
5648 freq = ((div * 133333) / ((1<<post) * pre));
5649
5650 return freq;
5651 }
5652
5653 static const struct cparams {
5654 u16 i;
5655 u16 t;
5656 u16 m;
5657 u16 c;
5658 } cparams[] = {
5659 { 1, 1333, 301, 28664 },
5660 { 1, 1066, 294, 24460 },
5661 { 1, 800, 294, 25192 },
5662 { 0, 1333, 276, 27605 },
5663 { 0, 1066, 276, 27605 },
5664 { 0, 800, 231, 23784 },
5665 };
5666
5667 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5668 {
5669 u64 total_count, diff, ret;
5670 u32 count1, count2, count3, m = 0, c = 0;
5671 unsigned long now = jiffies_to_msecs(jiffies), diff1;
5672 int i;
5673
5674 assert_spin_locked(&mchdev_lock);
5675
5676 diff1 = now - dev_priv->ips.last_time1;
5677
5678 /* Prevent division-by-zero if we are asking too fast.
5679 * Also, we don't get interesting results if we are polling
5680 * faster than once in 10ms, so just return the saved value
5681 * in such cases.
5682 */
5683 if (diff1 <= 10)
5684 return dev_priv->ips.chipset_power;
5685
5686 count1 = I915_READ(DMIEC);
5687 count2 = I915_READ(DDREC);
5688 count3 = I915_READ(CSIEC);
5689
5690 total_count = count1 + count2 + count3;
5691
5692 /* FIXME: handle per-counter overflow */
5693 if (total_count < dev_priv->ips.last_count1) {
5694 diff = ~0UL - dev_priv->ips.last_count1;
5695 diff += total_count;
5696 } else {
5697 diff = total_count - dev_priv->ips.last_count1;
5698 }
5699
5700 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5701 if (cparams[i].i == dev_priv->ips.c_m &&
5702 cparams[i].t == dev_priv->ips.r_t) {
5703 m = cparams[i].m;
5704 c = cparams[i].c;
5705 break;
5706 }
5707 }
5708
5709 diff = div_u64(diff, diff1);
5710 ret = ((m * diff) + c);
5711 ret = div_u64(ret, 10);
5712
5713 dev_priv->ips.last_count1 = total_count;
5714 dev_priv->ips.last_time1 = now;
5715
5716 dev_priv->ips.chipset_power = ret;
5717
5718 return ret;
5719 }
5720
5721 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5722 {
5723 struct drm_device *dev = dev_priv->dev;
5724 unsigned long val;
5725
5726 if (INTEL_INFO(dev)->gen != 5)
5727 return 0;
5728
5729 spin_lock_irq(&mchdev_lock);
5730
5731 val = __i915_chipset_val(dev_priv);
5732
5733 spin_unlock_irq(&mchdev_lock);
5734
5735 return val;
5736 }
5737
5738 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5739 {
5740 unsigned long m, x, b;
5741 u32 tsfs;
5742
5743 tsfs = I915_READ(TSFS);
5744
5745 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5746 x = I915_READ8(TR1);
5747
5748 b = tsfs & TSFS_INTR_MASK;
5749
5750 return ((m * x) / 127) - b;
5751 }
5752
5753 static int _pxvid_to_vd(u8 pxvid)
5754 {
5755 if (pxvid == 0)
5756 return 0;
5757
5758 if (pxvid >= 8 && pxvid < 31)
5759 pxvid = 31;
5760
5761 return (pxvid + 2) * 125;
5762 }
5763
5764 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5765 {
5766 struct drm_device *dev = dev_priv->dev;
5767 const int vd = _pxvid_to_vd(pxvid);
5768 const int vm = vd - 1125;
5769
5770 if (INTEL_INFO(dev)->is_mobile)
5771 return vm > 0 ? vm : 0;
5772
5773 return vd;
5774 }
5775
5776 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5777 {
5778 u64 now, diff, diffms;
5779 u32 count;
5780
5781 assert_spin_locked(&mchdev_lock);
5782
5783 now = ktime_get_raw_ns();
5784 diffms = now - dev_priv->ips.last_time2;
5785 do_div(diffms, NSEC_PER_MSEC);
5786
5787 /* Don't divide by 0 */
5788 if (!diffms)
5789 return;
5790
5791 count = I915_READ(GFXEC);
5792
5793 if (count < dev_priv->ips.last_count2) {
5794 diff = ~0UL - dev_priv->ips.last_count2;
5795 diff += count;
5796 } else {
5797 diff = count - dev_priv->ips.last_count2;
5798 }
5799
5800 dev_priv->ips.last_count2 = count;
5801 dev_priv->ips.last_time2 = now;
5802
5803 /* More magic constants... */
5804 diff = diff * 1181;
5805 diff = div_u64(diff, diffms * 10);
5806 dev_priv->ips.gfx_power = diff;
5807 }
5808
5809 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5810 {
5811 struct drm_device *dev = dev_priv->dev;
5812
5813 if (INTEL_INFO(dev)->gen != 5)
5814 return;
5815
5816 spin_lock_irq(&mchdev_lock);
5817
5818 __i915_update_gfx_val(dev_priv);
5819
5820 spin_unlock_irq(&mchdev_lock);
5821 }
5822
5823 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5824 {
5825 unsigned long t, corr, state1, corr2, state2;
5826 u32 pxvid, ext_v;
5827
5828 assert_spin_locked(&mchdev_lock);
5829
5830 pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5831 pxvid = (pxvid >> 24) & 0x7f;
5832 ext_v = pvid_to_extvid(dev_priv, pxvid);
5833
5834 state1 = ext_v;
5835
5836 t = i915_mch_val(dev_priv);
5837
5838 /* Revel in the empirically derived constants */
5839
5840 /* Correction factor in 1/100000 units */
5841 if (t > 80)
5842 corr = ((t * 2349) + 135940);
5843 else if (t >= 50)
5844 corr = ((t * 964) + 29317);
5845 else /* < 50 */
5846 corr = ((t * 301) + 1004);
5847
5848 corr = corr * ((150142 * state1) / 10000 - 78642);
5849 corr /= 100000;
5850 corr2 = (corr * dev_priv->ips.corr);
5851
5852 state2 = (corr2 * state1) / 10000;
5853 state2 /= 100; /* convert to mW */
5854
5855 __i915_update_gfx_val(dev_priv);
5856
5857 return dev_priv->ips.gfx_power + state2;
5858 }
5859
5860 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5861 {
5862 struct drm_device *dev = dev_priv->dev;
5863 unsigned long val;
5864
5865 if (INTEL_INFO(dev)->gen != 5)
5866 return 0;
5867
5868 spin_lock_irq(&mchdev_lock);
5869
5870 val = __i915_gfx_val(dev_priv);
5871
5872 spin_unlock_irq(&mchdev_lock);
5873
5874 return val;
5875 }
5876
5877 /**
5878 * i915_read_mch_val - return value for IPS use
5879 *
5880 * Calculate and return a value for the IPS driver to use when deciding whether
5881 * we have thermal and power headroom to increase CPU or GPU power budget.
