Merge tag 'iio-fixes-for-4.6d' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
1 /*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30 #include <linux/log2.h>
31 #include <drm/drmP.h>
32 #include "i915_drv.h"
33 #include <drm/i915_drm.h>
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36
37 int __intel_ring_space(int head, int tail, int size)
38 {
39 int space = head - tail;
40 if (space <= 0)
41 space += size;
42 return space - I915_RING_FREE_SPACE;
43 }
44
45 void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46 {
47 if (ringbuf->last_retired_head != -1) {
48 ringbuf->head = ringbuf->last_retired_head;
49 ringbuf->last_retired_head = -1;
50 }
51
52 ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53 ringbuf->tail, ringbuf->size);
54 }
55
56 int intel_ring_space(struct intel_ringbuffer *ringbuf)
57 {
58 intel_ring_update_space(ringbuf);
59 return ringbuf->space;
60 }
61
62 bool intel_ring_stopped(struct intel_engine_cs *ring)
63 {
64 struct drm_i915_private *dev_priv = ring->dev->dev_private;
65 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66 }
67
68 static void __intel_ring_advance(struct intel_engine_cs *ring)
69 {
70 struct intel_ringbuffer *ringbuf = ring->buffer;
71 ringbuf->tail &= ringbuf->size - 1;
72 if (intel_ring_stopped(ring))
73 return;
74 ring->write_tail(ring, ringbuf->tail);
75 }
76
77 static int
78 gen2_render_ring_flush(struct drm_i915_gem_request *req,
79 u32 invalidate_domains,
80 u32 flush_domains)
81 {
82 struct intel_engine_cs *ring = req->ring;
83 u32 cmd;
84 int ret;
85
86 cmd = MI_FLUSH;
87 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88 cmd |= MI_NO_WRITE_FLUSH;
89
90 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91 cmd |= MI_READ_FLUSH;
92
93 ret = intel_ring_begin(req, 2);
94 if (ret)
95 return ret;
96
97 intel_ring_emit(ring, cmd);
98 intel_ring_emit(ring, MI_NOOP);
99 intel_ring_advance(ring);
100
101 return 0;
102 }
103
104 static int
105 gen4_render_ring_flush(struct drm_i915_gem_request *req,
106 u32 invalidate_domains,
107 u32 flush_domains)
108 {
109 struct intel_engine_cs *ring = req->ring;
110 struct drm_device *dev = ring->dev;
111 u32 cmd;
112 int ret;
113
114 /*
115 * read/write caches:
116 *
117 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
119 * also flushed at 2d versus 3d pipeline switches.
120 *
121 * read-only caches:
122 *
123 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124 * MI_READ_FLUSH is set, and is always flushed on 965.
125 *
126 * I915_GEM_DOMAIN_COMMAND may not exist?
127 *
128 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129 * invalidated when MI_EXE_FLUSH is set.
130 *
131 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132 * invalidated with every MI_FLUSH.
133 *
134 * TLBs:
135 *
136 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139 * are flushed at any MI_FLUSH.
140 */
141
142 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144 cmd &= ~MI_NO_WRITE_FLUSH;
145 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146 cmd |= MI_EXE_FLUSH;
147
148 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149 (IS_G4X(dev) || IS_GEN5(dev)))
150 cmd |= MI_INVALIDATE_ISP;
151
152 ret = intel_ring_begin(req, 2);
153 if (ret)
154 return ret;
155
156 intel_ring_emit(ring, cmd);
157 intel_ring_emit(ring, MI_NOOP);
158 intel_ring_advance(ring);
159
160 return 0;
161 }
162
163 /**
164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165 * implementing two workarounds on gen6. From section 1.4.7.1
166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167 *
168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169 * produced by non-pipelined state commands), software needs to first
170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171 * 0.
172 *
173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175 *
176 * And the workaround for these two requires this workaround first:
177 *
178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179 * BEFORE the pipe-control with a post-sync op and no write-cache
180 * flushes.
181 *
182 * And this last workaround is tricky because of the requirements on
183 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184 * volume 2 part 1:
185 *
186 * "1 of the following must also be set:
187 * - Render Target Cache Flush Enable ([12] of DW1)
188 * - Depth Cache Flush Enable ([0] of DW1)
189 * - Stall at Pixel Scoreboard ([1] of DW1)
190 * - Depth Stall ([13] of DW1)
191 * - Post-Sync Operation ([13] of DW1)
192 * - Notify Enable ([8] of DW1)"
193 *
194 * The cache flushes require the workaround flush that triggered this
195 * one, so we can't use it. Depth stall would trigger the same.
196 * Post-sync nonzero is what triggered this second workaround, so we
197 * can't use that one either. Notify enable is IRQs, which aren't
198 * really our business. That leaves only stall at scoreboard.
199 */
200 static int
201 intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202 {
203 struct intel_engine_cs *ring = req->ring;
204 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205 int ret;
206
207 ret = intel_ring_begin(req, 6);
208 if (ret)
209 return ret;
210
211 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213 PIPE_CONTROL_STALL_AT_SCOREBOARD);
214 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215 intel_ring_emit(ring, 0); /* low dword */
216 intel_ring_emit(ring, 0); /* high dword */
217 intel_ring_emit(ring, MI_NOOP);
218 intel_ring_advance(ring);
219
220 ret = intel_ring_begin(req, 6);
221 if (ret)
222 return ret;
223
224 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227 intel_ring_emit(ring, 0);
228 intel_ring_emit(ring, 0);
229 intel_ring_emit(ring, MI_NOOP);
230 intel_ring_advance(ring);
231
232 return 0;
233 }
234
235 static int
236 gen6_render_ring_flush(struct drm_i915_gem_request *req,
237 u32 invalidate_domains, u32 flush_domains)
238 {
239 struct intel_engine_cs *ring = req->ring;
240 u32 flags = 0;
241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242 int ret;
243
244 /* Force SNB workarounds for PIPE_CONTROL flushes */
245 ret = intel_emit_post_sync_nonzero_flush(req);
246 if (ret)
247 return ret;
248
249 /* Just flush everything. Experiments have shown that reducing the
250 * number of bits based on the write domains has little performance
251 * impact.
252 */
253 if (flush_domains) {
254 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256 /*
257 * Ensure that any following seqno writes only happen
258 * when the render cache is indeed flushed.
259 */
260 flags |= PIPE_CONTROL_CS_STALL;
261 }
262 if (invalidate_domains) {
263 flags |= PIPE_CONTROL_TLB_INVALIDATE;
264 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269 /*
270 * TLB invalidate requires a post-sync write.
271 */
272 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273 }
274
275 ret = intel_ring_begin(req, 4);
276 if (ret)
277 return ret;
278
279 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280 intel_ring_emit(ring, flags);
281 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282 intel_ring_emit(ring, 0);
283 intel_ring_advance(ring);
284
285 return 0;
286 }
287
288 static int
289 gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290 {
291 struct intel_engine_cs *ring = req->ring;
292 int ret;
293
294 ret = intel_ring_begin(req, 4);
295 if (ret)
296 return ret;
297
298 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300 PIPE_CONTROL_STALL_AT_SCOREBOARD);
301 intel_ring_emit(ring, 0);
302 intel_ring_emit(ring, 0);
303 intel_ring_advance(ring);
304
305 return 0;
306 }
307
308 static int
309 gen7_render_ring_flush(struct drm_i915_gem_request *req,
310 u32 invalidate_domains, u32 flush_domains)
311 {
312 struct intel_engine_cs *ring = req->ring;
313 u32 flags = 0;
314 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315 int ret;
316
317 /*
318 * Ensure that any following seqno writes only happen when the render
319 * cache is indeed flushed.
320 *
321 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323 * don't try to be clever and just set it unconditionally.
324 */
325 flags |= PIPE_CONTROL_CS_STALL;
326
327 /* Just flush everything. Experiments have shown that reducing the
328 * number of bits based on the write domains has little performance
329 * impact.
330 */
331 if (flush_domains) {
332 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335 flags |= PIPE_CONTROL_FLUSH_ENABLE;
336 }
337 if (invalidate_domains) {
338 flags |= PIPE_CONTROL_TLB_INVALIDATE;
339 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345 /*
346 * TLB invalidate requires a post-sync write.
347 */
348 flags |= PIPE_CONTROL_QW_WRITE;
349 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
351 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
353 /* Workaround: we must issue a pipe_control with CS-stall bit
354 * set before a pipe_control command that has the state cache
355 * invalidate bit set. */
356 gen7_render_ring_cs_stall_wa(req);
357 }
358
359 ret = intel_ring_begin(req, 4);
360 if (ret)
361 return ret;
362
363 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364 intel_ring_emit(ring, flags);
365 intel_ring_emit(ring, scratch_addr);
366 intel_ring_emit(ring, 0);
367 intel_ring_advance(ring);
368
369 return 0;
370 }
371
372 static int
373 gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374 u32 flags, u32 scratch_addr)
375 {
376 struct intel_engine_cs *ring = req->ring;
377 int ret;
378
379 ret = intel_ring_begin(req, 6);
380 if (ret)
381 return ret;
382
383 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384 intel_ring_emit(ring, flags);
385 intel_ring_emit(ring, scratch_addr);
386 intel_ring_emit(ring, 0);
387 intel_ring_emit(ring, 0);
388 intel_ring_emit(ring, 0);
389 intel_ring_advance(ring);
390
391 return 0;
392 }
393
394 static int
395 gen8_render_ring_flush(struct drm_i915_gem_request *req,
396 u32 invalidate_domains, u32 flush_domains)
397 {
398 u32 flags = 0;
399 u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400 int ret;
401
402 flags |= PIPE_CONTROL_CS_STALL;
403
404 if (flush_domains) {
405 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408 flags |= PIPE_CONTROL_FLUSH_ENABLE;
409 }
410 if (invalidate_domains) {
411 flags |= PIPE_CONTROL_TLB_INVALIDATE;
412 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417 flags |= PIPE_CONTROL_QW_WRITE;
418 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
420 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421 ret = gen8_emit_pipe_control(req,
422 PIPE_CONTROL_CS_STALL |
423 PIPE_CONTROL_STALL_AT_SCOREBOARD,
424 0);
425 if (ret)
426 return ret;
427 }
428
429 return gen8_emit_pipe_control(req, flags, scratch_addr);
430 }
431
432 static void ring_write_tail(struct intel_engine_cs *ring,
433 u32 value)
434 {
435 struct drm_i915_private *dev_priv = ring->dev->dev_private;
436 I915_WRITE_TAIL(ring, value);
437 }
438
439 u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440 {
441 struct drm_i915_private *dev_priv = ring->dev->dev_private;
442 u64 acthd;
443
444 if (INTEL_INFO(ring->dev)->gen >= 8)
445 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446 RING_ACTHD_UDW(ring->mmio_base));
447 else if (INTEL_INFO(ring->dev)->gen >= 4)
448 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449 else
450 acthd = I915_READ(ACTHD);
451
452 return acthd;
453 }
454
455 static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456 {
457 struct drm_i915_private *dev_priv = ring->dev->dev_private;
458 u32 addr;
459
460 addr = dev_priv->status_page_dmah->busaddr;
461 if (INTEL_INFO(ring->dev)->gen >= 4)
462 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463 I915_WRITE(HWS_PGA, addr);
464 }
465
466 static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467 {
468 struct drm_device *dev = ring->dev;
469 struct drm_i915_private *dev_priv = ring->dev->dev_private;
470 i915_reg_t mmio;
471
472 /* The ring status page addresses are no longer next to the rest of
473 * the ring registers as of gen7.
474 */
475 if (IS_GEN7(dev)) {
476 switch (ring->id) {
477 case RCS:
478 mmio = RENDER_HWS_PGA_GEN7;
479 break;
480 case BCS:
481 mmio = BLT_HWS_PGA_GEN7;
482 break;
483 /*
484 * VCS2 actually doesn't exist on Gen7. Only shut up
485 * gcc switch check warning
486 */
487 case VCS2:
488 case VCS:
489 mmio = BSD_HWS_PGA_GEN7;
490 break;
491 case VECS:
492 mmio = VEBOX_HWS_PGA_GEN7;
493 break;
494 }
495 } else if (IS_GEN6(ring->dev)) {
496 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497 } else {
498 /* XXX: gen8 returns to sanity */
499 mmio = RING_HWS_PGA(ring->mmio_base);
500 }
501
502 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503 POSTING_READ(mmio);
504
505 /*
506 * Flush the TLB for this page
507 *
508 * FIXME: These two bits have disappeared on gen8, so a question
509 * arises: do we still need this and if so how should we go about
510 * invalidating the TLB?
511 */
512 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513 i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
515 /* ring should be idle before issuing a sync flush*/
516 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
518 I915_WRITE(reg,
519 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520 INSTPM_SYNC_FLUSH));
521 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522 1000))
523 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524 ring->name);
525 }
526 }
527
528 static bool stop_ring(struct intel_engine_cs *ring)
529 {
530 struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
532 if (!IS_GEN2(ring->dev)) {
533 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536 /* Sometimes we observe that the idle flag is not
537 * set even though the ring is empty. So double
538 * check before giving up.
539 */
540 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541 return false;
542 }
543 }
544
545 I915_WRITE_CTL(ring, 0);
546 I915_WRITE_HEAD(ring, 0);
547 ring->write_tail(ring, 0);
548
549 if (!IS_GEN2(ring->dev)) {
550 (void)I915_READ_CTL(ring);
551 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552 }
553
554 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555 }
556
557 static int init_ring_common(struct intel_engine_cs *ring)
558 {
559 struct drm_device *dev = ring->dev;
560 struct drm_i915_private *dev_priv = dev->dev_private;
561 struct intel_ringbuffer *ringbuf = ring->buffer;
562 struct drm_i915_gem_object *obj = ringbuf->obj;
563 int ret = 0;
564
565 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
567 if (!stop_ring(ring)) {
568 /* G45 ring initialization often fails to reset head to zero */
569 DRM_DEBUG_KMS("%s head not reset to zero "
570 "ctl %08x head %08x tail %08x start %08x\n",
571 ring->name,
572 I915_READ_CTL(ring),
573 I915_READ_HEAD(ring),
574 I915_READ_TAIL(ring),
575 I915_READ_START(ring));
576
577 if (!stop_ring(ring)) {
578 DRM_ERROR("failed to set %s head to zero "
579 "ctl %08x head %08x tail %08x start %08x\n",
580 ring->name,
581 I915_READ_CTL(ring),
582 I915_READ_HEAD(ring),
583 I915_READ_TAIL(ring),
584 I915_READ_START(ring));
585 ret = -EIO;
586 goto out;
587 }
588 }
589
590 if (I915_NEED_GFX_HWS(dev))
591 intel_ring_setup_status_page(ring);
592 else
593 ring_setup_phys_status_page(ring);
594
595 /* Enforce ordering by reading HEAD register back */
596 I915_READ_HEAD(ring);
597
598 /* Initialize the ring. This must happen _after_ we've cleared the ring
599 * registers with the above sequence (the readback of the HEAD registers
600 * also enforces ordering), otherwise the hw might lose the new ring
601 * register values. */
602 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
604 /* WaClearRingBufHeadRegAtInit:ctg,elk */
605 if (I915_READ_HEAD(ring))
606 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607 ring->name, I915_READ_HEAD(ring));
608 I915_WRITE_HEAD(ring, 0);
609 (void)I915_READ_HEAD(ring);
610
611 I915_WRITE_CTL(ring,
612 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613 | RING_VALID);
614
615 /* If the head is still not zero, the ring is dead */
616 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619 DRM_ERROR("%s initialization failed "
620 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621 ring->name,
622 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625 ret = -EIO;
626 goto out;
627 }
628
629 ringbuf->last_retired_head = -1;
630 ringbuf->head = I915_READ_HEAD(ring);
631 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632 intel_ring_update_space(ringbuf);
633
634 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
636 out:
637 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
639 return ret;
640 }
641
642 void
643 intel_fini_pipe_control(struct intel_engine_cs *ring)
644 {
645 struct drm_device *dev = ring->dev;
646
647 if (ring->scratch.obj == NULL)
648 return;
649
650 if (INTEL_INFO(dev)->gen >= 5) {
651 kunmap(sg_page(ring->scratch.obj->pages->sgl));
652 i915_gem_object_ggtt_unpin(ring->scratch.obj);
653 }
654
655 drm_gem_object_unreference(&ring->scratch.obj->base);
656 ring->scratch.obj = NULL;
657 }
658
659 int
660 intel_init_pipe_control(struct intel_engine_cs *ring)
661 {
662 int ret;
663
664 WARN_ON(ring->scratch.obj);
665
666 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667 if (ring->scratch.obj == NULL) {
668 DRM_ERROR("Failed to allocate seqno page\n");
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674 if (ret)
675 goto err_unref;
676
677 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678 if (ret)
679 goto err_unref;
680
681 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683 if (ring->scratch.cpu_page == NULL) {
684 ret = -ENOMEM;
685 goto err_unpin;
686 }
687
688 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689 ring->name, ring->scratch.gtt_offset);
690 return 0;
691
692 err_unpin:
693 i915_gem_object_ggtt_unpin(ring->scratch.obj);
694 err_unref:
695 drm_gem_object_unreference(&ring->scratch.obj->base);
696 err:
697 return ret;
698 }
699
700 static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701 {
702 int ret, i;
703 struct intel_engine_cs *ring = req->ring;
704 struct drm_device *dev = ring->dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 struct i915_workarounds *w = &dev_priv->workarounds;
707
708 if (w->count == 0)
709 return 0;
710
711 ring->gpu_caches_dirty = true;
712 ret = intel_ring_flush_all_caches(req);
713 if (ret)
714 return ret;
715
716 ret = intel_ring_begin(req, (w->count * 2 + 2));
717 if (ret)
718 return ret;
719
720 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721 for (i = 0; i < w->count; i++) {
722 intel_ring_emit_reg(ring, w->reg[i].addr);
723 intel_ring_emit(ring, w->reg[i].value);
724 }
725 intel_ring_emit(ring, MI_NOOP);
726
727 intel_ring_advance(ring);
728
729 ring->gpu_caches_dirty = true;
730 ret = intel_ring_flush_all_caches(req);
731 if (ret)
732 return ret;
733
734 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
736 return 0;
737 }
738
739 static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740 {
741 int ret;
742
743 ret = intel_ring_workarounds_emit(req);
744 if (ret != 0)
745 return ret;
746
747 ret = i915_gem_render_state_init(req);
748 if (ret)
749 return ret;
750
751 return 0;
752 }
753
754 static int wa_add(struct drm_i915_private *dev_priv,
755 i915_reg_t addr,
756 const u32 mask, const u32 val)
757 {
758 const u32 idx = dev_priv->workarounds.count;
759
760 if (WARN_ON(idx >= I915_MAX_WA_REGS))
761 return -ENOSPC;
762
763 dev_priv->workarounds.reg[idx].addr = addr;
764 dev_priv->workarounds.reg[idx].value = val;
765 dev_priv->workarounds.reg[idx].mask = mask;
766
767 dev_priv->workarounds.count++;
768
769 return 0;
770 }
771
772 #define WA_REG(addr, mask, val) do { \
773 const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774 if (r) \
775 return r; \
776 } while (0)
777
778 #define WA_SET_BIT_MASKED(addr, mask) \
779 WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
781 #define WA_CLR_BIT_MASKED(addr, mask) \
782 WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
784 #define WA_SET_FIELD_MASKED(addr, mask, value) \
785 WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
787 #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788 #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
790 #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
791
792 static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
793 {
794 struct drm_i915_private *dev_priv = ring->dev->dev_private;
795 struct i915_workarounds *wa = &dev_priv->workarounds;
796 const uint32_t index = wa->hw_whitelist_count[ring->id];
797
798 if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
799 return -EINVAL;
800
801 WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
802 i915_mmio_reg_offset(reg));
803 wa->hw_whitelist_count[ring->id]++;
804
805 return 0;
806 }
807
808 static int gen8_init_workarounds(struct intel_engine_cs *ring)
809 {
810 struct drm_device *dev = ring->dev;
811 struct drm_i915_private *dev_priv = dev->dev_private;
812
813 WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
814
815 /* WaDisableAsyncFlipPerfMode:bdw,chv */
816 WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
817
818 /* WaDisablePartialInstShootdown:bdw,chv */
819 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
820 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
821
822 /* Use Force Non-Coherent whenever executing a 3D context. This is a
823 * workaround for for a possible hang in the unlikely event a TLB
824 * invalidation occurs during a PSD flush.
825 */
826 /* WaForceEnableNonCoherent:bdw,chv */
827 /* WaHdcDisableFetchWhenMasked:bdw,chv */
828 WA_SET_BIT_MASKED(HDC_CHICKEN0,
829 HDC_DONOT_FETCH_MEM_WHEN_MASKED |
830 HDC_FORCE_NON_COHERENT);
831
832 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
833 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
834 * polygons in the same 8x4 pixel/sample area to be processed without
835 * stalling waiting for the earlier ones to write to Hierarchical Z
836 * buffer."
837 *
838 * This optimization is off by default for BDW and CHV; turn it on.
839 */
840 WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
841
842 /* Wa4x4STCOptimizationDisable:bdw,chv */
843 WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
844
845 /*
846 * BSpec recommends 8x4 when MSAA is used,
847 * however in practice 16x4 seems fastest.