5882 */
5883 unsigned long i915_read_mch_val(void)
5884 {
5885 struct drm_i915_private *dev_priv;
5886 unsigned long chipset_val, graphics_val, ret = 0;
5887
5888 spin_lock_irq(&mchdev_lock);
5889 if (!i915_mch_dev)
5890 goto out_unlock;
5891 dev_priv = i915_mch_dev;
5892
5893 chipset_val = __i915_chipset_val(dev_priv);
5894 graphics_val = __i915_gfx_val(dev_priv);
5895
5896 ret = chipset_val + graphics_val;
5897
5898 out_unlock:
5899 spin_unlock_irq(&mchdev_lock);
5900
5901 return ret;
5902 }
5903 EXPORT_SYMBOL_GPL(i915_read_mch_val);
5904
5905 /**
5906 * i915_gpu_raise - raise GPU frequency limit
5907 *
5908 * Raise the limit; IPS indicates we have thermal headroom.
5909 */
5910 bool i915_gpu_raise(void)
5911 {
5912 struct drm_i915_private *dev_priv;
5913 bool ret = true;
5914
5915 spin_lock_irq(&mchdev_lock);
5916 if (!i915_mch_dev) {
5917 ret = false;
5918 goto out_unlock;
5919 }
5920 dev_priv = i915_mch_dev;
5921
5922 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5923 dev_priv->ips.max_delay--;
5924
5925 out_unlock:
5926 spin_unlock_irq(&mchdev_lock);
5927
5928 return ret;
5929 }
5930 EXPORT_SYMBOL_GPL(i915_gpu_raise);
5931
5932 /**
5933 * i915_gpu_lower - lower GPU frequency limit
5934 *
5935 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5936 * frequency maximum.
5937 */
5938 bool i915_gpu_lower(void)
5939 {
5940 struct drm_i915_private *dev_priv;
5941 bool ret = true;
5942
5943 spin_lock_irq(&mchdev_lock);
5944 if (!i915_mch_dev) {
5945 ret = false;
5946 goto out_unlock;
5947 }
5948 dev_priv = i915_mch_dev;
5949
5950 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5951 dev_priv->ips.max_delay++;
5952
5953 out_unlock:
5954 spin_unlock_irq(&mchdev_lock);
5955
5956 return ret;
5957 }
5958 EXPORT_SYMBOL_GPL(i915_gpu_lower);
5959
5960 /**
5961 * i915_gpu_busy - indicate GPU business to IPS
5962 *
5963 * Tell the IPS driver whether or not the GPU is busy.
5964 */
5965 bool i915_gpu_busy(void)
5966 {
5967 struct drm_i915_private *dev_priv;
5968 struct intel_engine_cs *ring;
5969 bool ret = false;
5970 int i;
5971
5972 spin_lock_irq(&mchdev_lock);
5973 if (!i915_mch_dev)
5974 goto out_unlock;
5975 dev_priv = i915_mch_dev;
5976
5977 for_each_ring(ring, dev_priv, i)
5978 ret |= !list_empty(&ring->request_list);
5979
5980 out_unlock:
5981 spin_unlock_irq(&mchdev_lock);
5982
5983 return ret;
5984 }
5985 EXPORT_SYMBOL_GPL(i915_gpu_busy);
5986
5987 /**
5988 * i915_gpu_turbo_disable - disable graphics turbo
5989 *
5990 * Disable graphics turbo by resetting the max frequency and setting the
5991 * current frequency to the default.
5992 */
5993 bool i915_gpu_turbo_disable(void)
5994 {
5995 struct drm_i915_private *dev_priv;
5996 bool ret = true;
5997
5998 spin_lock_irq(&mchdev_lock);
5999 if (!i915_mch_dev) {
6000 ret = false;
6001 goto out_unlock;
6002 }
6003 dev_priv = i915_mch_dev;
6004
6005 dev_priv->ips.max_delay = dev_priv->ips.fstart;
6006
6007 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
6008 ret = false;
6009
6010 out_unlock:
6011 spin_unlock_irq(&mchdev_lock);
6012
6013 return ret;
6014 }
6015 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6016
6017 /**
6018 * Tells the intel_ips driver that the i915 driver is now loaded, if
6019 * IPS got loaded first.
6020 *
6021 * This awkward dance is so that neither module has to depend on the
6022 * other in order for IPS to do the appropriate communication of
6023 * GPU turbo limits to i915.
6024 */
6025 static void
6026 ips_ping_for_i915_load(void)
6027 {
6028 void (*link)(void);
6029
6030 link = symbol_get(ips_link_to_i915_driver);
6031 if (link) {
6032 link();
6033 symbol_put(ips_link_to_i915_driver);
6034 }
6035 }
6036
6037 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6038 {
6039 /* We only register the i915 ips part with intel-ips once everything is
6040 * set up, to avoid intel-ips sneaking in and reading bogus values. */
6041 spin_lock_irq(&mchdev_lock);
6042 i915_mch_dev = dev_priv;
6043 spin_unlock_irq(&mchdev_lock);
6044
6045 ips_ping_for_i915_load();
6046 }
6047
6048 void intel_gpu_ips_teardown(void)
6049 {
6050 spin_lock_irq(&mchdev_lock);
6051 i915_mch_dev = NULL;
6052 spin_unlock_irq(&mchdev_lock);
6053 }
6054
6055 static void intel_init_emon(struct drm_device *dev)
6056 {
6057 struct drm_i915_private *dev_priv = dev->dev_private;
6058 u32 lcfuse;
6059 u8 pxw[16];
6060 int i;
6061
6062 /* Disable to program */
6063 I915_WRITE(ECR, 0);
6064 POSTING_READ(ECR);
6065
6066 /* Program energy weights for various events */
6067 I915_WRITE(SDEW, 0x15040d00);
6068 I915_WRITE(CSIEW0, 0x007f0000);
6069 I915_WRITE(CSIEW1, 0x1e220004);
6070 I915_WRITE(CSIEW2, 0x04000004);
6071
6072 for (i = 0; i < 5; i++)
6073 I915_WRITE(PEW(i), 0);
6074 for (i = 0; i < 3; i++)
6075 I915_WRITE(DEW(i), 0);
6076
6077 /* Program P-state weights to account for frequency power adjustment */
6078 for (i = 0; i < 16; i++) {
6079 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6080 unsigned long freq = intel_pxfreq(pxvidfreq);
6081 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6082 PXVFREQ_PX_SHIFT;
6083 unsigned long val;
6084
6085 val = vid * vid;
6086 val *= (freq / 1000);
6087 val *= 255;
6088 val /= (127*127*900);
6089 if (val > 0xff)
6090 DRM_ERROR("bad pxval: %ld\n", val);
6091 pxw[i] = val;
6092 }
6093 /* Render standby states get 0 weight */
6094 pxw[14] = 0;
6095 pxw[15] = 0;
6096
6097 for (i = 0; i < 4; i++) {
6098 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6099 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6100 I915_WRITE(PXW(i), val);
6101 }
6102
6103 /* Adjust magic regs to magic values (more experimental results) */
6104 I915_WRITE(OGW0, 0);
6105 I915_WRITE(OGW1, 0);
6106 I915_WRITE(EG0, 0x00007f00);
6107 I915_WRITE(EG1, 0x0000000e);
6108 I915_WRITE(EG2, 0x000e0000);
6109 I915_WRITE(EG3, 0x68000300);
6110 I915_WRITE(EG4, 0x42000000);
6111 I915_WRITE(EG5, 0x00140031);
6112 I915_WRITE(EG6, 0);
6113 I915_WRITE(EG7, 0);
6114
6115 for (i = 0; i < 8; i++)
6116 I915_WRITE(PXWL(i), 0);
6117
6118 /* Enable PMON + select events */
6119 I915_WRITE(ECR, 0x80000019);
6120
6121 lcfuse = I915_READ(LCFUSE02);
6122
6123 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6124 }
6125
6126 void intel_init_gt_powersave(struct drm_device *dev)
6127 {
6128 struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130 /*
6131 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6132 * requirement.