848 *
849 * Note that PS/WM thread counts depend on the WIZ hashing
850 * disable bit, which we don't touch here, but it's good
851 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
852 */
853 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
854 GEN6_WIZ_HASHING_MASK,
855 GEN6_WIZ_HASHING_16x4);
856
857 return 0;
858 }
859
860 static int bdw_init_workarounds(struct intel_engine_cs *ring)
861 {
862 int ret;
863 struct drm_device *dev = ring->dev;
864 struct drm_i915_private *dev_priv = dev->dev_private;
865
866 ret = gen8_init_workarounds(ring);
867 if (ret)
868 return ret;
869
870 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
871 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
872
873 /* WaDisableDopClockGating:bdw */
874 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
875 DOP_CLOCK_GATING_DISABLE);
876
877 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
878 GEN8_SAMPLER_POWER_BYPASS_DIS);
879
880 WA_SET_BIT_MASKED(HDC_CHICKEN0,
881 /* WaForceContextSaveRestoreNonCoherent:bdw */
882 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
883 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
884 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
885
886 return 0;
887 }
888
889 static int chv_init_workarounds(struct intel_engine_cs *ring)
890 {
891 int ret;
892 struct drm_device *dev = ring->dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894
895 ret = gen8_init_workarounds(ring);
896 if (ret)
897 return ret;
898
899 /* WaDisableThreadStallDopClockGating:chv */
900 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
901
902 /* Improve HiZ throughput on CHV. */
903 WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
904
905 return 0;
906 }
907
908 static int gen9_init_workarounds(struct intel_engine_cs *ring)
909 {
910 struct drm_device *dev = ring->dev;
911 struct drm_i915_private *dev_priv = dev->dev_private;
912 uint32_t tmp;
913 int ret;
914
915 /* WaEnableLbsSlaRetryTimerDecrement:skl */
916 I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
917 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
918
919 /* WaDisableKillLogic:bxt,skl */
920 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
921 ECOCHK_DIS_TLB);
922
923 /* WaDisablePartialInstShootdown:skl,bxt */
924 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
925 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
926
927 /* Syncing dependencies between camera and graphics:skl,bxt */
928 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
929 GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
930
931 /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
933 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
934 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
935 GEN9_DG_MIRROR_FIX_ENABLE);
936
937 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
938 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
939 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
940 WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941 GEN9_RHWO_OPTIMIZATION_DISABLE);
942 /*
943 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944 * but we do that in per ctx batchbuffer as there is an issue
945 * with this register not getting restored on ctx restore
946 */
947 }
948
949 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
950 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
951 WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952 GEN9_ENABLE_YV12_BUGFIX);
953
954 /* Wa4x4STCOptimizationDisable:skl,bxt */
955 /* WaDisablePartialResolveInVc:skl,bxt */
956 WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
957 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
958
959 /* WaCcsTlbPrefetchDisable:skl,bxt */
960 WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
961 GEN9_CCS_TLB_PREFETCH_ENABLE);
962
963 /* WaDisableMaskBasedCammingInRCC:skl,bxt */
964 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
965 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
966 WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
967 PIXEL_MASK_CAMMING_DISABLE);
968
969 /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
970 tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
971 if (IS_SKL_REVID(dev, SKL_REVID_F0, SKL_REVID_F0) ||
972 IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
973 tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
974 WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
975
976 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
977 if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
978 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
979 GEN8_SAMPLER_POWER_BYPASS_DIS);
980
981 /* WaDisableSTUnitPowerOptimization:skl,bxt */
982 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
983
984 /* WaOCLCoherentLineFlush:skl,bxt */
985 I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
986 GEN8_LQSC_FLUSH_COHERENT_LINES));
987
988 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
989 ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
990 if (ret)
991 return ret;
992
993 /* WaAllowUMDToModifyHDCChicken1:skl,bxt */
994 ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
995 if (ret)
996 return ret;
997
998 return 0;
999 }
1000
1001 static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1002 {
1003 struct drm_device *dev = ring->dev;
1004 struct drm_i915_private *dev_priv = dev->dev_private;
1005 u8 vals[3] = { 0, 0, 0 };
1006 unsigned int i;
1007
1008 for (i = 0; i < 3; i++) {
1009 u8 ss;
1010
1011 /*
1012 * Only consider slices where one, and only one, subslice has 7
1013 * EUs
1014 */
1015 if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1016 continue;
1017
1018 /*
1019 * subslice_7eu[i] != 0 (because of the check above) and
1020 * ss_max == 4 (maximum number of subslices possible per slice)
1021 *
1022 * -> 0 <= ss <= 3;
1023 */
1024 ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1025 vals[i] = 3 - ss;
1026 }
1027
1028 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1029 return 0;
1030
1031 /* Tune IZ hashing. See intel_device_info_runtime_init() */
1032 WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1033 GEN9_IZ_HASHING_MASK(2) |
1034 GEN9_IZ_HASHING_MASK(1) |
1035 GEN9_IZ_HASHING_MASK(0),
1036 GEN9_IZ_HASHING(2, vals[2]) |
1037 GEN9_IZ_HASHING(1, vals[1]) |
1038 GEN9_IZ_HASHING(0, vals[0]));
1039
1040 return 0;
1041 }
1042
1043 static int skl_init_workarounds(struct intel_engine_cs *ring)
1044 {
1045 int ret;
1046 struct drm_device *dev = ring->dev;
1047 struct drm_i915_private *dev_priv = dev->dev_private;
1048
1049 ret = gen9_init_workarounds(ring);
1050 if (ret)
1051 return ret;
1052
1053 /*
1054 * Actual WA is to disable percontext preemption granularity control
1055 * until D0 which is the default case so this is equivalent to
1056 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057 */
1058 if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1059 I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060 _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061 }
1062
1063 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1064 /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065 I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066 _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067 }
1068
1069 /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070 * involving this register should also be added to WA batch as required.
1071 */
1072 if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1073 /* WaDisableLSQCROPERFforOCL:skl */
1074 I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075 GEN8_LQSC_RO_PERF_DIS);
1076
1077 /* WaEnableGapsTsvCreditFix:skl */
1078 if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1079 I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080 GEN9_GAPS_TSV_CREDIT_DISABLE));
1081 }
1082
1083 /* WaDisablePowerCompilerClockGating:skl */
1084 if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1085 WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086 BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
1088 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0)) {
1089 /*
1090 *Use Force Non-Coherent whenever executing a 3D context. This
1091 * is a workaround for a possible hang in the unlikely event
1092 * a TLB invalidation occurs during a PSD flush.
1093 */
1094 /* WaForceEnableNonCoherent:skl */
1095 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096 HDC_FORCE_NON_COHERENT);
1097
1098 /* WaDisableHDCInvalidation:skl */
1099 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1100 BDW_DISABLE_HDC_INVALIDATION);
1101 }
1102
1103 /* WaBarrierPerformanceFixDisable:skl */
1104 if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1105 WA_SET_BIT_MASKED(HDC_CHICKEN0,
1106 HDC_FENCE_DEST_SLM_DISABLE |
1107 HDC_BARRIER_PERFORMANCE_DISABLE);
1108
1109 /* WaDisableSbeCacheDispatchPortSharing:skl */
1110 if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1111 WA_SET_BIT_MASKED(
1112 GEN7_HALF_SLICE_CHICKEN1,
1113 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1114
1115 /* WaDisableLSQCROPERFforOCL:skl */
1116 ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1117 if (ret)
1118 return ret;
1119
1120 return skl_tune_iz_hashing(ring);
1121 }
1122
1123 static int bxt_init_workarounds(struct intel_engine_cs *ring)
1124 {
1125 int ret;
1126 struct drm_device *dev = ring->dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129 ret = gen9_init_workarounds(ring);
1130 if (ret)
1131 return ret;
1132
1133 /* WaStoreMultiplePTEenable:bxt */
1134 /* This is a requirement according to Hardware specification */
1135 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1136 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1137
1138 /* WaSetClckGatingDisableMedia:bxt */
1139 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1140 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1141 ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1142 }
1143
1144 /* WaDisableThreadStallDopClockGating:bxt */
1145 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1146 STALL_DOP_GATING_DISABLE);
1147
1148 /* WaDisableSbeCacheDispatchPortSharing:bxt */
1149 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1150 WA_SET_BIT_MASKED(
1151 GEN7_HALF_SLICE_CHICKEN1,
1152 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1153 }
1154
1155 /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1156 /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1157 /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1158 /* WaDisableLSQCROPERFforOCL:bxt */
1159 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1160 ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
1161 if (ret)
1162 return ret;
1163
1164 ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1165 if (ret)
1166 return ret;
1167 }
1168
1169 return 0;
1170 }
1171
1172 int init_workarounds_ring(struct intel_engine_cs *ring)
1173 {
1174 struct drm_device *dev = ring->dev;
1175 struct drm_i915_private *dev_priv = dev->dev_private;
1176
1177 WARN_ON(ring->id != RCS);
1178
1179 dev_priv->workarounds.count = 0;
1180 dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1181
1182 if (IS_BROADWELL(dev))
1183 return bdw_init_workarounds(ring);
1184
1185 if (IS_CHERRYVIEW(dev))
1186 return chv_init_workarounds(ring);
1187
1188 if (IS_SKYLAKE(dev))
1189 return skl_init_workarounds(ring);
1190
1191 if (IS_BROXTON(dev))
1192 return bxt_init_workarounds(ring);
1193
1194 return 0;
1195 }
1196
1197 static int init_render_ring(struct intel_engine_cs *ring)
1198 {
1199 struct drm_device *dev = ring->dev;
1200 struct drm_i915_private *dev_priv = dev->dev_private;
1201 int ret = init_ring_common(ring);
1202 if (ret)
1203 return ret;
1204
1205 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1206 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1207 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1208
1209 /* We need to disable the AsyncFlip performance optimisations in order
1210 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1211 * programmed to '1' on all products.
1212 *
1213 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1214 */
1215 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1216 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1217
1218 /* Required for the hardware to program scanline values for waiting */
1219 /* WaEnableFlushTlbInvalidationMode:snb */
1220 if (INTEL_INFO(dev)->gen == 6)
1221 I915_WRITE(GFX_MODE,
1222 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1223
1224 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1225 if (IS_GEN7(dev))
1226 I915_WRITE(GFX_MODE_GEN7,
1227 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1228 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1229
1230 if (IS_GEN6(dev)) {
1231 /* From the Sandybridge PRM, volume 1 part 3, page 24:
1232 * "If this bit is set, STCunit will have LRA as replacement
1233 * policy. [...] This bit must be reset. LRA replacement
1234 * policy is not supported."