6133 */
6134 if (!i915.enable_rc6) {
6135 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6136 intel_runtime_pm_get(dev_priv);
6137 }
6138
6139 if (IS_CHERRYVIEW(dev))
6140 cherryview_init_gt_powersave(dev);
6141 else if (IS_VALLEYVIEW(dev))
6142 valleyview_init_gt_powersave(dev);
6143 }
6144
6145 void intel_cleanup_gt_powersave(struct drm_device *dev)
6146 {
6147 struct drm_i915_private *dev_priv = dev->dev_private;
6148
6149 if (IS_CHERRYVIEW(dev))
6150 return;
6151 else if (IS_VALLEYVIEW(dev))
6152 valleyview_cleanup_gt_powersave(dev);
6153
6154 if (!i915.enable_rc6)
6155 intel_runtime_pm_put(dev_priv);
6156 }
6157
6158 static void gen6_suspend_rps(struct drm_device *dev)
6159 {
6160 struct drm_i915_private *dev_priv = dev->dev_private;
6161
6162 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
6163
6164 gen6_disable_rps_interrupts(dev);
6165 }
6166
6167 /**
6168 * intel_suspend_gt_powersave - suspend PM work and helper threads
6169 * @dev: drm device
6170 *
6171 * We don't want to disable RC6 or other features here, we just want
6172 * to make sure any work we've queued has finished and won't bother
6173 * us while we're suspended.
6174 */
6175 void intel_suspend_gt_powersave(struct drm_device *dev)
6176 {
6177 struct drm_i915_private *dev_priv = dev->dev_private;
6178
6179 if (INTEL_INFO(dev)->gen < 6)
6180 return;
6181
6182 gen6_suspend_rps(dev);
6183
6184 /* Force GPU to min freq during suspend */
6185 gen6_rps_idle(dev_priv);
6186 }
6187
6188 void intel_disable_gt_powersave(struct drm_device *dev)
6189 {
6190 struct drm_i915_private *dev_priv = dev->dev_private;
6191
6192 if (IS_IRONLAKE_M(dev)) {
6193 ironlake_disable_drps(dev);
6194 } else if (INTEL_INFO(dev)->gen >= 6) {
6195 intel_suspend_gt_powersave(dev);
6196
6197 mutex_lock(&dev_priv->rps.hw_lock);
6198 if (INTEL_INFO(dev)->gen >= 9)
6199 gen9_disable_rps(dev);
6200 else if (IS_CHERRYVIEW(dev))
6201 cherryview_disable_rps(dev);
6202 else if (IS_VALLEYVIEW(dev))
6203 valleyview_disable_rps(dev);
6204 else
6205 gen6_disable_rps(dev);
6206
6207 dev_priv->rps.enabled = false;
6208 mutex_unlock(&dev_priv->rps.hw_lock);
6209 }
6210 }
6211
6212 static void intel_gen6_powersave_work(struct work_struct *work)
6213 {
6214 struct drm_i915_private *dev_priv =
6215 container_of(work, struct drm_i915_private,
6216 rps.delayed_resume_work.work);
6217 struct drm_device *dev = dev_priv->dev;
6218
6219 mutex_lock(&dev_priv->rps.hw_lock);
6220
6221 gen6_reset_rps_interrupts(dev);
6222
6223 if (IS_CHERRYVIEW(dev)) {
6224 cherryview_enable_rps(dev);
6225 } else if (IS_VALLEYVIEW(dev)) {
6226 valleyview_enable_rps(dev);
6227 } else if (INTEL_INFO(dev)->gen >= 9) {
6228 gen9_enable_rc6(dev);
6229 gen9_enable_rps(dev);
6230 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
6231 __gen6_update_ring_freq(dev);
6232 } else if (IS_BROADWELL(dev)) {
6233 gen8_enable_rps(dev);
6234 __gen6_update_ring_freq(dev);
6235 } else {
6236 gen6_enable_rps(dev);
6237 __gen6_update_ring_freq(dev);
6238 }
6239
6240 WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6241 WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6242
6243 WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6244 WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6245
6246 dev_priv->rps.enabled = true;
6247
6248 gen6_enable_rps_interrupts(dev);
6249
6250 mutex_unlock(&dev_priv->rps.hw_lock);
6251
6252 intel_runtime_pm_put(dev_priv);
6253 }
6254
6255 void intel_enable_gt_powersave(struct drm_device *dev)
6256 {
6257 struct drm_i915_private *dev_priv = dev->dev_private;
6258
6259 /* Powersaving is controlled by the host when inside a VM */
6260 if (intel_vgpu_active(dev))
6261 return;
6262
6263 if (IS_IRONLAKE_M(dev)) {
6264 ironlake_enable_drps(dev);
6265 mutex_lock(&dev->struct_mutex);
6266 intel_init_emon(dev);
6267 mutex_unlock(&dev->struct_mutex);
6268 } else if (INTEL_INFO(dev)->gen >= 6) {
6269 /*
6270 * PCU communication is slow and this doesn't need to be
6271 * done at any specific time, so do this out of our fast path
6272 * to make resume and init faster.
6273 *
6274 * We depend on the HW RC6 power context save/restore
6275 * mechanism when entering D3 through runtime PM suspend. So
6276 * disable RPM until RPS/RC6 is properly setup. We can only
6277 * get here via the driver load/system resume/runtime resume
6278 * paths, so the _noresume version is enough (and in case of
6279 * runtime resume it's necessary).