1235 */
1236 I915_WRITE(CACHE_MODE_0,
1237 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1238 }
1239
1240 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1241 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1242
1243 if (HAS_L3_DPF(dev))
1244 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1245
1246 return init_workarounds_ring(ring);
1247 }
1248
1249 static void render_ring_cleanup(struct intel_engine_cs *ring)
1250 {
1251 struct drm_device *dev = ring->dev;
1252 struct drm_i915_private *dev_priv = dev->dev_private;
1253
1254 if (dev_priv->semaphore_obj) {
1255 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1256 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1257 dev_priv->semaphore_obj = NULL;
1258 }
1259
1260 intel_fini_pipe_control(ring);
1261 }
1262
1263 static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1264 unsigned int num_dwords)
1265 {
1266 #define MBOX_UPDATE_DWORDS 8
1267 struct intel_engine_cs *signaller = signaller_req->ring;
1268 struct drm_device *dev = signaller->dev;
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 struct intel_engine_cs *waiter;
1271 int i, ret, num_rings;
1272
1273 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1274 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1275 #undef MBOX_UPDATE_DWORDS
1276
1277 ret = intel_ring_begin(signaller_req, num_dwords);
1278 if (ret)
1279 return ret;
1280
1281 for_each_ring(waiter, dev_priv, i) {
1282 u32 seqno;
1283 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1284 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1285 continue;
1286
1287 seqno = i915_gem_request_get_seqno(signaller_req);
1288 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1289 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1290 PIPE_CONTROL_QW_WRITE |
1291 PIPE_CONTROL_FLUSH_ENABLE);
1292 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1293 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1294 intel_ring_emit(signaller, seqno);
1295 intel_ring_emit(signaller, 0);
1296 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1297 MI_SEMAPHORE_TARGET(waiter->id));
1298 intel_ring_emit(signaller, 0);
1299 }
1300
1301 return 0;
1302 }
1303
1304 static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1305 unsigned int num_dwords)
1306 {
1307 #define MBOX_UPDATE_DWORDS 6
1308 struct intel_engine_cs *signaller = signaller_req->ring;
1309 struct drm_device *dev = signaller->dev;
1310 struct drm_i915_private *dev_priv = dev->dev_private;
1311 struct intel_engine_cs *waiter;
1312 int i, ret, num_rings;
1313
1314 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1315 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1316 #undef MBOX_UPDATE_DWORDS
1317
1318 ret = intel_ring_begin(signaller_req, num_dwords);
1319 if (ret)
1320 return ret;
1321
1322 for_each_ring(waiter, dev_priv, i) {
1323 u32 seqno;
1324 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1325 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1326 continue;
1327
1328 seqno = i915_gem_request_get_seqno(signaller_req);
1329 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1330 MI_FLUSH_DW_OP_STOREDW);
1331 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1332 MI_FLUSH_DW_USE_GTT);
1333 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1334 intel_ring_emit(signaller, seqno);
1335 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1336 MI_SEMAPHORE_TARGET(waiter->id));
1337 intel_ring_emit(signaller, 0);
1338 }
1339
1340 return 0;
1341 }
1342
1343 static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1344 unsigned int num_dwords)
1345 {
1346 struct intel_engine_cs *signaller = signaller_req->ring;
1347 struct drm_device *dev = signaller->dev;
1348 struct drm_i915_private *dev_priv = dev->dev_private;
1349 struct intel_engine_cs *useless;
1350 int i, ret, num_rings;
1351
1352 #define MBOX_UPDATE_DWORDS 3
1353 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1354 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1355 #undef MBOX_UPDATE_DWORDS
1356
1357 ret = intel_ring_begin(signaller_req, num_dwords);
1358 if (ret)
1359 return ret;
1360
1361 for_each_ring(useless, dev_priv, i) {
1362 i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1363
1364 if (i915_mmio_reg_valid(mbox_reg)) {
1365 u32 seqno = i915_gem_request_get_seqno(signaller_req);
1366
1367 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1368 intel_ring_emit_reg(signaller, mbox_reg);
1369 intel_ring_emit(signaller, seqno);
1370 }
1371 }
1372
1373 /* If num_dwords was rounded, make sure the tail pointer is correct */
1374 if (num_rings % 2 == 0)
1375 intel_ring_emit(signaller, MI_NOOP);
1376
1377 return 0;
1378 }
1379
1380 /**
1381 * gen6_add_request - Update the semaphore mailbox registers
1382 *
1383 * @request - request to write to the ring
1384 *
1385 * Update the mailbox registers in the *other* rings with the current seqno.
1386 * This acts like a signal in the canonical semaphore.
1387 */
1388 static int
1389 gen6_add_request(struct drm_i915_gem_request *req)
1390 {
1391 struct intel_engine_cs *ring = req->ring;
1392 int ret;
1393
1394 if (ring->semaphore.signal)
1395 ret = ring->semaphore.signal(req, 4);
1396 else
1397 ret = intel_ring_begin(req, 4);
1398
1399 if (ret)
1400 return ret;
1401
1402 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1403 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1404 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1405 intel_ring_emit(ring, MI_USER_INTERRUPT);
1406 __intel_ring_advance(ring);
1407
1408 return 0;
1409 }
1410
1411 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1412 u32 seqno)
1413 {
1414 struct drm_i915_private *dev_priv = dev->dev_private;
1415 return dev_priv->last_seqno < seqno;
1416 }
1417
1418 /**
1419 * intel_ring_sync - sync the waiter to the signaller on seqno
1420 *
1421 * @waiter - ring that is waiting
1422 * @signaller - ring which has, or will signal
1423 * @seqno - seqno which the waiter will block on
1424 */
1425
1426 static int
1427 gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1428 struct intel_engine_cs *signaller,
1429 u32 seqno)
1430 {
1431 struct intel_engine_cs *waiter = waiter_req->ring;
1432 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1433 int ret;
1434
1435 ret = intel_ring_begin(waiter_req, 4);
1436 if (ret)
1437 return ret;
1438
1439 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1440 MI_SEMAPHORE_GLOBAL_GTT |
1441 MI_SEMAPHORE_POLL |
1442 MI_SEMAPHORE_SAD_GTE_SDD);
1443 intel_ring_emit(waiter, seqno);
1444 intel_ring_emit(waiter,
1445 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1446 intel_ring_emit(waiter,
1447 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1448 intel_ring_advance(waiter);
1449 return 0;
1450 }
1451
1452 static int
1453 gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1454 struct intel_engine_cs *signaller,
1455 u32 seqno)
1456 {
1457 struct intel_engine_cs *waiter = waiter_req->ring;
1458 u32 dw1 = MI_SEMAPHORE_MBOX |
1459 MI_SEMAPHORE_COMPARE |
1460 MI_SEMAPHORE_REGISTER;
1461 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1462 int ret;
1463
1464 /* Throughout all of the GEM code, seqno passed implies our current
1465 * seqno is >= the last seqno executed. However for hardware the
1466 * comparison is strictly greater than.
1467 */
1468 seqno -= 1;
1469
1470 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1471
1472 ret = intel_ring_begin(waiter_req, 4);
1473 if (ret)
1474 return ret;
1475
1476 /* If seqno wrap happened, omit the wait with no-ops */
1477 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1478 intel_ring_emit(waiter, dw1 | wait_mbox);
1479 intel_ring_emit(waiter, seqno);
1480 intel_ring_emit(waiter, 0);
1481 intel_ring_emit(waiter, MI_NOOP);
1482 } else {
1483 intel_ring_emit(waiter, MI_NOOP);
1484 intel_ring_emit(waiter, MI_NOOP);
1485 intel_ring_emit(waiter, MI_NOOP);
1486 intel_ring_emit(waiter, MI_NOOP);
1487 }
1488 intel_ring_advance(waiter);
1489
1490 return 0;
1491 }
1492
1493 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
1494 do { \
1495 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1496 PIPE_CONTROL_DEPTH_STALL); \
1497 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1498 intel_ring_emit(ring__, 0); \
1499 intel_ring_emit(ring__, 0); \
1500 } while (0)
1501
1502 static int
1503 pc_render_add_request(struct drm_i915_gem_request *req)
1504 {
1505 struct intel_engine_cs *ring = req->ring;
1506 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1507 int ret;
1508
1509 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1510 * incoherent with writes to memory, i.e. completely fubar,
1511 * so we need to use PIPE_NOTIFY instead.
1512 *
1513 * However, we also need to workaround the qword write
1514 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1515 * memory before requesting an interrupt.
1516 */
1517 ret = intel_ring_begin(req, 32);
1518 if (ret)
1519 return ret;
1520
1521 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1522 PIPE_CONTROL_WRITE_FLUSH |
1523 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1524 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1525 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1526 intel_ring_emit(ring, 0);
1527 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1528 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1529 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1530 scratch_addr += 2 * CACHELINE_BYTES;
1531 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1532 scratch_addr += 2 * CACHELINE_BYTES;
1533 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1534 scratch_addr += 2 * CACHELINE_BYTES;
1535 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1536 scratch_addr += 2 * CACHELINE_BYTES;
1537 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1538
1539 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1540 PIPE_CONTROL_WRITE_FLUSH |
1541 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1542 PIPE_CONTROL_NOTIFY);
1543 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1544 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1545 intel_ring_emit(ring, 0);
1546 __intel_ring_advance(ring);
1547
1548 return 0;
1549 }
1550
1551 static u32
1552 gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1553 {
1554 /* Workaround to force correct ordering between irq and seqno writes on
1555 * ivb (and maybe also on snb) by reading from a CS register (like
1556 * ACTHD) before reading the status page. */
1557 if (!lazy_coherency) {
1558 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1559 POSTING_READ(RING_ACTHD(ring->mmio_base));
1560 }
1561
1562 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1563 }
1564
1565 static u32
1566 ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1567 {
1568 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1569 }
1570
1571 static void
1572 ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1573 {
1574 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1575 }
1576
1577 static u32
1578 pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1579 {
1580 return ring->scratch.cpu_page[0];
1581 }
1582
1583 static void
1584 pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1585 {
1586 ring->scratch.cpu_page[0] = seqno;
1587 }
1588
1589 static bool
1590 gen5_ring_get_irq(struct intel_engine_cs *ring)
1591 {
1592 struct drm_device *dev = ring->dev;
1593 struct drm_i915_private *dev_priv = dev->dev_private;
1594 unsigned long flags;
1595
1596 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1597 return false;
1598
1599 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600 if (ring->irq_refcount++ == 0)
1601 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1602 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1603
1604 return true;
1605 }
1606
1607 static void
1608 gen5_ring_put_irq(struct intel_engine_cs *ring)
1609 {
1610 struct drm_device *dev = ring->dev;
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 unsigned long flags;
1613
1614 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1615 if (--ring->irq_refcount == 0)
1616 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1617 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1618 }
1619
1620 static bool
1621 i9xx_ring_get_irq(struct intel_engine_cs *ring)
1622 {
1623 struct drm_device *dev = ring->dev;
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625 unsigned long flags;
1626
1627 if (!intel_irqs_enabled(dev_priv))
1628 return false;
1629
1630 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1631 if (ring->irq_refcount++ == 0) {
1632 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1633 I915_WRITE(IMR, dev_priv->irq_mask);
1634 POSTING_READ(IMR);
1635 }
1636 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1637
1638 return true;
1639 }
1640
1641 static void
1642 i9xx_ring_put_irq(struct intel_engine_cs *ring)
1643 {
1644 struct drm_device *dev = ring->dev;
1645 struct drm_i915_private *dev_priv = dev->dev_private;
1646 unsigned long flags;
1647
1648 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1649 if (--ring->irq_refcount == 0) {
1650 dev_priv->irq_mask |= ring->irq_enable_mask;
1651 I915_WRITE(IMR, dev_priv->irq_mask);
1652 POSTING_READ(IMR);
1653 }
1654 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1655 }
1656
1657 static bool
1658 i8xx_ring_get_irq(struct intel_engine_cs *ring)
1659 {
1660 struct drm_device *dev = ring->dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 unsigned long flags;
1663
1664 if (!intel_irqs_enabled(dev_priv))
1665 return false;
1666
1667 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1668 if (ring->irq_refcount++ == 0) {
1669 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1670 I915_WRITE16(IMR, dev_priv->irq_mask);
1671 POSTING_READ16(IMR);
1672 }
1673 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1674
1675 return true;
1676 }
1677
1678 static void
1679 i8xx_ring_put_irq(struct intel_engine_cs *ring)
1680 {
1681 struct drm_device *dev = ring->dev;
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683 unsigned long flags;
1684
1685 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1686 if (--ring->irq_refcount == 0) {
1687 dev_priv->irq_mask |= ring->irq_enable_mask;
1688 I915_WRITE16(IMR, dev_priv->irq_mask);
1689 POSTING_READ16(IMR);
1690 }
1691 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692 }
1693
1694 static int
1695 bsd_ring_flush(struct drm_i915_gem_request *req,
1696 u32 invalidate_domains,
1697 u32 flush_domains)
1698 {
1699 struct intel_engine_cs *ring = req->ring;
1700 int ret;
1701
1702 ret = intel_ring_begin(req, 2);
1703 if (ret)
1704 return ret;
1705
1706 intel_ring_emit(ring, MI_FLUSH);
1707 intel_ring_emit(ring, MI_NOOP);
1708 intel_ring_advance(ring);
1709 return 0;
1710 }
1711
1712 static int
1713 i9xx_add_request(struct drm_i915_gem_request *req)
1714 {
1715 struct intel_engine_cs *ring = req->ring;
1716 int ret;
1717
1718 ret = intel_ring_begin(req, 4);
1719 if (ret)
1720 return ret;
1721
1722 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1723 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1724 intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1725 intel_ring_emit(ring, MI_USER_INTERRUPT);
1726 __intel_ring_advance(ring);
1727
1728 return 0;
1729 }
1730
1731 static bool
1732 gen6_ring_get_irq(struct intel_engine_cs *ring)
1733 {
1734 struct drm_device *dev = ring->dev;
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736 unsigned long flags;
1737
1738 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1739 return false;
1740
1741 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1742 if (ring->irq_refcount++ == 0) {
1743 if (HAS_L3_DPF(dev) && ring->id == RCS)
1744 I915_WRITE_IMR(ring,
1745 ~(ring->irq_enable_mask |
1746 GT_PARITY_ERROR(dev)));
1747 else
1748 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1749 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1750 }
1751 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752
1753 return true;
1754 }
1755
1756 static void
1757 gen6_ring_put_irq(struct intel_engine_cs *ring)
1758 {
1759 struct drm_device *dev = ring->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 unsigned long flags;
1762
1763 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764 if (--ring->irq_refcount == 0) {
1765 if (HAS_L3_DPF(dev) && ring->id == RCS)
1766 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1767 else
1768 I915_WRITE_IMR(ring, ~0);
1769 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1770 }
1771 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1772 }
1773
1774 static bool
1775 hsw_vebox_get_irq(struct intel_engine_cs *ring)
1776 {
1777 struct drm_device *dev = ring->dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 unsigned long flags;
1780
1781 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1782 return false;
1783
1784 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1785 if (ring->irq_refcount++ == 0) {
1786 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1787 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1788 }
1789 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1790
1791 return true;
1792 }
1793
1794 static void
1795 hsw_vebox_put_irq(struct intel_engine_cs *ring)
1796 {
1797 struct drm_device *dev = ring->dev;
1798 struct drm_i915_private *dev_priv = dev->dev_private;
1799 unsigned long flags;
1800
1801 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1802 if (--ring->irq_refcount == 0) {
1803 I915_WRITE_IMR(ring, ~0);
1804 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1805 }
1806 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1807 }
1808
1809 static bool
1810 gen8_ring_get_irq(struct intel_engine_cs *ring)
1811 {
1812 struct drm_device *dev = ring->dev;
1813 struct drm_i915_private *dev_priv = dev->dev_private;
1814 unsigned long flags;
1815
1816 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1817 return false;
1818
1819 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1820 if (ring->irq_refcount++ == 0) {
1821 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1822 I915_WRITE_IMR(ring,
1823 ~(ring->irq_enable_mask |
1824 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1825 } else {
1826 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1827 }
1828 POSTING_READ(RING_IMR(ring->mmio_base));
1829 }
1830 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1831
1832 return true;
1833 }
1834
1835 static void
1836 gen8_ring_put_irq(struct intel_engine_cs *ring)
1837 {
1838 struct drm_device *dev = ring->dev;
1839 struct drm_i915_private *dev_priv = dev->dev_private;
1840 unsigned long flags;
1841
1842 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1843 if (--ring->irq_refcount == 0) {
1844 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1845 I915_WRITE_IMR(ring,
1846 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1847 } else {
1848 I915_WRITE_IMR(ring, ~0);
1849 }
1850 POSTING_READ(RING_IMR(ring->mmio_base));
1851 }
1852 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1853 }
1854
1855 static int
1856 i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1857 u64 offset, u32 length,
1858 unsigned dispatch_flags)
1859 {
1860 struct intel_engine_cs *ring = req->ring;
1861 int ret;
1862
1863 ret = intel_ring_begin(req, 2);
1864 if (ret)
1865 return ret;
1866
1867 intel_ring_emit(ring,
1868 MI_BATCH_BUFFER_START |
1869 MI_BATCH_GTT |
1870 (dispatch_flags & I915_DISPATCH_SECURE ?
1871 0 : MI_BATCH_NON_SECURE_I965));
1872 intel_ring_emit(ring, offset);
1873 intel_ring_advance(ring);
1874
1875 return 0;
1876 }
1877
1878 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1879 #define I830_BATCH_LIMIT (256*1024)
1880 #define I830_TLB_ENTRIES (2)
1881 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1882 static int
1883 i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1884 u64 offset, u32 len,
1885 unsigned dispatch_flags)
1886 {
1887 struct intel_engine_cs *ring = req->ring;
1888 u32 cs_offset = ring->scratch.gtt_offset;
1889 int ret;
1890
1891 ret = intel_ring_begin(req, 6);
1892 if (ret)
1893 return ret;
1894
1895 /* Evict the invalid PTE TLBs */
1896 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1897 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1898 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1899 intel_ring_emit(ring, cs_offset);
1900 intel_ring_emit(ring, 0xdeadbeef);
1901 intel_ring_emit(ring, MI_NOOP);
1902 intel_ring_advance(ring);
1903
1904 if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1905 if (len > I830_BATCH_LIMIT)
1906 return -ENOSPC;
1907
1908 ret = intel_ring_begin(req, 6 + 2);
1909 if (ret)
1910 return ret;
1911
1912 /* Blit the batch (which has now all relocs applied) to the
1913 * stable batch scratch bo area (so that the CS never
1914 * stumbles over its tlb invalidation bug) ...
1915 */
1916 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1917 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1918 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1919 intel_ring_emit(ring, cs_offset);
1920 intel_ring_emit(ring, 4096);
1921 intel_ring_emit(ring, offset);
1922
1923 intel_ring_emit(ring, MI_FLUSH);
1924 intel_ring_emit(ring, MI_NOOP);
1925 intel_ring_advance(ring);
1926
1927 /* ... and execute it. */
1928 offset = cs_offset;
1929 }
1930
1931 ret = intel_ring_begin(req, 2);
1932 if (ret)
1933 return ret;
1934
1935 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1936 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1937 0 : MI_BATCH_NON_SECURE));
1938 intel_ring_advance(ring);
1939
1940 return 0;
1941 }
1942
1943 static int
1944 i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1945 u64 offset, u32 len,
1946 unsigned dispatch_flags)
1947 {
1948 struct intel_engine_cs *ring = req->ring;
1949 int ret;
1950
1951 ret = intel_ring_begin(req, 2);
1952 if (ret)
1953 return ret;
1954
1955 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1956 intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1957 0 : MI_BATCH_NON_SECURE));
1958 intel_ring_advance(ring);
1959
1960 return 0;
1961 }
1962
1963 static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1964 {
1965 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1966
1967 if (!dev_priv->status_page_dmah)
1968 return;
1969
1970 drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1971 ring->status_page.page_addr = NULL;
1972 }
1973
1974 static void cleanup_status_page(struct intel_engine_cs *ring)
1975 {
1976 struct drm_i915_gem_object *obj;
1977
1978 obj = ring->status_page.obj;
1979 if (obj == NULL)
1980 return;
1981
1982 kunmap(sg_page(obj->pages->sgl));
1983 i915_gem_object_ggtt_unpin(obj);
1984 drm_gem_object_unreference(&obj->base);
1985 ring->status_page.obj = NULL;
1986 }
1987
1988 static int init_status_page(struct intel_engine_cs *ring)
1989 {
1990 struct drm_i915_gem_object *obj = ring->status_page.obj;
1991
1992 if (obj == NULL) {
1993 unsigned flags;
1994 int ret;
1995
1996 obj = i915_gem_alloc_object(ring->dev, 4096);
1997 if (obj == NULL) {
1998 DRM_ERROR("Failed to allocate status page\n");
1999 return -ENOMEM;
2000 }
2001
2002 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2003 if (ret)
2004 goto err_unref;
2005
2006 flags = 0;
2007 if (!HAS_LLC(ring->dev))
2008 /* On g33, we cannot place HWS above 256MiB, so
2009 * restrict its pinning to the low mappable arena.
2010 * Though this restriction is not documented for
2011 * gen4, gen5, or byt, they also behave similarly
2012 * and hang if the HWS is placed at the top of the
2013 * GTT. To generalise, it appears that all !llc
2014 * platforms have issues with us placing the HWS
2015 * above the mappable region (even though we never
2016 * actualy map it).
2017 */
2018 flags |= PIN_MAPPABLE;
2019 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2020 if (ret) {
2021 err_unref:
2022 drm_gem_object_unreference(&obj->base);
2023 return ret;
2024 }
2025
2026 ring->status_page.obj = obj;
2027 }
2028
2029 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2030 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2031 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2032
2033 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2034 ring->name, ring->status_page.gfx_addr);
2035
2036 return 0;
2037 }
2038
2039 static int init_phys_status_page(struct intel_engine_cs *ring)
2040 {
2041 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2042
2043 if (!dev_priv->status_page_dmah) {
2044 dev_priv->status_page_dmah =
2045 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2046 if (!dev_priv->status_page_dmah)
2047 return -ENOMEM;
2048 }
2049
2050 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2051 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2052
2053 return 0;
2054 }
2055
2056 void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2057 {
2058 if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2059 vunmap(ringbuf->virtual_start);
2060 else
2061 iounmap(ringbuf->virtual_start);
2062 ringbuf->virtual_start = NULL;
2063 ringbuf->vma = NULL;
2064 i915_gem_object_ggtt_unpin(ringbuf->obj);
2065 }
2066
2067 static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2068 {
2069 struct sg_page_iter sg_iter;
2070 struct page **pages;
2071 void *addr;
2072 int i;
2073
2074 pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2075 if (pages == NULL)
2076 return NULL;
2077
2078 i = 0;
2079 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2080 pages[i++] = sg_page_iter_page(&sg_iter);
2081
2082 addr = vmap(pages, i, 0, PAGE_KERNEL);
2083 drm_free_large(pages);
2084
2085 return addr;
2086 }
2087
2088 int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2089 struct intel_ringbuffer *ringbuf)
2090 {
2091 struct drm_i915_private *dev_priv = to_i915(dev);
2092 struct drm_i915_gem_object *obj = ringbuf->obj;
2093 int ret;
2094
2095 if (HAS_LLC(dev_priv) && !obj->stolen) {
2096 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, 0);
2097 if (ret)
2098 return ret;
2099
2100 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2101 if (ret) {
2102 i915_gem_object_ggtt_unpin(obj);
2103 return ret;
2104 }
2105
2106 ringbuf->virtual_start = vmap_obj(obj);
2107 if (ringbuf->virtual_start == NULL) {
2108 i915_gem_object_ggtt_unpin(obj);
2109 return -ENOMEM;
2110 }
2111 } else {
2112 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2113 if (ret)
2114 return ret;
2115
2116 ret = i915_gem_object_set_to_gtt_domain(obj, true);
2117 if (ret) {
2118 i915_gem_object_ggtt_unpin(obj);
2119 return ret;
2120 }
2121
2122 /* Access through the GTT requires the device to be awake. */
2123 assert_rpm_wakelock_held(dev_priv);
2124
2125 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2126 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2127 if (ringbuf->virtual_start == NULL) {
2128 i915_gem_object_ggtt_unpin(obj);
2129 return -EINVAL;
2130 }
2131 }
2132
2133 ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2134
2135 return 0;
2136 }
2137
2138 static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2139 {
2140 drm_gem_object_unreference(&ringbuf->obj->base);
2141 ringbuf->obj = NULL;
2142 }
2143
2144 static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2145 struct intel_ringbuffer *ringbuf)
2146 {
2147 struct drm_i915_gem_object *obj;
2148
2149 obj = NULL;
2150 if (!HAS_LLC(dev))
2151 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2152 if (obj == NULL)
2153 obj = i915_gem_alloc_object(dev, ringbuf->size);
2154 if (obj == NULL)
2155 return -ENOMEM;
2156
2157 /* mark ring buffers as read-only from GPU side by default */
2158 obj->gt_ro = 1;
2159
2160 ringbuf->obj = obj;
2161
2162 return 0;
2163 }
2164
2165 struct intel_ringbuffer *
2166 intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2167 {
2168 struct intel_ringbuffer *ring;
2169 int ret;
2170
2171 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2172 if (ring == NULL) {
2173 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2174 engine->name);
2175 return ERR_PTR(-ENOMEM);
2176 }
2177
2178 ring->ring = engine;
2179 list_add(&ring->link, &engine->buffers);
2180
2181 ring->size = size;
2182 /* Workaround an erratum on the i830 which causes a hang if
2183 * the TAIL pointer points to within the last 2 cachelines
2184 * of the buffer.