6280 */
6281 if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
6282 round_jiffies_up_relative(HZ)))
6283 intel_runtime_pm_get_noresume(dev_priv);
6284 }
6285 }
6286
6287 void intel_reset_gt_powersave(struct drm_device *dev)
6288 {
6289 struct drm_i915_private *dev_priv = dev->dev_private;
6290
6291 if (INTEL_INFO(dev)->gen < 6)
6292 return;
6293
6294 gen6_suspend_rps(dev);
6295 dev_priv->rps.enabled = false;
6296 }
6297
6298 static void ibx_init_clock_gating(struct drm_device *dev)
6299 {
6300 struct drm_i915_private *dev_priv = dev->dev_private;
6301
6302 /*
6303 * On Ibex Peak and Cougar Point, we need to disable clock
6304 * gating for the panel power sequencer or it will fail to
6305 * start up when no ports are active.
6306 */
6307 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6308 }
6309
6310 static void g4x_disable_trickle_feed(struct drm_device *dev)
6311 {
6312 struct drm_i915_private *dev_priv = dev->dev_private;
6313 enum pipe pipe;
6314
6315 for_each_pipe(dev_priv, pipe) {
6316 I915_WRITE(DSPCNTR(pipe),
6317 I915_READ(DSPCNTR(pipe)) |
6318 DISPPLANE_TRICKLE_FEED_DISABLE);
6319
6320 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6321 POSTING_READ(DSPSURF(pipe));
6322 }
6323 }
6324
6325 static void ilk_init_lp_watermarks(struct drm_device *dev)
6326 {
6327 struct drm_i915_private *dev_priv = dev->dev_private;
6328
6329 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6330 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6331 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6332
6333 /*
6334 * Don't touch WM1S_LP_EN here.
6335 * Doing so could cause underruns.
6336 */
6337 }
6338
6339 static void ironlake_init_clock_gating(struct drm_device *dev)
6340 {
6341 struct drm_i915_private *dev_priv = dev->dev_private;
6342 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6343
6344 /*
6345 * Required for FBC
6346 * WaFbcDisableDpfcClockGating:ilk
6347 */
6348 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6349 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6350 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6351
6352 I915_WRITE(PCH_3DCGDIS0,
6353 MARIUNIT_CLOCK_GATE_DISABLE |
6354 SVSMUNIT_CLOCK_GATE_DISABLE);
6355 I915_WRITE(PCH_3DCGDIS1,
6356 VFMUNIT_CLOCK_GATE_DISABLE);
6357
6358 /*
6359 * According to the spec the following bits should be set in
6360 * order to enable memory self-refresh
6361 * The bit 22/21 of 0x42004
6362 * The bit 5 of 0x42020
6363 * The bit 15 of 0x45000
6364 */
6365 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6366 (I915_READ(ILK_DISPLAY_CHICKEN2) |
6367 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6368 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6369 I915_WRITE(DISP_ARB_CTL,
6370 (I915_READ(DISP_ARB_CTL) |
6371 DISP_FBC_WM_DIS));
6372
6373 ilk_init_lp_watermarks(dev);
6374
6375 /*
6376 * Based on the document from hardware guys the following bits
6377 * should be set unconditionally in order to enable FBC.
6378 * The bit 22 of 0x42000
6379 * The bit 22 of 0x42004
6380 * The bit 7,8,9 of 0x42020.
6381 */
6382 if (IS_IRONLAKE_M(dev)) {
6383 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6384 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6385 I915_READ(ILK_DISPLAY_CHICKEN1) |
6386 ILK_FBCQ_DIS);
6387 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6388 I915_READ(ILK_DISPLAY_CHICKEN2) |
6389 ILK_DPARB_GATE);
6390 }
6391
6392 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6393
6394 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6395 I915_READ(ILK_DISPLAY_CHICKEN2) |
6396 ILK_ELPIN_409_SELECT);
6397 I915_WRITE(_3D_CHICKEN2,
6398 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6399 _3D_CHICKEN2_WM_READ_PIPELINED);
6400
6401 /* WaDisableRenderCachePipelinedFlush:ilk */
6402 I915_WRITE(CACHE_MODE_0,
6403 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6404
6405 /* WaDisable_RenderCache_OperationalFlush:ilk */
6406 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6407
6408 g4x_disable_trickle_feed(dev);
6409
6410 ibx_init_clock_gating(dev);
6411 }
6412
6413 static void cpt_init_clock_gating(struct drm_device *dev)
6414 {
6415 struct drm_i915_private *dev_priv = dev->dev_private;
6416 int pipe;
6417 uint32_t val;
6418
6419 /*
6420 * On Ibex Peak and Cougar Point, we need to disable clock
6421 * gating for the panel power sequencer or it will fail to
6422 * start up when no ports are active.
6423 */
6424 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
6425 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
6426 PCH_CPUNIT_CLOCK_GATE_DISABLE);
6427 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
6428 DPLS_EDP_PPS_FIX_DIS);
6429 /* The below fixes the weird display corruption, a few pixels shifted
6430 * downward, on (only) LVDS of some HP laptops with IVY.
6431 */
6432 for_each_pipe(dev_priv, pipe) {
6433 val = I915_READ(TRANS_CHICKEN2(pipe));
6434 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
6435 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6436 if (dev_priv->vbt.fdi_rx_polarity_inverted)
6437 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6438 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
6439 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
6440 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6441 I915_WRITE(TRANS_CHICKEN2(pipe), val);
6442 }
6443 /* WADP0ClockGatingDisable */
6444 for_each_pipe(dev_priv, pipe) {
6445 I915_WRITE(TRANS_CHICKEN1(pipe),
6446 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6447 }
6448 }
6449
6450 static void gen6_check_mch_setup(struct drm_device *dev)
6451 {
6452 struct drm_i915_private *dev_priv = dev->dev_private;
6453 uint32_t tmp;
6454
6455 tmp = I915_READ(MCH_SSKPD);
6456 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
6457 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
6458 tmp);
6459 }
6460
6461 static void gen6_init_clock_gating(struct drm_device *dev)
6462 {
6463 struct drm_i915_private *dev_priv = dev->dev_private;
6464 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6465
6466 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6467
6468 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6469 I915_READ(ILK_DISPLAY_CHICKEN2) |
6470 ILK_ELPIN_409_SELECT);
6471
6472 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6473 I915_WRITE(_3D_CHICKEN,
6474 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
6475
6476 /* WaDisable_RenderCache_OperationalFlush:snb */
6477 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6478
6479 /*
6480 * BSpec recoomends 8x4 when MSAA is used,
6481 * however in practice 16x4 seems fastest.