2185 */
2186 ring->effective_size = size;
2187 if (IS_I830(engine->dev) || IS_845G(engine->dev))
2188 ring->effective_size -= 2 * CACHELINE_BYTES;
2189
2190 ring->last_retired_head = -1;
2191 intel_ring_update_space(ring);
2192
2193 ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2194 if (ret) {
2195 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2196 engine->name, ret);
2197 list_del(&ring->link);
2198 kfree(ring);
2199 return ERR_PTR(ret);
2200 }
2201
2202 return ring;
2203 }
2204
2205 void
2206 intel_ringbuffer_free(struct intel_ringbuffer *ring)
2207 {
2208 intel_destroy_ringbuffer_obj(ring);
2209 list_del(&ring->link);
2210 kfree(ring);
2211 }
2212
2213 static int intel_init_ring_buffer(struct drm_device *dev,
2214 struct intel_engine_cs *ring)
2215 {
2216 struct intel_ringbuffer *ringbuf;
2217 int ret;
2218
2219 WARN_ON(ring->buffer);
2220
2221 ring->dev = dev;
2222 INIT_LIST_HEAD(&ring->active_list);
2223 INIT_LIST_HEAD(&ring->request_list);
2224 INIT_LIST_HEAD(&ring->execlist_queue);
2225 INIT_LIST_HEAD(&ring->buffers);
2226 i915_gem_batch_pool_init(dev, &ring->batch_pool);
2227 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2228
2229 init_waitqueue_head(&ring->irq_queue);
2230
2231 ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2232 if (IS_ERR(ringbuf)) {
2233 ret = PTR_ERR(ringbuf);
2234 goto error;
2235 }
2236 ring->buffer = ringbuf;
2237
2238 if (I915_NEED_GFX_HWS(dev)) {
2239 ret = init_status_page(ring);
2240 if (ret)
2241 goto error;
2242 } else {
2243 WARN_ON(ring->id != RCS);
2244 ret = init_phys_status_page(ring);
2245 if (ret)
2246 goto error;
2247 }
2248
2249 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2250 if (ret) {
2251 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2252 ring->name, ret);
2253 intel_destroy_ringbuffer_obj(ringbuf);
2254 goto error;
2255 }
2256
2257 ret = i915_cmd_parser_init_ring(ring);
2258 if (ret)
2259 goto error;
2260
2261 return 0;
2262
2263 error:
2264 intel_cleanup_ring_buffer(ring);
2265 return ret;
2266 }
2267
2268 void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2269 {
2270 struct drm_i915_private *dev_priv;
2271
2272 if (!intel_ring_initialized(ring))
2273 return;
2274
2275 dev_priv = to_i915(ring->dev);
2276
2277 if (ring->buffer) {
2278 intel_stop_ring_buffer(ring);
2279 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2280
2281 intel_unpin_ringbuffer_obj(ring->buffer);
2282 intel_ringbuffer_free(ring->buffer);
2283 ring->buffer = NULL;
2284 }
2285
2286 if (ring->cleanup)
2287 ring->cleanup(ring);
2288
2289 if (I915_NEED_GFX_HWS(ring->dev)) {
2290 cleanup_status_page(ring);
2291 } else {
2292 WARN_ON(ring->id != RCS);
2293 cleanup_phys_status_page(ring);
2294 }
2295
2296 i915_cmd_parser_fini_ring(ring);
2297 i915_gem_batch_pool_fini(&ring->batch_pool);
2298 ring->dev = NULL;
2299 }
2300
2301 static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2302 {
2303 struct intel_ringbuffer *ringbuf = ring->buffer;
2304 struct drm_i915_gem_request *request;
2305 unsigned space;
2306 int ret;
2307
2308 if (intel_ring_space(ringbuf) >= n)
2309 return 0;
2310
2311 /* The whole point of reserving space is to not wait! */
2312 WARN_ON(ringbuf->reserved_in_use);
2313
2314 list_for_each_entry(request, &ring->request_list, list) {
2315 space = __intel_ring_space(request->postfix, ringbuf->tail,
2316 ringbuf->size);
2317 if (space >= n)
2318 break;
2319 }
2320
2321 if (WARN_ON(&request->list == &ring->request_list))
2322 return -ENOSPC;
2323
2324 ret = i915_wait_request(request);
2325 if (ret)
2326 return ret;
2327
2328 ringbuf->space = space;
2329 return 0;
2330 }
2331
2332 static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2333 {
2334 uint32_t __iomem *virt;
2335 int rem = ringbuf->size - ringbuf->tail;
2336
2337 virt = ringbuf->virtual_start + ringbuf->tail;
2338 rem /= 4;
2339 while (rem--)
2340 iowrite32(MI_NOOP, virt++);
2341
2342 ringbuf->tail = 0;
2343 intel_ring_update_space(ringbuf);
2344 }
2345
2346 int intel_ring_idle(struct intel_engine_cs *ring)
2347 {
2348 struct drm_i915_gem_request *req;
2349
2350 /* Wait upon the last request to be completed */
2351 if (list_empty(&ring->request_list))
2352 return 0;
2353
2354 req = list_entry(ring->request_list.prev,
2355 struct drm_i915_gem_request,
2356 list);
2357
2358 /* Make sure we do not trigger any retires */
2359 return __i915_wait_request(req,
2360 atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2361 to_i915(ring->dev)->mm.interruptible,
2362 NULL, NULL);
2363 }
2364
2365 int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2366 {
2367 request->ringbuf = request->ring->buffer;
2368 return 0;
2369 }
2370
2371 int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2372 {
2373 /*
2374 * The first call merely notes the reserve request and is common for
2375 * all back ends. The subsequent localised _begin() call actually
2376 * ensures that the reservation is available. Without the begin, if
2377 * the request creator immediately submitted the request without
2378 * adding any commands to it then there might not actually be
2379 * sufficient room for the submission commands.
2380 */
2381 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2382
2383 return intel_ring_begin(request, 0);
2384 }
2385
2386 void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2387 {
2388 WARN_ON(ringbuf->reserved_size);
2389 WARN_ON(ringbuf->reserved_in_use);
2390
2391 ringbuf->reserved_size = size;
2392 }
2393
2394 void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2395 {
2396 WARN_ON(ringbuf->reserved_in_use);
2397
2398 ringbuf->reserved_size = 0;
2399 ringbuf->reserved_in_use = false;
2400 }
2401
2402 void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2403 {
2404 WARN_ON(ringbuf->reserved_in_use);
2405
2406 ringbuf->reserved_in_use = true;
2407 ringbuf->reserved_tail = ringbuf->tail;
2408 }
2409
2410 void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2411 {
2412 WARN_ON(!ringbuf->reserved_in_use);
2413 if (ringbuf->tail > ringbuf->reserved_tail) {
2414 WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2415 "request reserved size too small: %d vs %d!\n",
2416 ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2417 } else {
2418 /*
2419 * The ring was wrapped while the reserved space was in use.
2420 * That means that some unknown amount of the ring tail was
2421 * no-op filled and skipped. Thus simply adding the ring size
2422 * to the tail and doing the above space check will not work.
2423 * Rather than attempt to track how much tail was skipped,
2424 * it is much simpler to say that also skipping the sanity
2425 * check every once in a while is not a big issue.
2426 */
2427 }
2428
2429 ringbuf->reserved_size = 0;
2430 ringbuf->reserved_in_use = false;
2431 }
2432
2433 static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2434 {
2435 struct intel_ringbuffer *ringbuf = ring->buffer;
2436 int remain_usable = ringbuf->effective_size - ringbuf->tail;
2437 int remain_actual = ringbuf->size - ringbuf->tail;
2438 int ret, total_bytes, wait_bytes = 0;
2439 bool need_wrap = false;
2440
2441 if (ringbuf->reserved_in_use)
2442 total_bytes = bytes;
2443 else
2444 total_bytes = bytes + ringbuf->reserved_size;
2445
2446 if (unlikely(bytes > remain_usable)) {
2447 /*
2448 * Not enough space for the basic request. So need to flush
2449 * out the remainder and then wait for base + reserved.
2450 */
2451 wait_bytes = remain_actual + total_bytes;
2452 need_wrap = true;
2453 } else {
2454 if (unlikely(total_bytes > remain_usable)) {
2455 /*
2456 * The base request will fit but the reserved space
2457 * falls off the end. So only need to to wait for the
2458 * reserved size after flushing out the remainder.
2459 */
2460 wait_bytes = remain_actual + ringbuf->reserved_size;
2461 need_wrap = true;
2462 } else if (total_bytes > ringbuf->space) {
2463 /* No wrapping required, just waiting. */
2464 wait_bytes = total_bytes;
2465 }
2466 }
2467
2468 if (wait_bytes) {
2469 ret = ring_wait_for_space(ring, wait_bytes);
2470 if (unlikely(ret))
2471 return ret;
2472
2473 if (need_wrap)
2474 __wrap_ring_buffer(ringbuf);
2475 }
2476
2477 return 0;
2478 }
2479
2480 int intel_ring_begin(struct drm_i915_gem_request *req,
2481 int num_dwords)
2482 {
2483 struct intel_engine_cs *ring;
2484 struct drm_i915_private *dev_priv;
2485 int ret;
2486
2487 WARN_ON(req == NULL);
2488 ring = req->ring;
2489 dev_priv = ring->dev->dev_private;
2490
2491 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2492 dev_priv->mm.interruptible);
2493 if (ret)
2494 return ret;
2495
2496 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2497 if (ret)
2498 return ret;
2499
2500 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2501 return 0;
2502 }
2503
2504 /* Align the ring tail to a cacheline boundary */
2505 int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2506 {
2507 struct intel_engine_cs *ring = req->ring;
2508 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2509 int ret;
2510
2511 if (num_dwords == 0)
2512 return 0;
2513
2514 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2515 ret = intel_ring_begin(req, num_dwords);
2516 if (ret)
2517 return ret;
2518
2519 while (num_dwords--)
2520 intel_ring_emit(ring, MI_NOOP);
2521
2522 intel_ring_advance(ring);
2523
2524 return 0;
2525 }
2526
2527 void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2528 {
2529 struct drm_device *dev = ring->dev;
2530 struct drm_i915_private *dev_priv = dev->dev_private;
2531
2532 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2533 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2534 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2535 if (HAS_VEBOX(dev))
2536 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2537 }
2538
2539 ring->set_seqno(ring, seqno);
2540 ring->hangcheck.seqno = seqno;
2541 }
2542
2543 static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2544 u32 value)
2545 {
2546 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2547
2548 /* Every tail move must follow the sequence below */
2549
2550 /* Disable notification that the ring is IDLE. The GT
2551 * will then assume that it is busy and bring it out of rc6.
2552 */
2553 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2554 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2555
2556 /* Clear the context id. Here be magic! */
2557 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2558
2559 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2560 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2561 GEN6_BSD_SLEEP_INDICATOR) == 0,
2562 50))
2563 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2564
2565 /* Now that the ring is fully powered up, update the tail */
2566 I915_WRITE_TAIL(ring, value);
2567 POSTING_READ(RING_TAIL(ring->mmio_base));
2568
2569 /* Let the ring send IDLE messages to the GT again,
2570 * and so let it sleep to conserve power when idle.
2571 */
2572 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2573 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2574 }
2575
2576 static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2577 u32 invalidate, u32 flush)
2578 {
2579 struct intel_engine_cs *ring = req->ring;
2580 uint32_t cmd;
2581 int ret;
2582
2583 ret = intel_ring_begin(req, 4);
2584 if (ret)
2585 return ret;
2586
2587 cmd = MI_FLUSH_DW;
2588 if (INTEL_INFO(ring->dev)->gen >= 8)
2589 cmd += 1;
2590
2591 /* We always require a command barrier so that subsequent
2592 * commands, such as breadcrumb interrupts, are strictly ordered
2593 * wrt the contents of the write cache being flushed to memory
2594 * (and thus being coherent from the CPU).
2595 */
2596 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2597
2598 /*
2599 * Bspec vol 1c.5 - video engine command streamer:
2600 * "If ENABLED, all TLBs will be invalidated once the flush
2601 * operation is complete. This bit is only valid when the
2602 * Post-Sync Operation field is a value of 1h or 3h."
2603 */
2604 if (invalidate & I915_GEM_GPU_DOMAINS)
2605 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2606
2607 intel_ring_emit(ring, cmd);
2608 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2609 if (INTEL_INFO(ring->dev)->gen >= 8) {
2610 intel_ring_emit(ring, 0); /* upper addr */
2611 intel_ring_emit(ring, 0); /* value */
2612 } else {
2613 intel_ring_emit(ring, 0);
2614 intel_ring_emit(ring, MI_NOOP);
2615 }
2616 intel_ring_advance(ring);
2617 return 0;
2618 }
2619
2620 static int
2621 gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2622 u64 offset, u32 len,
2623 unsigned dispatch_flags)
2624 {
2625 struct intel_engine_cs *ring = req->ring;
2626 bool ppgtt = USES_PPGTT(ring->dev) &&
2627 !(dispatch_flags & I915_DISPATCH_SECURE);
2628 int ret;
2629
2630 ret = intel_ring_begin(req, 4);
2631 if (ret)
2632 return ret;
2633
2634 /* FIXME(BDW): Address space and security selectors. */
2635 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2636 (dispatch_flags & I915_DISPATCH_RS ?
2637 MI_BATCH_RESOURCE_STREAMER : 0));
2638 intel_ring_emit(ring, lower_32_bits(offset));
2639 intel_ring_emit(ring, upper_32_bits(offset));
2640 intel_ring_emit(ring, MI_NOOP);
2641 intel_ring_advance(ring);
2642
2643 return 0;
2644 }
2645
2646 static int
2647 hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2648 u64 offset, u32 len,
2649 unsigned dispatch_flags)
2650 {
2651 struct intel_engine_cs *ring = req->ring;
2652 int ret;
2653
2654 ret = intel_ring_begin(req, 2);
2655 if (ret)
2656 return ret;
2657
2658 intel_ring_emit(ring,
2659 MI_BATCH_BUFFER_START |
2660 (dispatch_flags & I915_DISPATCH_SECURE ?
2661 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2662 (dispatch_flags & I915_DISPATCH_RS ?
2663 MI_BATCH_RESOURCE_STREAMER : 0));
2664 /* bit0-7 is the length on GEN6+ */
2665 intel_ring_emit(ring, offset);
2666 intel_ring_advance(ring);
2667
2668 return 0;
2669 }
2670
2671 static int
2672 gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2673 u64 offset, u32 len,
2674 unsigned dispatch_flags)
2675 {
2676 struct intel_engine_cs *ring = req->ring;
2677 int ret;
2678
2679 ret = intel_ring_begin(req, 2);
2680 if (ret)
2681 return ret;
2682
2683 intel_ring_emit(ring,
2684 MI_BATCH_BUFFER_START |
2685 (dispatch_flags & I915_DISPATCH_SECURE ?
2686 0 : MI_BATCH_NON_SECURE_I965));
2687 /* bit0-7 is the length on GEN6+ */
2688 intel_ring_emit(ring, offset);
2689 intel_ring_advance(ring);
2690
2691 return 0;
2692 }
2693
2694 /* Blitter support (SandyBridge+) */
2695
2696 static int gen6_ring_flush(struct drm_i915_gem_request *req,
2697 u32 invalidate, u32 flush)
2698 {
2699 struct intel_engine_cs *ring = req->ring;
2700 struct drm_device *dev = ring->dev;
2701 uint32_t cmd;
2702 int ret;
2703
2704 ret = intel_ring_begin(req, 4);
2705 if (ret)
2706 return ret;
2707
2708 cmd = MI_FLUSH_DW;
2709 if (INTEL_INFO(dev)->gen >= 8)
2710 cmd += 1;
2711
2712 /* We always require a command barrier so that subsequent
2713 * commands, such as breadcrumb interrupts, are strictly ordered
2714 * wrt the contents of the write cache being flushed to memory
2715 * (and thus being coherent from the CPU).
2716 */
2717 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2718
2719 /*
2720 * Bspec vol 1c.3 - blitter engine command streamer:
2721 * "If ENABLED, all TLBs will be invalidated once the flush
2722 * operation is complete. This bit is only valid when the
2723 * Post-Sync Operation field is a value of 1h or 3h."
2724 */
2725 if (invalidate & I915_GEM_DOMAIN_RENDER)
2726 cmd |= MI_INVALIDATE_TLB;
2727 intel_ring_emit(ring, cmd);
2728 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2729 if (INTEL_INFO(dev)->gen >= 8) {
2730 intel_ring_emit(ring, 0); /* upper addr */
2731 intel_ring_emit(ring, 0); /* value */
2732 } else {
2733 intel_ring_emit(ring, 0);
2734 intel_ring_emit(ring, MI_NOOP);
2735 }
2736 intel_ring_advance(ring);
2737
2738 return 0;
2739 }
2740
2741 int intel_init_render_ring_buffer(struct drm_device *dev)
2742 {
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2745 struct drm_i915_gem_object *obj;
2746 int ret;
2747
2748 ring->name = "render ring";
2749 ring->id = RCS;
2750 ring->exec_id = I915_EXEC_RENDER;
2751 ring->mmio_base = RENDER_RING_BASE;
2752
2753 if (INTEL_INFO(dev)->gen >= 8) {
2754 if (i915_semaphore_is_enabled(dev)) {
2755 obj = i915_gem_alloc_object(dev, 4096);
2756 if (obj == NULL) {
2757 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2758 i915.semaphores = 0;
2759 } else {
2760 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2761 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2762 if (ret != 0) {
2763 drm_gem_object_unreference(&obj->base);
2764 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2765 i915.semaphores = 0;
2766 } else
2767 dev_priv->semaphore_obj = obj;
2768 }
2769 }
2770
2771 ring->init_context = intel_rcs_ctx_init;
2772 ring->add_request = gen6_add_request;
2773 ring->flush = gen8_render_ring_flush;
2774 ring->irq_get = gen8_ring_get_irq;
2775 ring->irq_put = gen8_ring_put_irq;
2776 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2777 ring->get_seqno = gen6_ring_get_seqno;
2778 ring->set_seqno = ring_set_seqno;
2779 if (i915_semaphore_is_enabled(dev)) {
2780 WARN_ON(!dev_priv->semaphore_obj);
2781 ring->semaphore.sync_to = gen8_ring_sync;
2782 ring->semaphore.signal = gen8_rcs_signal;
2783 GEN8_RING_SEMAPHORE_INIT;
2784 }
2785 } else if (INTEL_INFO(dev)->gen >= 6) {
2786 ring->init_context = intel_rcs_ctx_init;
2787 ring->add_request = gen6_add_request;
2788 ring->flush = gen7_render_ring_flush;
2789 if (INTEL_INFO(dev)->gen == 6)
2790 ring->flush = gen6_render_ring_flush;
2791 ring->irq_get = gen6_ring_get_irq;
2792 ring->irq_put = gen6_ring_put_irq;
2793 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2794 ring->get_seqno = gen6_ring_get_seqno;
2795 ring->set_seqno = ring_set_seqno;
2796 if (i915_semaphore_is_enabled(dev)) {
2797 ring->semaphore.sync_to = gen6_ring_sync;
2798 ring->semaphore.signal = gen6_signal;
2799 /*
2800 * The current semaphore is only applied on pre-gen8
2801 * platform. And there is no VCS2 ring on the pre-gen8
2802 * platform. So the semaphore between RCS and VCS2 is
2803 * initialized as INVALID. Gen8 will initialize the
2804 * sema between VCS2 and RCS later.