6482 *
6483 * Note that PS/WM thread counts depend on the WIZ hashing
6484 * disable bit, which we don't touch here, but it's good
6485 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6486 */
6487 I915_WRITE(GEN6_GT_MODE,
6488 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6489
6490 ilk_init_lp_watermarks(dev);
6491
6492 I915_WRITE(CACHE_MODE_0,
6493 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6494
6495 I915_WRITE(GEN6_UCGCTL1,
6496 I915_READ(GEN6_UCGCTL1) |
6497 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
6498 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6499
6500 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
6501 * gating disable must be set. Failure to set it results in
6502 * flickering pixels due to Z write ordering failures after
6503 * some amount of runtime in the Mesa "fire" demo, and Unigine
6504 * Sanctuary and Tropics, and apparently anything else with
6505 * alpha test or pixel discard.
6506 *
6507 * According to the spec, bit 11 (RCCUNIT) must also be set,
6508 * but we didn't debug actual testcases to find it out.
6509 *
6510 * WaDisableRCCUnitClockGating:snb
6511 * WaDisableRCPBUnitClockGating:snb
6512 */
6513 I915_WRITE(GEN6_UCGCTL2,
6514 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6515 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6516
6517 /* WaStripsFansDisableFastClipPerformanceFix:snb */
6518 I915_WRITE(_3D_CHICKEN3,
6519 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6520
6521 /*
6522 * Bspec says:
6523 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6524 * 3DSTATE_SF number of SF output attributes is more than 16."
6525 */
6526 I915_WRITE(_3D_CHICKEN3,
6527 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6528
6529 /*
6530 * According to the spec the following bits should be
6531 * set in order to enable memory self-refresh and fbc:
6532 * The bit21 and bit22 of 0x42000
6533 * The bit21 and bit22 of 0x42004
6534 * The bit5 and bit7 of 0x42020
6535 * The bit14 of 0x70180
6536 * The bit14 of 0x71180
6537 *
6538 * WaFbcAsynchFlipDisableFbcQueue:snb
6539 */
6540 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6541 I915_READ(ILK_DISPLAY_CHICKEN1) |
6542 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6543 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6544 I915_READ(ILK_DISPLAY_CHICKEN2) |
6545 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6546 I915_WRITE(ILK_DSPCLK_GATE_D,
6547 I915_READ(ILK_DSPCLK_GATE_D) |
6548 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
6549 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6550
6551 g4x_disable_trickle_feed(dev);
6552
6553 cpt_init_clock_gating(dev);
6554
6555 gen6_check_mch_setup(dev);
6556 }
6557
6558 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6559 {
6560 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6561
6562 /*
6563 * WaVSThreadDispatchOverride:ivb,vlv
6564 *
6565 * This actually overrides the dispatch
6566 * mode for all thread types.
6567 */
6568 reg &= ~GEN7_FF_SCHED_MASK;
6569 reg |= GEN7_FF_TS_SCHED_HW;
6570 reg |= GEN7_FF_VS_SCHED_HW;
6571 reg |= GEN7_FF_DS_SCHED_HW;
6572
6573 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6574 }
6575
6576 static void lpt_init_clock_gating(struct drm_device *dev)
6577 {
6578 struct drm_i915_private *dev_priv = dev->dev_private;
6579
6580 /*
6581 * TODO: this bit should only be enabled when really needed, then
6582 * disabled when not needed anymore in order to save power.
6583 */
6584 if (HAS_PCH_LPT_LP(dev))
6585 I915_WRITE(SOUTH_DSPCLK_GATE_D,
6586 I915_READ(SOUTH_DSPCLK_GATE_D) |
6587 PCH_LP_PARTITION_LEVEL_DISABLE);
6588
6589 /* WADPOClockGatingDisable:hsw */
6590 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
6591 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6592 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6593 }
6594
6595 static void lpt_suspend_hw(struct drm_device *dev)
6596 {
6597 struct drm_i915_private *dev_priv = dev->dev_private;
6598
6599 if (HAS_PCH_LPT_LP(dev)) {
6600 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6601
6602 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6603 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6604 }
6605 }
6606
6607 static void broadwell_init_clock_gating(struct drm_device *dev)
6608 {
6609 struct drm_i915_private *dev_priv = dev->dev_private;
6610 enum pipe pipe;
6611 uint32_t misccpctl;
6612
6613 ilk_init_lp_watermarks(dev);
6614
6615 /* WaSwitchSolVfFArbitrationPriority:bdw */
6616 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6617
6618 /* WaPsrDPAMaskVBlankInSRD:bdw */
6619 I915_WRITE(CHICKEN_PAR1_1,
6620 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6621
6622 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6623 for_each_pipe(dev_priv, pipe) {
6624 I915_WRITE(CHICKEN_PIPESL_1(pipe),
6625 I915_READ(CHICKEN_PIPESL_1(pipe)) |
6626 BDW_DPRS_MASK_VBLANK_SRD);
6627 }
6628
6629 /* WaVSRefCountFullforceMissDisable:bdw */
6630 /* WaDSRefCountFullforceMissDisable:bdw */
6631 I915_WRITE(GEN7_FF_THREAD_MODE,
6632 I915_READ(GEN7_FF_THREAD_MODE) &
6633 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6634
6635 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6636 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6637
6638 /* WaDisableSDEUnitClockGating:bdw */
6639 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6640 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6641
6642 /*
6643 * WaProgramL3SqcReg1Default:bdw
6644 * WaTempDisableDOPClkGating:bdw
6645 */
6646 misccpctl = I915_READ(GEN7_MISCCPCTL);
6647 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
6648 I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
6649 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
6650
6651 /*
6652 * WaGttCachingOffByDefault:bdw
6653 * GTT cache may not work with big pages, so if those
6654 * are ever enabled GTT cache may need to be disabled.
6655 */
6656 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6657
6658 lpt_init_clock_gating(dev);
6659 }
6660
6661 static void haswell_init_clock_gating(struct drm_device *dev)
6662 {
6663 struct drm_i915_private *dev_priv = dev->dev_private;
6664
6665 ilk_init_lp_watermarks(dev);
6666
6667 /* L3 caching of data atomics doesn't work -- disable it. */
6668 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6669 I915_WRITE(HSW_ROW_CHICKEN3,
6670 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6671
6672 /* This is required by WaCatErrorRejectionIssue:hsw */
6673 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6674 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6675 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6676
6677 /* WaVSRefCountFullforceMissDisable:hsw */
6678 I915_WRITE(GEN7_FF_THREAD_MODE,
6679 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6680
6681 /* WaDisable_RenderCache_OperationalFlush:hsw */
6682 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6683
6684 /* enable HiZ Raw Stall Optimization */
6685 I915_WRITE(CACHE_MODE_0_GEN7,
6686 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6687
6688 /* WaDisable4x2SubspanOptimization:hsw */
6689 I915_WRITE(CACHE_MODE_1,
6690 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6691
6692 /*
6693 * BSpec recommends 8x4 when MSAA is used,
6694 * however in practice 16x4 seems fastest.
6695 *
6696 * Note that PS/WM thread counts depend on the WIZ hashing
6697 * disable bit, which we don't touch here, but it's good
6698 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6699 */
6700 I915_WRITE(GEN7_GT_MODE,
6701 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6702
6703 /* WaSampleCChickenBitEnable:hsw */
6704 I915_WRITE(HALF_SLICE_CHICKEN3,
6705 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6706
6707 /* WaSwitchSolVfFArbitrationPriority:hsw */
6708 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6709
6710 /* WaRsPkgCStateDisplayPMReq:hsw */
6711 I915_WRITE(CHICKEN_PAR1_1,
6712 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6713
6714 lpt_init_clock_gating(dev);
6715 }
6716
6717 static void ivybridge_init_clock_gating(struct drm_device *dev)
6718 {
6719 struct drm_i915_private *dev_priv = dev->dev_private;
6720 uint32_t snpcr;
6721
6722 ilk_init_lp_watermarks(dev);
6723
6724 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6725
6726 /* WaDisableEarlyCull:ivb */
6727 I915_WRITE(_3D_CHICKEN3,
6728 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6729
6730 /* WaDisableBackToBackFlipFix:ivb */
6731 I915_WRITE(IVB_CHICKEN3,
6732 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6733 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6734
6735 /* WaDisablePSDDualDispatchEnable:ivb */
6736 if (IS_IVB_GT1(dev))
6737 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6738 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6739
6740 /* WaDisable_RenderCache_OperationalFlush:ivb */
6741 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6742
6743 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6744 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6745 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6746
6747 /* WaApplyL3ControlAndL3ChickenMode:ivb */
6748 I915_WRITE(GEN7_L3CNTLREG1,
6749 GEN7_WA_FOR_GEN7_L3_CONTROL);
6750 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6751 GEN7_WA_L3_CHICKEN_MODE);
6752 if (IS_IVB_GT1(dev))
6753 I915_WRITE(GEN7_ROW_CHICKEN2,
6754 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6755 else {
6756 /* must write both registers */
6757 I915_WRITE(GEN7_ROW_CHICKEN2,
6758 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6759 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6760 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6761 }
6762
6763 /* WaForceL3Serialization:ivb */
6764 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6765 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6766
6767 /*
6768 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6769 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6770 */
6771 I915_WRITE(GEN6_UCGCTL2,
6772 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6773
6774 /* This is required by WaCatErrorRejectionIssue:ivb */
6775 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6776 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6777 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6778
6779 g4x_disable_trickle_feed(dev);
6780
6781 gen7_setup_fixed_func_scheduler(dev_priv);
6782
6783 if (0) { /* causes HiZ corruption on ivb:gt1 */
6784 /* enable HiZ Raw Stall Optimization */
6785 I915_WRITE(CACHE_MODE_0_GEN7,
6786 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6787 }
6788
6789 /* WaDisable4x2SubspanOptimization:ivb */
6790 I915_WRITE(CACHE_MODE_1,
6791 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6792
6793 /*
6794 * BSpec recommends 8x4 when MSAA is used,
6795 * however in practice 16x4 seems fastest.
6796 *
6797 * Note that PS/WM thread counts depend on the WIZ hashing
6798 * disable bit, which we don't touch here, but it's good
6799 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6800 */
6801 I915_WRITE(GEN7_GT_MODE,
6802 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6803
6804 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6805 snpcr &= ~GEN6_MBC_SNPCR_MASK;
6806 snpcr |= GEN6_MBC_SNPCR_MED;
6807 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6808
6809 if (!HAS_PCH_NOP(dev))
6810 cpt_init_clock_gating(dev);
6811
6812 gen6_check_mch_setup(dev);
6813 }
6814
6815 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6816 {
6817 I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6818
6819 /*
6820 * Disable trickle feed and enable pnd deadline calculation
6821 */
6822 I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6823 I915_WRITE(CBR1_VLV, 0);
6824 }
6825
6826 static void valleyview_init_clock_gating(struct drm_device *dev)
6827 {
6828 struct drm_i915_private *dev_priv = dev->dev_private;
6829
6830 vlv_init_display_clock_gating(dev_priv);
6831
6832 /* WaDisableEarlyCull:vlv */
6833 I915_WRITE(_3D_CHICKEN3,
6834 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6835
6836 /* WaDisableBackToBackFlipFix:vlv */
6837 I915_WRITE(IVB_CHICKEN3,
6838 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6839 CHICKEN3_DGMG_DONE_FIX_DISABLE);
6840
6841 /* WaPsdDispatchEnable:vlv */
6842 /* WaDisablePSDDualDispatchEnable:vlv */
6843 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6844 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6845 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6846
6847 /* WaDisable_RenderCache_OperationalFlush:vlv */
6848 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6849
6850 /* WaForceL3Serialization:vlv */
6851 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6852 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6853
6854 /* WaDisableDopClockGating:vlv */
6855 I915_WRITE(GEN7_ROW_CHICKEN2,
6856 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6857
6858 /* This is required by WaCatErrorRejectionIssue:vlv */
6859 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6860 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6861 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6862
6863 gen7_setup_fixed_func_scheduler(dev_priv);
6864
6865 /*
6866 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6867 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6868 */
6869 I915_WRITE(GEN6_UCGCTL2,
6870 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6871
6872 /* WaDisableL3Bank2xClockGate:vlv
6873 * Disabling L3 clock gating- MMIO 940c[25] = 1
6874 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6875 I915_WRITE(GEN7_UCGCTL4,
6876 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6877
6878 /*
6879 * BSpec says this must be set, even though
6880 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6881 */
6882 I915_WRITE(CACHE_MODE_1,
6883 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6884
6885 /*
6886 * BSpec recommends 8x4 when MSAA is used,
6887 * however in practice 16x4 seems fastest.
6888 *
6889 * Note that PS/WM thread counts depend on the WIZ hashing
6890 * disable bit, which we don't touch here, but it's good
6891 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6892 */
6893 I915_WRITE(GEN7_GT_MODE,
6894 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6895
6896 /*
6897 * WaIncreaseL3CreditsForVLVB0:vlv
6898 * This is the hardware default actually.
6899 */
6900 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6901
6902 /*
6903 * WaDisableVLVClockGating_VBIIssue:vlv
6904 * Disable clock gating on th GCFG unit to prevent a delay
6905 * in the reporting of vblank events.