2805 */
2806 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2807 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2808 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2809 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2810 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2811 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2812 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2813 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2814 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2815 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2816 }
2817 } else if (IS_GEN5(dev)) {
2818 ring->add_request = pc_render_add_request;
2819 ring->flush = gen4_render_ring_flush;
2820 ring->get_seqno = pc_render_get_seqno;
2821 ring->set_seqno = pc_render_set_seqno;
2822 ring->irq_get = gen5_ring_get_irq;
2823 ring->irq_put = gen5_ring_put_irq;
2824 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2825 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2826 } else {
2827 ring->add_request = i9xx_add_request;
2828 if (INTEL_INFO(dev)->gen < 4)
2829 ring->flush = gen2_render_ring_flush;
2830 else
2831 ring->flush = gen4_render_ring_flush;
2832 ring->get_seqno = ring_get_seqno;
2833 ring->set_seqno = ring_set_seqno;
2834 if (IS_GEN2(dev)) {
2835 ring->irq_get = i8xx_ring_get_irq;
2836 ring->irq_put = i8xx_ring_put_irq;
2837 } else {
2838 ring->irq_get = i9xx_ring_get_irq;
2839 ring->irq_put = i9xx_ring_put_irq;
2840 }
2841 ring->irq_enable_mask = I915_USER_INTERRUPT;
2842 }
2843 ring->write_tail = ring_write_tail;
2844
2845 if (IS_HASWELL(dev))
2846 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2847 else if (IS_GEN8(dev))
2848 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2849 else if (INTEL_INFO(dev)->gen >= 6)
2850 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2851 else if (INTEL_INFO(dev)->gen >= 4)
2852 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2853 else if (IS_I830(dev) || IS_845G(dev))
2854 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2855 else
2856 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2857 ring->init_hw = init_render_ring;
2858 ring->cleanup = render_ring_cleanup;
2859
2860 /* Workaround batchbuffer to combat CS tlb bug. */
2861 if (HAS_BROKEN_CS_TLB(dev)) {
2862 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2863 if (obj == NULL) {
2864 DRM_ERROR("Failed to allocate batch bo\n");
2865 return -ENOMEM;
2866 }
2867
2868 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2869 if (ret != 0) {
2870 drm_gem_object_unreference(&obj->base);
2871 DRM_ERROR("Failed to ping batch bo\n");
2872 return ret;
2873 }
2874
2875 ring->scratch.obj = obj;
2876 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2877 }
2878
2879 ret = intel_init_ring_buffer(dev, ring);
2880 if (ret)
2881 return ret;
2882
2883 if (INTEL_INFO(dev)->gen >= 5) {
2884 ret = intel_init_pipe_control(ring);
2885 if (ret)
2886 return ret;
2887 }
2888
2889 return 0;
2890 }
2891
2892 int intel_init_bsd_ring_buffer(struct drm_device *dev)
2893 {
2894 struct drm_i915_private *dev_priv = dev->dev_private;
2895 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2896
2897 ring->name = "bsd ring";
2898 ring->id = VCS;
2899 ring->exec_id = I915_EXEC_BSD;
2900
2901 ring->write_tail = ring_write_tail;
2902 if (INTEL_INFO(dev)->gen >= 6) {
2903 ring->mmio_base = GEN6_BSD_RING_BASE;
2904 /* gen6 bsd needs a special wa for tail updates */
2905 if (IS_GEN6(dev))
2906 ring->write_tail = gen6_bsd_ring_write_tail;
2907 ring->flush = gen6_bsd_ring_flush;
2908 ring->add_request = gen6_add_request;
2909 ring->get_seqno = gen6_ring_get_seqno;
2910 ring->set_seqno = ring_set_seqno;
2911 if (INTEL_INFO(dev)->gen >= 8) {
2912 ring->irq_enable_mask =
2913 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2914 ring->irq_get = gen8_ring_get_irq;
2915 ring->irq_put = gen8_ring_put_irq;
2916 ring->dispatch_execbuffer =
2917 gen8_ring_dispatch_execbuffer;
2918 if (i915_semaphore_is_enabled(dev)) {
2919 ring->semaphore.sync_to = gen8_ring_sync;
2920 ring->semaphore.signal = gen8_xcs_signal;
2921 GEN8_RING_SEMAPHORE_INIT;
2922 }
2923 } else {
2924 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2925 ring->irq_get = gen6_ring_get_irq;
2926 ring->irq_put = gen6_ring_put_irq;
2927 ring->dispatch_execbuffer =
2928 gen6_ring_dispatch_execbuffer;
2929 if (i915_semaphore_is_enabled(dev)) {
2930 ring->semaphore.sync_to = gen6_ring_sync;
2931 ring->semaphore.signal = gen6_signal;
2932 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2933 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2934 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2935 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2936 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2937 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2938 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2939 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2940 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2941 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2942 }
2943 }
2944 } else {
2945 ring->mmio_base = BSD_RING_BASE;
2946 ring->flush = bsd_ring_flush;
2947 ring->add_request = i9xx_add_request;
2948 ring->get_seqno = ring_get_seqno;
2949 ring->set_seqno = ring_set_seqno;
2950 if (IS_GEN5(dev)) {
2951 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2952 ring->irq_get = gen5_ring_get_irq;
2953 ring->irq_put = gen5_ring_put_irq;
2954 } else {
2955 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2956 ring->irq_get = i9xx_ring_get_irq;
2957 ring->irq_put = i9xx_ring_put_irq;
2958 }
2959 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2960 }
2961 ring->init_hw = init_ring_common;
2962
2963 return intel_init_ring_buffer(dev, ring);
2964 }
2965
2966 /**
2967 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2968 */
2969 int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2970 {
2971 struct drm_i915_private *dev_priv = dev->dev_private;
2972 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2973
2974 ring->name = "bsd2 ring";
2975 ring->id = VCS2;
2976 ring->exec_id = I915_EXEC_BSD;
2977
2978 ring->write_tail = ring_write_tail;
2979 ring->mmio_base = GEN8_BSD2_RING_BASE;
2980 ring->flush = gen6_bsd_ring_flush;
2981 ring->add_request = gen6_add_request;
2982 ring->get_seqno = gen6_ring_get_seqno;
2983 ring->set_seqno = ring_set_seqno;
2984 ring->irq_enable_mask =
2985 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2986 ring->irq_get = gen8_ring_get_irq;
2987 ring->irq_put = gen8_ring_put_irq;
2988 ring->dispatch_execbuffer =
2989 gen8_ring_dispatch_execbuffer;
2990 if (i915_semaphore_is_enabled(dev)) {
2991 ring->semaphore.sync_to = gen8_ring_sync;
2992 ring->semaphore.signal = gen8_xcs_signal;
2993 GEN8_RING_SEMAPHORE_INIT;
2994 }
2995 ring->init_hw = init_ring_common;
2996
2997 return intel_init_ring_buffer(dev, ring);
2998 }
2999
3000 int intel_init_blt_ring_buffer(struct drm_device *dev)
3001 {
3002 struct drm_i915_private *dev_priv = dev->dev_private;
3003 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
3004
3005 ring->name = "blitter ring";
3006 ring->id = BCS;
3007 ring->exec_id = I915_EXEC_BLT;
3008
3009 ring->mmio_base = BLT_RING_BASE;
3010 ring->write_tail = ring_write_tail;
3011 ring->flush = gen6_ring_flush;
3012 ring->add_request = gen6_add_request;
3013 ring->get_seqno = gen6_ring_get_seqno;
3014 ring->set_seqno = ring_set_seqno;
3015 if (INTEL_INFO(dev)->gen >= 8) {
3016 ring->irq_enable_mask =
3017 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3018 ring->irq_get = gen8_ring_get_irq;
3019 ring->irq_put = gen8_ring_put_irq;
3020 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3021 if (i915_semaphore_is_enabled(dev)) {
3022 ring->semaphore.sync_to = gen8_ring_sync;
3023 ring->semaphore.signal = gen8_xcs_signal;
3024 GEN8_RING_SEMAPHORE_INIT;
3025 }
3026 } else {
3027 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3028 ring->irq_get = gen6_ring_get_irq;
3029 ring->irq_put = gen6_ring_put_irq;
3030 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3031 if (i915_semaphore_is_enabled(dev)) {
3032 ring->semaphore.signal = gen6_signal;
3033 ring->semaphore.sync_to = gen6_ring_sync;
3034 /*
3035 * The current semaphore is only applied on pre-gen8
3036 * platform. And there is no VCS2 ring on the pre-gen8
3037 * platform. So the semaphore between BCS and VCS2 is
3038 * initialized as INVALID. Gen8 will initialize the
3039 * sema between BCS and VCS2 later.
3040 */
3041 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3042 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3043 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3044 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3045 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3046 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3047 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3048 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3049 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3050 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3051 }
3052 }
3053 ring->init_hw = init_ring_common;
3054
3055 return intel_init_ring_buffer(dev, ring);
3056 }
3057
3058 int intel_init_vebox_ring_buffer(struct drm_device *dev)
3059 {
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3062
3063 ring->name = "video enhancement ring";
3064 ring->id = VECS;
3065 ring->exec_id = I915_EXEC_VEBOX;
3066
3067 ring->mmio_base = VEBOX_RING_BASE;
3068 ring->write_tail = ring_write_tail;
3069 ring->flush = gen6_ring_flush;
3070 ring->add_request = gen6_add_request;
3071 ring->get_seqno = gen6_ring_get_seqno;
3072 ring->set_seqno = ring_set_seqno;
3073
3074 if (INTEL_INFO(dev)->gen >= 8) {
3075 ring->irq_enable_mask =
3076 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3077 ring->irq_get = gen8_ring_get_irq;
3078 ring->irq_put = gen8_ring_put_irq;
3079 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3080 if (i915_semaphore_is_enabled(dev)) {
3081 ring->semaphore.sync_to = gen8_ring_sync;
3082 ring->semaphore.signal = gen8_xcs_signal;
3083 GEN8_RING_SEMAPHORE_INIT;
3084 }
3085 } else {
3086 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3087 ring->irq_get = hsw_vebox_get_irq;
3088 ring->irq_put = hsw_vebox_put_irq;
3089 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3090 if (i915_semaphore_is_enabled(dev)) {
3091 ring->semaphore.sync_to = gen6_ring_sync;
3092 ring->semaphore.signal = gen6_signal;
3093 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3094 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3095 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3096 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3097 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3098 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3099 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3100 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3101 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3102 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3103 }
3104 }
3105 ring->init_hw = init_ring_common;
3106
3107 return intel_init_ring_buffer(dev, ring);
3108 }
3109
3110 int
3111 intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3112 {
3113 struct intel_engine_cs *ring = req->ring;
3114 int ret;
3115
3116 if (!ring->gpu_caches_dirty)
3117 return 0;
3118
3119 ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3120 if (ret)
3121 return ret;
3122
3123 trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3124
3125 ring->gpu_caches_dirty = false;
3126 return 0;
3127 }
3128
3129 int
3130 intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3131 {
3132 struct intel_engine_cs *ring = req->ring;
3133 uint32_t flush_domains;
3134 int ret;
3135
3136 flush_domains = 0;
3137 if (ring->gpu_caches_dirty)
3138 flush_domains = I915_GEM_GPU_DOMAINS;
3139
3140 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3141 if (ret)
3142 return ret;
3143
3144 trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3145
3146 ring->gpu_caches_dirty = false;
3147 return 0;
3148 }
3149
3150 void
3151 intel_stop_ring_buffer(struct intel_engine_cs *ring)
3152 {
3153 int ret;
3154
3155 if (!intel_ring_initialized(ring))
3156 return;
3157
3158 ret = intel_ring_idle(ring);
3159 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3160 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3161 ring->name, ret);
3162
3163 stop_ring(ring);
3164 }
This page took 0.097134 seconds and 5 git commands to generate.