6906 */
6907 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6908 }
6909
6910 static void cherryview_init_clock_gating(struct drm_device *dev)
6911 {
6912 struct drm_i915_private *dev_priv = dev->dev_private;
6913
6914 vlv_init_display_clock_gating(dev_priv);
6915
6916 /* WaVSRefCountFullforceMissDisable:chv */
6917 /* WaDSRefCountFullforceMissDisable:chv */
6918 I915_WRITE(GEN7_FF_THREAD_MODE,
6919 I915_READ(GEN7_FF_THREAD_MODE) &
6920 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6921
6922 /* WaDisableSemaphoreAndSyncFlipWait:chv */
6923 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6924 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6925
6926 /* WaDisableCSUnitClockGating:chv */
6927 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6928 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6929
6930 /* WaDisableSDEUnitClockGating:chv */
6931 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6932 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6933
6934 /*
6935 * GTT cache may not work with big pages, so if those
6936 * are ever enabled GTT cache may need to be disabled.
6937 */
6938 I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6939 }
6940
6941 static void g4x_init_clock_gating(struct drm_device *dev)
6942 {
6943 struct drm_i915_private *dev_priv = dev->dev_private;
6944 uint32_t dspclk_gate;
6945
6946 I915_WRITE(RENCLK_GATE_D1, 0);
6947 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6948 GS_UNIT_CLOCK_GATE_DISABLE |
6949 CL_UNIT_CLOCK_GATE_DISABLE);
6950 I915_WRITE(RAMCLK_GATE_D, 0);
6951 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6952 OVRUNIT_CLOCK_GATE_DISABLE |
6953 OVCUNIT_CLOCK_GATE_DISABLE;
6954 if (IS_GM45(dev))
6955 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6956 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6957
6958 /* WaDisableRenderCachePipelinedFlush */
6959 I915_WRITE(CACHE_MODE_0,
6960 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6961
6962 /* WaDisable_RenderCache_OperationalFlush:g4x */
6963 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6964
6965 g4x_disable_trickle_feed(dev);
6966 }
6967
6968 static void crestline_init_clock_gating(struct drm_device *dev)
6969 {
6970 struct drm_i915_private *dev_priv = dev->dev_private;
6971
6972 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6973 I915_WRITE(RENCLK_GATE_D2, 0);
6974 I915_WRITE(DSPCLK_GATE_D, 0);
6975 I915_WRITE(RAMCLK_GATE_D, 0);
6976 I915_WRITE16(DEUC, 0);
6977 I915_WRITE(MI_ARB_STATE,
6978 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6979
6980 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6981 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6982 }
6983
6984 static void broadwater_init_clock_gating(struct drm_device *dev)
6985 {
6986 struct drm_i915_private *dev_priv = dev->dev_private;
6987
6988 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6989 I965_RCC_CLOCK_GATE_DISABLE |
6990 I965_RCPB_CLOCK_GATE_DISABLE |
6991 I965_ISC_CLOCK_GATE_DISABLE |
6992 I965_FBC_CLOCK_GATE_DISABLE);
6993 I915_WRITE(RENCLK_GATE_D2, 0);
6994 I915_WRITE(MI_ARB_STATE,
6995 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6996
6997 /* WaDisable_RenderCache_OperationalFlush:gen4 */
6998 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6999 }
7000
7001 static void gen3_init_clock_gating(struct drm_device *dev)
7002 {
7003 struct drm_i915_private *dev_priv = dev->dev_private;
7004 u32 dstate = I915_READ(D_STATE);
7005
7006 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7007 DSTATE_DOT_CLOCK_GATING;
7008 I915_WRITE(D_STATE, dstate);
7009
7010 if (IS_PINEVIEW(dev))
7011 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7012
7013 /* IIR "flip pending" means done if this bit is set */
7014 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7015
7016 /* interrupts should cause a wake up from C3 */
7017 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7018
7019 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7020 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7021
7022 I915_WRITE(MI_ARB_STATE,
7023 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7024 }
7025
7026 static void i85x_init_clock_gating(struct drm_device *dev)
7027 {
7028 struct drm_i915_private *dev_priv = dev->dev_private;
7029
7030 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7031
7032 /* interrupts should cause a wake up from C3 */
7033 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7034 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7035
7036 I915_WRITE(MEM_MODE,
7037 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7038 }
7039
7040 static void i830_init_clock_gating(struct drm_device *dev)
7041 {
7042 struct drm_i915_private *dev_priv = dev->dev_private;
7043
7044 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7045
7046 I915_WRITE(MEM_MODE,
7047 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7048 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7049 }
7050
7051 void intel_init_clock_gating(struct drm_device *dev)
7052 {
7053 struct drm_i915_private *dev_priv = dev->dev_private;
7054
7055 if (dev_priv->display.init_clock_gating)
7056 dev_priv->display.init_clock_gating(dev);
7057 }
7058
7059 void intel_suspend_hw(struct drm_device *dev)
7060 {
7061 if (HAS_PCH_LPT(dev))
7062 lpt_suspend_hw(dev);
7063 }
7064
7065 /* Set up chip specific power management-related functions */
7066 void intel_init_pm(struct drm_device *dev)
7067 {
7068 struct drm_i915_private *dev_priv = dev->dev_private;
7069
7070 intel_fbc_init(dev_priv);
7071
7072 /* For cxsr */
7073 if (IS_PINEVIEW(dev))
7074 i915_pineview_get_mem_freq(dev);
7075 else if (IS_GEN5(dev))
7076 i915_ironlake_get_mem_freq(dev);
7077
7078 /* For FIFO watermark updates */
7079 if (INTEL_INFO(dev)->gen >= 9) {
7080 skl_setup_wm_latency(dev);
7081
7082 if (IS_BROXTON(dev))
7083 dev_priv->display.init_clock_gating =
7084 bxt_init_clock_gating;
7085 dev_priv->display.update_wm = skl_update_wm;
7086 } else if (HAS_PCH_SPLIT(dev)) {
7087 ilk_setup_wm_latency(dev);
7088
7089 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7090 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7091 (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7092 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7093 dev_priv->display.update_wm = ilk_update_wm;
7094 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7095 dev_priv->display.program_watermarks = ilk_program_watermarks;
7096 } else {
7097 DRM_DEBUG_KMS("Failed to read display plane latency. "
7098 "Disable CxSR\n");
7099 }
7100
7101 if (IS_GEN5(dev))
7102 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7103 else if (IS_GEN6(dev))
7104 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7105 else if (IS_IVYBRIDGE(dev))
7106 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7107 else if (IS_HASWELL(dev))
7108 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7109 else if (INTEL_INFO(dev)->gen == 8)
7110 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7111 } else if (IS_CHERRYVIEW(dev)) {
7112 vlv_setup_wm_latency(dev);
7113
7114 dev_priv->display.update_wm = vlv_update_wm;
7115 dev_priv->display.init_clock_gating =
7116 cherryview_init_clock_gating;
7117 } else if (IS_VALLEYVIEW(dev)) {
7118 vlv_setup_wm_latency(dev);
7119
7120 dev_priv->display.update_wm = vlv_update_wm;
7121 dev_priv->display.init_clock_gating =
7122 valleyview_init_clock_gating;
7123 } else if (IS_PINEVIEW(dev)) {
7124 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7125 dev_priv->is_ddr3,
7126 dev_priv->fsb_freq,
7127 dev_priv->mem_freq)) {
7128 DRM_INFO("failed to find known CxSR latency "
7129 "(found ddr%s fsb freq %d, mem freq %d), "
7130 "disabling CxSR\n",
7131 (dev_priv->is_ddr3 == 1) ? "3" : "2",
7132 dev_priv->fsb_freq, dev_priv->mem_freq);
7133 /* Disable CxSR and never update its watermark again */
7134 intel_set_memory_cxsr(dev_priv, false);
7135 dev_priv->display.update_wm = NULL;
7136 } else
7137 dev_priv->display.update_wm = pineview_update_wm;
7138 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7139 } else if (IS_G4X(dev)) {
7140 dev_priv->display.update_wm = g4x_update_wm;
7141 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7142 } else if (IS_GEN4(dev)) {
7143 dev_priv->display.update_wm = i965_update_wm;
7144 if (IS_CRESTLINE(dev))
7145 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7146 else if (IS_BROADWATER(dev))
7147 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7148 } else if (IS_GEN3(dev)) {
7149 dev_priv->display.update_wm = i9xx_update_wm;
7150 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7151 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7152 } else if (IS_GEN2(dev)) {
7153 if (INTEL_INFO(dev)->num_pipes == 1) {
7154 dev_priv->display.update_wm = i845_update_wm;
7155 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7156 } else {
7157 dev_priv->display.update_wm = i9xx_update_wm;
7158 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7159 }
7160
7161 if (IS_I85X(dev) || IS_I865G(dev))
7162 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7163 else
7164 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7165 } else {
7166 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7167 }
7168 }
7169
7170 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7171 {
7172 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7173
7174 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7175 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7176 return -EAGAIN;
7177 }
7178
7179 I915_WRITE(GEN6_PCODE_DATA, *val);
7180 I915_WRITE(GEN6_PCODE_DATA1, 0);
7181 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7182
7183 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7184 500)) {
7185 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7186 return -ETIMEDOUT;
7187 }
7188
7189 *val = I915_READ(GEN6_PCODE_DATA);
7190 I915_WRITE(GEN6_PCODE_DATA, 0);
7191
7192 return 0;
7193 }
7194
7195 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
7196 {
7197 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7198
7199 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7200 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7201 return -EAGAIN;
7202 }
7203
7204 I915_WRITE(GEN6_PCODE_DATA, val);
7205 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7206
7207 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7208 500)) {
7209 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7210 return -ETIMEDOUT;
7211 }
7212
7213 I915_WRITE(GEN6_PCODE_DATA, 0);
7214
7215 return 0;
7216 }
7217
7218 static int vlv_gpu_freq_div(unsigned int czclk_freq)
7219 {
7220 switch (czclk_freq) {
7221 case 200:
7222 return 10;
7223 case 267:
7224 return 12;
7225 case 320:
7226 case 333:
7227 return 16;
7228 case 400:
7229 return 20;
7230 default:
7231 return -1;
7232 }
7233 }
7234
7235 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
7236 {
7237 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7238
7239 div = vlv_gpu_freq_div(czclk_freq);
7240 if (div < 0)
7241 return div;
7242
7243 return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7244 }
7245
7246 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7247 {
7248 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7249
7250 mul = vlv_gpu_freq_div(czclk_freq);
7251 if (mul < 0)
7252 return mul;
7253
7254 return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7255 }
7256
7257 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7258 {
7259 int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7260
7261 div = vlv_gpu_freq_div(czclk_freq);
7262 if (div < 0)
7263 return div;
7264 div /= 2;
7265
7266 return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7267 }
7268
7269 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7270 {
7271 int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7272
7273 mul = vlv_gpu_freq_div(czclk_freq);
7274 if (mul < 0)
7275 return mul;
7276 mul /= 2;
7277
7278 /* CHV needs even values */
7279 return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7280 }
7281
7282 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7283 {
7284 if (IS_GEN9(dev_priv->dev))
7285 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
7286 GEN9_FREQ_SCALER);
7287 else if (IS_CHERRYVIEW(dev_priv->dev))
7288 return chv_gpu_freq(dev_priv, val);
7289 else if (IS_VALLEYVIEW(dev_priv->dev))
7290 return byt_gpu_freq(dev_priv, val);
7291 else
7292 return val * GT_FREQUENCY_MULTIPLIER;
7293 }
7294
7295 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
7296 {
7297 if (IS_GEN9(dev_priv->dev))
7298 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
7299 GT_FREQUENCY_MULTIPLIER);
7300 else if (IS_CHERRYVIEW(dev_priv->dev))
7301 return chv_freq_opcode(dev_priv, val);
7302 else if (IS_VALLEYVIEW(dev_priv->dev))
7303 return byt_freq_opcode(dev_priv, val);
7304 else
7305 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
7306 }
7307
7308 struct request_boost {
7309 struct work_struct work;
7310 struct drm_i915_gem_request *req;
7311 };
7312
7313 static void __intel_rps_boost_work(struct work_struct *work)
7314 {
7315 struct request_boost *boost = container_of(work, struct request_boost, work);
7316 struct drm_i915_gem_request *req = boost->req;
7317
7318 if (!i915_gem_request_completed(req, true))
7319 gen6_rps_boost(to_i915(req->ring->dev), NULL,
7320 req->emitted_jiffies);
7321
7322 i915_gem_request_unreference__unlocked(req);
7323 kfree(boost);
7324 }
7325
7326 void intel_queue_rps_boost_for_request(struct drm_device *dev,
7327 struct drm_i915_gem_request *req)
7328 {
7329 struct request_boost *boost;
7330
7331 if (req == NULL || INTEL_INFO(dev)->gen < 6)
7332 return;
7333
7334 if (i915_gem_request_completed(req, true))
7335 return;
7336
7337 boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
7338 if (boost == NULL)
7339 return;
7340
7341 i915_gem_request_reference(req);
7342 boost->req = req;
7343
7344 INIT_WORK(&boost->work, __intel_rps_boost_work);
7345 queue_work(to_i915(dev)->wq, &boost->work);
7346 }
7347
7348 void intel_pm_setup(struct drm_device *dev)
7349 {
7350 struct drm_i915_private *dev_priv = dev->dev_private;
7351
7352 mutex_init(&dev_priv->rps.hw_lock);
7353 spin_lock_init(&dev_priv->rps.client_lock);
7354
7355 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
7356 intel_gen6_powersave_work);
7357 INIT_LIST_HEAD(&dev_priv->rps.clients);
7358 INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
7359 INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7360
7361 dev_priv->pm.suspended = false;
7362 atomic_set(&dev_priv->pm.wakeref_count, 0);
7363 atomic_set(&dev_priv->pm.atomic_seq, 0);
7364 }
This page took 0.186365 seconds and 5 git commands to generate.